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WHITNEY EQUIVALENT CONTINUA

ALEJANDRO ILLANES AND ROCIO LEONEL

ABsTrRACT. We say that two metric continua X and Y are
Whitney equivalent provided that each positive Whitney level for
X is homeomorphic to a positive Whitney level for Y and vice
versa. We say that X is Whitney determined provided the fol-
lowing holds: if X and Y are Whitney equivalent, then X and Y
are homeomorphic. In this paper we prove that finite graphs and
the sin(i)—continuum are Whitney determined. We also show that
there are two non-homeomorphic compactifications of the ray [0,1),
with arcs as remainders such that X and Y are Whitney equivalent.

1. INTRODUCTION

A continuum is a compact connected metric space with more than
one point. Given a continuum X, denote by C(X) the hyperspace of
subcontinua of X, endowed with the Hausdorff metric H. A Whitney
map is a continuous function p : C'(X) — [0,1] such that u(X) = 1,
w({p}) = 0, for each p € X and, if A, B € C(X) are such that A ¢ B,
then u(A) < p(B). It is known that, for every continuum X, C(X) ad-
mits Whitney maps (see [13, Theorem 13.4]). A positive Whitney level for
X is a set of the form p~1(¢), where p is a Whitney map and ¢ € (0, 1).
It is known that positive Whitney levels are subcontinua of C(X) [13,
Theorem 19.9], that is, they are elements of C(C(X)). Let WL(X) =
{Ae C(C(X)) : A is a positive Whitney level for X}. We remark
that 20€(X) includes all positive Whitney levels for all Whitney maps.
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We say that X is Whitney equivalent to the continuum Y provided that
the set 2L(X) is topologically equal to the set 20L(Y"), that is, for each
element A in 20£(X) there exists B € 2L(Y") such that A is homeomor-
phic to B and for each element B in 20£(Y") there exists A € WL(X)
such that B is homeomorphic to A. We say that X is determined by its
Whitney levels provided that, if Y is a continuum that is Whitney equiv-
alent to X, then X and Y are homeomorphic.

Using Theorems 31.1, 31.2, 38.1, 38.2, 56.1, 56.2, 57.2 and 57.3 of [13],
it follows that the arc [0, 1], the unit circle S* in the Euclidean plane, the
Pseudo-arc and each particular Pseudo-solenoid are determined by their
Whitney levels.

In this paper we show that finite graphs, the Sin(%)—continuum and
each particular solenoid are determined by their Whitney levels, and we
show that there are metric compactifications of the ray [0,00), with an
arc as its remainder, such that it is not determined by their Whitney
levels. On the other hand, we show in Theorem 5.2 that a continuum
is a dendrite without free arcs if and only if each positive Whitney level
for X is a Hilbert cube. Hence, these dendrites are very far from being
determined by their Whitney levels.

2. FINITE GRAPHS

A map is a continuous function. For each n > 1, a simple n-od is a
continuum N that has a point v, called the vertex of V, and contains n
arcs Ji,...,J, such that N = J;U...UJ,, v is an end point of each J; and
J;iNJ; = {v}, for every ¢ # j. A finite graph is a continuum X, different
from a simple closed curve, that can be put as the union of a finite
number of arcs such that the intersection of any two of them meets in a
finite set. Given a finite graph X and a point p € X, the order of p in X,
ordx (p), is the positive integer n such that p has a neighborhood N in X
such that N is an n-od. Points of order 1 of X are called end points of
X, points of order 2 are called ordinary points of X and points of order
greater than 2 are called ramification points of X. Denote by E(X), O(X)
and R(X) the respective sets of end, ordinary and ramification points of
X. The vertices of X are the points of the set F(X)UR(X). An edge of
X is the closure in X of a component of the set X — (E(X)UR(X)). Note
that each edge is an arc or a simple closed curve. Thus we assume that
the metric on X is the arc length metric and that each edge has diameter
equal to 1. Thus we may identify each edge J of X with a set of the form
[(0),(1)s], where (0); # (1)s and [(0), (1) ] is isometric to the interval
[0,1], if J is an arc; and (0); = (1)s and [(0), (1)s] is homeomorphic to
the space obtained by identifying the end points of the interval [0,1] to a
point, if J is a simple closed curve.
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A subgraph of X is a subcontinuum S of X such that S is the union
of some edges of X or S is a one-point-set containing a vertex of X.
Given a subgraph S of X, let Jp,...,J, be the edges of X such that each
Ji =1(0) 4, (1),,] is an arc and J; N S is a one-point-set (we assume that
JiNS ={(0)y,}); and let Lq,..., L, be the edges of X such that, for
each j € {1,...,m}, either L; is an arc or a simple closed curve such that
L;nS ={(0)r,,(1)r,}. Define Mg the set of subcontinua A of X such
that A is of the form:

A=SU[0)y,c]U...U[(0)s,,cn] U[(0)L,,a1] U [b1, (1), ]U... U

[(0) L, am] U b, (1)L, ],
where 0 < ¢; <1, for each ¢ € {1,...,n} and 0 < a; < b; < 1, for each
je{l,...,m}.

Given an edge J of X, define Ny = C(J), if J is an arc, and N; =
cloxy({A€ C(J): AC J—{(0)s}}), if J is a simple closed curve. Notice
that, in both cases, Ny = {4 € C(J): A—{(0),, (1)} is connected}.

Given a finite graph X and a Whitney map p : C(X) — [0,1], let
t(p) = min{pu(J) : J is an edge of X}.

An n-cell is a space that is homeomorphic to [0,1]". An n-od in a
continuum X is a subcontinuum A of X such that there exists a subcon-
tinuum B of A with the property that A — B has at least n components.
It is known that C'(X) contains an n-cell if and only if X contains an
n-od ([9]). A free arc in X is an arc J, joining points p and ¢ such that
J —{p,q} is open in X. A mazximal free arc in X is a free arc that is not
properly contained in another free arc. A tree is a finite graph with no
simple closed curves.

Lemma 2.1. If X is a finite graph and Y is a continuum such that'Y is
Whitney equivalent to X, then Y is a finite graph.

Proof. Since X is locally connected, each positive Whitney level for X
is locally connected ([13, Theorems 52.1 and 52.2]). Since X and Y are
Whitney equivalent, the positive Whitney levels for Y are locally con-
nected. Thus Y is locally connected. If Y is not a finite graph, then Y is
a simple closed curve or there exists a subspace @ of C(Y) such that @
is homeomorphic to the Hilbert cube [0,1]¥ ([16, Theorem 1.111]). Since
X is not a simple closed curve, by [13, Theorems 38.1 and 38.2], Y is not
a simple closed curve. Thus by [13, Theorem 70.1], for each n > 3, YV
contains an n-od. By [16, Theorem 14.33], for each n > 2, there exists
a positive Whitney level B for Y such that B contains an n-cell. Since
X and Y are Whitney equivalent, for each n > 2, there exists a positive
Whitney level A for X such that A contains an n-cell. This implies that
the dimension of C'(X) is infinite. This contradicts [16, Theorem 1.109]
and completes the proof of the lemma. O
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Lemma 2.2. Let X be a finite graph and let p : C(X) — [0,1] be a
Whitney map. For each 0 < t < t(u), let A= p=1(t), then we have:

(1) if v,w are vertices of X and v # w, then M,y N My NA =10,

2) A= (UMpynA:ve RX)})UUNINA: T is an edge of

X})

7

(3) for each v € R(X), Mg,y N A is an (ordx (v) — 1)-cell,

(4) for each edge J of X, NyN A is an arc,

(5) if J and L are edges of X and J # L, then Ny NN NA =0,
(6) ifv e R(X) and J is an edge of X, then the set M,y NN;NA

has at most two elements and it is contained in the set of end
points of the arc Ny N A.
(7) if J is an edge of X, NN A is a mazimal free arc of A.

Proof. (1) Let v,w be vertices of X such that v # w. If A € Mg, N
My NA, then v,w € A. This implies that there exists an edge J of X
such that J C A. Thus t(p) < p(J) < p(A) =t < ¢(u), a contradiction.
Therefore, My,; N M,y NA = 0.

(2) By (2, 54, p. 272], A= (U{MsNA: S is a subgraph of X})U
(U{NyNA: Jis an edge of X}). Given a subgraph S of X such that S
contains an edge of X, by the definition of ¢(v), Mg N A = 0. Therefore
the equality in (2) is immediate.

(3) Let v € R(X). Let Jy,...,J, and Lq,..., Ly, be edges of X such
that Ji,...,J, are the different edges of X such that each J; is an arc
and v € J;, we may assume that v = (0),,; and Lq,...,L,, are the
different edges of X such that each L; is a simple closed curve such that
v € L;. Then ordx(v) = n + 2m. By the definition of ¢(p), the elements
of Mg,y N A are the subcontinua A of X of the form: A = [(0),,¢1] U

U100 U L0) 1, 01] U [br, (1)1,] U -+ U [(0) 21y ) U [, (1)1,
where 0 < ¢; < 1, for each i € {1,...,n} and 0 < a; < b; < 1, for each
j €{1,...,m}. Then we can define A = {(x1,...,Zn12m) € [0,1]7F2™ :
T4 ...+ Tpyom =1} and o : My, NA — A by

([(0) g, 1] V... U[(0)y,, ] U[(0) Ly, a1] U [br, (1)r,]U... U
[1(0)Lm’am] U [bm, (D)r,,]) =
T e T e AT T (Ol Cny Gy Gy 1 —
b1,y 1 —by).

It is easy to check that ¢ is continuous.

In order to check that ¢ is one-to-one, suppose that ¢(A) = ¢(B),
A=1(0)y,c1]U...U[(0)1,,cs]U[0)r,,a1]U[by, (1), ]U...U[(0)L,., am]U
[bim, (1)r,,] and B = [(0) 4, f1]U...U[(0)4,, fa] U[(0)L,, di]U[er, (1)L, ]U
. U[0)g,, ,dm]Ulem, (D) g, ]. Then (c1,...,¢n,a1,. .y Qm,1—b1,...,1—
b)) =7r(f1,-- s fa,diy o ydm, 1 —e1,...,1 —ep,), where

cit...+cntar+...Fam+(1=b1)+...+(1=bm)
Fito A atdittdm+t(I—e)t...t(1—€m)"

r =
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We may assume that » < 1. This implies that A C B. Since u(4) =
w(B), we conclude that A = B. Therefore, ¢ is one-to-one.

We show that ¢ is onto. Let (21, ..., Zn12m) € [0,1]"2™ be such that
Z14...+Tpiom = 1. Let yo = max{z1,...,Tpiom} and let r > 1 be such
that ryo = 1. For each s € [0,7], let ¥(s) = [(0) s, , sz1]U...U[(0) ,, szp]U
[(0) Ly, sTnt1) U ... U[0)L,, $Tptm] U [l — sTpymyr, (D), ]U... UL —
Stasam: (1),,]. Since p((0)) = p({v}) = 0 and p(6(r) > () (b(r)
contains an edge of X), there exists so € [0, 7] such that 1 (so) € ANM 3.
Clearly, p(¢(s0)) = (z1,- .., Tnt2m). Therefore, ¢ is onto.

We have shown that ¢ is a homeomorphism. Since A is an (ordx (v) —
1)-cell, the proof of (3) is complete.

The proof of (4) is similar to the proof that positive Whitney levels for
an arc are arcs (see [16, Theorem 14.6]). The proof of (5) is immediate.
In (6) is easy to show the following: if v ¢ J, then M,y NN;NA = 0 if
v € J and J is an arc, then Mg,y NN N A is a one-point-set, containing
one of the end points of the arc Ay N A; and if v € J and J is a simple
closed curve, then My,; "Ny N A is the set containing exactly the two
end points of the arc A;NA. In order to prove (7), let J be an edge of X.
Since J —{(0)y,(1)s}isopenin X, {AeN;NA: ACJ—{(0)s,(1)s}}
is open in A. Thus N;N A is a free arc of A. If A; N A is not a maximal
free arc, then there exists an arc £, contained in A such that one of the
end points E of Ay N A belongs to int 4(£). By (2) and (5), there exists
a vertex v of X such that ' € My, N A and, by (3) Mp,; N A is an
(ordx (v) — 1)-cell. Then there exists a subcell R of My,; N A such that
R C L. This is impossible since £ is an arc. We have shown that ANy N.A
is a maximal free arc. This completes the proof of the lemma. O

Given a finite graph X, a Whitney map u : C(X) — [0,1] and 0 <
t < t(u), let A= p~L(t). For each edge J of X, let E; and Fj be the
end points of the arc Ny N A and let K; = N; N A—{E;,F;}. Let
G(X, u,t) be the continuum obtained from 4 by shrinking each one of
the components of the set C = A — [J{K; : J is an edge of X'} to a point.

Lemma 2.3. G(X, u,t) is homeomorphic to X.

Proof. By Lemma 2.2 (1) and (2), the components of C are the elements
of the family {M,;NA : vis a vertex of X}. Let ¢ : A — X be defined in
the following way. Given A € M,y NA, for some vertex v of X, we define
¢(A) = v. Given an edge J of X such that J is an arc with end points
v and w, the arc N; N A has exactly one end point A, containing v and
it has exactly one element A,, containing w. Thus there exists a home-
omorphism ¢ : NyNA — J such that ¢ (4,) = v and ¢;(Ay) = w.
Given an edge J of X such that J is a simple closed curve, there exists a
(unique) ramification point v of X such that (0); = v = (1), and the end
points of the arc A';NA are two elements A, and B, such that v € A,NB,,.
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Let s : NyNA — J be a map such that p;(4,) = v = ¢ (B,) and
orlnvna—ta,,By c NoNA—{A,, By} = J — {v} is a homeomorphism.
This completes the definition of ¢.

Since ¢ is continuously defined in closed subsets of A and it is well
defined, we obtain that ¢ is an onto map. Notice that ¢ shrinks each one
of the components of C to a point and ¢ is one-to-one in A — C. Thus,
the Transgression Theorem ([3, Theorem 3.2|) implies that G(X, u,t) is
homeomorphic to X. O

Lemma 2.4. Let X be a finite graph, u: C(X) — [0,1] a Whitney map,
t € (0,1) and A= p=t(t). If L is a mazimal free arc of A, then there
exists an edge J of X such thatt < u(J) and L =N ;N A.

Proof. Let Ey, E1 be the end points of L. Let A € L — {Ey, E1}. First
we show that A N R(X) = 0. Suppose to the contrary that there exists
v € R(X) N A. Observe that A is a finite graph (not necessarily a sub-
graph of X, since we defined subgraphs as unions of edges of X), A is
nondegenerate and A # X. Since £ — {Ep, E1} is open in A, there exists
€ > 0 such that, if B € Aand H(A, B) < ¢, then B € L—{Ey, F1}. Since
A # X, there exists a one-to-one map ~ : [0,1] — X such that y(0) € A4,
v(s) ¢ A for each s > 0, and H(A, AU Im v) < e.

Claim 1. There exists a 3-cell R in C(X) and there exist Ag, A1 € R
such that A9 C A C A; and H(A, B) < ¢ for each B € R.

In order to prove Claim 1, we consider four cases.

Case 1. A contains a simple closed curve S.

Let « : [0,1] — S be a one-to-one map such that Im o N R(X) = 0
and, if Ag = A — «((0,1)), then Ay is a subcontinuum of X such that
H(A,Ap) < e. Note that A9 C A. Let A3 = AU Im 7 and let o :
[0,1]> = C(X) be given by o(s1,52,53) = AgU([0, 3]) Ua([1— 22, 1])U
~([0, s3]). Clearly, o is a one-to-one map ¢(0,0,0) = Ay, 0(1,1,0) = A
and o(1,1,1) = A;. Thus R = Im o satisfies the required properties.

Case 2. Ais a tree and A — {v} has at least three components.

Let K1, K5 and K3 be pairwise separated nonempty subsets of A such
that A — {v} = K1 UK, U K3. We may assume that v(0) ¢ Ky U K3. By
[3, 3.2, p. 118], K5 U {v} and K3 U {v} are nondegenerate subcontinua
of X. By [16, Theorem 1.8], there exist maps a, 8 : [0,1] — C(X) such
that a(0) = {v} = B(0), a(1) = K2 U {v}, f(1) = K3 U {v} and, if 0 <
r < s <1, then a(r) € a(s) and B(r) C B(s). Let Ag = K1 Ua(3)UB(3)
and A; = AU Im ~. Reparametrizing « and f, if it were necessary, we
may assume that H(A, Ag) < . Let o : [0,1]> — C(X) be given by
o(s1,82,83) = K1 Ua() U B(HE22) Uy([0, s3]). Clearly, o is a one-to-
one map 0(0,0,0) = Ay, 0(1,1,0) = A and o(1,1,1) = A;. Thus R =
Im o satisfies the required properties.
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Case 3. A is a tree and A — {v} has exactly two components.

Since A is a tree, v is an ordinary point of A. Thus we may assume
that v(0) = v. Let K3 and K3 be the components of A — {v}. By [3, 3.2,
p. 112], Ks U {v} and K3 U {v} are nondegenerate subcontinua of X. By
[16, Theorem 1.8], there exist maps a, 5 : [0, 1] — C(X) such that a(0) =
{v} =6(0), a(1) = Ko U{v}, (1) = KsU{v} and, if 0 <r < s <1, then
a(r) € a(s) and B(r) € B(s). Let Ag = a(3) UB(3) and A; = AU Im 7.
We may assume that H(A, Ag) < e. Let o : [0,1]°> — C(X) be given by
o(s1,82,83) = a2 U B(1E2) U ([0, s3]). Clearly, o is a one-to-one
map 0(0,0,0) = Ag, 0(1,1,0) = A and 0(1,1,1) = A;. Thus R=Im o
satisfies the required properties.

Case 4. A is a tree and A — {v} is connected.

Since A is a tree, v is an end point of A. Thus we may assume that
~v(0) = v and there exists a one-to-one map « : [0,1] — X such that
a(0) = v, a(s) ¢ AU Im v for each s > 0 and H(A, AU Im aU Im v) < e.
By [16, Theorem 1.8], there exists a map (3 : [0,1] — C(X) such that
B(0) = {v}, B(1) = A and, if 0 < r < s < 1, then B(r) C B(s). Let
Ao = B(3), we may assume that H(A, Ag) < e. Let A4y = AU Im aU Im
v and o : [0,1]> = C(X) be given by o(s1, s2, s3) = a([0, s1]) U B(152) U
~([0, s3]). Clearly, o is a one-to-one map ¢(0,0,0) = Ay, 0(0,1,0) = A
and 0(1,1,1) = A;. Thus R = Im o satisfies the required properties.

This completes the proof of Claim 1.

We are ready to obtain a contradiction. Since R = (R N u~1([0,1))) U
(RN pu=t((t,1])) U (RN .A), we have that R N A separates R and, by the
choice of e, RN A C L. Thus RN A is a 1-dimensional set that separates
R. This contradicts [8, Corollary 2 to Theorem IV 4] and completes the
proof that AN R(X) = 0.

Thus, for each A € £ — {Ey, E1}, there exists an edge J4 of X such
that A C Ja.

Claim 2. If A, B e L —{Ey, E1}, then J4 = Jg.

In order to prove Claim 2, let I be the subarc of £ that joins A and
B. Let D = |J{C : C € K}. By [16, Lemma 1.49|, D is a subcontinuum
of X and, by the first part of the proof, for each C € K, CN R(X) = 0,
then DN R(X) = (. Thus there exists an edge L of X such that D C L.
Hence J4 = L = Jp.

By Claim 2, there exists an edge J of X such that A C J for each A €
L—{Fy, E1}. Thus A C J for each A € L. Therefore, £L C N yNA. Since
NjNAis a free arc of A, the maximality of £ implies that £ = N ;NA. O

Theorem 2.5. Let X be a finite graph. Then X is determined by its
Whitney levels.
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Proof. Let Y be a continuum such that X and Y are Whitney equivalent.
By Lemma 2.1, Y is a finite graph. Let e be the number of edges of X.
Given a positive Whitney level A of X. Let {£1,...,L.4)} be the dif-
ferent maximal free arcs of A. By Lemma 2.3, for each i € {1,...,e(A)},
there exists an edge J; of X such that £,= N j, N.A. Note that J; # J;, if
1 # j. This proves that e(A) < e. By Lemma 2.2 (7), there are Whitney
levels A of X for which e(A) = e. Thus e is the maximuum of the number
of maximal free arcs that a positive Whitney level of X can have. Since
X and Y are Whitney equivalent, the same happens to Y. Thus e is also
the number of edges of Y.

Let 1 : C(X) — [0, 1] be a Whitney map, ¢ € (0,t(x)) and A = p=1(¢).
Let B = w™!(s) be a positive Whitney level for Y such that A and B are
homeomorphic, where w : C(Y') — [0,1] is a Whitney map and 0 < s < 1.
By Lemma 2.2 (7) and the paragraph above A (and B) has exactly e
maximal free arcs. Let {K1,...,K.} be the set of maximal free arcs of B.
By Lemma 2.4, for each i € {1,...,e}, there exists an edge K; of Y such
that K; = Nk, N B and s < w(K;). Then we can apply Lemma 2.3 to X,
i, t and to Y, w, s and obtain that G(X, u, t) is homeomorphic to X and
G(Y,w, s) is homeomorphic to Y. Since A and B are homeomorphic, the
space obtained from A by shrinking to a point each one of the components
of A—J{L — {E : FE is an end point of £} : £ is a maximal free arc of A}
is homeomorphic to the respective space defined for B. Thus G(X, u,t) is
homeomorphic to G(Y,w, s). Therefore, X and Y are homeomorphic. [

3. COMPACTIFICATIONS OF THE RAY

A continuum X is irreducible provided that there exist two points of
X such that there is not a proper subcontinuum of X containing them.
The continuum X is said to be indecomposable provided that X cannot
be put as the union of two of its proper subcontinua. A subcontinuum
A of X is said to be terminal provided that, if B is a subcontinuum of
X and ANB # (), then A C B or B C A. A map between continua
f: X =Y is said to be monotone provided that f~!(y) is connected for
each y € Y. For each ¢ > 0 and p € X, let B(e,p) be the e-open ball
around p in X.

Given a metric compactification X of the ray [0,1), we denote by Rx
the remainder of X and we define Sx = X — Rx, C(Sx) = {A € C(X):
AC Sx}and Cr(X)={A e C(X): Rx C A}. In the following easy to
prove lemma we summarize some basic facts about compactifications of
the ray.
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Lemma 3.1. Let X = Rx U Sx be a compactification of the ray. Let
w:C(X)—1[0,1] be a Whitney map and t € (0,1). Then:

(1) Rx is terminal in X,

(2) C(X)=C(Sx)UCRr(X)UC(Rx) and Cr(X) is an arc,

(3) If « is an arc in C(X) joining an element in C(Rx) and an
element in C(X) — C(Rx), then Rx € a,

) 1} (8) N C(Sx) s a ray,

) If w(Rx) < t, then u=t(t) is an arc,

) if u(Bx) > t, then 1= (8) = (ulogre) ™ (6) U (=1 N C(Sx)),
p=L(t) N C(Sx) is an open arcwise component of pu~'(t) and
(Hlery) ™ ) N (u=H () NC(Sx)) = 0.

A topological property P is said to be:

(a) A Whitney property provided that if a continuum X has property
P, then each positive Whitney level of X has property P.

(b) A sequential strong Whitney-reversible property, provided that when-
ever X is a continuum such that there is a Whitney map u for C(X) and
a sequence {t,, }°°; in (0, 1] such that lim¢,, = 0 and x~!(¢,,) has property
P for each n, then X has property P.

N

(
(5
6

Theorem 3.2. The property of being a compactification of the ray is a
sequential strong Whitney-reversible property.

Proof. Let X be a continuum with metric d, let p be a Whitney map
for C(X) and let {t,}22, be a sequence in (0, 1] such that lim¢, = 0
and p~Y(t,) is a compactification of [0,1) for each n > 1. Since being
an arc is a sequential strong Whitney-reversible property ([16, Corollary
14.50]), we may assume that each p~1(¢,) has nondegenerate remainder.
Since p1~1(t1) is irreducible, by [13, Theorem 49.3], X is irreducible. Let
z,y € X be such that no proper subcontinuum of X contains both points
x and y.

Claim 3. For each nondegenerate indecomposable subcontinuum 2
of X, intx(Z) = 0.

In order to prove Claim 3, suppose to the contrary that intx (Z) # 0.
Fix a point ¢ € intx(Z). Let ¢ > 0 be such that B(4e,q) C Z and
8¢ < diameter(Z). Since limt, = 0 we can fix N > 1 such that each
element A € p~!(¢y) has diameter less than e. Let A = p~1(ty). Fix an
element A € A such that ¢ € A (the existence of A can be proved by using
[16, Theorem 1.8]). Since we are assuming that A is a compactification
of the ray [0,1), the sets R4 and S, are defined. Since S4 is dense
in A, there exists an element P € S4 such that H(A, P) < . Notice
that P C B(2e,q). Fix a point p € P. Let {pn}5°_; be a sequence of
points of B(e,p) such that limp,, = p and for each m > 1, p,, and p
belong to different composants of Z (see [17, 5.20 and Theorem 11.15]).
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For each m > 1, choose an element P,, € A such that p,, € P,,. We
may assume that lim P, = Py for some P, € A. Notice that p € P,.
Then p € PN Py. By [16, Lemma 14.8.1] there exists an arc in A joining
P and P,. This implies that Py € S4. Since S4 is open in A there
exists m > 1 such that H(Py, P,,) < € and P,, € S4. Since S4 is
homeomorphic to [0,1), we may assume that the subarc J of S, that
joins Py and P,, has diameter less than €. Let B = [J{C : C € J}. By
[16, Lemma 1.49], B is a subcontinuum of X. Notice that p,p,, € B and
B C B(2e,p) C B(4e,q) C Z, so diameter(B) < 8. Since p and p,,
are in different composants of Z, B = Z. This is a contradiction since
diameter(B) < 8¢ < diameter(Z). This completes the proof of Claim 3.

By [14, p. 216] there exists a monotone map « : X — [0, 1] such that
m(x) =0, m(y) = 1 and intx (77 1(s)) = 0 for each s € [0,1].

Claim 4. For each s € (0,1], clx(7—1([0,s))) N7~ 1(s) is a terminal
subcontinuum of clx (7~1([0, s))).

We prove Claim 4. Let D=clyx (7~1([0,s)))N7~1(s). Since 771([0,s)) =
U{m=1([0, s — 1]) : n > 1}, we have cLy (7~ 1([0, s))) is a subcontinuum of
X

Given a subcontinuum E of X such that E C 7=1([0, s]), ENt—1(s) # 0
and EN7=1([0,s)) # 0, let v € EN7=1([0,5)). Then 7~ ([0, 7 (v)])UE U
7 1([s,1]) is a subcontinuum of X containing z and y. By the choice of
x and y, this set coincides with X. Thus 7~ !((7(v),s)) C E. Since D =
clx (m~((m(v),8))) N7~1(s), we have D C E.

We prove that D is connected. Suppose to the contrary that D =
K U L, where K and L are disjoint nonempty closed subsets of D. Let
C be a component of D such that C' C K. Using an order arc from C
to clx(771([0,5))) (see [16, Theorem 1.8]), it is possible to construct a
subcontinuum F of clx (7~1([0, s))) such that C C E and ENL = (). Since
C is a component of D, E ¢ 7~ !(s). Thus EN=7~1([0,s)) # 0. So, we
can apply what we proved in the last paragraph and obtain that D C F.
This is a contradiction since £ N L = (). Therefore, D is connected.

Now we see that D is terminal in clx(771([0,5))). Let E be a sub-
continuum of clx (771([0,s))) such that DN E # () and E ¢ D. Then
E c 7 ([0,s]) and E ¢ n~'(s). Applying what we proved two para-
graphs above we obtain that D C E. This ends the proof of Claim 4.

The proof of the following claim is similar to the proof of Claim 4.

Claim 5. For each s € [0,1), clx (7 1((s,1])) N7~ 1(s) is a terminal
subcontinuum of clx (7 ~1((s, 1])).

Claim 6. For each s € (0,1), 7~ !(s) is degenerate.

In order to show Claim 6, suppose that 7—1(s) is nondegenerate. Since
inty (77 1(s)) =0, 7~ 1(s) = D1UDg, where Dy = clx (7 =1(]0, s)))N7—1(s)
and Dy = clx(771((s,1])) N 7~ 1(s). Since m~!(s) is nondegenerate,
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we may assume that D; is nondegenerate. Let ¢ > 0 be such that
B(2e,z) € n71([0,s)) and B(2e,y) C 7 ((s,1]). Let N > 1 be such
that tx < p(D;) and diameter(A) < ¢ for every A € p~1(tn). Let
A = p~(ty). Using [16, Theorem 1.8] it is possible to construct ele-
ments A, Ay, € A such that z € A, and y € A,. By the density of
S in A, there exist elements B,, B, € S4 such that H(A;,B;) < ¢
and H(A,, B,) < . Notice that B, C m~1([0,s)) and B, C 7~ 1((s,1]).
Let £ be the subarc of S4 joining B, and B,. Let o : [0,1] = L be a
map such that ¢(0) = B, and o(1) = By. Since ¢(0) C 7#~*([0,s)) and
o(1) c 7 1((s,1]) it is possible to define ry = min{r € [0,1] : o(r)N
77 s) # 0}. Then o(rg) N7 1(s) # 0, 0 < 19 < 1 and o(ry) C
clx(m71([0,))). Thus o(rg) N Dy # 0. Since u(o(rg)) < tn, there exists
r1 € (0,79) such that the set E = (J{o(r) : r € [r1,70]} is a subcontinuum
of X (see [16, Lemma 1.49]) such that u(E) < ty. Thus E is a subcon-
tinuum of cly (77%([0,s))) such that EN Dy # 0 and E ¢ Dy. By Claim
4, D; C E. Hence, ty < u(D1) < p(E) < tn, a contradiction. We have
proved Claim 6.

Claim 7. One of the continua 71(0) or 7=1(1) is degenerate.

To prove Claim 7, suppose to the contrary that 7=1(0) and 7~1(1)
are nondegenerate. Fix a point v € W_l(%) and let € > 0 be such that
e < min{d(p,q) : p € 77 1(0) and ¢ € 7=1(1)} and B(2¢,v) N (7~1(0) U
771(1)) = 0. Let N > 1 be such that ¢ty < min{u(7=1(0)), pu(x=1(1))}
and diameter(A) < € for every A € pu~!(ty). Let A = p~'(tn). Using
[16, Theorem 1.8]) it is possible to find elements Ay, Ay, Ay € A such that
x € Ag,v € Ay and y € Aq. Since S 4 is dense in A, there exists an element
B € S, such that H(As, B) < e. Notice that BN (7~1(0) Ur~1(1)) = 0.
Let Dp={Ac A: AN720)# 0} and D; = {A € A: An71(1) # 0}.
Then Ay € Dy and Ay € D;. Notice that Dy and D; are disjoint nonempty
closed subsets of A.

Given A € A— (D,UD;), AUB C 7 1((0,1)). By the compactness
of AU B, there exist 0 < r < s < 1 such that AU B C 7 ([r,s]). Let
E = 77Y([r,s]). By Claim 6 7|z : E — [r, s] is a homeomorphism. Thus
E is an arc. Since ANC(E) = (p|c(p)) " (tn) is a Whitney level for C(E).
By [16, Theorem 14.6], AN C(E) is path connected. Thus A and B can
be connected by a path in A. Since B € S4 and R4 is nondegenerate, we
conclude that A € S4. We have shown that A — (D, UD;) C S4. In or-
der to show the opposite inclusion, let A € S4 and suppose, by example,
that A € Dy. Since A, B € S 4, there exists a map o : [0,1] — S4 C A
such that 0(0) = B and o(1) = A. Let rg = min{r € [0,1] : o(r) €
Do}. Then 0 < 1. Since u(o(rg)) = tn < w(r=1(0)), there exists
r1 € (0,79) such that, if F = (J{o(r) : r € [r1,70]}, then F is a
subcontinuum of X (see [16, Theorem 1.49]) and u(F) < p(m=1(0)).
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By the definition of ro, F N7~ 1((0,1]) # 0. Since intx(7~1(0)) = 0,
clx (m71((0,1])) = X and elx (7~ 1((0,1])) N 7=(0) = #~1(0). By Claim
5, 71(0) is a terminal subcontinuum of X. Thus 7~!(0) C F and
pw(m=1(0)) < p(F), a contradiction. We have proved that A — (D,UD;) =
S 4. Hence R4 = Dy UD;. This contradicts the connectedness of R4 and
completes the proof of Claim 7.

By Claim 7, we may assume that 71 (1) is degenerate. Thus Tlr=1((0,1))"
771((0,1]) — (0,1] is a one-to-one onto map. It is easy to check that this
map is open and then it is a homeomorphism. Since m~1((0,1]) is dense
in X, we conclude that X is a compactification of [0, 1) O

An onto map between continua f : X — Z is said to be weakly confluent
provided that for each subcontinuum B of Z there exists a subcontinuum
A of X such that f(A) = B. The continuum Z is said to be in Class(WV),
written Z € Class(W), provided that every map from any continuum
onto Z is weakly confluent. The notion of Class(W) was introduced by
A. Lelek in 1972 and it has been extensively studied by several authors.
There are several interesting and different ways to define Class(W) (see
Section 67 of [13]). The family of continua in Class(W) includes (see [13,
Section 67]): hereditarily indecomposable continua; chainable continua,;
non-planar circle-like continua; metric compactifications of the ray [0,1)
which have its remainder in Class(W) and atriodic continua with trivial
first Cech cohomology. We use a result by C. W. Proctor to give an
additional equivalence to being in Class(W).

Theorem 3.3. A continuum Z is in Class(W) if and only if each com-
pactification X of the ray, with Z as its remainder has the property that
every positive Whitney level of X is a compactification of the ray.

Proof. (Necessity) Suppose that Z € Class(W) and let X be a compacti-
fication of the ray such that Rx = Z. Let u: C(X) — [0, 1] be a Whitney
map and ¢ € (0,1). Let A= p~1(¢t). We consider two cases.

Case 1. p(Rx) <t.

By Lemma 3.1 (5), A is an arc and then A a compactification of the
ray.

Case 2. u(Rx) > t.

In this case, by Lemma 3.1 (4) and (6) S={4A € A: AC Sx}isa
ray. So we only need to check that S is dense in A. Let A € A —S. Then
A C Rx. By Theorem 67.1 of [13], there exists a sequence {A,}52,, of
elements of C'(X) such that A, C Sx for each n > 1 and lim A4,, = A.
Using order arcs ([16, Theorem 1.8]), it is possible to construct, for each
n > 1, an element B,, € A such that either A,, C B,, or B,, C A,,. Taking
a subsequence, if necessary, we may assume that A, C B, for every
n > 1 and lim B,, = B for some B € A. Then A C B and pu(B) = u(A).
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Thus A = B and A = limB,,. Given n > 1, B, N Sx # 0, by the
terminality of Rx in X and the fact that u(Rx) > t, it follows that
B, € Sx. Thus B, € §. Hence S is dense in A. This completes the
proof of the necessity.

(Sufficiency) Suppose that X is a compactification of [0, 1), with Z as
its remainder. According to Theorem 67.1 of [13], we only need to prove
that C(X) = clo(x)(C(Sx)). Let p: C(X) — [0,1] be a Whitney map.
Let Ae CO(X). f ANSx # 0, then A C Sx or Rx C A. In both cases
is easy to check that A € clo(x)C(Sx). If A C Rx, let t = u(A) and
A = p71(t). In the case that A = Ry, by Lemma 3.1 (5), A is an arc,
and by Lemma 3.1 (2), all the elements in A—{Rx} are contained in Sx.
Thus A € Clx(A* {Rx}) C Clx(C(Sx)).

Finally, if A C Rx, then by Lemma 3.1 (6) A = (u|c(ry)) () U
(ANC(Sx)). We are assuming that A is a compactification of the ray.
We claim that S4 = ANC(Sx). Since Sx is open in X, ANC(Sx) is
open in A. Given a point p € Sx, by [16, Theorem 1.8], there exists an
element B € A such that p € B. Since B ¢ C(Rx), B € ANC(Sx). Thus
ANC(Sx) is a nonempty open subset of A. Hence S4N(ANC(Sx)) # 0.
Fix an element By € S4N(ANC(Sx)). Given B € ANC(Rx), if there is
an arc « in A joining B and By, by Lemma 3.1 (3), Rx € c« and Rx € A,
this is a contradiction since ¢t = u(A4) < u(Rx). In particular, we have
that A is not an arc and R4 is nondegenerate. Furthermore, since By €
S4 and S 4 is arcwise connected, we conclude that (ANC(Rx))NS4 = 0.
Thus (p|c(ry)) ' (t) = ANC(Rx) C Ry. Hence Sq C AN C(Sx).
By Lemma 3.1 (4), AN C(Sx) is a ray, in particular, A N C(Sx) is
an arcwise connected subset of A that intersects S 4. This implies that
ANC(Sx) C Sa. Therefore, S4 = AN C(Sx). Since Sy is dense
in A, A € cla(Sa) C clgx)(C(Sx)). This completes the proof of the
theorem. |

Given a continuum X, we say that X is Whitney stable (see [16, Def-
inition 14.39.1]) provided that X is homeomorphic to each of its posi-
tive Whitney levels. The class of Whitney stable continua includes: the
arc, the circle, the Pseudo-arc, any particular solenoid and any particular
pseudo-solenoid (see Remark 14.42 of [16]).

Corollary 3.4. Let Z be a Whitney stable continuum such that Z €
Class(W) and the property of being homeomorphic to Z is a sequential
strong Whitney-reversible property. Let X be a compactification of the
ray with Z as its remainder and let' Y be a continuum such that X and
Y are Whitney equivalent. Then Y is a compactification of the ray with
Z as its remainder.
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Proof. Let A = p~'(t) be a positive Whitney level for X. Since Z €
Class(W), by Theorem 3.3, A is a compactification of the ray. Let X =
RxUSx. We are assuming that Rx is homeomorphic to Z. If u(Rx) < t,
Ais an arc. If u(Rx) > ¢, by Lemma 3.1, A = (u|c(ry)) " (t) U (AN
C(Sx)), AN C(Sx) is a ray, (ulory) () N (ANC(Sx)) = 0 and
AN C(Sx) is an open arcwise component of A. In particular, A is not
an arc. Since Z is Whitney stable (u|c(ry)) " (¢) is homeomorphic to Z.
Since A is a compactification of the ray, the only open nonempty arcwise
component of Ais S4. Thus Ra = (pulc(ry)) *(t) and S4 = ANC(Sx).
Therefore A is either an arc or a compactification of the ray with Z as its
remainder. Since X and Y are Whitney equivalent, each positive Whitney
level for Y is either an arc or a compactification of the ray with Z as its
remainder.

By Theorem 3.2, Y is a compactification of the ray. Let Y = Ry USy.
We need to show that Ry is homeomorphic to Z. Since being home-
omorphic to Z is a sequential strong Whitney-reversible property, it is
enough to show that each positive Whitney level for Ry is homeomor-
phic to Z. Let By = wy !(s1) be a positive Whitney level for Ry, where
w1 : C(Ry) — [0,1] is a Whitney map. By [13, Theorem 23.3|, there
exists a Whitney map w : C(Y) — [0,1] such that w extends w;. Then
Bi = (wlc(ry)) " (s), for some s € (0,1). We know that B = w™!(s) is a
compactification of the ray with Z as its remainder (by Lemma 3.1 (6),
B is not an arc since it contains a ray as one of its arcwise components).
Moreover, by Lemma 3.1, B = B; U(BNC(Sy)), Bi1N(BNC(Sy)) = 0 and
BNC(Sy) is a ray and it is an open arcwise component of B. This implies
that Sp = BNC(Sy) and By =B — (BNC(Sy)) =B — Sg = Rp. Hence
B1 is homeomorphic to Z. Therefore Ry is homeomorphic to Z. O

Corollary 3.5. Let Z be one of the following continua: the arc, the
Pseudoarc or any particular pseudo-solenoid. Let X be a compactification
of the ray with Z as its remainder and let Y be a continuum such that X
and Y are Whitney equivalent. Then Y is a compactification of the ray
with Z as its remainder.

Proof. Let Z be any of the mentioned continua. Then by Theorems 31.1,
31.2, 38.1, 38.2, 56.1, 56.2, 57.2, 57.3 and the results mentioned in p.319
of [13], Z satisfies the hypothesis of Corollary 3.4. |

A continuum X is said to be a Kelley continuum (or X has Kelley
property) provided that, if p € A € C(X) and {p,}32, is a sequence in

X such that lim p, = p, then there exists a sequence {A,}52; in C(X)
such that p,, € A, for each n and lim A,, = A.

Corollary 3.6. The sin()-continuum is Whitney determined.
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Proof. Let X denote the sin(%)—continuum. Let Y be a continuum such
that X and Y are Whitney equivalent. By Corollary 3.4, Y is a com-
pactification of the ray with an arc as its remainder. It is known that the
positive Whitney levels for X are homeomorphic either to [0, 1] or to X
(a proof of this can be made with an argument similar to the one we give
in Example 3.8). Thus each positive Whitney level for Y has the property
of Kelley. Since the property of Kelley is a sequential strong Whitney-
reversible property (|13, Theorem 50.4]), Y has the property of Kelley. By
Theorem 16.28 of [16], Y is homeomorphic to the sin(1)-continuum. [

Remark 3.7. One can look for a similar result as Corollary 3.6 for a
particular compactification of the ray with the pseudo-arc as its remain-
der. However the tools we use in Corollary 3.6 are not useful since each
compactification of the ray with the pseudo-arc as its remainder has the
property of Kelley (see [18, Theorem 6.20]). Moreover, contrary to the in-
tuiton, there are uncountable many non-homeomorphic compactifications
of the ray with the pseudo-arc as remainder (see [15]).

Example 3.8. There are two non-homeomorphic compactifications of the
ray X and Y such that Rx and Ry are arcs and X and Y are Whitney
equivalent.

Consider the continua X and Y represented in Figure 1, where lim b,, =
b = limd,, lim¢, = ¢ = lim f,,, lima,, = a = lime,, limg, =g # h =
lim h,.

FIGURE 1
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Clearly, X and Y are not homeomorphic. We show that X and Y are
Whitney equivalent.

Given points x # y in the same arcwise component of X, let zy be the
unique arc in X joining them.

Let p : C(X) — [0,1] be a Whitney map and let ¢ € (0,1) be such
that p(ac) <t < u(be). Let A= p~1(t). We show that p~1(¢) is homeo-
morphic to the continuum Z (and then homeomorphic to the continuum
W) represented in Figure 2. Since in the compactifications of the ray it is
not important what happens at the beginning of the ray, we may assume
that, for each n > 1, min{u(anby,), p(dnen), pbnticn), ulcndn)} > t.
Let A,, By, S,, Cn, Tn,, D,, R, and E, be the unique elements in A
satisfying: a, € A, C apby, by, € By C apbyn, bur1 € Sn C byiicn,
cn € Cp C bpgicn, ¢n € Ty, C cpdy, dy € Dy, C cpdy, dy € R, C dpey
and e, € F,, C d,e,.

Let A,B,C € A besuchthat a € ACab,be B Cabandce C C be.
Let B={M € A: M C ab}. Givenn > 1,let B, ={M € A: M C
anby}. By [16, Theorem 14.6], B is an arc joining A and B and B,, is an arc
joining A, and B,,. Notice that lim B,, = B. So we represent, in Figure 2,
the arcs B, as vertical arcs converging to the arc B. Similarly, the vertical
arc in Z that joins C,, and S,, represents the set {M € A: M C ¢,,byy1},
the arc T, D,, represents the set {M € A: M C ¢,d,} and the arc R, E,
represents the set {M € A: M C dep}.

YA 5 B,S,D,R, B, S, D, R, B,
Ct o
CZ T2 C1 T1
A
E, A, E, A
W

FIGURE 2
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Given n > 1, consider the subarc D, R, of A that joins the elements
D,, and R, notice that, for each F' € D,R,, d, € F, so if we take a
sequence {F, }>2 ; of elements of A such that F,, € D,R,, for each n > 1
and lim F,, = F for some F € A, then ' C ab and b € F. Thus F = B.
Therefore, lim D, R,, = {B}. So we represent, in Figure 2, the arcs D, R,,
as horizontal arcs converging to the set {B}. Similarly, we represent the
subarcs C,T),, of A, that joins the elements C,, and T}, as a sequence of
horizontal arcs converging to the set {C'} and we represent the subarcs
B,1+1S, of A, that joins the elements B, and S, as a sequence of
horizontal arcs converging to the set {B}.

Given n > 1, let £, A,, be the subarc of A that joins E,, and A,,. Given
an element F' € E, A,,, notice that either e, € F or a,, € F or F' C e,a,.
Let {F,}52; be a sequence of elements of A such that F,, € E, A, for
each n > 1 and lim F,, = I for some F € A. We consider two cases:
F,n{en,an} # 0, for each n > 1 and F,, C epay, for each n > 1. In the
first case, it follows that F' = A. In the second case, F' C ac. This implies
that ¢t = pu(F) < ac <t. Sot = pu(F) = p(ac). This implies that F' = ac
and, in this case, ac is the unique element in A such that a € ac C ab.
Hence F' = ac = A. In both cases we conclude that FF = A. We have
shown that lim E, A, = {A}. So we represent, in Figure 2, the arcs E, A,
as horizontal arcs converging to the set {A}.

So we have represented all the elements of A in the continuum Z of
Figure 2. Therefore, A is homeomorphic to Z.

Let p : C(X) — [0,1] be a Whitney map and ¢ € (0,1). Let A =
pu~L(t). With similar arguments as above it can be shown that:

(a) if t < min{u(ac), u(be)}, then A is homeomorphic to Y,

b) if u(ac) <t < p(be), then A is homeomorphic to Z,

¢) if p(be) <t < p(ac), then A is homeomorphic to Z,

d) if max{u(ac), u(bc)} <t < p(ab), then A is homeomorphic to the
1)-continuum,

e) if p(ab) <t, then A is an arc.

Similarly, let w : C(Y) — [0,1] be a Whitney map and s € (0,1). Let
B =w1(s). Then:

(a) if s < min{w(pg),w(hq)}, then B is homeomorphic to Y,

(b) if w(hq) < s < w(pg), then B is homeomorphic to Z,

(c) if w(pg) < s < w(hg), then B is homeomorphic to Z,

(d) if max{w(pg),w(hq)} < s < w(pq), then B is homeomorphic to the
sin(1)-continuum,

(e) if w(pq) < s, then B is an arc.

Therefore, X and Y are Whitney equivalent.

S

(
(
(
(
(
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4. SOLENOIDS

For the definition and some basic properties of solenoids see [16, 1.209.4].
In [16, 14.57], it was asked if the property of being a particular solenoid
is a sequential strong Whitney-reversible property. Next we answer this
question in the positive.

Theorem 4.1. The property of being a particular solenoid is a sequential
strong Whitney-reversible property.

Proof. Let Sy be a particular solenoid. Let X be a continuum for which
there exist a Whitney map p : C(X) — [0, 1] and a sequence of numbers
{tn}5; in (0,1) such that lim¢, = 0 and, for each n > 1, the Whitney
level A,, = u~*(t,) is homeomorphic to Sy. Since Sy is indecomposable,
X is indecomposable ([16, Theorem 14.46]). We say that an arc « in
X can be extended in X provided that there exists and arc £, with end
points p and ¢, such that o C 8 — {p, ¢}.

Claim 8. Each nondegenerate proper subcontinuum of X is an arc
that can be extended in X.

We prove Claim 8. Let A be a nondegenerate proper subcontinuum of
X. In order to show that A is an arc, by [16, Corollary 14.50], it is enough
to show that there exists N > 1 such that (u|c(a)) ' (¢,) is an arc, for
each n > N. Let N > 1 be such that ¢, < pu(A), for each n > N. For
each n > N, let By, = (u|c(a)y) ' (tn). Since A is nondegenerate and it is
properly contained in X, B,, is a nondegenerate proper subcontinuum of
the solenoid A,,. Thus B,, is an arc. This ends the proof that A is an arc.

Let € > 0 be such that N(2¢, A) # X, where N(2¢, A) is the union
of all the e-nieghborhoods around points of A. Let N > 1 be such that
ty < p(A) and diameter(B) < € for each B € Ay. Let C = {B € Ay :
BNA # 0} and Cy = J{C : C € C}. Using [16, Lemma 14.8.1] and
the fact that (M\C(A))_l(tN) is connected, it can be proved that C is a
subcontinuum of Ay and, by [16, Lemma 1.43], Cj is a subcontinuum of
X. By the choice of € and N, Cy # X. This implies that, C # Ay. Since
A is a solenoid, C is an arc and C can be extended in Ay. Let D be an
arc in Ay which joins elements Dy, Dy € Ay such that C € D—{D;, D2}
and, we may assume that, for each D € D, there exists C € C such
that H(D,C) < e. Note that D # Ay. By [16, Lemma 1.43], the set
Dy = U{D : D € D} is a subcontinuum of X and, by the choice of ¢,
Dy # X. Notice that A C Dg and D;UDy C Dg— A. By the fact we prove
in the previous paragraph, Dg is an arc. Let p; and ps be the end points of
Dy. Let E € D be such that p; € E. We claim that p; € D;UD,. Suppose
to the contrary that py ¢ D1UD5. Then there exists a subarc « of Dy such
that Dy U Dy C oo € Do — {p1}. Let G = (p|c(a)) *(tn) C An. By [16,
Theorem 14.6], G is a subarc of Ax containing the elements Dy and Ds.
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Since Ay is a solenoid, there is a unique arc in Ay joining Dy and Ds.
Thus D C G. Hence, E € G and p; € F C «, a contradiction. We have
shown that p; € D; U Dy. Thus p; ¢ A. Simlarly, po ¢ A. We have
shown that A can be extended in X. This ends the proof of Claim 8.

Now we prove that X is homeomorphic to each of its positive Whitney
levels. Let A = w™1(t) be a Whitney level for X, where w : C(X) — [0, 1]
is a Whitney map and ¢ € (0,1). Let ¢ : X x [0,1] — C(X) be given by
op,s) =U{A € C(X) : p € A and w(A) = s}. Since each solenoid is
homogeneous, each solenoid is a Kelley continuum ([16, Theorem 16.26])
and the property of Kelley is a sequential strong Whitney-reversible prop-
erty ([13, Theorem 50.4]), we obtain that X is a Kelley continuum. Using
[16, Lemma 14.8.1], it can be proved that ¢(p,s) € C(X), for every
(p,s) € X x [0,1] and, combining Lemma 16.14 and Lemma 1.48 of [16],
it follows that ¢ is continuous. Notice that, if 0 < s < r < 1, then
o(p,s) C ¢(p,r). Given p € X, since w(p(p,0)) = 0 and w(p(p,1)) = 1,
there exists o(p) € [0,1] such that w(p(p,o(p))) =t. Define f: X — A
by f(p) = ¢(p,o(p)).

Claim 9. f is a homeomorphism.

First we show that the definition of f does not depend on the choice of
the number o(p). Suppose that s € [0, 1] is such that w(p(p, s)) = t, since
o(p, s) C @(p,a(p)) or (p,a(p)) C ¢(p,s) (depending on the inequalities
s < o(p)or o(p) < s) and w takes the same value in both sets, we obtain
that ¢(p, s) = ¢(p, o(p)).

In order to check that f is continuous, let {p,}>2; be a sequence in
X converging to a point p € X. We assume that limo(p,) = s for
some s € [0,1]. Since ¢ is continuous, lim ¢(pn,,o(pn)) = ©(p,s), so
w(p(p, s)) = t. By the previous paragraph, ¢(p,o(p)) = ¢(p, s). That is,
lim f(pn) = f(p). Therefore, f is continuous.

We see that f is one-to-one. Let p,q € X be such that f(p) = f(q).
Suppose that p # ¢. Since w(f(p)) = t, by Claim 8, f(p) is an arc that
can be extended in X to an arc 8. Let u,v be the end points of f(p) and
x,y the end points of 3. We give to 8 a natural order and we suppose
that this order satisfies z < v < p < ¢ < v < y. Given two elements
a # b in B, we denote by ab the subarc of § joining them. Since v € f(p),
there exists A € C'(X) such that p,v € A and w(A) = o(p). Since ¢ < 1,
o(p) < 1. Thus A is a proper subcontinuum of X. Since X is indecom-
posable, f(p) U A is a proper subcontinuum of X and then f(p) U A is
an arc (Claim 8). Since p,v € A and, pv and A are subarcs of f(p) U A,
we obtain that pv C A. Hence w(pv) < o(p). If w(vp) < o(p), we can
extend the arc vp to an arc vp;, where p; € vy—{v,y} and w(vp;) < o(p).
This implies that p; € f(p) = wv, a contradiction. We have shown that

w(vp) = o(p). Similarly, w(up) = o(p) and w(ug) = w(qv) = o(q).
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Since up C ug and qv € pv, w(up) < w(uq) and w(qv) < w(pv), a contra-
diction. Therefore p = ¢ and f is one-to-one.

We see that f is onto. Let A € A. Then A is an arc. Let p and g be the
end points of A. Let K ={a € A:p€ f(a)}and L={a € A:q€ f(a)}.
Since f is continuous, K and L are closed in A. Note that p € K and
g € L. In order to show that A = K UL, let a € A, suppose that
p,q ¢ f(a). Since X is indecomposable, AU f(a) # X, then AU f(a) is
an arc. Since f(a) is a subarc of AU f(a), f(a) intersects the subarc A
and the end points of A do not belong to f(a), we obtain that f(a) C A.
Hence t = w(f(a)) < w(A) < t, a contradiction. Hence p or g belongs to
f(a), that is @ € K U L. We have shown that A = K U L. Since A is
connected, there exists a point a € K N L. Thus AU f(a) is a subarc of
X and its subarc f(a) contains the end points of the arc A, so A C f(a).
Since w(A) = w(f(a)), we obtain f(a) = A. Therefore, f is onto. This
completes the proof of Claim 9.

We have proved that X is homeomorphic to each one of its positive
Whitney levels. In particular, X is homeomorphic to A;. Therefore X is
homeomorphic to Sy. (]

Corollary 4.2. FEach particular solenoid is Whitney determined.

Proof. This corollary follows from Theorem 4.1 and the fact that each
solenoid is Whitney stable (see [16, Corollary 14.21]). O

5. DENDRITES

A dendrite is a locally connected continuum without simple closed
curves. A continuum X is said to have unique hyperspace C(X) provided
that the following implication holds: if Y is a continuum such that C(X)
and C(Y) are homeomorphic, then X and Y are homeomorphic. There
are a number of results related to unique hyperspaces of dendrites with
closed set of end points (see [1], [5], [6], [7], [11] and [12]). In particular,
it is known (see [5]) that dendrites (different from arcs) with closed set of
end points have unique hyperspace C(X).

Question 5.1. Are dendrites with closed set of end points Whitney de-
termined?

A Whitney map u : C(X) — [0, 1] is called an admissible Whitney map
for C(X) provided that there is a (continuous) homotopy h : C(X) x
[0,1] — C(X) satistying the following contiditions:

(a) for all A € C(X), h(A,1) = A and h(A,0) is a one-point-set,

(b) if pu(h(A,t)) > 0 for some A € C(X) and ¢ € [0, 1], then p(h(4,s)) <
w(h(A,t)) whenever 0 < s < t.
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Admissible Whitney maps were introduced by J. T. Goodykoontz and
S. B. Nadler, Jr. in [4]. They proved (|4, Theorem 4.1]) that, if X contains
no free arc and y is an admissible Whitney map, then p~*(¢) is a Hilbert
cube for each 0 <t < 1.

In general, dendrites are not Whitney determined. In fact, we show
next that they are far to be Whitney determined.

Theorem 5.2. Let X be a continuum. Then X is a dendrite without free
arcs if and only if every positive Whitney level for X is a Hilbert cube.

Proof. (Necessity) Suppose that X is a dendrite. By [4, Theorem 4.1] we
only need to show that each Whitney map for X is an admissible Whitney
map. Let p: C(X) — [0,1] be a Whitney map. Given points p,q € X,
let pg be the unique arc in X that joins p and ¢, if p # ¢ and let pg = {p},
if p=g¢. Fix a point pg € X. Let f: C(X) — X be defined by: f(A)
is the unique point in A such that pof(A) N A = {f(A)}. It is easy to
see that f is well defined and continuous. Define g : C'(X) — [0,1] by
g(A) = max{u(af(A)) : a € A}. Clearly, ¢ is continuous.

Let h : C(X) x [0,1] — C(X) be defined by: h(A,t) = {a € A :
ulaf(A)) <tg(A)}. We are going to show some properties of h.

A. h(A,t) € C(X), for every A € C(X) and t € [0, 1].

Given a € h(A,t), af(A) C A, so af(A) C h(A,t). This proves that
h(A,t) is connected. If {a,}52, is a sequence in h(A,t) converging to an
element a € A, since lima,, f(A) = af(A), u(af(A)) S tg(A). This proves
that h(A,t) is closed in X. Therefore, h(A,t) € C(X).

B. h is continuous.

Let {(An,tn) 52, be a sequence in C(X) x [0, 1] converging to (A,t) €
C(X) x [0,1]. We suppose that lim h(A,,t,) = B, for some B € C(X).
We need to prove that B = h(A,t). Given b € B, there exists a sequence
of elements {a,},=1 in X such that a,, € h(A4,,t,), for each n > 1, and
lima, = b. Then p(bf(A4)) = limpu(a,f(A,)) < limt,g(A,) = tg(A).
Thus b € h(A,t). Hence B C h(A,t). Now, let a € h(A,t). Then there
exists a sequence of elements {z,}52; such that x,, € A,, for each n > 1
and limz,, = a. For each n > 1, let y,, be the point in the arc =, f(A,)
defined by the following conditions: y, = @, if p(x, f(4,)) < thg(A,)
and p(ynf(Apn)) = thg(An), if p(znf(A4n)) > thg(Ay). Note that y, €
h(An,t,). We may assume that limy, = y, for some y € X. Thus
y € B. Since limz, f(4,) = af(A), y € af(A). In the case that y,, = =,
for infinitely many numbers n, y = a, so a € B. Suppose then that
Yn # T, for each n > 1. Thus u(y,f(4n)) = thg(A,) for each n > 1.
Then p(yf(A)) = lim p(yn f(An)) = limt,g(An) = tg(A). Hence tg(A) =
m(yf(A) < plaf(A)) < tg(A). Thus yf(A) C af(A) and p takes the
same value on both sets. This implies that yf(A) = af(A) and y = a.
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Thus a € B. This completes the proof that B = h(A,t) and then h is
continuous.

C. For all A € C(X), h(A,1) = A and h(A4,0) ={f(A)}.

D. If u(h(A,t)) > 0forsome A € C(X) and t € [0, 1], then u(h(4,s)) <
w(h(A,t)) whenever 0 < s < t.

Suppose that p(h(A,t)) > 0 and let s € [0,¢). Since h(A,s) C h(A,1),
u(h(A,5)) < p(h(A1). Suppose that u(h(4,5)) = p(h(A,t)), then
h(A,s) = h(A,t). Let ap € A be such that u(aof(A4)) = g(A). Let
a1 € aof(A) be the unique point such that u(a;f(A)) = tg(A). Then

t
ay € h(A,t) = h(A,s). Thus u(a1 f(A)) < sg(A). Hence tg(A) < sg(A),
so g(A) = 0. This implies that h(A,t) = {f(A)}, which is a contra-
diction with the hypothesis that p(h(A,t)) > 0. We have shown that
u(h(A,s)) < p(h(A,1)).

This completes the proof that p is an admissible Whitney map and
ends the proof of the necessity.

(Sufficiency) Suppose that every positive Whitney level for X is a
Hilbert cube. By [16, Theorem 14.47], X is locally connected and by [10],
X is a dendroid. Therefore, X is a dendrite. Suppose that X contains a
free arc « such that « joins the points p and ¢. Let A be a nondegenerate
subcontinuum of « such that p,q ¢ A. Then C(«a) is a neighborhood of
Ain C(X) and C(a) is a 2-cell. Thus A cannot belong to a Hilbert cube
contained in C(X). Thus the positive Whitney levels for X containing
A cannot be Hilbert cubes. This contradiction proves that X does not
contain free arcs and ends the proof of the theorem. O
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