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Electronically published on December 24, 2011

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c⃝ by Topology Proceedings. All rights reserved.



Volume 39 (2012)
Pages 293-315

http://topology.auburn.edu/tp/

E-Published on December 24, 2011

WHITNEY EQUIVALENT CONTINUA

ALEJANDRO ILLANES AND ROCÍO LEONEL

Abstract. We say that two metric continua X and Y are
Whitney equivalent provided that each positive Whitney level for
X is homeomorphic to a positive Whitney level for Y and vice
versa. We say that X is Whitney determined provided the fol-
lowing holds: if X and Y are Whitney equivalent, then X and Y
are homeomorphic. In this paper we prove that finite graphs and
the sin( 1

x
)-continuum are Whitney determined. We also show that

there are two non-homeomorphic compactifications of the ray [0, 1),
with arcs as remainders such that X and Y are Whitney equivalent.

1. Introduction

A continuum is a compact connected metric space with more than
one point. Given a continuum X, denote by C(X) the hyperspace of
subcontinua of X, endowed with the Hausdorff metric H. A Whitney
map is a continuous function µ : C(X) → [0, 1] such that µ(X) = 1,
µ({p}) = 0, for each p ∈ X and, if A,B ∈ C(X) are such that A  B,
then µ(A) < µ(B). It is known that, for every continuum X, C(X) ad-
mits Whitney maps (see [13, Theorem 13.4]). A positive Whitney level for
X is a set of the form µ−1(t), where µ is a Whitney map and t ∈ (0, 1).
It is known that positive Whitney levels are subcontinua of C(X) [13,
Theorem 19.9], that is, they are elements of C(C(X)). Let WL(X) =
{A ∈ C(C(X)) : A is a positive Whitney level for X}. We remark
that WL(X) includes all positive Whitney levels for all Whitney maps.
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We say that X is Whitney equivalent to the continuum Y provided that
the set WL(X) is topologically equal to the set WL(Y ), that is, for each
element A in WL(X) there exists B ∈WL(Y ) such that A is homeomor-
phic to B and for each element B in WL(Y ) there exists A ∈ WL(X)
such that B is homeomorphic to A. We say that X is determined by its
Whitney levels provided that, if Y is a continuum that is Whitney equiv-
alent to X, then X and Y are homeomorphic.

Using Theorems 31.1, 31.2, 38.1, 38.2, 56.1, 56.2, 57.2 and 57.3 of [13],
it follows that the arc [0, 1], the unit circle S1 in the Euclidean plane, the
Pseudo-arc and each particular Pseudo-solenoid are determined by their
Whitney levels.

In this paper we show that finite graphs, the sin( 1
x )-continuum and

each particular solenoid are determined by their Whitney levels, and we
show that there are metric compactifications of the ray [0,∞), with an
arc as its remainder, such that it is not determined by their Whitney
levels. On the other hand, we show in Theorem 5.2 that a continuum
is a dendrite without free arcs if and only if each positive Whitney level
for X is a Hilbert cube. Hence, these dendrites are very far from being
determined by their Whitney levels.

2. Finite graphs

A map is a continuous function. For each n ≥ 1, a simple n-od is a
continuum N that has a point v, called the vertex of V , and contains n
arcs J1, . . . , Jn such that N = J1∪. . .∪Jn, v is an end point of each Ji and
Ji∩Jj = {v}, for every i 6= j. A finite graph is a continuum X, different
from a simple closed curve, that can be put as the union of a finite
number of arcs such that the intersection of any two of them meets in a
finite set. Given a finite graph X and a point p ∈ X, the order of p in X,
ordX(p), is the positive integer n such that p has a neighborhood N in X
such that N is an n-od. Points of order 1 of X are called end points of
X, points of order 2 are called ordinary points of X and points of order
greater than 2 are called ramification points ofX. Denote by E(X), O(X)
and R(X) the respective sets of end, ordinary and ramification points of
X. The vertices of X are the points of the set E(X)∪R(X). An edge of
X is the closure in X of a component of the set X−(E(X)∪R(X)). Note
that each edge is an arc or a simple closed curve. Thus we assume that
the metric on X is the arc length metric and that each edge has diameter
equal to 1. Thus we may identify each edge J of X with a set of the form
[(0)J , (1)J ], where (0)J 6= (1)J and [(0)J , (1)J ] is isometric to the interval
[0, 1], if J is an arc; and (0)J = (1)J and [(0)J , (1)J ] is homeomorphic to
the space obtained by identifying the end points of the interval [0, 1] to a
point, if J is a simple closed curve.
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A subgraph of X is a subcontinuum S of X such that S is the union
of some edges of X or S is a one-point-set containing a vertex of X.
Given a subgraph S of X, let J1, . . . , Jn be the edges of X such that each
Ji = [(0)Ji , (1)Ji ] is an arc and Ji ∩ S is a one-point-set (we assume that
Ji ∩ S = {(0)Ji}); and let L1, . . . , Lm be the edges of X such that, for
each j ∈ {1, . . . ,m}, either Lj is an arc or a simple closed curve such that
Lj ∩ S = {(0)Lj

, (1)Lj
}. DefineMS the set of subcontinua A of X such

that A is of the form:
A = S ∪ [(0)J1 , c1] ∪ . . . ∪ [(0)Jn , cn] ∪ [(0)L1

, a1] ∪ [b1, (1)L1
] ∪ . . . ∪

[(0)Lm , am] ∪ [bm, (1)Lm ],
where 0 ≤ ci ≤ 1, for each i ∈ {1, . . . , n} and 0 ≤ aj ≤ bj ≤ 1, for each
j ∈ {1, . . . ,m}.

Given an edge J of X, define NJ = C(J), if J is an arc, and NJ =
clC(X)({A ∈ C(J) : A ⊂ J−{(0)J}}), if J is a simple closed curve. Notice
that, in both cases, NJ = {A ∈ C(J) : A− {(0)J , (1)J} is connected}.

Given a finite graph X and a Whitney map µ : C(X) → [0, 1], let
t(µ) = min{µ(J) : J is an edge of X}.

An n-cell is a space that is homeomorphic to [0, 1]n. An n-od in a
continuum X is a subcontinuum A of X such that there exists a subcon-
tinuum B of A with the property that A−B has at least n components.
It is known that C(X) contains an n-cell if and only if X contains an
n-od ([9]). A free arc in X is an arc J , joining points p and q such that
J − {p, q} is open in X. A maximal free arc in X is a free arc that is not
properly contained in another free arc. A tree is a finite graph with no
simple closed curves.

Lemma 2.1. If X is a finite graph and Y is a continuum such that Y is
Whitney equivalent to X, then Y is a finite graph.

Proof. Since X is locally connected, each positive Whitney level for X
is locally connected ([13, Theorems 52.1 and 52.2]). Since X and Y are
Whitney equivalent, the positive Whitney levels for Y are locally con-
nected. Thus Y is locally connected. If Y is not a finite graph, then Y is
a simple closed curve or there exists a subspace Q of C(Y ) such that Q
is homeomorphic to the Hilbert cube [0, 1]ω ([16, Theorem 1.111]). Since
X is not a simple closed curve, by [13, Theorems 38.1 and 38.2], Y is not
a simple closed curve. Thus by [13, Theorem 70.1], for each n ≥ 3, Y
contains an n-od. By [16, Theorem 14.33], for each n ≥ 2, there exists
a positive Whitney level B for Y such that B contains an n-cell. Since
X and Y are Whitney equivalent, for each n ≥ 2, there exists a positive
Whitney level A for X such that A contains an n-cell. This implies that
the dimension of C(X) is infinite. This contradicts [16, Theorem 1.109]
and completes the proof of the lemma. �
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Lemma 2.2. Let X be a finite graph and let µ : C(X) → [0, 1] be a
Whitney map. For each 0 < t < t(µ), let A = µ−1(t), then we have:

(1) if v, w are vertices of X and v 6= w, thenM{v} ∩M{w} ∩A = ∅,
(2) A = (

⋃
{M{v} ∩ A : v ∈ R(X)}) ∪ (

⋃
{NJ ∩ A : J is an edge of

X}),
(3) for each v ∈ R(X),M{v} ∩ A is an (ordX(v)− 1)-cell,
(4) for each edge J of X, NJ ∩ A is an arc,
(5) if J and L are edges of X and J 6= L, then NJ ∩NL ∩ A = ∅,
(6) if v ∈ R(X) and J is an edge of X, then the set M{v} ∩ NJ ∩ A

has at most two elements and it is contained in the set of end
points of the arc NJ ∩ A.

(7) if J is an edge of X, NJ ∩ A is a maximal free arc of A.
Proof. (1) Let v, w be vertices of X such that v 6= w. If A ∈ M{v} ∩
M{w} ∩ A, then v, w ∈ A. This implies that there exists an edge J of X
such that J ⊂ A. Thus t(µ) ≤ µ(J) ≤ µ(A) = t < t(µ), a contradiction.
Therefore,M{v} ∩M{w} ∩ A = ∅.

(2) By [2, 5.4, p. 272], A = (
⋃
{MS ∩ A : S is a subgraph of X}) ∪

(
⋃
{NJ ∩ A : J is an edge of X}). Given a subgraph S of X such that S

contains an edge of X, by the definition of t(v),MS ∩ A = ∅. Therefore
the equality in (2) is immediate.

(3) Let v ∈ R(X). Let J1, . . . , Jn and L1, . . . , Lm be edges of X such
that J1, . . . , Jn are the different edges of X such that each Ji is an arc
and v ∈ Ji, we may assume that v = (0)Ji ; and L1, . . . , Lm are the
different edges of X such that each Lj is a simple closed curve such that
v ∈ Lj . Then ordX(v) = n+ 2m. By the definition of t(µ), the elements
of M{v} ∩ A are the subcontinua A of X of the form: A = [(0)J1 , c1] ∪
. . . ∪ [(0)Jn , cn] ∪ [(0)L1 , a1] ∪ [b1, (1)L1 ] ∪ . . . ∪ [(0)Lm , am] ∪ [bm, (1)Lm ],
where 0 ≤ ci < 1, for each i ∈ {1, . . . , n} and 0 ≤ aj < bj ≤ 1, for each
j ∈ {1, . . . ,m}. Then we can define ∆ = {(x1, . . . , xn+2m) ∈ [0, 1]n+2m :
x1 + . . .+ xn+2m = 1} and ϕ :M{v} ∩ A → ∆ by

ϕ([(0)J1 , c1] ∪ . . . ∪ [(0)Jn , cn] ∪ [(0)L1
, a1] ∪ [b1, (1)L1

] ∪ . . . ∪
[(0)Lm

, am] ∪ [bm, (1)Lm
]) =

1
c1+...+cn+a1+...+am+(1−b1)+...+(1−bm) (c1, . . . , cn, a1, . . . , am, 1−

b1, . . . , 1− bm).
It is easy to check that ϕ is continuous.
In order to check that ϕ is one-to-one, suppose that ϕ(A) = ϕ(B),

A = [(0)J1 , c1]∪ . . .∪ [(0)Jn , cn]∪ [(0)L1 , a1]∪ [b1, (1)L1 ]∪ . . .∪ [(0)Lm , am]∪
[bm, (1)Lm ] and B = [(0)J1 , f1]∪ . . .∪ [(0)Jn , fn]∪ [(0)L1 , d1]∪ [e1, (1)L1 ]∪
. . .∪ [(0)Lm

, dm]∪ [em, (1)Lm
]. Then (c1, . . . , cn, a1, . . . , am, 1− b1, . . . , 1−

bm) = r(f1, . . . , fn, d1, . . . , dm, 1− e1, . . . , 1− em), where

r = c1+...+cn+a1+...+am+(1−b1)+...+(1−bm)
f1+...+fn+d1+...+dm+(1−e1)+...+(1−em) .
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We may assume that r ≤ 1. This implies that A ⊂ B. Since µ(A) =
µ(B), we conclude that A = B. Therefore, ϕ is one-to-one.

We show that ϕ is onto. Let (x1, . . . , xn+2m) ∈ [0, 1]n+2m be such that
x1+ . . .+xn+2m = 1. Let y0 = max{x1, . . . , xn+2m} and let r ≥ 1 be such
that ry0 = 1. For each s ∈ [0, r], let ψ(s) = [(0)J1 , sx1]∪. . .∪[(0)Jn , sxn]∪
[(0)L1 , sxn+1] ∪ . . . ∪ [(0)Lm , sxn+m] ∪ [1 − sxn+m+1, (1)L1 ] ∪ . . . ∪ [1 −
sxn+2m, (1)Lm

]. Since µ(ψ(0)) = µ({v}) = 0 and µ(ψ(r)) ≥ t(µ) (ψ(r)
contains an edge ofX), there exists s0 ∈ [0, r] such that ψ(s0) ∈ A∩M{v}.
Clearly, ϕ(ψ(s0)) = (x1, . . . , xn+2m). Therefore, ϕ is onto.

We have shown that ϕ is a homeomorphism. Since ∆ is an (ordX(v)−
1)-cell, the proof of (3) is complete.

The proof of (4) is similar to the proof that positive Whitney levels for
an arc are arcs (see [16, Theorem 14.6]). The proof of (5) is immediate.
In (6) is easy to show the following: if v /∈ J , thenM{v} ∩NJ ∩A = ∅; if
v ∈ J and J is an arc, thenM{v} ∩NJ ∩A is a one-point-set, containing
one of the end points of the arc NJ ∩ A; and if v ∈ J and J is a simple
closed curve, then M{v} ∩ NJ ∩ A is the set containing exactly the two
end points of the arc NJ ∩A. In order to prove (7), let J be an edge of X.
Since J −{(0)J , (1)J} is open in X, {A ∈ NJ ∩A : A ⊂ J −{(0)J , (1)J}}
is open in A. Thus NJ ∩A is a free arc of A. If NJ ∩A is not a maximal
free arc, then there exists an arc L, contained in A such that one of the
end points E of NJ ∩ A belongs to intA(L). By (2) and (5), there exists
a vertex v of X such that E ∈ M{v} ∩ A and, by (3) M{v} ∩ A is an
(ordX(v)− 1)-cell. Then there exists a subcell R ofM{v} ∩ A such that
R ⊂ L. This is impossible since L is an arc. We have shown that NJ ∩A
is a maximal free arc. This completes the proof of the lemma. �

Given a finite graph X, a Whitney map µ : C(X) → [0, 1] and 0 <
t < t(µ), let A = µ−1(t). For each edge J of X, let EJ and FJ be the
end points of the arc NJ ∩ A and let KJ = NJ ∩ A− {EJ , FJ}. Let
G(X,µ, t) be the continuum obtained from A by shrinking each one of
the components of the set C = A −

⋃
{KJ : J is an edge of X} to a point.

Lemma 2.3. G(X,µ, t) is homeomorphic to X.

Proof. By Lemma 2.2 (1) and (2), the components of C are the elements
of the family {M{v}∩A : v is a vertex of X}. Let ϕ : A→ X be defined in
the following way. Given A ∈M{v}∩A, for some vertex v of X, we define
ϕ(A) = v. Given an edge J of X such that J is an arc with end points
v and w, the arc NJ ∩ A has exactly one end point Av containing v and
it has exactly one element Aw containing w. Thus there exists a home-
omorphism ϕJ : NJ ∩ A → J such that ϕJ(Av) = v and ϕJ(Aw) = w.
Given an edge J of X such that J is a simple closed curve, there exists a
(unique) ramification point v of X such that (0)J = v = (1)J and the end
points of the arcNJ∩A are two elements Av and Bv such that v ∈ Av∩Bv.
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Let ϕJ : NJ ∩ A → J be a map such that ϕJ(Av) = v = ϕJ(Bv) and
ϕJ |NJ∩A−{Av,Bv} : NJ ∩ A− {Av, Bv} → J − {v} is a homeomorphism.
This completes the definition of ϕ.

Since ϕ is continuously defined in closed subsets of A and it is well
defined, we obtain that ϕ is an onto map. Notice that ϕ shrinks each one
of the components of C to a point and ϕ is one-to-one in A− C. Thus,
the Transgression Theorem ([3, Theorem 3.2]) implies that G(X,µ, t) is
homeomorphic to X. �

Lemma 2.4. Let X be a finite graph, µ : C(X)→ [0, 1] a Whitney map,
t ∈ (0, 1) and A = µ−1(t). If L is a maximal free arc of A, then there
exists an edge J of X such that t < µ(J) and L = N J ∩ A.
Proof. Let E0, E1 be the end points of L. Let A ∈ L − {E0, E1}. First
we show that A ∩ R(X) = ∅. Suppose to the contrary that there exists
v ∈ R(X) ∩ A. Observe that A is a finite graph (not necessarily a sub-
graph of X, since we defined subgraphs as unions of edges of X), A is
nondegenerate and A 6= X. Since L− {E0, E1} is open in A, there exists
ε > 0 such that, if B ∈ A and H(A,B) < ε, then B ∈ L−{E0, E1}. Since
A 6= X, there exists a one-to-one map γ : [0, 1]→ X such that γ(0) ∈ A,
γ(s) /∈ A for each s > 0, and H(A,A∪ Im γ) < ε.

Claim 1. There exists a 3-cell R in C(X) and there exist A0, A1 ∈ R
such that A0 ( A ( A1 and H(A,B) < ε for each B ∈ R.

In order to prove Claim 1, we consider four cases.
Case 1. A contains a simple closed curve S.
Let α : [0, 1] → S be a one-to-one map such that Im α ∩ R(X) = ∅

and, if A0 = A − α((0, 1)), then A0 is a subcontinuum of X such that
H(A,A0) < ε. Note that A0 ( A. Let A1 = A∪ Im γ and let σ :
[0, 1]3 → C(X) be given by σ(s1, s2, s3) = A0 ∪α([0, s12 ])∪α([1− s2

2 , 1])∪
γ([0, s3]). Clearly, σ is a one-to-one map σ(0, 0, 0) = A0, σ(1, 1, 0) = A
and σ(1, 1, 1) = A1. Thus R = Im σ satisfies the required properties.

Case 2. A is a tree and A− {v} has at least three components.
Let K1, K2 and K3 be pairwise separated nonempty subsets of A such

that A− {v} = K1 ∪K2 ∪K3. We may assume that γ(0) /∈ K2 ∪K3. By
[3, 3.2, p. 118], K2 ∪ {v} and K3 ∪ {v} are nondegenerate subcontinua
of X. By [16, Theorem 1.8], there exist maps α, β : [0, 1] → C(X) such
that α(0) = {v} = β(0), α(1) = K2 ∪ {v}, β(1) = K3 ∪ {v} and, if 0 ≤
r < s ≤ 1, then α(r) ( α(s) and β(r) ( β(s). Let A0 = K1 ∪α( 1

2 )∪ β( 1
2 )

and A1 = A∪ Im γ. Reparametrizing α and β, if it were necessary, we
may assume that H(A,A0) < ε. Let σ : [0, 1]3 → C(X) be given by
σ(s1, s2, s3) = K1 ∪ α( 1+s1

2 ) ∪ β( 1+s2
2 ) ∪ γ([0, s3]). Clearly, σ is a one-to-

one map σ(0, 0, 0) = A0, σ(1, 1, 0) = A and σ(1, 1, 1) = A1. Thus R =
Im σ satisfies the required properties.
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Case 3. A is a tree and A− {v} has exactly two components.
Since A is a tree, v is an ordinary point of A. Thus we may assume

that γ(0) = v. Let K2 and K3 be the components of A−{v}. By [3, 3.2,
p. 112], K2 ∪ {v} and K3 ∪ {v} are nondegenerate subcontinua of X. By
[16, Theorem 1.8], there exist maps α, β : [0, 1]→ C(X) such that α(0) =
{v} = β(0), α(1) = K2∪{v}, β(1) = K3∪{v} and, if 0 ≤ r < s ≤ 1, then
α(r) ( α(s) and β(r) ( β(s). Let A0 = α( 1

2 ) ∪ β( 1
2 ) and A1 = A∪ Im γ.

We may assume that H(A,A0) < ε. Let σ : [0, 1]3 → C(X) be given by
σ(s1, s2, s3) = α( 1+s1

2 ) ∪ β( 1+s2
2 ) ∪ γ([0, s3]). Clearly, σ is a one-to-one

map σ(0, 0, 0) = A0, σ(1, 1, 0) = A and σ(1, 1, 1) = A1. Thus R = Im σ
satisfies the required properties.

Case 4. A is a tree and A− {v} is connected.
Since A is a tree, v is an end point of A. Thus we may assume that

γ(0) = v and there exists a one-to-one map α : [0, 1] → X such that
α(0) = v, α(s) /∈ A∪ Im γ for each s > 0 and H(A,A∪ Im α∪ Im γ) < ε.
By [16, Theorem 1.8], there exists a map β : [0, 1] → C(X) such that
β(0) = {v}, β(1) = A and, if 0 ≤ r < s ≤ 1, then β(r) ( β(s). Let
A0 = β( 1

2 ), we may assume that H(A,A0) < ε. Let A1 = A∪ Im α∪ Im
γ and σ : [0, 1]3 → C(X) be given by σ(s1, s2, s3) = α([0, s1])∪ β( 1+s2

2 )∪
γ([0, s3]). Clearly, σ is a one-to-one map σ(0, 0, 0) = A0, σ(0, 1, 0) = A
and σ(1, 1, 1) = A1. Thus R = Im σ satisfies the required properties.

This completes the proof of Claim 1.
We are ready to obtain a contradiction. Since R = (R ∩ µ−1([0, t)))∪

(R ∩ µ−1((t, 1]))∪ (R∩A), we have that R∩A separates R and, by the
choice of ε, R∩A ⊂ L. Thus R∩A is a 1-dimensional set that separates
R. This contradicts [8, Corollary 2 to Theorem IV 4] and completes the
proof that A ∩R(X) = ∅.

Thus, for each A ∈ L − {E0, E1}, there exists an edge JA of X such
that A ⊂ JA.

Claim 2. If A,B ∈ L − {E0, E1}, then JA = JB .
In order to prove Claim 2, let K be the subarc of L that joins A and

B. Let D =
⋃
{C : C ∈ K}. By [16, Lemma 1.49], D is a subcontinuum

of X and, by the first part of the proof, for each C ∈ K, C ∩ R(X) = ∅,
then D ∩R(X) = ∅. Thus there exists an edge L of X such that D ⊂ L.
Hence JA = L = JB .

By Claim 2, there exists an edge J of X such that A ⊂ J for each A ∈
L−{E0, E1}. Thus A ⊂ J for each A ∈ L. Therefore, L ⊂ N J ∩A. Since
NJ∩A is a free arc ofA, the maximality of L implies that L = N J∩A. �

Theorem 2.5. Let X be a finite graph. Then X is determined by its
Whitney levels.
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Proof. Let Y be a continuum such that X and Y are Whitney equivalent.
By Lemma 2.1, Y is a finite graph. Let e be the number of edges of X.
Given a positive Whitney level A of X. Let {L1, . . . ,Le(A)} be the dif-
ferent maximal free arcs of A. By Lemma 2.3, for each i ∈ {1, . . . , e(A)},
there exists an edge Ji of X such that Li= N Ji ∩A. Note that Ji 6= Jj , if
i 6= j. This proves that e(A) ≤ e. By Lemma 2.2 (7), there are Whitney
levels A of X for which e(A) = e. Thus e is the maximuum of the number
of maximal free arcs that a positive Whitney level of X can have. Since
X and Y are Whitney equivalent, the same happens to Y . Thus e is also
the number of edges of Y .

Let µ : C(X)→ [0, 1] be a Whitney map, t ∈ (0, t(µ)) and A = µ−1(t).
Let B = ω−1(s) be a positive Whitney level for Y such that A and B are
homeomorphic, where ω : C(Y )→ [0, 1] is a Whitney map and 0 < s < 1.
By Lemma 2.2 (7) and the paragraph above A (and B) has exactly e
maximal free arcs. Let {K1, . . . ,Ke} be the set of maximal free arcs of B.
By Lemma 2.4, for each i ∈ {1, . . . , e}, there exists an edge Ki of Y such
that Ki = NKi

∩ B and s < ω(Ki). Then we can apply Lemma 2.3 to X,
µ, t and to Y , ω, s and obtain that G(X,µ, t) is homeomorphic to X and
G(Y, ω, s) is homeomorphic to Y . Since A and B are homeomorphic, the
space obtained from A by shrinking to a point each one of the components
of A−

⋃
{L − {E : E is an end point of L} : L is a maximal free arc of A}

is homeomorphic to the respective space defined for B. Thus G(X,µ, t) is
homeomorphic to G(Y, ω, s). Therefore, X and Y are homeomorphic. �

3. Compactifications of the ray

A continuum X is irreducible provided that there exist two points of
X such that there is not a proper subcontinuum of X containing them.
The continuum X is said to be indecomposable provided that X cannot
be put as the union of two of its proper subcontinua. A subcontinuum
A of X is said to be terminal provided that, if B is a subcontinuum of
X and A ∩ B 6= ∅, then A ⊂ B or B ⊂ A. A map between continua
f : X → Y is said to be monotone provided that f−1(y) is connected for
each y ∈ Y . For each ε > 0 and p ∈ X, let B(ε, p) be the ε-open ball
around p in X.

Given a metric compactification X of the ray [0, 1), we denote by RX
the remainder of X and we define SX = X −RX , C(SX) = {A ∈ C(X) :
A ⊂ SX} and CR(X) = {A ∈ C(X) : RX ⊂ A}. In the following easy to
prove lemma we summarize some basic facts about compactifications of
the ray.
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Lemma 3.1. Let X = RX ∪ SX be a compactification of the ray. Let
µ : C(X)→ [0, 1] be a Whitney map and t ∈ (0, 1). Then:

(1) RX is terminal in X,
(2) C(X) = C(SX) ∪ CR(X) ∪ C(RX) and CR(X) is an arc,
(3) If α is an arc in C(X) joining an element in C(RX) and an

element in C(X)− C(RX), then RX ∈ α,
(4) µ−1(t) ∩ C(SX) is a ray,
(5) If µ(RX) ≤ t, then µ−1(t) is an arc,
(6) if µ(RX) > t, then µ−1(t) = (µ|C(RX))

−1(t) ∪ (µ−1(t) ∩ C(SX)),
µ−1(t) ∩ C(SX) is an open arcwise component of µ−1(t) and
(µ|C(RX))

−1(t) ∩ (µ−1(t) ∩ C(SX)) = ∅.
A topological property P is said to be:
(a) A Whitney property provided that if a continuum X has property

P , then each positive Whitney level of X has property P .
(b) A sequential strong Whitney-reversible property, provided that when-

ever X is a continuum such that there is a Whitney map µ for C(X) and
a sequence {tn}∞n=1 in (0, 1] such that lim tn = 0 and µ−1(tn) has property
P for each n, then X has property P .

Theorem 3.2. The property of being a compactification of the ray is a
sequential strong Whitney-reversible property.

Proof. Let X be a continuum with metric d, let µ be a Whitney map
for C(X) and let {tn}∞n=1 be a sequence in (0, 1] such that lim tn = 0
and µ−1(tn) is a compactification of [0, 1) for each n ≥ 1. Since being
an arc is a sequential strong Whitney-reversible property ([16, Corollary
14.50]), we may assume that each µ−1(tn) has nondegenerate remainder.
Since µ−1(t1) is irreducible, by [13, Theorem 49.3], X is irreducible. Let
x, y ∈ X be such that no proper subcontinuum of X contains both points
x and y.

Claim 3. For each nondegenerate indecomposable subcontinuum Z
of X, intX(Z) = ∅.

In order to prove Claim 3, suppose to the contrary that intX(Z) 6= ∅.
Fix a point q ∈ intX(Z). Let ε > 0 be such that B(4ε, q) ⊂ Z and
8ε < diameter(Z). Since lim tn = 0 we can fix N ≥ 1 such that each
element A ∈ µ−1(tN ) has diameter less than ε. Let A = µ−1(tN ). Fix an
element A ∈ A such that q ∈ A (the existence of A can be proved by using
[16, Theorem 1.8]). Since we are assuming that A is a compactification
of the ray [0, 1), the sets RA and SA are defined. Since SA is dense
in A, there exists an element P ∈ SA such that H(A,P ) < ε. Notice
that P ⊂ B(2ε, q). Fix a point p ∈ P . Let {pm}∞m=1 be a sequence of
points of B(ε, p) such that lim pm = p and for each m ≥ 1, pm and p
belong to different composants of Z (see [17, 5.20 and Theorem 11.15]).
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For each m ≥ 1, choose an element Pm ∈ A such that pm ∈ Pm. We
may assume that limPm = P0 for some P0 ∈ A. Notice that p ∈ P0.
Then p ∈ P ∩ P0. By [16, Lemma 14.8.1] there exists an arc in A joining
P and P0. This implies that P0 ∈ SA. Since SA is open in A there
exists m ≥ 1 such that H(P0, Pm) < ε and Pm ∈ SA. Since SA is
homeomorphic to [0, 1), we may assume that the subarc J of SA that
joins P0 and Pm has diameter less than ε. Let B =

⋃
{C : C ∈ J }. By

[16, Lemma 1.49], B is a subcontinuum of X. Notice that p, pm ∈ B and
B ⊂ B(2ε, p) ⊂ B(4ε, q) ⊂ Z, so diameter(B) < 8ε. Since p and pm
are in different composants of Z, B = Z. This is a contradiction since
diameter(B) < 8ε < diameter(Z). This completes the proof of Claim 3.

By [14, p. 216] there exists a monotone map π : X → [0, 1] such that
π(x) = 0, π(y) = 1 and intX(π−1(s)) = ∅ for each s ∈ [0, 1].

Claim 4. For each s ∈ (0, 1], clX(π−1([0, s))) ∩ π−1(s) is a terminal
subcontinuum of clX(π−1([0, s))).

We prove Claim 4. LetD=clX(π−1([0, s)))∩π−1(s). Since π−1([0, s))=⋃
{π−1([0, s− 1

n ]) : n ≥ 1}, we have clX(π−1([0, s))) is a subcontinuum of
X.

Given a subcontinuum E ofX such that E ⊂ π−1([0, s]), E∩π−1(s) 6= ∅
and E ∩π−1([0, s)) 6= ∅, let v ∈ E ∩π−1([0, s)). Then π−1([0, π(v)])∪E ∪
π−1([s, 1]) is a subcontinuum of X containing x and y. By the choice of
x and y, this set coincides with X. Thus π−1((π(v), s)) ⊂ E. Since D =
clX(π−1((π(v), s))) ∩ π−1(s), we have D ⊂ E.

We prove that D is connected. Suppose to the contrary that D =
K ∪ L, where K and L are disjoint nonempty closed subsets of D. Let
C be a component of D such that C ⊂ K. Using an order arc from C
to clX(π−1([0, s))) (see [16, Theorem 1.8]), it is possible to construct a
subcontinuum E of clX(π−1([0, s))) such that C ( E and E∩L = ∅. Since
C is a component of D, E * π−1(s). Thus E ∩ π−1([0, s)) 6= ∅. So, we
can apply what we proved in the last paragraph and obtain that D ⊂ E.
This is a contradiction since E ∩ L = ∅. Therefore, D is connected.

Now we see that D is terminal in clX(π−1([0, s))). Let E be a sub-
continuum of clX(π−1([0, s))) such that D ∩ E 6= ∅ and E * D. Then
E ⊂ π−1([0, s]) and E * π−1(s). Applying what we proved two para-
graphs above we obtain that D ⊂ E. This ends the proof of Claim 4.

The proof of the following claim is similar to the proof of Claim 4.
Claim 5. For each s ∈ [0, 1), clX(π−1((s, 1])) ∩ π−1(s) is a terminal

subcontinuum of clX(π−1((s, 1])).
Claim 6. For each s ∈ (0, 1), π−1(s) is degenerate.
In order to show Claim 6, suppose that π−1(s) is nondegenerate. Since

intX(π−1(s)) = ∅, π−1(s) = D1∪D2, whereD1 = clX(π−1([0, s)))∩π−1(s)
and D2 = clX(π−1((s, 1])) ∩ π−1(s). Since π−1(s) is nondegenerate,
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we may assume that D1 is nondegenerate. Let ε > 0 be such that
B(2ε, x) ⊂ π−1([0, s)) and B(2ε, y) ⊂ π−1((s, 1]). Let N ≥ 1 be such
that tN < µ(D1) and diameter(A) < ε for every A ∈ µ−1(tN ). Let
A = µ−1(tN ). Using [16, Theorem 1.8] it is possible to construct ele-
ments Ax, Ay ∈ A such that x ∈ Ax and y ∈ Ay. By the density of
SA in A, there exist elements Bx, By ∈ SA such that H(Ax, Bx) < ε
and H(Ay, By) < ε. Notice that Bx ⊂ π−1([0, s)) and By ⊂ π−1((s, 1]).
Let L be the subarc of SA joining Bx and By. Let σ : [0, 1] → L be a
map such that σ(0) = Bx and σ(1) = By. Since σ(0) ⊂ π−1([0, s)) and
σ(1) ⊂ π−1((s, 1]) it is possible to define r0 = min{r ∈ [0, 1] : σ(r)∩
π−1(s) 6= ∅}. Then σ(r0) ∩ π−1(s) 6= ∅, 0 < r0 < 1 and σ(r0) ⊂
clX(π−1([0, s))). Thus σ(r0) ∩D1 6= ∅. Since µ(σ(r0)) < tN , there exists
r1 ∈ (0, r0) such that the set E =

⋃
{σ(r) : r ∈ [r1, r0]} is a subcontinuum

of X (see [16, Lemma 1.49]) such that µ(E) < tN . Thus E is a subcon-
tinuum of clX(π−1([0, s))) such that E ∩D1 6= ∅ and E * D1. By Claim
4, D1 ⊂ E. Hence, tN < µ(D1) ≤ µ(E) < tN , a contradiction. We have
proved Claim 6.

Claim 7. One of the continua π−1(0) or π−1(1) is degenerate.
To prove Claim 7, suppose to the contrary that π−1(0) and π−1(1)

are nondegenerate. Fix a point v ∈ π−1( 1
2 ) and let ε > 0 be such that

ε < min{d(p, q) : p ∈ π−1(0) and q ∈ π−1(1)} and B(2ε, v) ∩ (π−1(0) ∪
π−1(1)) = ∅. Let N ≥ 1 be such that tN < min{µ(π−1(0)), µ(π−1(1))}
and diameter(A) < ε for every A ∈ µ−1(tN ). Let A = µ−1(tN ). Using
[16, Theorem 1.8]) it is possible to find elements A0, A1, A2 ∈ A such that
x ∈ A0, v ∈ A2 and y ∈ A1. Since SA is dense inA, there exists an element
B ∈ SA such that H(A2, B) < ε. Notice that B ∩ (π−1(0) ∪ π−1(1)) = ∅.
Let D0 = {A ∈ A : A∩ π−1(0) 6= ∅} and D1 = {A ∈ A : A∩ π−1(1) 6= ∅}.
Then A0 ∈ D0 and A1 ∈ D1. Notice that D0 and D1 are disjoint nonempty
closed subsets of A.

Given A ∈ A− (D0 ∪ D1), A ∪ B ⊂ π−1((0, 1)). By the compactness
of A ∪ B, there exist 0 ≤ r < s ≤ 1 such that A ∪ B ⊂ π−1([r, s]). Let
E = π−1([r, s]). By Claim 6 π|E : E → [r, s] is a homeomorphism. Thus
E is an arc. Since A∩C(E) = (µ|C(E))

−1(tN ) is a Whitney level for C(E).
By [16, Theorem 14.6], A ∩ C(E) is path connected. Thus A and B can
be connected by a path in A. Since B ∈ SA and RA is nondegenerate, we
conclude that A ∈ SA. We have shown that A− (D0 ∪ D1) ⊂ SA. In or-
der to show the opposite inclusion, let A ∈ SA and suppose, by example,
that A ∈ D0. Since A,B ∈ SA, there exists a map σ : [0, 1] → SA ⊂ A
such that σ(0) = B and σ(1) = A. Let r0 = min{r ∈ [0, 1] : σ(r) ∈
D0}. Then 0 < r0. Since µ(σ(r0)) = tN < µ(π−1(0)), there exists
r1 ∈ (0, r0) such that, if F =

⋃
{σ(r) : r ∈ [r1, r0]}, then F is a

subcontinuum of X (see [16, Theorem 1.49]) and µ(F ) < µ(π−1(0)).
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By the definition of r0, F ∩ π−1((0, 1]) 6= ∅. Since intX(π−1(0)) = ∅,
clX(π−1((0, 1])) = X and clX(π−1((0, 1])) ∩ π−1(0) = π−1(0). By Claim
5, π−1(0) is a terminal subcontinuum of X. Thus π−1(0) ⊂ F and
µ(π−1(0)) ≤ µ(F ), a contradiction. We have proved that A− (D0∪D1) =
SA. Hence RA = D0 ∪D1. This contradicts the connectedness of RA and
completes the proof of Claim 7.

By Claim 7, we may assume that π−1(1) is degenerate. Thus π|π−1((0,1]):

π−1((0, 1])→ (0, 1] is a one-to-one onto map. It is easy to check that this
map is open and then it is a homeomorphism. Since π−1((0, 1]) is dense
in X, we conclude that X is a compactification of [0, 1) �

An onto map between continua f : X → Z is said to be weakly confluent
provided that for each subcontinuum B of Z there exists a subcontinuum
A of X such that f(A) = B. The continuum Z is said to be in Class(W ),
written Z ∈ Class(W ), provided that every map from any continuum
onto Z is weakly confluent. The notion of Class(W ) was introduced by
A. Lelek in 1972 and it has been extensively studied by several authors.
There are several interesting and different ways to define Class(W ) (see
Section 67 of [13]). The family of continua in Class(W ) includes (see [13,
Section 67]): hereditarily indecomposable continua; chainable continua;
non-planar circle-like continua; metric compactifications of the ray [0, 1)
which have its remainder in Class(W ) and atriodic continua with trivial
first Čech cohomology. We use a result by C. W. Proctor to give an
additional equivalence to being in Class(W ).

Theorem 3.3. A continuum Z is in Class(W ) if and only if each com-
pactification X of the ray, with Z as its remainder has the property that
every positive Whitney level of X is a compactification of the ray.

Proof. (Necessity) Suppose that Z ∈ Class(W ) and let X be a compacti-
fication of the ray such that RX = Z. Let µ : C(X)→ [0, 1] be a Whitney
map and t ∈ (0, 1). Let A = µ−1(t). We consider two cases.

Case 1. µ(RX) ≤ t.
By Lemma 3.1 (5), A is an arc and then A a compactification of the

ray.
Case 2. µ(RX) > t.
In this case, by Lemma 3.1 (4) and (6) S = {A ∈ A : A ⊂ SX} is a

ray. So we only need to check that S is dense in A. Let A ∈ A− S. Then
A ⊂ RX . By Theorem 67.1 of [13], there exists a sequence {An}∞n=1, of
elements of C(X) such that An ⊂ SX for each n ≥ 1 and limAn = A.
Using order arcs ([16, Theorem 1.8]), it is possible to construct, for each
n ≥ 1, an element Bn ∈ A such that either An ⊂ Bn or Bn ⊂ An. Taking
a subsequence, if necessary, we may assume that An ⊂ Bn for every
n ≥ 1 and limBn = B for some B ∈ A. Then A ⊂ B and µ(B) = µ(A).



WHITNEY EQUIVALENT CONTINUA 305

Thus A = B and A = limBn. Given n ≥ 1, Bn ∩ SX 6= ∅, by the
terminality of RX in X and the fact that µ(RX) > t, it follows that
Bn ⊂ SX . Thus Bn ∈ S. Hence S is dense in A. This completes the
proof of the necessity.

(Sufficiency) Suppose that X is a compactification of [0, 1), with Z as
its remainder. According to Theorem 67.1 of [13], we only need to prove
that C(X) = clC(X)(C(SX)). Let µ : C(X) → [0, 1] be a Whitney map.
Let A ∈ C(X). If A ∩ SX 6= ∅, then A ⊂ SX or RX ⊂ A. In both cases
is easy to check that A ∈ clC(X)C(SX). If A ⊂ RX , let t = µ(A) and
A = µ−1(t). In the case that A = RX , by Lemma 3.1 (5), A is an arc,
and by Lemma 3.1 (2), all the elements in A−{RX} are contained in SX .
Thus A ∈ clX(A− {RX}) ⊂ clX(C(SX)).

Finally, if A ( RX , then by Lemma 3.1 (6) A = (µ|C(RX))
−1(t) ∪

(A ∩ C(SX)). We are assuming that A is a compactification of the ray.
We claim that SA = A ∩ C(SX). Since SX is open in X, A ∩ C(SX) is
open in A. Given a point p ∈ SX , by [16, Theorem 1.8], there exists an
element B ∈ A such that p ∈ B. Since B /∈ C(RX), B ∈ A∩C(SX). Thus
A∩C(SX) is a nonempty open subset of A. Hence SA∩(A∩C(SX)) 6= ∅.
Fix an element B0 ∈ SA∩ (A∩C(SX)). Given B ∈ A∩C(RX), if there is
an arc α in A joining B and B0, by Lemma 3.1 (3), RX ∈ α and RX ∈ A,
this is a contradiction since t = µ(A) < µ(RX). In particular, we have
that A is not an arc and RA is nondegenerate. Furthermore, since B0 ∈
SA and SA is arcwise connected, we conclude that (A∩C(RX))∩SA = ∅.
Thus (µ|C(RX))

−1(t) = A ∩ C(RX) ⊂ RA. Hence SA ⊂ A ∩ C(SX).
By Lemma 3.1 (4), A ∩ C(SX) is a ray, in particular, A ∩ C(SX) is
an arcwise connected subset of A that intersects SA. This implies that
A ∩ C(SX) ⊂ SA. Therefore, SA = A ∩ C(SX). Since SA is dense
in A, A ∈ clA(SA) ⊂ clC(X)(C(SX)). This completes the proof of the
theorem. �

Given a continuum X, we say that X is Whitney stable (see [16, Def-
inition 14.39.1]) provided that X is homeomorphic to each of its posi-
tive Whitney levels. The class of Whitney stable continua includes: the
arc, the circle, the Pseudo-arc, any particular solenoid and any particular
pseudo-solenoid (see Remark 14.42 of [16]).

Corollary 3.4. Let Z be a Whitney stable continuum such that Z ∈
Class(W ) and the property of being homeomorphic to Z is a sequential
strong Whitney-reversible property. Let X be a compactification of the
ray with Z as its remainder and let Y be a continuum such that X and
Y are Whitney equivalent. Then Y is a compactification of the ray with
Z as its remainder.
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Proof. Let A = µ−1(t) be a positive Whitney level for X. Since Z ∈
Class(W ), by Theorem 3.3, A is a compactification of the ray. Let X =
RX∪SX . We are assuming that RX is homeomorphic to Z. If µ(RX) ≤ t,
A is an arc. If µ(RX) > t, by Lemma 3.1, A = (µ|C(RX))

−1(t) ∪ (A ∩
C(SX)), A ∩ C(SX) is a ray, (µ|C(RX))

−1(t) ∩ (A ∩ C(SX)) = ∅ and
A ∩ C(SX) is an open arcwise component of A. In particular, A is not
an arc. Since Z is Whitney stable (µ|C(RX))

−1(t) is homeomorphic to Z.
Since A is a compactification of the ray, the only open nonempty arcwise
component of A is SA. Thus RA = (µ|C(RX))

−1(t) and SA = A∩C(SX).
Therefore A is either an arc or a compactification of the ray with Z as its
remainder. SinceX and Y are Whitney equivalent, each positive Whitney
level for Y is either an arc or a compactification of the ray with Z as its
remainder.

By Theorem 3.2, Y is a compactification of the ray. Let Y = RY ∪SY .
We need to show that RY is homeomorphic to Z. Since being home-
omorphic to Z is a sequential strong Whitney-reversible property, it is
enough to show that each positive Whitney level for RY is homeomor-
phic to Z. Let B1 = ω−11 (s1) be a positive Whitney level for RY , where
ω1 : C(RY ) → [0, 1] is a Whitney map. By [13, Theorem 23.3], there
exists a Whitney map ω : C(Y ) → [0, 1] such that ω extends ω1. Then
B1 = (ω|C(RY ))

−1(s), for some s ∈ (0, 1). We know that B = ω−1(s) is a
compactification of the ray with Z as its remainder (by Lemma 3.1 (6),
B is not an arc since it contains a ray as one of its arcwise components).
Moreover, by Lemma 3.1, B = B1∪(B∩C(SY )), B1∩(B∩C(SY )) = ∅ and
B∩C(SY ) is a ray and it is an open arcwise component of B. This implies
that SB = B ∩C(SY ) and B1 = B − (B ∩C(SY )) = B − SB = RB. Hence
B1 is homeomorphic to Z. Therefore RY is homeomorphic to Z. �

Corollary 3.5. Let Z be one of the following continua: the arc, the
Pseudoarc or any particular pseudo-solenoid. Let X be a compactification
of the ray with Z as its remainder and let Y be a continuum such that X
and Y are Whitney equivalent. Then Y is a compactification of the ray
with Z as its remainder.

Proof. Let Z be any of the mentioned continua. Then by Theorems 31.1,
31.2, 38.1, 38.2, 56.1, 56.2, 57.2, 57.3 and the results mentioned in p.319
of [13], Z satisfies the hypothesis of Corollary 3.4. �

A continuum X is said to be a Kelley continuum (or X has Kelley
property) provided that, if p ∈ A ∈ C(X) and {pn}∞n=1 is a sequence in
X such that lim pn = p, then there exists a sequence {An}∞n=1 in C(X)
such that pn ∈ An for each n and limAn = A.

Corollary 3.6. The sin( 1
x )-continuum is Whitney determined.
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Proof. Let X denote the sin( 1
x )-continuum. Let Y be a continuum such

that X and Y are Whitney equivalent. By Corollary 3.4, Y is a com-
pactification of the ray with an arc as its remainder. It is known that the
positive Whitney levels for X are homeomorphic either to [0, 1] or to X
(a proof of this can be made with an argument similar to the one we give
in Example 3.8). Thus each positive Whitney level for Y has the property
of Kelley. Since the property of Kelley is a sequential strong Whitney-
reversible property ([13, Theorem 50.4]), Y has the property of Kelley. By
Theorem 16.28 of [16], Y is homeomorphic to the sin( 1

x )-continuum. �

Remark 3.7. One can look for a similar result as Corollary 3.6 for a
particular compactification of the ray with the pseudo-arc as its remain-
der. However the tools we use in Corollary 3.6 are not useful since each
compactification of the ray with the pseudo-arc as its remainder has the
property of Kelley (see [18, Theorem 6.20]). Moreover, contrary to the in-
tuiton, there are uncountable many non-homeomorphic compactifications
of the ray with the pseudo-arc as remainder (see [15]).

Example 3.8. There are two non-homeomorphic compactifications of the
ray X and Y such that RX and RY are arcs and X and Y are Whitney
equivalent.

Consider the continua X and Y represented in Figure 1, where lim bn =
b = lim dn, lim cn = c = lim fn, lim an = a = lim en, lim gn = g 6= h =
limhn.

Figure 1
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Clearly, X and Y are not homeomorphic. We show that X and Y are
Whitney equivalent.

Given points x 6= y in the same arcwise component of X, let xy be the
unique arc in X joining them.

Let µ : C(X) → [0, 1] be a Whitney map and let t ∈ (0, 1) be such
that µ(ac) ≤ t < µ(bc). Let A = µ−1(t). We show that µ−1(t) is homeo-
morphic to the continuum Z (and then homeomorphic to the continuum
W ) represented in Figure 2. Since in the compactifications of the ray it is
not important what happens at the beginning of the ray, we may assume
that, for each n ≥ 1, min{µ(anbn), µ(dnen), µ(bn+1cn), µ(cndn)} > t.
Let An, Bn, Sn, Cn, Tn, Dn, Rn and En be the unique elements in A
satisfying: an ∈ An ⊂ anbn, bn ∈ Bn ⊂ anbn, bn+1 ∈ Sn ⊂ bn+1cn,
cn ∈ Cn ⊂ bn+1cn, cn ∈ Tn ⊂ cndn, dn ∈ Dn ⊂ cndn, dn ∈ Rn ⊂ dnen
and en ∈ En ⊂ dnen.

Let A,B,C ∈ A be such that a ∈ A ⊂ ab, b ∈ B ⊂ ab and c ∈ C ⊂ bc.
Let B = {M ∈ A : M ⊂ ab}. Given n ≥ 1, let Bn = {M ∈ A : M ⊂
anbn}. By [16, Theorem 14.6], B is an arc joining A and B and Bn is an arc
joining An and Bn. Notice that limBn = B. So we represent, in Figure 2,
the arcs Bn as vertical arcs converging to the arc B. Similarly, the vertical
arc in Z that joins Cn and Sn represents the set {M ∈ A : M ⊂ cnbn+1},
the arc TnDn represents the set {M ∈ A : M ⊂ cndn} and the arc RnEn
represents the set {M ∈ A : M ⊂ dnen}.

Figure 2
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Given n ≥ 1, consider the subarc DnRn of A that joins the elements
Dn and Rn, notice that, for each F ∈ DnRn, dn ∈ F , so if we take a
sequence {Fn}∞n=1 of elements of A such that Fn ∈ DnRn for each n ≥ 1
and limFn = F for some F ∈ A, then F ⊂ ab and b ∈ F . Thus F = B.
Therefore, limDnRn = {B}. So we represent, in Figure 2, the arcs DnRn
as horizontal arcs converging to the set {B}. Similarly, we represent the
subarcs CnTn of A, that joins the elements Cn and Tn as a sequence of
horizontal arcs converging to the set {C} and we represent the subarcs
Bn+1Sn of A, that joins the elements Bn+1 and Sn as a sequence of
horizontal arcs converging to the set {B}.

Given n ≥ 1, let EnAn be the subarc of A that joins En and An. Given
an element F ∈ EnAn, notice that either en ∈ F or an ∈ F or F ⊂ enan.
Let {Fn}∞n=1 be a sequence of elements of A such that Fn ∈ EnAn for
each n ≥ 1 and limFn = F for some F ∈ A. We consider two cases:
Fn ∩ {en, an} 6= ∅, for each n ≥ 1 and Fn ⊂ enan, for each n ≥ 1. In the
first case, it follows that F = A. In the second case, F ⊂ ac. This implies
that t = µ(F ) ≤ ac ≤ t. So t = µ(F ) = µ(ac). This implies that F = ac
and, in this case, ac is the unique element in A such that a ∈ ac ⊂ ab.
Hence F = ac = A. In both cases we conclude that F = A. We have
shown that limEnAn = {A}. So we represent, in Figure 2, the arcs EnAn
as horizontal arcs converging to the set {A}.

So we have represented all the elements of A in the continuum Z of
Figure 2. Therefore, A is homeomorphic to Z.

Let µ : C(X) → [0, 1] be a Whitney map and t ∈ (0, 1). Let A =
µ−1(t). With similar arguments as above it can be shown that:

(a) if t < min{µ(ac), µ(bc)}, then A is homeomorphic to Y ,
(b) if µ(ac) ≤ t < µ(bc), then A is homeomorphic to Z,
(c) if µ(bc) ≤ t < µ(ac), then A is homeomorphic to Z,
(d) if max{µ(ac), µ(bc)} ≤ t < µ(ab), then A is homeomorphic to the

sin( 1
x )-continuum,

(e) if µ(ab) ≤ t, then A is an arc.
Similarly, let ω : C(Y ) → [0, 1] be a Whitney map and s ∈ (0, 1). Let

B = ω−1(s). Then:
(a) if s < min{ω(pg), ω(hq)}, then B is homeomorphic to Y ,
(b) if ω(hq) ≤ s < ω(pg), then B is homeomorphic to Z,
(c) if ω(pg) ≤ s < ω(hq), then B is homeomorphic to Z,
(d) if max{ω(pg), ω(hq)} ≤ s < ω(pq), then B is homeomorphic to the

sin( 1
x )-continuum,

(e) if ω(pq) ≤ s, then B is an arc.
Therefore, X and Y are Whitney equivalent.
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4. Solenoids

For the definition and some basic properties of solenoids see [16, 1.209.4].
In [16, 14.57], it was asked if the property of being a particular solenoid
is a sequential strong Whitney-reversible property. Next we answer this
question in the positive.

Theorem 4.1. The property of being a particular solenoid is a sequential
strong Whitney-reversible property.

Proof. Let S0 be a particular solenoid. Let X be a continuum for which
there exist a Whitney map µ : C(X)→ [0, 1] and a sequence of numbers
{tn}∞n=1 in (0, 1) such that lim tn = 0 and, for each n ≥ 1, the Whitney
level An = µ−1(tn) is homeomorphic to S0. Since S0 is indecomposable,
X is indecomposable ([16, Theorem 14.46]). We say that an arc α in
X can be extended in X provided that there exists and arc β, with end
points p and q, such that α ⊂ β − {p, q}.

Claim 8. Each nondegenerate proper subcontinuum of X is an arc
that can be extended in X.

We prove Claim 8. Let A be a nondegenerate proper subcontinuum of
X. In order to show that A is an arc, by [16, Corollary 14.50], it is enough
to show that there exists N ≥ 1 such that (µ|C(A))

−1(tn) is an arc, for
each n ≥ N . Let N ≥ 1 be such that tn < µ(A), for each n ≥ N . For
each n ≥ N , let Bn = (µ|C(A))

−1(tn). Since A is nondegenerate and it is
properly contained in X, Bn is a nondegenerate proper subcontinuum of
the solenoid An. Thus Bn is an arc. This ends the proof that A is an arc.

Let ε > 0 be such that N(2ε,A) 6= X, where N(2ε,A) is the union
of all the ε-nieghborhoods around points of A. Let N ≥ 1 be such that
tN < µ(A) and diameter(B) < ε for each B ∈ AN . Let C = {B ∈ AN :
B ∩ A 6= ∅} and C0 =

⋃
{C : C ∈ C}. Using [16, Lemma 14.8.1] and

the fact that (µ|C(A))
−1(tN ) is connected, it can be proved that C is a

subcontinuum of AN and, by [16, Lemma 1.43], C0 is a subcontinuum of
X. By the choice of ε and N , C0 6= X. This implies that, C 6= AN . Since
AN is a solenoid, C is an arc and C can be extended in AN . Let D be an
arc in AN which joins elements D1, D2 ∈ AN such that C ⊂ D−{D1, D2}
and, we may assume that, for each D ∈ D, there exists C ∈ C such
that H(D,C) < ε. Note that D 6= AN . By [16, Lemma 1.43], the set
D0 =

⋃
{D : D ∈ D} is a subcontinuum of X and, by the choice of ε,

D0 6= X. Notice that A ⊂ D0 andD1∪D2 ⊂ D0−A. By the fact we prove
in the previous paragraph, D0 is an arc. Let p1 and p2 be the end points of
D0. Let E ∈ D be such that p1 ∈ E. We claim that p1 ∈ D1∪D2. Suppose
to the contrary that p1 /∈D1∪D2. Then there exists a subarc α ofD0 such
that D1 ∪D2 ⊂ α ⊂ D0 − {p1}. Let G = (µ|C(α))

−1(tN ) ⊂ AN . By [16,
Theorem 14.6], G is a subarc of AN containing the elements D1 and D2.
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Since AN is a solenoid, there is a unique arc in AN joining D1 and D2.
Thus D ⊂ G. Hence, E ∈ G and p1 ∈ E ⊂ α, a contradiction. We have
shown that p1 ∈ D1 ∪ D2. Thus p1 /∈ A. Simlarly, p2 /∈ A. We have
shown that A can be extended in X. This ends the proof of Claim 8.

Now we prove that X is homeomorphic to each of its positive Whitney
levels. Let A = ω−1(t) be a Whitney level for X, where ω : C(X)→ [0, 1]
is a Whitney map and t ∈ (0, 1). Let ϕ : X × [0, 1] → C(X) be given by
ϕ(p, s) =

⋃
{A ∈ C(X) : p ∈ A and ω(A) = s}. Since each solenoid is

homogeneous, each solenoid is a Kelley continuum ([16, Theorem 16.26])
and the property of Kelley is a sequential strong Whitney-reversible prop-
erty ([13, Theorem 50.4]), we obtain that X is a Kelley continuum. Using
[16, Lemma 14.8.1], it can be proved that ϕ(p, s) ∈ C(X), for every
(p, s) ∈ X × [0, 1] and, combining Lemma 16.14 and Lemma 1.48 of [16],
it follows that ϕ is continuous. Notice that, if 0 ≤ s ≤ r ≤ 1, then
ϕ(p, s) ⊂ ϕ(p, r). Given p ∈ X, since ω(ϕ(p, 0)) = 0 and ω(ϕ(p, 1)) = 1,
there exists σ(p) ∈ [0, 1] such that ω(ϕ(p, σ(p))) = t. Define f : X → A
by f(p) = ϕ(p, σ(p)).

Claim 9. f is a homeomorphism.
First we show that the definition of f does not depend on the choice of

the number σ(p). Suppose that s ∈ [0, 1] is such that ω(ϕ(p, s)) = t, since
ϕ(p, s) ⊂ ϕ(p, σ(p)) or ϕ(p, σ(p)) ⊂ ϕ(p, s) (depending on the inequalities
s ≤ σ(p) or σ(p) ≤ s) and ω takes the same value in both sets, we obtain
that ϕ(p, s) = ϕ(p, σ(p)).

In order to check that f is continuous, let {pn}∞n=1 be a sequence in
X converging to a point p ∈ X. We assume that limσ(pn) = s for
some s ∈ [0, 1]. Since ϕ is continuous, limϕ(pn, σ(pn)) = ϕ(p, s), so
ω(ϕ(p, s)) = t. By the previous paragraph, ϕ(p, σ(p)) = ϕ(p, s). That is,
lim f(pn) = f(p). Therefore, f is continuous.

We see that f is one-to-one. Let p, q ∈ X be such that f(p) = f(q).
Suppose that p 6= q. Since ω(f(p)) = t, by Claim 8, f(p) is an arc that
can be extended in X to an arc β. Let u, v be the end points of f(p) and
x, y the end points of β. We give to β a natural order and we suppose
that this order satisfies x < u ≤ p < q ≤ v < y. Given two elements
a 6= b in β, we denote by ab the subarc of β joining them. Since v ∈ f(p),
there exists A ∈ C(X) such that p, v ∈ A and ω(A) = σ(p). Since t < 1,
σ(p) < 1. Thus A is a proper subcontinuum of X. Since X is indecom-
posable, f(p) ∪ A is a proper subcontinuum of X and then f(p) ∪ A is
an arc (Claim 8). Since p, v ∈ A and, pv and A are subarcs of f(p) ∪ A,
we obtain that pv ⊂ A. Hence ω(pv) ≤ σ(p). If ω(vp) < σ(p), we can
extend the arc vp to an arc vp1, where p1 ∈ vy−{v, y} and ω(vp1) < σ(p).
This implies that p1 ∈ f(p) = uv, a contradiction. We have shown that
ω(vp) = σ(p). Similarly, ω(up) = σ(p) and ω(uq) = ω(qv) = σ(q).
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Since up ( uq and qv ( pv, ω(up) < ω(uq) and ω(qv) < ω(pv), a contra-
diction. Therefore p = q and f is one-to-one.

We see that f is onto. Let A ∈ A. Then A is an arc. Let p and q be the
end points of A. Let K = {a ∈ A : p ∈ f(a)} and L = {a ∈ A : q ∈ f(a)}.
Since f is continuous, K and L are closed in A. Note that p ∈ K and
q ∈ L. In order to show that A = K ∪ L, let a ∈ A, suppose that
p, q /∈ f(a). Since X is indecomposable, A ∪ f(a) 6= X, then A ∪ f(a) is
an arc. Since f(a) is a subarc of A ∪ f(a), f(a) intersects the subarc A
and the end points of A do not belong to f(a), we obtain that f(a) ( A.
Hence t = ω(f(a)) < ω(A) < t, a contradiction. Hence p or q belongs to
f(a), that is a ∈ K ∪ L. We have shown that A = K ∪ L. Since A is
connected, there exists a point a ∈ K ∩ L. Thus A ∪ f(a) is a subarc of
X and its subarc f(a) contains the end points of the arc A, so A ⊂ f(a).
Since ω(A) = ω(f(a)), we obtain f(a) = A. Therefore, f is onto. This
completes the proof of Claim 9.

We have proved that X is homeomorphic to each one of its positive
Whitney levels. In particular, X is homeomorphic to A1. Therefore X is
homeomorphic to S0. �

Corollary 4.2. Each particular solenoid is Whitney determined.

Proof. This corollary follows from Theorem 4.1 and the fact that each
solenoid is Whitney stable (see [16, Corollary 14.21]). �

5. Dendrites

A dendrite is a locally connected continuum without simple closed
curves. A continuum X is said to have unique hyperspace C(X) provided
that the following implication holds: if Y is a continuum such that C(X)
and C(Y ) are homeomorphic, then X and Y are homeomorphic. There
are a number of results related to unique hyperspaces of dendrites with
closed set of end points (see [1], [5], [6], [7], [11] and [12]). In particular,
it is known (see [5]) that dendrites (different from arcs) with closed set of
end points have unique hyperspace C(X).

Question 5.1. Are dendrites with closed set of end points Whitney de-
termined?

A Whitney map µ : C(X)→ [0, 1] is called an admissible Whitney map
for C(X) provided that there is a (continuous) homotopy h : C(X) ×
[0, 1]→ C(X) satisfying the following contiditions:

(a) for all A ∈ C(X), h(A, 1) = A and h(A, 0) is a one-point-set,
(b) if µ(h(A, t)) > 0 for someA ∈ C(X) and t ∈ [0, 1], then µ(h(A, s)) <

µ(h(A, t)) whenever 0 ≤ s < t.
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Admissible Whitney maps were introduced by J. T. Goodykoontz and
S. B. Nadler, Jr. in [4]. They proved ([4, Theorem 4.1]) that, ifX contains
no free arc and µ is an admissible Whitney map, then µ−1(t) is a Hilbert
cube for each 0 < t < 1.

In general, dendrites are not Whitney determined. In fact, we show
next that they are far to be Whitney determined.

Theorem 5.2. Let X be a continuum. Then X is a dendrite without free
arcs if and only if every positive Whitney level for X is a Hilbert cube.

Proof. (Necessity) Suppose that X is a dendrite. By [4, Theorem 4.1] we
only need to show that each Whitney map for X is an admissible Whitney
map. Let µ : C(X) → [0, 1] be a Whitney map. Given points p, q ∈ X,
let pq be the unique arc in X that joins p and q, if p 6= q and let pq = {p},
if p = q. Fix a point p0 ∈ X. Let f : C(X) → X be defined by: f(A)
is the unique point in A such that p0f(A) ∩ A = {f(A)}. It is easy to
see that f is well defined and continuous. Define g : C(X) → [0, 1] by
g(A) = max{µ(af(A)) : a ∈ A}. Clearly, g is continuous.

Let h : C(X) × [0, 1] → C(X) be defined by: h(A, t) = {a ∈ A :
µ(af(A)) ≤ tg(A)}. We are going to show some properties of h.

A. h(A, t) ∈ C(X), for every A ∈ C(X) and t ∈ [0, 1].
Given a ∈ h(A, t), af(A) ⊂ A, so af(A) ⊂ h(A, t). This proves that

h(A, t) is connected. If {an}∞n=1 is a sequence in h(A, t) converging to an
element a ∈ A, since lim anf(A) = af(A), µ(af(A)) ≤ tg(A). This proves
that h(A, t) is closed in X. Therefore, h(A, t) ∈ C(X).

B. h is continuous.
Let {(An, tn)}∞n=1 be a sequence in C(X)× [0, 1] converging to (A, t) ∈

C(X) × [0, 1]. We suppose that limh(An, tn) = B, for some B ∈ C(X).
We need to prove that B = h(A, t). Given b ∈ B, there exists a sequence
of elements {an}n=1 in X such that an ∈ h(An, tn), for each n ≥ 1, and
lim an = b. Then µ(bf(A)) = limµ(anf(An)) ≤ lim tng(An) = tg(A).
Thus b ∈ h(A, t). Hence B ⊂ h(A, t). Now, let a ∈ h(A, t). Then there
exists a sequence of elements {xn}∞n=1 such that xn ∈ An for each n ≥ 1
and limxn = a. For each n ≥ 1, let yn be the point in the arc xnf(An)
defined by the following conditions: yn = xn, if µ(xnf(An)) ≤ tng(An)
and µ(ynf(An)) = tng(An), if µ(xnf(An)) > tng(An). Note that yn ∈
h(An, tn). We may assume that lim yn = y, for some y ∈ X. Thus
y ∈ B. Since limxnf(An) = af(A), y ∈ af(A). In the case that yn = xn
for infinitely many numbers n, y = a, so a ∈ B. Suppose then that
yn 6= xn for each n ≥ 1. Thus µ(ynf(An)) = tng(An) for each n ≥ 1.
Then µ(yf(A)) = limµ(ynf(An)) = lim tng(An) = tg(A). Hence tg(A) =
µ(yf(A)) ≤ µ(af(A)) ≤ tg(A). Thus yf(A) ⊂ af(A) and µ takes the
same value on both sets. This implies that yf(A) = af(A) and y = a.
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Thus a ∈ B. This completes the proof that B = h(A, t) and then h is
continuous.

C. For all A ∈ C(X), h(A, 1) = A and h(A, 0) = {f(A)}.
D. If µ(h(A, t)) > 0 for someA ∈ C(X) and t ∈ [0, 1], then µ(h(A, s)) <

µ(h(A, t)) whenever 0 ≤ s < t.
Suppose that µ(h(A, t)) > 0 and let s ∈ [0, t). Since h(A, s) ⊂ h(A, t),

µ(h(A, s)) ≤ µ(h(A, t)). Suppose that µ(h(A, s)) = µ(h(A, t)), then
h(A, s) = h(A, t). Let a0 ∈ A be such that µ(a0f(A)) = g(A). Let
a1 ∈ a0f(A) be the unique point such that µ(a1f(A)) = tg(A). Then
a1 ∈ h(A, t) = h(A, s). Thus µ(a1f(A)) ≤ sg(A). Hence tg(A) ≤ sg(A),
so g(A) = 0. This implies that h(A, t) = {f(A)}, which is a contra-
diction with the hypothesis that µ(h(A, t)) > 0. We have shown that
µ(h(A, s)) < µ(h(A, t)).

This completes the proof that µ is an admissible Whitney map and
ends the proof of the necessity.

(Sufficiency) Suppose that every positive Whitney level for X is a
Hilbert cube. By [16, Theorem 14.47], X is locally connected and by [10],
X is a dendroid. Therefore, X is a dendrite. Suppose that X contains a
free arc α such that α joins the points p and q. Let A be a nondegenerate
subcontinuum of α such that p, q /∈ A. Then C(α) is a neighborhood of
A in C(X) and C(α) is a 2-cell. Thus A cannot belong to a Hilbert cube
contained in C(X). Thus the positive Whitney levels for X containing
A cannot be Hilbert cubes. This contradiction proves that X does not
contain free arcs and ends the proof of the theorem. �
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