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BPI IS EQUIVALENT TO
COMPACTNESS-𝑛, 𝑛 ≥ 6,

OF TYCHONOFF POWERS OF 2

ELEFTHERIOS TACHTSIS

Abstract. We show that in ZF (i.e., Zermelo-Fraenkel set theory
minus the Axiom of Choice (AC)), the following statements are
equivalent:
(1) the Boolean Prime Ideal Theorem (BPI), and
(2) for every infinite set 𝑋 and for every natural number 𝑛 > 1,

the Tychonoff product 2𝑋 is compact-𝑛.
(See Definition 1.1 for the notion of compact-𝑛).

We also show that for every natural number 𝑛 ≥ 6, the following
statements are equivalent:
(1) BPI, and
(2) for every infinite set 𝑋, the Tychonoff product 2𝑋 is compact-

𝑛.

1. Notation and Terminology

Definition 1.1. (1) Let (𝑋,𝑇 ) be a topological space.
(a) 𝑋 is called compact provided every open cover of 𝑋 has a finite

subcover. Equivalently, 𝑋 is compact if and only if for every fam-
ily 𝒢 of closed subsets of 𝑋 having the finite intersection property
(fip)

∩𝒢 ∕= ∅.
(b) 𝑋 is called countably compact provided every countable open

cover of 𝑋 has a finite subcover. Equivalently, 𝑋 is countably
compact if and only if for every countable family 𝒢 of closed sub-
sets of 𝑋 having the fip,

∩𝒢 ∕= ∅.
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22 E. TACHTSIS

(2) Let 𝑋 be a non-empty set.
(a) 2𝑋 will denote the Tychonoff product of the discrete space 2 =

{0, 1} and, ℬ𝑋 = {[𝑝] : 𝑝 ∈ Fn(𝑋, 2)}, where Fn(𝑋, 2) is the set
of all finite partial functions from 𝑋 into 2 and [𝑝] = {𝑓 ∈ 2𝑋 :
𝑝 ⊂ 𝑓}, will denote the standard clopen (= simultaneously closed
and open) base for the topology on 2𝑋 . For every 𝑛 ∈ ℕ, let

ℬ𝑛
𝑋 = {[𝑝] ∈ ℬ𝑋 : ∣𝑝∣ = 𝑛}.

We call the elements of ℬ𝑛
𝑋 , 𝑛 ∈ ℕ, 𝑛-basic clopen sets of 2𝑋 .

Clearly,
ℬ𝑋 = ∪{ℬ𝑛

𝑋 : 𝑛 ∈ ℕ}.
(b) A clopen set 𝑂 of 2𝑋 is called restricted if there exists a finite

subset 𝑄 ⊂ 𝑋 and elements 𝑝𝑖 ∈ 2𝑄, 𝑖 = 1, 2, ..., 𝑘 for some
𝑘 ∈ ℕ, such that

(1.1) 𝑂 = [𝑝1] ∪ [𝑝2] ∪ ⋅ ⋅ ⋅ ∪ [𝑝𝑘]

and for no other 𝑄′ properly included in 𝑄, is 𝑂 expressible in
the form (1.1). 𝑄 is called the set of restricted coordinates and
𝑝𝑖, 𝑖 = 1, 2, ..., 𝑘, are called the coordinates of 𝑂.

For every 𝑛 ∈ ℕ, ℰ𝑛
𝑅(2

𝑋), or simply ℰ𝑛
𝑅 in case there is no

misunderstanding, denotes the set of all restricted clopen sets 𝑂
having 𝑛-sized sets of restricted coordinates.

(c) For 𝑛 ∈ ℕ, 2𝑋 is compact-𝑛 if every cover 𝒰 ⊂ ℬ𝑛
𝑋 of 2𝑋 has a

finite subcover.

Definition 1.2. (1) An (undirected) graph 𝐺 is a pair (𝑉,𝐸) where 𝑉 is
a set and 𝐸 is a collection of two-element subsets of 𝑉 . The elements of
𝑉 are called vertices and the elements of 𝐸 are called edges.

Given two vertices 𝑢 and 𝑣, if {𝑢, 𝑣} ∈ 𝐸, then 𝑢 and 𝑣 are said to be
adjacent.

(2) A graph 𝐻 = (𝑊,𝐹 ) is a subgraph of a graph 𝐺 = (𝑉,𝐸) if 𝑊 ⊂ 𝑉
and 𝐹 ⊂ 𝐸.

(3) Given a graph 𝐺 = (𝑉,𝐸), a 𝑘-coloring of the vertices of 𝐺 is a
partition of the vertex set 𝑉 into 𝑘 sets 𝐶1, 𝐶2, . . . , 𝐶𝑘 such that for all
𝑖, 1 ≤ 𝑖 ≤ 𝑘, no pair of vertices from 𝐶𝑖 are adjacent, that is, adjacent
vertices do not have the same color. If such a partition exists, then 𝐺 is
said to be 𝑘-colorable.

The Boolean Prime Ideal Theorem (BPI) is the statement: Every
Boolean algebra has a prime ideal.

Remark 1.3. If 𝐺 = (𝑉,𝐸) is a graph, then since an edge is a two
element subset of 𝑉 , given two distinct vertices 𝑢 and 𝑤, there can be at
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most one edge connecting 𝑢 and 𝑤. For the same reason there can be no
edge connecting a vertex to itself. So a graph as in Definition 1.2(1) is a
simple graph.

2. Introduction and Some Preliminary Results

The notion of compact-𝑛 for Tychonoff powers of 2 was introduced
by Kyriakos Keremedis and Eleftherios Tachtsis in [2]. Given an infinite
set 𝑋 and a natural number 𝑛, the following characterizations of the
statement “2𝑋 is compact-𝑛” were given in [2].

Theorem 2.1. Let 𝑋 be any infinite set and let 𝑛 ∈ ℕ. Then the follow-
ing statements are equivalent.

(i) 2𝑋 is compact-𝑛.
(ii) Every cover 𝒰 ⊂ ℰ𝑛

𝑅 of 2𝑋 has a finite subcover.
(iii) Every family 𝒢 ⊂ ℰ𝑛

𝑅 with the fip has a non-empty intersection.

Moreover, in [2], it was shown that the statement “for every infinite
set 𝑋 and for every natural number 𝑛 > 1, 2𝑋 is compact-𝑛” is not
provable in ZF set theory. (On the other hand, “for every infinite set 𝑋,
2𝑋 is compact-1” is a theorem of ZF.) Regarding the relationship between
BPI and compact-𝑛 of Tychonoff powers of 2, the following result was
established in [2].

Theorem 2.2. The following statements are equivalent in ZF.
(i) BPI.
(ii) For every infinite set 𝑋 and for every natural number 𝑛 > 1, 2𝑋

is countably compact and compact-𝑛.

The following result is a well-known topological characterization of BPI
by Jan Mycielski [4].

Theorem 2.3. The following statements are equivalent in ZF.
(i) BPI.
(ii) For every infinite set 𝑋, 2𝑋 is compact.

At this point, we would like to remind the reader that the statement
“for every infinite set 𝑋, 2𝑋 is countably compact” is strictly weaker than
BPI in ZF; see [2]. So it is natural to ask whether the previous topological
statement is actually needed in order to establish (ii) → (i) of Theorem
2.2.

The aim of this paper is to prove that the statement “for every infinite
set 𝑋 and for every natural number 𝑛 > 1, 2𝑋 is compact-𝑛” is, in ZF,
equivalent to BPI. (See Theorem 3.1.) Therefore, the proposition “for
every infinite set 𝑋, 2𝑋 is countably compact” in (ii) of Theorem 2.2 is
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superfluous. In addition, since BPI (strictly) implies AC𝑓𝑖𝑛, i.e., the Axiom
of Choice for families of non-empty finite sets (see [1]), Theorem 3.1, our
main result, strengthens the result of Proposition 3.2 in [2], namely, the
statement “for every infinite set 𝑋 and for every natural number 𝑛 > 1,
2𝑋 is compact-𝑛” implies that for every natural number 𝑛 > 1, AC(𝑛)
is true, where AC(𝑛) is the Axiom of Choice for families of 𝑛-element
sets. Furthermore, from the proof of Theorem 3.1, as well as Theorem
2.5, we deduce in Theorem 3.2 that for every natural number 𝑛 ≥ 6, the
statement “for every infinite set 𝑋, 2𝑋 is compact-𝑛” is equivalent to BPI.

The key for the achievement of our goals is the following result due to
H. Läuchli [3].

Theorem 2.4. For every natural number 𝑛 ≥ 3, the statement 𝑃 (𝑛) =
“For every infinite graph 𝐺, if every finite subgraph of 𝐺 is 𝑛-colorable,
then 𝐺 is 𝑛-colorable” is equivalent to BPI.

In addition, for the proof of Theorem 3.2, we shall also need the fol-
lowing result from [2].

Theorem 2.5. Let 𝑋 be an infinite set and assume that 2𝑋 is compact-𝑛
for some 𝑛 ∈ ℕ. Then every cover 𝒱 ⊂ ∪{ℬ𝑚

𝑋 : 𝑚 ≤ 𝑛} of 2𝑋 has a finite
subcover. (Equivalently, every family 𝒲 ⊂ ∪{ℰ𝑚

𝑅 : 𝑚 ≤ 𝑛} with the fip
has a non-empty intersection.) In particular, 2𝑋 is compact-𝑚 for every
positive integer 𝑚 < 𝑛.

Remark 2.6. The assertion within the parentheses in Theorem 2.5 is not
given in the statement of the original version of the corresponding result
in [2, Lemma 3.4]. However, it can be established in a similar manner
as the proof of [2, Theorem 3.1], and we leave the verification as an easy
exercise.

3. The Main Result

Theorem 3.1. The following statements are equivalent in ZF.

(i) BPI.
(ii) For every infinite set 𝑋 and for every natural number 𝑛 > 1, 2𝑋

is compact-𝑛.

Proof. (i) → (ii). The proof follows immediately from Theorem 2.3.
(ii) → (i). In view of Theorem 2.4, it suffices to show that for every

infinite (simple) graph 𝐺, if every finite subgraph of 𝐺 is 3-colorable, then
𝐺 is 3-colorable. To this end, let 𝐺 = (𝑉,𝐸) be an infinite graph such
that every finite subgraph of 𝐺 is 3-colorable.
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Let ℒ be a propositional language with propositional variables 𝑝𝑣𝑖,
where 𝑣 ∈ 𝑉 and 𝑖 = 1, 2, 3. The variable 𝑝𝑣𝑖 has the intended meaning
that the vertex 𝑣 belongs to the 𝑖-th color class.

Let ℱ be the set of all formulas of the language ℒ, and let Σ be the
subset of ℱ which consists of the following formulas:

(a) 𝑝𝑣1 ∨ 𝑝𝑣2 ∨ 𝑝𝑣3 for 𝑣 ∈ 𝑉 ,
(b) ¬(𝑝𝑣𝑖 ∧ 𝑝𝑣𝑗) for 𝑣 ∈ 𝑉 and 𝑖, 𝑗 = 1, 2, 3 and 𝑖 ∕= 𝑗,
(c) ¬(𝑝𝑣𝑖 ∧ 𝑝𝑤𝑖) for 𝑣, 𝑤 ∈ 𝑉 such that {𝑣, 𝑤} ∈ 𝐸, and 𝑖 = 1, 2, 3.

We note that
(1) the formulas in (a) suggest that every vertex belongs to at least

one color class;
(2) the formulas in (b) suggest that the color classes are pairwise

disjoint;
(3) the formulas in (c) suggest that adjacent vertices do not have the

same color.
Put Var = {𝑝𝑣𝑖 : 𝑣 ∈ 𝑉, 𝑖 = 1, 2, 3}. In order to establish that 𝐺 has a

3-coloring, we need to find a valuation mapping 𝑓 ∈ 2ℱ which satisfies Σ,
that is, 𝑓(𝜙) = 1 for all 𝜙 ∈ Σ. Then we may define the 𝑖-th color class
𝐶𝑖, 𝑖 = 1, 2, 3, by requiring

𝑣 ∈ 𝐶𝑖 ⇔ 𝑓(𝑝𝑣𝑖) = 1.

For every pair 𝑒 = {𝑢, 𝑣} ∈ 𝐸 of adjacent vertices, let Σ𝑒 be the subset
of ℱ which is defined as Σ except that the vertices appearing as subscripts
in the formulas given by (a), (b), and (c) run through the set 𝑒. Put

𝐹𝑒 = {𝑓 ∈ 2Var : ∀𝜙 ∈ Σ𝑒, 𝑓 ′(𝜙) = 1},
where for 𝑓 ∈ 2Var, 𝑓 ′ ∈ 2ℱ is the valuation mapping determined by 𝑓 .

Note that 𝐹𝑒 is a restricted clopen set and, in particular, that 𝐹𝑒 ∈ ℰ6
𝑅.

Indeed, assume 𝑒 = {𝑢, 𝑣} ∈ 𝐸 and let 𝑄𝑒 =
∪

1≤𝑖≤3{𝑝𝑢𝑖, 𝑝𝑣𝑖} (hence,
∣𝑄𝑒∣ = 6). If we denote an element 𝑞 ∈ 2𝑄𝑒 by (𝑞(𝑝𝑢1), 𝑞(𝑝𝑢2), 𝑞(𝑝𝑢3),
𝑞(𝑝𝑣1), 𝑞(𝑝𝑣2), 𝑞(𝑝𝑣3)), then it is clear that 𝐹𝑒 =

∪6
𝑗=1[𝑞𝑗 ] , where

𝑞1 = (1, 0, 0, 0, 1, 0)(3.1)
𝑞2 = (1, 0, 0, 0, 0, 1)(3.2)
𝑞3 = (0, 1, 0, 1, 0, 0)(3.3)
𝑞4 = (0, 1, 0, 0, 0, 1)(3.4)
𝑞5 = (0, 0, 1, 1, 0, 0)(3.5)
𝑞6 = (0, 0, 1, 0, 1, 0).(3.6)

Hence, 𝐹𝑒 ∈ ℰ6
𝑅.



26 E. TACHTSIS

Now, for every 𝐴 ∈ [𝑉 ]2−𝐸, i.e., for every pair of non-adjacent vertices,
let Σ𝐴 be the subset of ℱ which consists only of formulas of type (a) and
(b) and the vertices appearing as subscripts in those formulas run through
the set 𝐴. Put

𝐹𝐴 = {𝑓 ∈ 2Var : ∀𝜙 ∈ Σ𝐴, 𝑓 ′(𝜙) = 1},
where, for 𝑓 ∈ 2Var, 𝑓 ′ ∈ 2ℱ is the valuation mapping determined by 𝑓 .
Similar to the case of pairs of adjacent vertices, we may conclude that
𝐹𝐴 ∈ ℰ6

𝑅. In particular, assume that 𝐴 = {𝑢, 𝑣} ∈ [𝑉 ]2 − 𝐸 and let
𝑄𝐴 =

∪
1≤𝑖≤3{𝑝𝑢𝑖, 𝑝𝑣𝑖}. If we denote an element 𝑞 ∈ 2𝑄𝐴 as in the case

of a pair of adjacent vertices, then 𝐹𝐴 =
∪9

𝑗=1[𝑞𝑗 ] , where

𝑞1 = (1, 0, 0, 1, 0, 0)(3.7)
𝑞2 = (1, 0, 0, 0, 1, 0)(3.8)
𝑞3 = (1, 0, 0, 0, 0, 1)(3.9)
𝑞4 = (0, 1, 0, 1, 0, 0)(3.10)
𝑞5 = (0, 1, 0, 0, 1, 0)(3.11)
𝑞6 = (0, 1, 0, 0, 0, 1)(3.12)
𝑞7 = (0, 0, 1, 1, 0, 0)(3.13)
𝑞8 = (0, 0, 1, 0, 1, 0)(3.14)
𝑞9 = (0, 0, 1, 0, 0, 1).(3.15)

Hence, 𝐹𝐴 ∈ ℰ6
𝑅.

Let 𝒢 = {𝐹𝑒 : 𝑒 ∈ 𝐸} ∪ {𝐹𝐴 : 𝐴 ∈ [𝑉 ]2 − 𝐸}. Then 𝒢 ⊂ ℰ6
𝑅 and 𝒢 has

the fip.
To see this, let ℋ = {𝐹1, 𝐹2, . . . , 𝐹𝑛} ⊂ 𝒢 and let 𝑉 ′ be the union of

the pairs of vertices which correspond to the 𝐹𝑖’s, 𝑖 = 1, 2, . . . , 𝑛, and let
𝐸′ be the set consisting of the pairs {𝑢,𝑤} ⊂ 𝑉 ′ such that {𝑢,𝑤} ∈ 𝐸.
Then 𝐺′ = (𝑉 ′, 𝐸′) is a finite subgraph of 𝐺; hence, by our hypothesis, it
has a 3-coloring, say 𝒞 = {𝐶1, 𝐶2, 𝐶3}. Let 𝑌 be the subset of ℱ which
is defined as Σ except that the vertices appearing as subscripts in the
formulas given by (a), (b), and (c) run through the set 𝑉 ′. Define a
mapping 𝑓 on the set {𝑝𝑣𝑖 : 𝑣 ∈ 𝑉 ′, 𝑖 = 1, 2, 3} by requiring 𝑓(𝑝𝑣𝑖) = 1
if and only if 𝑣 ∈ 𝐶𝑖. By induction on the degree of complexity of all
formulas in ℱ , we may extend 𝑓 to a valuation mapping 𝑓 ′ ∈ 2ℱ . From
the definition of 𝑓 and the facts that 𝒞 is a 3-coloring of 𝐺′ and 𝑓 ′ is a
valuation, it follows that the function 𝑓 ′ satisfies 𝑌 , i.e., 𝑓 ′(𝜙) = 1 for all
𝜙 ∈ 𝑌 . Hence, 𝑓 ′∣Var ∈

∩ℋ and 𝒢 has the fip as required.
By our hypothesis, the Tychonoff product 2Var is compact-6; hence, by

Theorem 2.1, there exists a function 𝑓 ∈ ∩𝒢. Let 𝑓 ′ ∈ 2ℱ be the valuation
mapping which extends 𝑓 . Then 𝑓 ′(𝜙) = 1 for all 𝜙 ∈ Σ. Indeed, since
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𝑓 ∈ ∩𝒢, 𝑓 ∈ 𝐹𝑒 for every 𝑒 ∈ 𝐸. By the definition of 𝐹𝑒, we conclude
that for all 𝜙 ∈ Σ𝑒, 𝑓

′(𝜙) = 1. Similarly, for every 𝐴 ∈ [𝑉 ]2 −𝐸, 𝑓 ∈ 𝐹𝐴.
So for all 𝜙 ∈ Σ𝐴, 𝑓

′(𝜙) = 1. Since Σ =
(∪

𝑒∈𝐸 Σ𝑒

) ∪ (∪
𝐴∈[𝑉 ]2−𝐸 Σ𝐴

)
,

(Let 𝜙 ∈ Σ. If 𝜙 is ¬(𝑝𝑣𝑖 ∧ 𝑝𝑤𝑖), i.e., 𝜙 is of type (c), then 𝑒 = {𝑣, 𝑤} ∈ 𝐸
and 𝜙 ∈ Σ𝑒. If 𝜙 is of type (a) or (b), let 𝑣 be the unique vertex appearing
in the expression of 𝜙. If there is a 𝑤 ∈ 𝑉 such that 𝑒 = {𝑣, 𝑤} ∈ 𝐸,
then 𝜙 ∈ Σ𝑒. Otherwise, 𝑣 is an isolated vertex and we may pick any
𝑤 ∈ 𝑉 − {𝑣}. Then 𝐴 = {𝑣, 𝑤} ∈ [𝑉 ]2 − 𝐸 and 𝜙 ∈ Σ𝐴), we conclude
that 𝑓 ′(𝜙) = 1 for all 𝜙 ∈ Σ.

Letting 𝐶𝑖 = {𝑣 ∈ 𝑉 : 𝑓 ′(𝑝𝑣𝑖) = 1}, for each 𝑖 = 1, 2, 3, we have that
𝒞 = {𝐶𝑖 : 𝑖 = 1, 2, 3} is a 3-coloring of the initial graph 𝐺. This completes
the proof of (ii) → (i) and of the theorem. □

From the proof of Theorem 3.1, as well as from Theorem 2.5, we obtain
the following result.

Theorem 3.2. For every natural number 𝑛, consider the statement
𝑄(𝑛) = “For every infinite set 𝑋, the Tychonoff product 2𝑋 is compact-𝑛.”
Then, for all 𝑛 ≥ 6, 𝑄(𝑛) if and only if BPI.

Proof. By Theorem 2.3, BPI implies 𝑄(𝑛) for all 𝑛 ∈ ℕ. On the other
hand, in view of the proof of Theorem 3.1, we have that BPI is equivalent
to 𝑄(6) and, by Theorem 2.5, 𝑄(𝑛) implies 𝑄(6) for all natural numbers
𝑛 > 6. Hence, the result. □

We would like to remind the reader that the statement 𝑄(1), i.e., “for
every infinite set 𝑋, 2𝑋 is compact-1,” is a theorem of ZF; see [2]. We do
not know the set-theoretic status of the statement 𝑄(𝑛) for 𝑛 = 2, 3, 4, 5.
We conjecture that 𝑄(𝑛) is equivalent to BPI for all integers 𝑛 ≥ 2.
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