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SOME COMPACTNESS PROPERTIES
RELATED TO PSEUDOCOMPACTNESS
AND ULTRAFILTER CONVERGENCE

PAOLO LIPPARINI

Abstract. We discuss some notions of compactness and conver-
gence relative to a specified family ℱ of subsets of some topological
space 𝑋. The two most interesting cases of our construction appear
to be
(1) the case in which ℱ is the family 𝒮 of all singletons of 𝑋, in

which case we get back the more usual notions;
(2) the case in which ℱ is the family 𝒪 of all nonempty open

subsets of 𝑋, in which case we get notions related to pseudo-
compactness.

A large part of the results in this paper are known for case (1); the
results are, in general, new in case (2). As an example, we charac-
terize those spaces which are 𝐷-pseudocompact for some ultrafilter
𝐷 uniform over 𝜆.

1. Introduction

In this paper, we study various compactness and convergence prop-
erties relative to a family ℱ of subsets of some topological space. In
particular, we relativize to ℱ the notions of 𝐷-compactness, CAP𝜆, and
[𝜇, 𝜆]-compactness. The two cases which motivate our treatment are when
ℱ is either (1) the family 𝒮 of all singletons of 𝑋, or (2) the family 𝒪
of all nonempty open sets of 𝑋. As far as case (2) is concerned, we can
equivalently consider nonempty elements of some base, and we can also
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30 P. LIPPARINI

equivalently consider nonempty regular closed sets (sets which are the
closure of some nonempty open set).

Throughout the paper, 𝒮 and 𝒪 will denote the above families.
Our results concern the mutual relationship among the above compact-

ness properties and their behavior with respect to products. Some results
which are known for case (1) are generalized to the case of an arbitrary
family ℱ . Apparently, a few results are new even for case (1).

Already for case (2), our results appear to be new. For example, we
get characterizations of those spaces which are 𝐷-pseudocompact for some
ultrafilter 𝐷 uniform over 𝜆 (Corollary 5.5).

Similarly, we get equivalent conditions for the weaker local form assert-
ing that, for every 𝜆-indexed sequence of nonempty open sets of 𝑋, there
exists some uniform ultrafilter 𝐷 over 𝜆 such that the sequence has some
𝐷-limit point in 𝑋 (Theorem 4.4). When 𝜆 = 𝜔, we get nothing but more
conditions equivalent to pseudocompactness (for Tychonoff spaces).

At first reading, the reader might consider only cases (1) and (2) and
look at this paper as a generalization to pseudocompactness-like notions
of results already known about ultrafilter convergence and complete ac-
cumulation points. Of course, it might be that our definitions and results
can be applied to other situations, apart from the two mentioned ones;
however, we have not worked out the details yet. Following a suggestion
by the referee, we mention that it might be of some interest to study the
case when ℱ is taken to be the family of the zero-sets of some Tychonoff
space.

Further elaboration on the notions introduced here is presented in [15]
and [17]. The latter manuscript solves a problem by Teklehaimanot Retta
[19].

No separation axiom is assumed in the present paper, unless explicitly
mentioned.

1.1. Some history and our main aim.

The notion of (pointwise) ultrafilter convergence has proven particu-
larly useful in topology, especially in connection with the study of com-
pactness properties and existence of complete accumulation points, not
excluding many other kinds of applications. In particular, ultrafilter con-
vergence is an essential tool in studying compactness properties of prod-
ucts. In a sense made precise in [11], the use of ultrafilters is unavoidable
in this situation.

John Ginsburg and Victor Saks’ 1975 paper [9] is a pioneering work
in applications of pointwise ultrafilter convergence. In addition, it intro-
duces a fundamental new tool, the idea of considering ultrafilter limits of
subsets (rather than points) of a topological space. In particular, taking
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into consideration ultrafilter limits of nonempty open sets provides deep
applications to pseudocompactness, as well as the possibility of introduc-
ing further pseudocompactness-like notions. Some analogies, as well as
some differences between the two cases were already discussed in [9]. Sub-
sequently, Salvador Garcia-Ferreira [7] analyzed some analogies in more
detail.

Ginsburg and Saks’ work concentrated on ultrafilters uniform over 𝜔.
Generalizations and improvements for ultrafilters over larger cardinals
appeared in [20], in the case of pointwise 𝐷-convergence, and in [8], in
the case of 𝐷-pseudocompactness.

A new wave of results, partially inspired by seemingly unrelated prob-
lems in mathematical logic, arose when Xavier Caicedo [2] and [3], using
ultrafilters, proved some two-cardinals transfer results for compactness of
products. For example, among many other things, Caicedo proved that
if all powers of some topological space 𝑋 are [𝜆+, 𝜆+]-compact, then all
powers of 𝑋 are [𝜆, 𝜆]-compact. Subsequently, further results along this
line appeared in [11], [12], [13], and [14].

The aim of this paper is twofold. First, we provide analogues for
pseudocompactness-like notions of results previously proved only for point-
wise convergence; in particular, we provide versions of many results which
appeared in [2], [3], [11], and [12].

Our second aim is to insert the two above-mentioned kinds of results
into a more general framework. Apart from the advantage of a unified
treatment of both cases, we hope that this abstract approach will con-
tribute to clarifying the methods and notions used in the more familiar
case of pointwise convergence. Moreover, as we mentioned, Ginsburg and
Saks [9] noticed certain analogies between the two cases, but noticed also
that there are asymmetries. In our opinion, our treatment provides a
very neat explanation for such asymmetries. See the discussion below in
subsection 1.2 relative to section 5.

Finally, let us mention that for case (1), a large part of the results
presented here are well known; however, even in this particular and well-
studied case, we provide a couple of results which might be new: see, e. g.,
propositions 3.3 and 3.5, and Remark 5.4.

1.2. Synopsis.

Section 2 introduces the notion of 𝐷-compactness relative to some fam-
ily ℱ of subsets of some topological space 𝑋. This provides a common gen-
eralization of both pointwise 𝐷-compactness and 𝐷-pseudocompactness,
as introduced by [9] and [8]. Some trivial facts hold about this notion;
for example, we can equivalently consider the family of all the closures of
elements of ℱ .
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In section 3, we discuss the notion of a complete accumulation point
relative to ℱ . In fact, two versions are presented: the first one, starred,
deals with sequences of subsets, and the second one, unstarred, deals with
sets of subsets. That is, in the starred case, repetitions are allowed, while
in the unstarred case, they are not allowed. The difference between the
two cases is essential only when dealing with singular cardinals (Propo-
sition 3.3). In the classical case when ℱ = 𝒮, the unstarred notion is
most used in the literature; however, we show that the exact connection
between the notion of a 𝐷-limit point and the existence of a complete
accumulation point holds only for the starred variant (Proposition 4.1).

In section 4, we introduce a generalization of [𝜇, 𝜆]-compactness which
also depends on ℱ , and in Theorem 4.4, we prove the equivalence among
many of the ℱ-dependent notions defined before.

Section 5 discusses the behavior of the above notions in connection
with (Tychonoff) products. Actually, for the sake of simplicity only, we
deal mostly with powers. Since, in our notions, a topological space 𝑋
comes equipped with a family ℱ of subsets attached to it, we have to
specify which family should be attached to the power 𝑋𝛿. In order to
get significant results, the right choice is to attach to 𝑋𝛿 the family ℱ𝛿

consisting of all products of 𝛿 members of ℱ (some variations are possible).
In the case when ℱ is the family of all the singletons of 𝑋, then ℱ𝛿 turns
out to be the family of all singletons of 𝑋𝛿 again; thus, we get back the
classical results about ultrafilter convergence in products. On the other
hand, when ℱ is the family of all nonempty open subsets of 𝑋, then ℱ𝛿,
in general, contains certain sets which are not open in 𝑋𝛿; in fact, ℱ𝛿 is a
base for the box topology on 𝑋𝛿, a topology generally strictly finer than
the Tychonoff topology.

The above fact explains the reason why, in the case of products, there
is not a total symmetry between results on compactness and results about
pseudocompactness. For example, as already noticed in [9], it is true that
all powers of some topological space 𝑋 are countably compact if and only
if 𝑋 is 𝐷-compact, for some ultrafilter 𝐷 uniform over 𝜔. On the other
hand, Ginsburg and Saks [9] constructed a Tychonoff space 𝑋 such that
all powers of 𝑋 are pseudocompact, but there exists no uniform ultra-
filter 𝐷 over 𝜔 such that 𝑋 is 𝐷-pseudocompact. Our framework not
only explains the reason for this asymmetry, but can be used in order
to provide a characterization of 𝐷-pseudocompact spaces, a characteri-
zation parallel to that of 𝐷-compact spaces. Indeed, we do find versions
for 𝐷-pseudocompactness of the classical results about 𝐷-convergence
(Corollary 5.5). Though statements become a little more involved, we
believe that these results have some intrinsic interest.
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In section 6, we show that cardinal transfer results for decomposable ul-
trafilters deeply affect compactness properties relative to these cardinals.
More exactly, if 𝜆 and 𝜇 are cardinals such that every uniform ultrafilter
over 𝜆 is 𝜇-decomposable, then every topological space 𝑋 which is ℱ-
𝐷-compact for some ultrafilter 𝐷 uniform over 𝜆, is also ℱ-𝐷′-compact
for some ultrafilter 𝐷′ uniform over 𝜇. Of course, this result applies also
to all the equivalent notions discussed in the preceding sections. Since
there are highly nontrivial set theoretical results on transfer of ultrafil-
ter decomposability, our theorems provide deep unexpected applications
of set theory to compactness properties of products. We appropriately
reformulate known results about decomposability of ultrafilters in such a
way that they can be applied to the present context. We also get a few
new results about the relation 𝜆

∞⇒ 𝐾: “every uniform ultrafilter over 𝜆
is 𝜇-decomposable for some 𝜇 ∈ 𝐾,” where 𝐾 is a class of infinite cardi-
nals. The results here generalize some results which appear in [11] and
[16]. At the end of the section, we show that the relation 𝜆

∞⇒ 𝐾 can be
equivalently expressed in terms of pseudocompactness properties of box
products (Corollary 6.8).

Finally, in section 7, we discuss still another generalization of [𝜆, 𝜇]-
compactness. Again, there are relationships with the other compactness
properties which were introduced before, as well as with further variations
on pseudocompactness. The notions introduced here are probably worthy
of further study.

2. 𝐷-Compactness Relative to Some Family ℱ
Suppose that 𝐷 is an ultrafilter over some set 𝑍 and 𝑋 is a topological

space.
A sequence (𝑥𝑧)𝑧∈𝑍 of (not necessarily distinct) elements of 𝑋 is said

to 𝐷-converge to some point 𝑥 ∈ 𝑋 if and only if {𝑧 ∈ 𝑍 ∣ 𝑥𝑧 ∈ 𝑈} ∈ 𝐷
for every neighborhood 𝑈 of 𝑥 in 𝑋.

The space 𝑋 is said to be 𝐷-compact if and only if every sequence
(𝑥𝑧)𝑧∈𝑍 of elements of 𝑋 converges to some point of 𝑋.

If (𝑌𝑧)𝑧∈𝑍 is a sequence of (not necessarily distinct) subsets of 𝑋, then 𝑥
is called a 𝐷-limit point of (𝑌𝑧)𝑧∈𝑍 if and only if {𝑧 ∈ 𝑍 ∣ 𝑌𝑧∩𝑈 ∕= ∅} ∈ 𝐷
for every open neighborhood 𝑈 of 𝑥 in 𝑋.

Since 𝑌𝑧 ∩𝑈 ∕= ∅ if and only if 𝑌 𝑧 ∩𝑈 ∕= ∅, we have that 𝑥 is a 𝐷-limit
point of (𝑌𝑧)𝑧∈𝑍 if and only if 𝑥 is a 𝐷-limit point of (𝑌 𝑧)𝑧∈𝑍 .

The space 𝑋 is said to be 𝐷-pseudocompact if and only if every sequence
(𝑂𝑧)𝑧∈𝑍 of nonempty open subsets of 𝑋 has some 𝐷-limit point in 𝑋.
The above notion is due to [9, Definition 4.1] for non-principal ultrafilters
over 𝜔 and appears in [8] for uniform ultrafilters over arbitrary cardinals.
In [9] and [8], the above definitions are given for Tychonoff spaces. When
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𝑋 is not assumed to be Tychonoff, R. M. Stephenson, Jr., [23] uses the
term 𝐷-feebly compact.

The above notions can be simultaneously generalized as follows.

Definition 2.1. Suppose that 𝐷 is an ultrafilter over some set 𝑍, 𝑋 is
a topological space, and ℱ is a specified family of subsets of 𝑋. We say
that the space 𝑋 is ℱ-𝐷-compact if and only if every sequence (𝐹𝑧)𝑧∈𝑍

of members of ℱ has some 𝐷-limit point in 𝑋.
Thus, we get the notion of 𝐷-compactness when ℱ = 𝒮, and we get

the notion of 𝐷-pseudocompactness when ℱ = 𝒪.
If 𝒢 is another family of subsets of 𝑋, let us write ℱ ⊳𝒢 to mean that,

for every 𝐹 ∈ ℱ , there is 𝐺 ∈ 𝒢 such that 𝐹 ⊇ 𝐺.
With this notation, it is trivial to show that if ℱ ⊳ 𝒢 and 𝑋 is 𝒢-𝐷-

compact, then 𝑋 is ℱ-𝐷-compact.
If ℱ is a family of nonempty subsets of 𝑋, and ℱ contains all singletons,

then both ℱ ⊳ 𝒮 and 𝒮 ⊳ ℱ ; hence, ℱ-𝐷-compactness is the same as 𝐷-
compactness.

If ℱ is a family of subsets of 𝑋, let ℱ = {𝐹 ∣ 𝐹 ∈ ℱ} be the set of all
closures of elements of ℱ . With this notation, it is trivial to show that 𝑋
is ℱ-𝐷-compact if and only if 𝑋 is ℱ-𝐷-compact.

The most interesting cases in Definition 2.1 appear to be the two men-
tioned ones, that is, when either ℱ = 𝒮 or ℱ = 𝒪.

When ℱ = 𝒮, most of the results we prove here are essentially known,
except for the technical difference that we deal with sequences rather than
subsets. The difference is substantial only when dealing with singular
cardinals. See Remark 3.2 and Proposition 3.3.

When ℱ = 𝒪, most of our results appear to be new.

Remark 2.2. Notice that if ℬ is a base (consisting of nonempty sets)
of the topological space 𝑋, then both 𝒪 ⊳ ℬ and ℬ ⊳ 𝒪. Hence, 𝒪-𝐷-
compactness is the same as ℬ-𝐷-compactness. A similar remark applies
to all compactness properties we shall introduce later (except for those
introduced in section 7).

3. Complete Accumulation Points Relative to ℱ
We are now going to generalize the notion of an accumulation point.

Definition 3.1. If 𝜆 is an infinite cardinal and (𝑌𝛼)𝛼∈𝜆 is a sequence of
subsets of some topological space 𝑋, we say that 𝑥 ∈ 𝑋 is a 𝜆-complete
accumulation point of (𝑌𝛼)𝛼∈𝜆 if and only if ∣{𝛼 ∈ 𝜆 ∣ 𝑌𝛼 ∩ 𝑈 ∕= ∅}∣ = 𝜆,
for every neighborhood 𝑈 of 𝑥 in 𝑋.

In case 𝜆 = 𝜔, we get the usual notion of a cluster point.
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Notice that 𝑥 is a 𝜆-complete accumulation point of (𝑌𝛼)𝛼∈𝜆 if and
only if 𝑥 is a 𝜆-complete accumulation point of (𝑌 𝛼)𝛼∈𝜆.

If ℱ is a family of subsets of 𝑋, we say that 𝑋 satisfies ℱ-CAP∗
𝜆 if

and only if every sequence (𝐹𝛼)𝛼∈𝜆 of members of ℱ has a 𝜆-complete
accumulation point.

If ℱ⊳𝒢 and 𝑋 satisfies 𝒢-CAP∗
𝜆, then 𝑋 satisfies ℱ-CAP∗

𝜆. Moreover,
𝑋 satisfies ℱ-CAP∗

𝜆 if and only if it satisfies ℱ-CAP∗
𝜆.

Notice that if 𝑋 is a Tychonoff space, then a result by Irving Glicksberg
[10], when reformulated in the present terminology, asserts that 𝒪-CAP∗

𝜔

is equivalent to pseudocompactness. See also [9, §4], [8], and [23]. Without
assuming 𝑋 to be Tychonoff, 𝒪-CAP∗

𝜔 turns out to be equivalent to a
condition which is usually called feeble compactness. See Remark 4.5.

More generally, 𝒪-CAP∗
𝜅 is called pseudo-(𝜅, 𝜅)-compactness in [4]. See

[6], [19], and [17] for the study of related notions.

Remark 3.2. When each 𝑌𝛼 is a singleton in Definition 3.1 and all such
singletons are distinct, we get back the usual notion of a complete accu-
mulation point.

A point 𝑥 ∈ 𝑋 is said to be a complete accumulation point of some
infinite subset 𝑌 ⊆ 𝑋 if and only if ∣𝑌 ∩𝑈 ∣ = ∣𝑌 ∣ for every neighborhood
𝑈 of 𝑥 in 𝑋.

A topological space 𝑋 satisfies CAP𝜆 if and only if every subset 𝑌 ⊆ 𝑋
with ∣𝑌 ∣ = 𝜆 has a complete accumulation point.

When 𝜆 is a singular cardinal, there is some difference between the
classic notion of a complete accumulation point and the notion of a 𝜆-
complete accumulation point, as introduced in Definition 3.1. This hap-
pens because, for our purposes, it is more convenient to deal with se-
quences rather than subsets, that is, we allow repetitions. This is the
reason for the ∗ in ℱ-CAP∗

𝜆 in Definition 3.1.
As pointed out in [14, Proposition 1], if ℱ = 𝒮, then, for 𝜆 regular, ℱ-

CAP∗
𝜆 is equivalent to CAP𝜆, and, for 𝜆 singular, ℱ-CAP∗

𝜆 is equivalent
to the conjunction of CAP𝜆 and CAPcf 𝜆.

In fact, a more general result holds for families of nonempty sets. In
order to clarify the situation, let us introduce the following unstarred
variant of ℱ-CAP∗

𝜆. If ℱ is a family of subsets of 𝑋, we say that 𝑋 satisfies
ℱ-CAP𝜆 if and only if every sequence (𝐹𝛼)𝛼∈𝜆 of distinct members of ℱ
has a 𝜆-complete accumulation point.

Then we have the following proposition.

Proposition 3.3. Suppose that 𝑋 is a topological space and ℱ is a family
of nonempty subsets of 𝑋.

(a) If 𝜆 is a regular cardinal, then 𝑋 satisfies ℱ-CAP∗
𝜆 if and only if

𝑋 satisfies ℱ-CAP𝜆.
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(b) If 𝜆 is a singular cardinal, then 𝑋 satisfies ℱ-CAP∗
𝜆 if and only

if 𝑋 satisfies both ℱ-CAP𝜆 and ℱ-CAPcf 𝜆.

Proof. It is obvious that ℱ-CAP∗
𝜆 implies ℱ-CAP𝜆 for every cardinal 𝜆.

Suppose that 𝜆 is regular, that ℱ-CAP𝜆 holds, and that (𝐹𝛼)𝛼∈𝜆 is a
sequence of elements of ℱ . If some subsequence consists of 𝜆-many dis-
tinct elements, then, by ℱ-CAP𝜆, this subsequence has some 𝜆-complete
accumulation point which necessarily is also a 𝜆-complete accumulation
point for (𝐹𝛼)𝛼∈𝜆. Otherwise, since 𝜆 is regular, there exists some 𝐹 ∈ ℱ
which appears 𝜆-many times in (𝐹𝛼)𝛼∈𝜆. Since, by assumption, 𝐹 is
nonempty, just take some 𝑥 ∈ 𝐹 to get a 𝜆-complete accumulation point
for (𝐹𝛼)𝛼∈𝜆. Thus, we have proved that ℱ-CAP𝜆 implies ℱ-CAP∗

𝜆 for 𝜆
regular.

Now suppose that 𝜆 is singular and that both ℱ-CAP𝜆 and ℱ-CAPcf 𝜆

hold. We are going to show that ℱ-CAP∗
𝜆 holds. Let (𝐹𝛼)𝛼∈𝜆 be a

sequence of elements of ℱ . There are three cases.
Case i: There exists some 𝐹 ∈ ℱ which appears 𝜆-many times in

(𝐹𝛼)𝛼∈𝜆. In this case, as above, it is enough to choose some element from
𝐹 .

Case ii: Some subsequence of (𝐹𝛼)𝛼∈𝜆 consists of 𝜆-many distinct ele-
ments. Then, as above, apply ℱ-CAP𝜆 to this subsequence.

Case iii: Otherwise, (𝐹𝛼)𝛼∈𝜆 consists of < 𝜆 different elements, each one
appearing < 𝜆 times. Moreover, if (𝜆𝛽)𝛽∈cf 𝜆 is a sequence of cardinals < 𝜆
whose supremum is 𝜆, then, for every 𝛽 ∈ cf 𝜆, there is 𝐹𝛽 ∈ ℱ appearing
at least 𝜆𝛽-many times. Since, for each 𝛽, 𝐹𝛽 appears < 𝜆 times, we can
choose 𝑐𝑓𝜆-many distinct 𝐹𝛽 ’s as above. Applying ℱ-CAPcf 𝜆 to those
𝐹𝛽 ’s, we get a 𝜆-complete accumulation point for (𝐹𝛼)𝛼∈𝜆.

It remains to show that, for 𝜆 singular, ℱ-CAP∗
𝜆 implies ℱ-CAPcf 𝜆.

Suppose that (𝜆𝛽)𝛽∈cf 𝜆 is a sequence of cardinals < 𝜆 whose supremum
is 𝜆. If (𝐹𝛽)𝛽∈cf 𝜆 is a sequence of distinct members of ℱ , let (𝐺𝛼)𝛼∈𝜆 be
a sequence such that, for every 𝛽 ∈ cf 𝜆, 𝐺𝛼 = 𝐹𝛽 for exactly 𝜆𝛽-many
𝛼’s. By ℱ-CAP∗

𝜆, (𝐺𝛼)𝛼∈𝜆 has a 𝜆-complete accumulation point 𝑥. It is
immediate to show that 𝑥 is also a cf 𝜆-complete accumulation point for
(𝐹𝛽)𝛽∈cf 𝜆. □

If 𝐷 is an ultrafilter, 𝑌 is a 𝐷-compact Hausdorff space, and 𝑋 ⊆ 𝑌 ,
then there is the smallest 𝐷-compact subspace 𝑍 of 𝑌 containing 𝑋. This
is because the intersection of any family of 𝐷-compact subspaces of 𝑌 is
still 𝐷-compact, since, in a Hausdorff space, the 𝐷-limit of a sequence is
unique (if it exists). Such a 𝑍 can also be constructed by an iteration
procedure in ∣𝐼∣+ stages if 𝐷 is over 𝐼. This is similar to [9, Theorem
2.12].
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If 𝑋 is a Tychonoff space and 𝑌 = 𝛽(𝑋) is the Stone-Čech compact-
ification of 𝑋, the smallest 𝐷-compact subspace of 𝛽(𝑋) containing 𝑋
is called the 𝐷-compactification of 𝑋 and is denoted by 𝛽𝐷(𝑋). See [7,
p. 14], [8], or [9] for further references and alternative definitions of the
𝐷-compactification (sometimes also called 𝐷-compact reflection).

Example 3.4. (a) If 𝜆 is singular, then cf 𝜆, endowed with either the or-
der topology or the discrete topology, fails to satisfy CAPcf 𝜆, but trivially
satisfies CAP𝜆.

(b) By propositions 3.3 and 4.1, if 𝐷 is an ultrafilter uniform over
𝜆 and 𝑌 is a 𝐷-compact topological space, then 𝑌 satisfies CAP𝜆. In
particular, if 𝑋 is any Tychonoff space and 𝐷 is uniform over 𝜆, then the
𝐷-compactification 𝛽𝐷(𝑋) of 𝑋 satisfies CAP𝜆.

(c) If 𝑋 is 𝜆 with the discrete topology, then 𝑋 does not satisfy CAP𝜆.
By (b), if 𝐷 is an ultrafilter uniform over cf 𝜆, then the 𝐷-compactification
𝛽𝐷(𝑋) of 𝑋 satisfies CAPcf 𝜆. However, if 𝜆 is singular, 𝛽𝐷(𝑋) does not
satisfy CAP𝜆. Thus, we have a space satisfying CAPcf 𝜆, but not satisfying
CAP𝜆.

(d) In order to get an example as in (c), it is not sufficient to take any
space 𝑋 which does not satisfy CAP𝜆. Indeed, if 𝑋 is 𝜆 with the order
topology, then 𝛽𝐷(𝑋) does satisfy CAP𝜆 whenever 𝐷 is an ultrafilter
uniform over cf 𝜆.

The next proposition shows that, when 𝜆 is a singular cardinal, CAPcf 𝜆

implies ℱ-CAP∗
𝜆, provided that ℱ-CAP𝜇 holds for a set of cardinals un-

bounded in 𝜆.

Proposition 3.5. Suppose that 𝑋 is a topological space, ℱ is a family
of nonempty subsets of 𝑋, 𝜆 is a singular cardinal, and (𝜆𝛽)𝛽∈cf 𝜆 is a
sequence of cardinals < 𝜆 such that sup𝛽∈cf 𝜆 𝜆𝛽 = 𝜆.

If 𝑋 satisfies CAPcf 𝜆, as well as ℱ-CAP𝜆𝛽
, for every 𝛽 ∈ cf 𝜆, then

𝑋 satisfies ℱ-CAP∗
𝜆.

In particular, if 𝑋 satisfies CAPcf 𝜆, and CAP𝜆𝛽
, for every 𝛽 ∈ cf 𝜆,

then 𝑋 satisfies CAP∗
𝜆.

1

Proof. We first prove that 𝑋 satisfies ℱ-CAP𝜆. The proof takes some
ideas from [20, proof of Proposition, p. 94]. So, let (𝐹𝛼)𝛼∈𝜆 be a sequence
of distinct elements of ℱ . For every 𝛽 ∈ cf 𝜆, by ℱ-CAP𝜆𝛽

, we get some
element 𝑥𝛽 which is a 𝜆𝛽-complete accumulation point for (𝐹𝛼)𝛼∈𝜆𝛽

. By
CAP∗

cf 𝜆 (which follows from CAPcf 𝜆, by Proposition 3.3(a)), the sequence
(𝑥𝛽)𝛽∈cf 𝜆 has some cf 𝜆-complete accumulation point 𝑥. It is now easy
to see that 𝑥 is a 𝜆-complete accumulation point for (𝐹𝛼)𝛼∈𝜆.

1This statement has appeared in [14, p. 2].
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Since the members of ℱ are nonempty, then CAPcf 𝜆 implies ℱ-CAPcf 𝜆;
hence, ℱ-CAP∗

𝜆 follows from ℱ-CAP𝜆 by Proposition 3.3(b).
The last statement follows by taking ℱ = 𝒮. □

4. Relationship Among Compactness Properties

In the next proposition, we deal with the fundamental relationship,
for a given sequence, between the existence of a 𝜆-complete accumulation
point and the existence of a 𝐷-limit point for 𝐷 uniform over 𝜆. Then,
in Theorem 4.4, we shall present more equivalent formulations referring
to various compactness properties.

Proposition 4.1. Suppose that 𝜆 is an infinite cardinal and that (𝑌𝛼)𝛼∈𝜆

is a sequence of subsets of some topological space 𝑋.
Then 𝑥 ∈ 𝑋 is a 𝜆-complete accumulation point of (𝑌𝛼)𝛼∈𝜆 if and only

if there exists an ultrafilter 𝐷 uniform over 𝜆 such that 𝑥 is a 𝐷-limit
point of (𝑌𝛼)𝛼∈𝜆.

In particular, (𝑌𝛼)𝛼∈𝜆 has a 𝜆-complete accumulation point if and only
if (𝑌𝛼)𝛼∈𝜆 has a 𝐷-limit point for some ultrafilter 𝐷 uniform over 𝜆.

Proof. If 𝑥 ∈ 𝑋 is a 𝜆-complete accumulation point of (𝑌𝛼)𝛼∈𝜆, then the
family ℋ consisting of the sets {𝛼 ∈ 𝜆 ∣ 𝑌𝛼 ∩ 𝑈 ∕= ∅} (𝑈 a neighborhood
of 𝑥) and 𝜆 ∖𝑍 (∣𝑍∣ < 𝜆) has the finite intersection property. Indeed, the
intersection of any finite set of members of ℋ has cardinality 𝜆. Hence, ℋ
can be extended to some ultrafilter 𝐷, which is necessarily uniform over
𝜆. It is trivial to see that for such a 𝐷, 𝑥 is a 𝐷-limit point of (𝑌𝛼)𝛼∈𝜆.

The converse is trivial, since the ultrafilter 𝐷 is assumed to be uniform
over 𝜆. □

The particular case of Proposition 4.1, in which all 𝑌𝛼’s are distinct
one-element sets, is well known. See [20, pp. 80–81].

Definition 4.2. If 𝑋 is a topological space and ℱ is a family of subsets
of 𝑋, we say that 𝑋 is ℱ-[𝜇, 𝜆]-compact if and only if the following holds.

For every sequence (𝐶𝛼)𝛼∈𝜆 of closed sets of 𝑋, if, for every 𝑍 ⊆ 𝜆 with
∣𝑍∣ < 𝜇, there exists 𝐹 ∈ ℱ such that

∩
𝛼∈𝑍 𝐶𝛼 ⊇ 𝐹 , then

∩
𝛼∈𝜆 𝐶𝛼 ∕= ∅.

Of course, when ℱ = 𝒮, we have that ℱ-[𝜇, 𝜆]-compactness is the usual
notion of [𝜇, 𝜆]-compactness.

On the other hand, when ℱ = 𝒪, we get notions related to pseudo-
compactness. See Remark 4.5. Notice that, by taking complements, we
get that 𝒪-[𝜇, 𝜆]-compactness is equivalent to the following statement.
For every 𝜆-indexed open cover (𝑂𝛼)𝛼∈𝜆 of 𝑋, there exists 𝑍 ⊆ 𝜆, with
∣𝑍∣ < 𝜇, such that

∪
𝛼∈𝑍 𝑂𝛼 is dense in 𝑋.

In the above sense, 𝒪-[𝜔, 𝜆]-compactness has been introduced and stud-
ied in [6], where Zdeněk Frolík calls it almost 𝜆-compactness. Moreover,
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he introduced the notion which corresponds to 𝒪-[𝜇, 𝜆]-compactness for
all cardinals 𝜆, calling it almost 𝜇-Lindelöfness. 𝒪-[𝜔, 𝜆]-compactness has
been studied also in [21] under the name weak-𝜆-ℵ0-compactness and in
[19] and [24] under the name weak initial 𝜆-compactness.

Remark 4.3. Trivially, if ℱ ⊳ 𝒢, and 𝑋 is 𝒢-[𝜇, 𝜆]-compact, then 𝑋 is
ℱ-[𝜇, 𝜆]-compact.

Recall that if ℱ is a family of subsets of 𝑋, we have defined ℱ = {𝐹 ∣
𝐹 ∈ ℱ}. It is trivial to observe that 𝑋 is ℱ-[𝜇, 𝜆]-compact if and only if
𝑋 is ℱ-[𝜇, 𝜆]-compact.

Theorem 4.4. Suppose that 𝑋 is a topological space, ℱ is a family of
subsets of 𝑋, and 𝜆 is a regular cardinal. Then the following conditions
are equivalent.

(a) 𝑋 is ℱ-[𝜆, 𝜆]-compact.
(b) Suppose that (𝐶𝛼)𝛼∈𝜆 is a sequence of closed sets of 𝑋 such that

𝐶𝛼 ⊇ 𝐶𝛽 whenever 𝛼 ≤ 𝛽 < 𝜆. If, for every 𝛼 ∈ 𝜆, there exists
𝐹 ∈ ℱ such that 𝐶𝛼 ⊇ 𝐹 , then

∩
𝛼∈𝜆 𝐶𝛼 ∕= ∅.

(b1) Suppose that (𝐶𝛼)𝛼∈𝜆 is a sequence of closed sets of 𝑋 such that
𝐶𝛼 ⊇ 𝐶𝛽 whenever 𝛼 ≤ 𝛽 < 𝜆. Suppose further that, for every
𝛼 ∈ 𝜆, 𝐶𝛼 is the closure of the union of some set of members of
ℱ . If, for every 𝛼 ∈ 𝜆, there exists 𝐹 ∈ ℱ such that 𝐶𝛼 ⊇ 𝐹 ,
then

∩
𝛼∈𝜆 𝐶𝛼 ∕= ∅.

(b2) Suppose that (𝐶𝛼)𝛼∈𝜆 is a sequence of closed sets of 𝑋 such that
𝐶𝛼 ⊇ 𝐶𝛽 whenever 𝛼 ≤ 𝛽 < 𝜆. Suppose further that, for every
𝛼 ∈ 𝜆, 𝐶𝛼 is the closure of the union of some set of ≤ 𝜆 members
of ℱ . If, for every 𝛼 ∈ 𝜆, there exists 𝐹 ∈ ℱ such that 𝐶𝛼 ⊇ 𝐹 ,
then

∩
𝛼∈𝜆 𝐶𝛼 ∕= ∅.

(c) Every sequence (𝐹𝛼)𝛼∈𝜆 of elements of ℱ has a 𝜆-complete accu-
mulation point (that is, 𝑋 satisfies ℱ-CAP∗

𝜆).
(d) For every sequence (𝐹𝛼)𝛼∈𝜆 of elements of ℱ , there exists some ul-

trafilter 𝐷 uniform over 𝜆 such that (𝐹𝛼)𝛼∈𝜆 has a 𝐷-limit point.
(e) For every 𝜆-indexed open cover (𝑂𝛼)𝛼∈𝜆 of 𝑋, there exists 𝑍 ⊆ 𝜆,

with ∣𝑍∣ < 𝜆, such that, for every 𝐹 ∈ ℱ , 𝐹 ∩∪
𝛼∈𝑍 𝑂𝛼 ∕= ∅.

(f) For every 𝜆-indexed open cover (𝑂𝛼)𝛼∈𝜆 of 𝑋, such that 𝑂𝛼 ⊆ 𝑂𝛽

whenever 𝛼 ≤ 𝛽 < 𝜆, there exists 𝛼 ∈ 𝜆 such that 𝑂𝛼 intersects
each 𝐹 ∈ ℱ .

In each of the above conditions, we can equivalently replace ℱ by ℱ .
If ℱ ⊳ 𝒢 and 𝒢 ⊳ ℱ , then in each of the above conditions, we can

equivalently replace ℱ by 𝒢.

Proof. The implication (a) ⇒ (b) is obvious, since 𝜆 is regular.
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We now prove the implication (b) ⇒ (a). Suppose that (b) holds and
that (𝐶𝛼)𝛼∈𝜆 are closed sets of 𝑋 such that, for every 𝑍 ⊆ 𝜆 with ∣𝑍∣ < 𝜇,
there exists 𝐹 ∈ ℱ such that

∩
𝛼∈𝑍 𝐶𝛼 ⊇ 𝐹 .

For 𝛼 ∈ 𝜆, define 𝐷𝛼 =
∩

𝛽<𝛼 𝐶𝛽 . The 𝐷𝛼’s are closed sets of 𝑋

and satisfy the assumption in (b); hence,
∩

𝛼∈𝜆 𝐷𝛼 ∕= ∅. But
∩

𝛼∈𝜆 𝐶𝛼 =∩
𝛼∈𝜆 𝐷𝛼 ∕= ∅; thus, (a) is proved.

(b) ⇒ (b1) ⇒ (b2) are trivial.
(b2) ⇒ (c). Suppose that (b2) holds and that (𝐹𝛼)𝛼∈𝜆 are elements of

ℱ . For 𝛼 ∈ 𝜆, let 𝐶𝛼 be the closure of
∪

𝛽>𝛼 𝐹𝛽 . The 𝐶𝛼’s satisfy the
assumptions in (b2); hence,

∩
𝛼∈𝜆 𝐶𝛼 ∕= ∅. Let 𝑥 ∈ ∩

𝛼∈𝜆 𝐶𝛼. We want
to show that 𝑥 is a 𝜆-complete accumulation point for (𝐹𝛼)𝛼∈𝜆. Indeed,
suppose by contradiction that ∣{𝛼 ∈ 𝜆 ∣ 𝐹𝛼 ∩ 𝑈 ∕= ∅}∣ < 𝜆 for some
neighborhood 𝑈 of 𝑥 in 𝑋. If 𝛽 = sup{𝛼 ∈ 𝜆 ∣ 𝐹𝛼 ∩ 𝑈 ∕= ∅}, then 𝛽 < 𝜆
since 𝜆 is regular and we are taking the supremum of a set of cardinality
< 𝜆. Thus, 𝐹𝛼 ∩ 𝑈 = ∅ for every 𝛼 > 𝛽; hence, 𝑈 ∩ ∪

𝛼>𝛽 𝐹𝛼 = ∅ and
𝑥 ∕∈ 𝐶𝛽 , a contradiction.

(c) ⇒ (b). Suppose that (c) holds, and that (𝐶𝛼)𝛼∈𝜆 satisfies the
premise of (b). For each 𝛼 ∈ 𝜆, choose 𝐹𝛼 ∈ ℱ with 𝐹𝛼 ⊆ 𝐶𝛼. By (c),
(𝐹𝛼)𝛼∈𝜆 has a 𝜆-complete accumulation point 𝑥. Hence, for every neigh-
borhood 𝑈 of 𝑥, there are arbitrarily large 𝛼 < 𝜆 such that 𝑈 intersects
𝐹𝛼, so there are arbitrarily large 𝛼 < 𝜆 such that 𝑈 intersects 𝐶𝛼; hence,
𝑈 intersects every 𝐶𝛼 since the 𝐶𝛼’s form a decreasing sequence. In con-
clusion, for every 𝛼 ∈ 𝜆, every neighborhood of 𝑥 intersects 𝐶𝛼. That is,
𝑥 ∈ 𝐶𝛼, since 𝐶𝛼 is closed.

(c) ⇔ (d) is immediate from Proposition 4.1.
(e) and (f) are obtained from (a) and (b), respectively, by taking com-

plements.
It follows from various preceding remarks that we get equivalent con-

ditions when we replace ℱ by ℱ or by 𝒢, if ℱ ⊳ 𝒢 and 𝒢 ⊳ ℱ . □

When ℱ = 𝒮, the equivalence of the conditions in Theorem 4.4 (except
perhaps for (b1) and (b2)) is well known and, for the most part, dates
back already to P. S. Alexandrov and P. S. Urysohn’s classical survey [1].
See also [25] and [26] for further comments and references.

Remark 4.5. When 𝜆 = 𝜔, 𝑋 is Tychonoff, and ℱ = 𝒪, in Theo-
rem 4.4 we get conditions equivalent to pseudocompactness, since, as we
mentioned, a result by Glicksberg [10] implies that, for Tychonoff spaces,
𝒪-CAP∗

𝜔 is equivalent to pseudocompactness. Some of these equivalences
are known: For example, condition (e) becomes condition (C5) in [23].
Without assuming 𝑋 to be Tychonoff, a space satisfying the conditions
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in Theorem 4.4 (when ℱ = 𝒪) is called feebly compact by many authors.
See [23] for further references.

Corollary 4.6. Suppose that 𝑋 is a topological space, ℱ is a family of
subsets of 𝑋, and 𝜆 is a regular cardinal. If 𝑋 is ℱ-𝐷-compact for some
ultrafilter 𝐷 uniform over 𝜆, then all the conditions in Theorem 4.4 hold.

Proof. If 𝑋 is ℱ-𝐷-compact for some ultrafilter 𝐷 uniform over 𝜆, then
Theorem 4.4(d) holds; hence, all the other equivalent conditions hold. □

5. Behavior with Respect to Products

We now discuss the behavior of ℱ-𝐷-compactness with respect to prod-
ucts.

Proposition 5.1. Suppose that (𝑋𝑖)𝑖∈𝐼 is a sequence of topological spaces
and let 𝑋 =

∏
𝑖∈𝐼 𝑋𝑖 with the Tychonoff topology. Let 𝐷 be an ultrafilter

over 𝜆.
(a) Suppose that, for each 𝑖 ∈ 𝐼, (𝑌𝑖,𝛼)𝛼∈𝜆 is a sequence of subsets of

𝑋𝑖. Then some point 𝑥 = (𝑥𝑖)𝑖∈𝐼 is a 𝐷-limit point of (
∏

𝑖∈𝐼 𝑌𝑖,𝛼)𝛼∈𝜆 in
𝑋 if and only if, for each 𝑖 ∈ 𝐼, 𝑥𝑖 is a 𝐷-limit point of (𝑌𝑖,𝛼)𝛼∈𝜆 in 𝑋𝑖.

In particular, (
∏

𝑖∈𝐼 𝑌𝑖,𝛼)𝛼∈𝜆 has a 𝐷-limit point in 𝑋 if and only if,
for each 𝑖 ∈ 𝐼, (𝑌𝑖,𝛼)𝛼∈𝜆 has a 𝐷-limit point in 𝑋𝑖.

(b) Suppose that, for each 𝑖 ∈ 𝐼, ℱ𝑖 is a family of subsets of 𝑋𝑖 and
suppose that, for some cardinal 𝜈 > 1, ℱ is the family of all subsets of 𝑋
of the form

∏
𝑖∈𝐼 𝐹𝑖, where, for some 𝐼 ′ ⊆ 𝐼 with ∣𝐼 ′∣ < 𝜈, we have that

𝐹𝑖 belongs to ℱ𝑖 for 𝑖 ∈ 𝐼 ′, and that 𝐹𝑖 = 𝑋𝑖 for 𝑖 ∈ 𝐼 ∖ 𝐼 ′.
Then 𝑋 is ℱ-𝐷-compact if and only if 𝑋𝑖 is ℱ𝑖-𝐷-compact for every

𝑖 ∈ 𝐼.

Theorem 5.2. Suppose that 𝑋 is a topological space and that ℱ is a
family of subsets of 𝑋. For every cardinal 𝛿, let 𝑋𝛿 be the 𝛿th power of
𝑋 endowed with the Tychonoff topology, and let ℱ𝛿 be the family of all
products of 𝛿 members of ℱ . Then, for every cardinal 𝜆, the following are
equivalent.

(1) There exists some ultrafilter 𝐷 uniform over 𝜆 such that 𝑋 is
ℱ-𝐷-compact.

(2) There exists some ultrafilter 𝐷 uniform over 𝜆 such that, for every
cardinal 𝛿, the space 𝑋𝛿 is ℱ𝛿-𝐷-compact.

(3) 𝑋𝛿 satisfies ℱ𝛿-CAP∗
𝜆 for every cardinal 𝛿.

(4) 𝑋𝛿 satisfies ℱ𝛿-CAP∗
𝜆 for 𝛿 = min{22𝜆 , ∣ℱ∣𝜆}.

If 𝜆 is regular, then further conditions equivalent to (3) and (4) are ob-
tained by applying Theorem 4.4 to 𝑋𝛿 and ℱ𝛿.
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Proof. (1) ⇒ (2) follows from Proposition 5.1(b), with 𝐼 = 𝛿 and 𝜈 = 𝛿+.

(2) ⇒ (3) follows from Proposition 4.1.

(3) ⇒ (4) is trivial.

(4) ⇒ (1). We first consider the case 𝛿 = ∣ℱ∣𝜆. Thus, there are 𝛿-
many 𝜆-indexed sequences of elements of ℱ . Let us enumerate them as
(𝐹𝛽,𝛼)𝛼∈𝜆, 𝛽 varying in 𝛿.

In 𝑋𝛿, consider the sequence (
∏

𝛽∈𝛿 𝐹𝛽,𝛼)𝛼∈𝜆 of elements of ℱ𝛿. By (4),
the sequence has a 𝜆-complete accumulation point and, by Proposition
4.1, there exists a ultrafilter 𝐷 uniform over 𝜆 such that (

∏
𝛽∈𝛿 𝐹𝛽,𝛼)𝛼∈𝜆

has a 𝐷-limit point 𝑥 in 𝑋𝛿. Say, 𝑥 = (𝑥𝛽)𝛽∈𝛿. By Proposition 5.1(a),
for every 𝛽 ∈ 𝛿, 𝑥𝛽 is a 𝐷-limit point of (𝐹𝛽,𝛼)𝛼∈𝜆 in 𝑋.

Since every 𝜆-indexed sequence of elements of ℱ has the form (𝐹𝛽,𝛼)𝛼∈𝜆

for some 𝛽 ∈ 𝛿, we have that every 𝜆-indexed sequence of elements of ℱ
has some 𝐷-limit point in 𝑋, that is, 𝑋 is ℱ-𝐷-compact.

Now we consider the case 𝛿 = 22
𝜆

. We shall prove that if 𝛿 = 22
𝜆

and
(1) fails, then (4) fails. If (1) fails, then, for every ultrafilter 𝐷 uniform
over 𝜆, there is a sequence (𝐹𝛼)𝛼∈𝜆 of elements in ℱ which has no 𝐷-limit
point. Since there are 𝛿-many ultrafilters over 𝜆, we can enumerate the
above sequences as (𝐹𝛽,𝛼)𝛼∈𝜆, 𝛽 varying in 𝛿.

Now the sequence (
∏

𝛽∈𝛿 𝐹𝛽,𝛼)𝛼∈𝜆 in 𝑋𝛿 has no 𝜆-complete accumula-
tion point in 𝑋𝛿 since, otherwise, by Proposition 4.1, for some ultrafilter
𝐷 uniform over 𝜆, it would have some 𝐷-limit point in 𝑋𝛿. However,
this contradicts Proposition 5.1(a) since, by assumption, there is a 𝛽 such
that (𝐹𝛽,𝛼)𝛼∈𝜆 has no 𝐷-limit point. □

Remark 5.3. Suppose that ℱ = 𝒪 in Theorem 5.2. Then in (3) and
(4), we cannot replace 𝒪𝛿 by the family 𝒪(𝑋𝛿) of all nonempty open
subsets of 𝑋𝛿. Indeed, if 𝑋 is a Tychonoff space and we take 𝜆 = 𝜔,
then 𝒪(𝑋𝛿)-CAP∗

𝜔 for 𝑋𝛿 is equivalent to the pseudocompactness of 𝑋𝛿.
However, Ginsburg and Saks [9, Example 4.4] constructed a Tychonoff
space 𝑋 such that all powers of 𝑋 are pseudocompact, but there exists
no uniform ultrafilter 𝐷 over 𝜔 such that 𝑋 is 𝐷-pseudocompact. Thus,
(3) ⇒ (1) becomes false, in general, if we choose 𝒪(𝑋𝛿) instead of 𝒪𝛿.

Remark 5.4. When 𝜆 = 𝜔 and ℱ = 𝒮, the equivalence of (1), (3), and
(4) in Theorem 5.2 is due to Ginsburg and Saks [9, Theorem 2.6], here in
equivalent form via Theorem 4.4. See also [22, Theorem 5.6] for a related
result.

More generally, when ℱ = 𝒮, the equivalence of (1) and (3) in Theorem
5.2 is due to [20, Theorem 6.2]. See also [7, Corollary 2.15], [2], and [3,
Theorem 3.4].



PSEUDOCOMPACTNESS, ULTRAFILTER CONVERGENCE 43

Let us mention the special case of Theorem 5.2 dealing with 𝐷-pseudo-
compactness.

Corollary 5.5. Let 𝑋 be a topological space, let 𝜆 be an infinite cardinal,
and, for every cardinal 𝛿, let 𝑋𝛿 be endowed with the Tychonoff topology.
Then the following are equivalent.

(1) There exists some ultrafilter 𝐷 uniform over 𝜆 such that 𝑋 is
𝐷-pseudocompact.

(2) There exists some ultrafilter 𝐷 uniform over 𝜆 such that, for every
cardinal 𝛿, every 𝜆-indexed sequence of members of 𝒪𝛿 has some
𝐷-limit point in 𝑋𝛿.

(3) For every cardinal 𝛿, in 𝑋𝛿 every 𝜆-indexed sequence of members
of 𝒪𝛿 has a 𝜆-complete accumulation point.

(4) Let 𝛿 = min{22𝜆 , 𝜅𝜆}, where 𝜅 is the weight of 𝑋. In 𝑋𝛿 every 𝜆-
indexed sequence of members of 𝒪𝛿 has a 𝜆-complete accumulation
point.

If 𝜆 is regular, then the above conditions are also equivalent to
(5) For every cardinal 𝛿, 𝑋𝛿 is 𝒪𝛿-[𝜆, 𝜆]-compact.
(6) Suppose that 𝛿 is a cardinal, (𝐶𝛼)𝛼∈𝜆 is a sequence of closed sets

of 𝑋𝛿, and 𝐶𝛼 ⊇ 𝐶𝛽, whenever 𝛼 ≤ 𝛽 < 𝜆. If, for every 𝛼 ∈ 𝜆,
there exists 𝐹 ∈ 𝒪𝛿 such that 𝐶𝛼 ⊇ 𝐹 , then

∩
𝛼∈𝜆 𝐶𝛼 ∕= ∅.

In all of the above statements, we can equivalently replace 𝒪𝛿 by the
family of the nonempty open sets of 𝑋𝛿 in the box topology.

Proof. In order to prove the equivalence of conditions (1)–(3), just take
ℱ = 𝒪 in Theorem 5.2.

In order to get the right bound in condition (4), recall that if ℬ is a
base (consisting of nonempty sets) of 𝑋, then, by Remark 2.2, 𝒪⊳ℬ and
ℬ ⊳ 𝒪. Notice also that 𝒪𝛿 ⊳ ℬ𝛿 and ℬ𝛿 ⊳ 𝒪𝛿, as well. Thus, we can
apply Theorem 5.2 with ℬ in place of 𝒪, getting the right bound in which
∣ℬ∣ = 𝜅 is the weight of 𝑋.

If 𝜆 is regular, then conditions (5) and (6) are equivalent to (3), by
Theorem 4.4.

The last statement follows from Remark 2.2, since, for every 𝛿, 𝒪𝛿 is
a base for the box topology on 𝑋𝛿. □

When 𝜆 is regular, we can use Theorem 4.4 in order to get still more
conditions equivalent to (3) and (4) above.

6. Two Cardinals Transfer Results

We are now going to show that there are very nontrivial cardinal trans-
fer properties for the conditions dealt with in Theorem 5.2.
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Let 𝐷 be an ultrafilter over 𝜆 and let 𝑓 : 𝜆 → 𝜇. The ultrafilter 𝑓(𝐷)
over 𝜇 is defined by 𝑌 ∈ 𝑓(𝐷) if and only if 𝑓−1(𝑌 ) ∈ 𝐷.

Fact 6.1. Suppose that 𝑋 is a topological space, ℱ is a family of subsets
of 𝑋, 𝐷 is an ultrafilter over 𝜆, and 𝑓 : 𝜆 → 𝜇.

If 𝑋 is ℱ-𝐷-compact, then 𝑋 is ℱ-𝑓(𝐷)-compact.

If 𝐷 is an ultrafilter over some set 𝑍 and 𝜇 is a cardinal, 𝐷 is said to
be 𝜇-decomposable if and only if there exists a function 𝑓 : 𝑍 → 𝜇 such
that 𝑓(𝐷) is uniform over 𝜇.

The next corollary implies that if every ultrafilter uniform over 𝜆 is
𝜇-decomposable and the conditions in Theorem 5.2 hold for the cardinal
𝜆, then they hold for the cardinal 𝜇, too.

Corollary 6.2. Suppose that 𝜆 is an infinite cardinal and 𝐾 is a set
of infinite cardinals, and suppose that every uniform ultrafilter over 𝜆 is
𝜇-decomposable for some 𝜇 ∈ 𝐾.

If 𝑋 is a topological space, ℱ is a family of subsets of 𝑋 and one
(and hence all) of the conditions in Theorem 5.2 hold for 𝜆, then there is
𝜇 ∈ 𝐾 such that the conditions in Theorem 5.2 hold when 𝜆 is everywhere
replaced by 𝜇.

The same applies with respect to Corollary 5.5.

Proof. Suppose that the conditions in Theorem 5.2 hold for 𝜆. By Theo-
rem 5.2(1), there exists some ultrafilter 𝐷 uniform over 𝜆 such that 𝑋 is
ℱ-𝐷-compact. By assumption, there exist 𝜇 ∈ 𝐾 and 𝑓 : 𝜆 → 𝜇 such that
𝐷′ = 𝑓(𝐷) is uniform over 𝜇. By Fact 6.1, 𝑋 is ℱ-𝐷′-compact; hence,
Theorem 5.2(1) holds for 𝜇. □

There are many results asserting that, for some cardinal 𝜆 and some
set 𝐾, the assumption in Corollary 6.2 holds. In order to state some of
these results in a more concise way, let us denote by 𝜆

∞⇒ 𝐾, for 𝐾 a
set of infinite cardinals, the statement that the assumption in Corollary
6.2 holds. That is, 𝜆 ∞⇒ 𝐾 means that every uniform ultrafilter over 𝜆
is 𝜇-decomposable for some 𝜇 ∈ 𝐾. When 𝐾 = {𝜇}, we simply write
𝜆

∞⇒ 𝜇 in place of 𝜆
∞⇒ 𝐾. The only reason for the superscript ∞ is

to keep the notation consistent with the notation used in former papers.
Notice that many conditions equivalent to 𝜆

∞⇒ 𝐾 can be obtained from
[14, Theorem 8 and Theorem 10], by letting 𝜅 = 2𝜆 (equivalently, letting
𝜅 be arbitrarily large) there.

The following are trivial facts about the relation 𝜆
∞⇒ 𝐾. If 𝜆 ∈ 𝐾,

then 𝜆
∞⇒ 𝐾 holds. In particular, 𝜆

∞⇒ 𝜆 holds. If 𝜆
∞⇒ 𝐾 holds and

𝐾 ′ ⊇ 𝐾, then 𝜆
∞⇒ 𝐾 ′ holds, too.
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In the next theorem, we reformulate, according to the present termi-
nology, some of the results on decomposability of ultrafilters collected in
[16]. In order to state the theorem, we need to introduce some notational
conventions. By 𝜆+𝑛, we denote the 𝑛th successor of 𝜆. By ℶ𝑛(𝜆), we
denote the 𝑛th iteration of the power set of 𝜆; that is, ℶ0(𝜆) = 𝜆 and
ℶ𝑛+1(𝜆) = 2ℶ𝑛(𝜆). As usual, [𝜇, 𝜆] denotes the interval {𝜈 ∣ 𝜇 ≤ 𝜈 ≤ 𝜆}.
Theorem 6.3. The following hold.

(1) If 𝜆 is a regular cardinal, then 𝜆+ ∞⇒ 𝜆.
(2) More generally, if 𝜆 is a regular cardinal, then 𝜆+𝑛 ∞⇒ 𝜆.
(3) If 𝜆 is a singular cardinal, then 𝜆

∞⇒ cf 𝜆.
(4) If 𝜆 is a singular cardinal, then 𝜆+ ∞⇒ {cf 𝜆}∪𝐾 for every set 𝐾

of regular cardinals < 𝜆 such that 𝐾 is cofinal in 𝜆.
(5) 𝜈𝜅

+𝑛 ∞⇒ [𝜅, 𝜈𝜅].
(6) If 𝑚 ≥ 1, then ℶ𝑚(𝜅+𝑛)

∞⇒ [𝜅, 2𝜅].
(7) If 𝜅 is a strong limit cardinal, then ℶ𝑚(𝜅+𝑛)

∞⇒ {cf 𝜅} ∪ [𝜅′, 𝜅)
for every 𝜅′ < 𝜅.

(8) If 𝜆 is smaller than the first measurable cardinal (or no measurable
cardinal exists), then 𝜆

∞⇒ 𝜔.
(9) More generally, for every cardinal 𝜆, we have that 𝜆 ∞⇒ {𝜔}∪𝑀 ,

𝑀 being the set of all measurable cardinals ≤ 𝜆.
(10) If there is no inner model with a measurable cardinal and 𝜆 ≥ 𝜇

are infinite cardinals, then 𝜆
∞⇒ 𝜇.

In particular, Corollary 6.2 applies in each of the above cases.

Remark 6.4. Notice that, by [16, Properties 1.1(iii),(x)], and arguing
as in [16, Consequence 1.2], the relation 𝜆

∞⇒ 𝜇 is equivalent to “every
𝜆-decomposable ultrafilter is 𝜇-decomposable.”

Similarly, 𝜆 ∞⇒ 𝐾 is equivalent to “every 𝜆-decomposable ultrafilter is
𝜇-decomposable, for some 𝜇 ∈ 𝐾.”

Proof of Theorem 6.3. (1–4), (8), and (9) are immediate from classical
results about ultrafilters; see the comments after Problem 6.8 in [16].

(5)–(7) follow from [16, Theorem 4.3 and Properties 1.1(vii)].
(10) is immediate from [5, Theorem 4.5] by using [16, Properties 1.1

and Remarks 1.5(b)]. □
By Remark 6.4, we get the following transitivity properties of the re-

lation 𝜆
∞⇒ 𝐾.

Proposition 6.5. The following hold.
(1) If 𝜆 ∞⇒ 𝜇 and 𝜇

∞⇒ 𝐾, then 𝜆
∞⇒ 𝐾.
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(2) More generally, suppose that 𝜆
∞⇒ 𝐾 and, for every 𝜇 ∈ 𝐾, it

happens that 𝜇
∞⇒ 𝐻𝜇 for some set 𝐻𝜇 depending on 𝜇. Then

𝜆
∞⇒ ∪

𝜇∈𝐾 𝐻𝜇.
(3) Suppose that 𝜆 ∞⇒ 𝐾, 𝜇 ∈ 𝐾, and 𝜇

∞⇒ 𝐾 ′ for some set 𝐾 ′ ⊆ 𝐾

such that 𝜇 ∕∈ 𝐾 ′. Then 𝜆
∞⇒ 𝐾 ∖ {𝜇}.

(4) More generally, suppose that 𝜆
∞⇒ 𝐾, 𝐻 ⊆ 𝐾, and, for every

𝜇 ∈ 𝐻, it happens that 𝜇 ∞⇒ 𝐾 ∖𝐻. Then 𝜆
∞⇒ 𝐾 ∖𝐻.

Proof. (1) and (2) follow from Remark 6.4.
(4) is immediate from (2) by taking 𝐻𝜇 = 𝐾 ∖ 𝐻 if 𝜇 ∈ 𝐻, and by

taking 𝐻𝜇 = {𝜇} if 𝜇 ∈ 𝐾 ∖𝐻, since, trivially, 𝜇 ∞⇒ 𝜇.
(3) is a particular case of (4), since 𝐾 ′ ⊆ 𝐾 ∖ {𝜇}. □

Corollary 6.6. Suppose that 𝜅 < 𝜈 are infinite cardinals and that either
𝐾 = [𝜅, 𝜈] or 𝐾 = [𝜅, 𝜈).

(a) If 𝜆 ∞⇒ 𝐾, then 𝜆
∞⇒ 𝑆, where 𝑆 is the set containing 𝜅, contain-

ing all limit cardinals of 𝐾, and containing all cardinals of 𝐾 which are
successors of singular cardinals.

(b) More generally, if 𝜆 ∞⇒ 𝐾, then 𝜆
∞⇒ 𝐿, where 𝐿 is the set of all

𝜇 ∈ 𝐾 such that either
(1) 𝜇 = 𝜅, or
(2) 𝜇 is singular and cf 𝜇 < 𝜅, or
(3) 𝜇 = 𝜀+ for some singular 𝜀 such that cf 𝜀 < 𝜅, or
(4) 𝜇 is weakly inaccessible.

The above statements can be used to refine Theorem 6.3(5) and (6).

Proof. Clearly, (a) follows from (b).
In order to prove (b), let 𝐻 = 𝐾 ∖ 𝐿; thus, 𝐿 = 𝐾 ∖𝐻.
By Proposition 6.5(4), it is enough to show that if 𝜇 ∈ 𝐻, then 𝜇

∞⇒ 𝐿.
This is trivial if 𝐻 = ∅. Otherwise, suppose by contradiction that there
is some 𝜇 ∈ 𝐻 such that 𝜇

∞⇒ 𝐿 fails. Let 𝜇0 be the least such 𝜇.
We now show that there is some 𝜇′ < 𝜇0 such that 𝜇′ ≥ 𝜅 and 𝜇0

∞⇒ 𝜇′.
This follows from Theorem 6.3(1) if 𝜇0 is the successor of some regular
cardinal, since 𝜇0 > 𝜅 ∕∈ 𝐻 by (1). The existence of 𝜇′ follows from
Theorem 6.3(4) if 𝜇0 = 𝜀+ with 𝜀 singular such that cf 𝜀 ≥ 𝜅. Finally, the
existence of 𝜇′ follows from Theorem 6.3(3) if 𝜇0 is singular and cf 𝜇0 ≥ 𝜅.
By (2)–(4), no other possibility can occur for 𝜇0 since 𝜇0 ∈ 𝐻; that is,
𝜇0 ∕∈ 𝐿.

Since 𝜅 ≤ 𝜇′ < 𝜇0, then 𝜇′ ∞⇒ 𝐿. This is trivial if 𝜇′ ∈ 𝐿 and follows
from the minimality of 𝜇0 if 𝜇′ ∕∈ 𝐿, which means 𝜇′ ∈ 𝐻 = 𝐾 ∖ 𝐿.

From 𝜇0
∞⇒ 𝜇′ and 𝜇′ ∞⇒ 𝐿, we infer 𝜇0

∞⇒ 𝐿 by applying Proposition
6.5(1). We have reached the desired contradiction. □
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Some more results about the relation 𝜆
∞⇒ 𝐾 follow from results in [16].

See [18] and, in particular, the comments after [16, Problem 6.8] for some
open problems concerning transfer of decomposability for ultrafilters.

When ℱ = 𝒮, many versions of Corollary 6.2 are known and are usually
stated by means of conditions involving [𝜆, 𝜆]-compactness (for regular
cardinals, the conditions are equivalent by Theorem 4.4). In [2] and [3,
Corollary 1.8(ii)]), Caicedo proved, among other things, that every pro-
ductively [𝜆+, 𝜆+]-compact family of topological spaces is productively
[𝜆, 𝜆]-compact. More generally, among other things, we proved in [12,
Theorem 16] that if 𝜆 is regular and a product of topological spaces is
[𝜆+, 𝜆+]-compact, then all but at most 𝜆 factors are [𝜆, 𝜆]-compact. Re-
sults related to Corollary 6.2 appear in [2], [3], [11], and [16, Corollary
4.6]. Generally, they deal with (𝜆, 𝜇)-regularity of ultrafilters, which is
a notion tightly connected to decomposability since, for 𝜆 a regular car-
dinal, an ultrafilter is 𝜆-decomposable if and only if it is (𝜆, 𝜆)-regular.
Stronger related results appear in [13] and [14], dealing also with equiv-
alent notions from model theory and set theory; in particular, see [14,
Theorem 8]. Even in the case when ℱ = 𝒮, some consequences of Theo-
rem 6.3 and corollaries 6.6 and 6.2 appear to be new, particularly in the
case of singular cardinals.

Already the special case 𝜇 = 𝜔 for pseudocompactness of Corollary 6.2
appears to have some interest.

Corollary 6.7. Suppose that 𝜆 is an infinite cardinal and suppose that
every uniform ultrafilter over 𝜆 is 𝜔-decomposable (for example, this hap-
pens when either cf 𝜆 = 𝜔 or when 𝜆 is less than the first measurable
cardinal or if there exists no inner model with a measurable cardinal).

Suppose that 𝑋 is a topological space satisfying one of the conditions in
Corollary 5.5. Then 𝑋 is 𝐷-pseudocompact for some ultrafilter 𝐷 uniform
over 𝜔. In particular, if 𝑋 is Tychonoff, then 𝑋 is pseudocompact, and,
furthermore, all powers of 𝑋 are pseudocompact.

Proof. Immediate from Remark 4.5. □

Garcia-Ferreira [8] provides results related to Corollary 6.7. In par-
ticular, he analyzes the relationship between 𝐷-pseudocompactness and
𝐷′-pseudocompactness for various ultrafilters 𝐷 and 𝐷′. Indeed, by using
results from [8], we can show that 𝜆

∞⇒ 𝐾 is actually equivalent to the
statement that, for every topological space 𝑋, if Corollary 5.5 holds for
𝜆, then it holds for some 𝜇 ∈ 𝐾.

Corollary 6.8. Suppose that 𝜆 is an infinite cardinal and 𝐾 is a set of
infinite cardinals ≤ 𝜆. Then the following are equivalent.
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(a) 𝜆
∞⇒ 𝐾 holds; that is, every uniform ultrafilter over 𝜆 is 𝜇-

decomposable for some 𝜇 ∈ 𝐾.
(b) For every topological space 𝑋, if one (and hence, all) of the con-

ditions in Corollary 5.5 hold for 𝜆, then there is 𝜇 ∈ 𝐾 such that
the conditions in Corollary 5.5 hold when 𝜆 is everywhere replaced
by 𝜇.

(c) Same as (b), restricted to Tychonoff spaces.

Proof. (a) ⇒ (b) is from Corollary 6.2.

(b) ⇒ (c) is trivial.

(c) ⇒ (a). Garcia-Ferreira [8, Lemma 1.4] constructs, for every ul-
trafilter 𝐷 uniform over 𝜆, a Tychonoff space 𝑃𝑅𝐾(𝐷) such that, for
every ultrafilter 𝐸, the space 𝑃𝑅𝐾(𝐷) is 𝐸-pseudocompact if and only if
𝐸 = 𝑓(𝐷) for some function 𝑓 (this is usually expressed by saying that
𝐸 is ≤ 𝐷 in the Rudin-Keisler order).

Let 𝐷 be an ultrafilter uniform over 𝜆. By the above, 𝑋 = 𝑃𝑅𝐾(𝐷) is
𝐷-pseudocompact; hence, 𝑋 satisfies condition (1) in Corollary 5.5. By
(c), condition (1) in Corollary 5.5 holds for some 𝜇 ∈ 𝐾; hence, 𝑋 is
𝐸-pseudocompact for some ultrafilter 𝐸 uniform over some 𝜇 ∈ 𝐾. By
the above-mentioned result in [8], 𝐸 = 𝑓(𝐷) for some function 𝑓 : 𝜆 → 𝜇;
that is, 𝜆 ∞⇒ 𝐾 holds. □

7. [𝜇, 𝜆]-Compactness Relative to a Family ℱ
We can generalize the notion of [𝜇, 𝜆]-compactness in another direction.

Definition 7.1. If 𝑋 is a topological space and 𝒢 is a family of subsets of
𝑋, we say that 𝑋 is [𝜇, 𝜆]-compact relative to 𝒢 if and only if the following
holds.

For every sequence (𝐺𝛼)𝛼∈𝜆 of elements of 𝒢, if, for every 𝑍 ⊆ 𝜆 with
∣𝑍∣ < 𝜇,

∩
𝛼∈𝑍 𝐺𝛼 ∕= ∅, then

∩
𝛼∈𝜆 𝐺𝛼 ∕= ∅.

The usual notion of [𝜇, 𝜆]-compactness can be obtained from the above
definition when 𝒢 is the family of all closed sets of 𝑋.

If 𝒢 is the family 𝒵 of all zero sets of some space 𝑋, then [𝜔, 𝜆]-
compactness relative to 𝒵 is called 𝜆-quasicompactness in [6]. The prop-
erty of being [𝜇, 𝜆]-compact relative to 𝒵 for every cardinal 𝜆 is called
𝜇-quasi-Lindelöfness in [6].

If 𝑋 is Tychonoff, then 𝑋 is [𝜔, 𝜆]-compact relative to 𝒵 if and only
if 𝑋 is 𝜆-pseudocompact. See, e. g., [6], [8], [19], and [23] for results
about 𝜆-pseudocompactness, equivalent formulations, and further refer-
ences. Notice that [8, Example 1.9] shows that it is possible, under some
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set-theoretical assumptions, to construct a space which is not 𝜔1-pseudo-
compact, but which is 𝐷-pseudocompact for some ultrafilter 𝐷 uniform
over 𝜔1.

Proposition 7.2. Suppose that 𝑋 is a topological space and 𝒢 is a family
of subsets of 𝑋. Then the following are equivalent.

(a) 𝑋 is [𝜇, 𝜆]-compact relative to 𝒢.
(b) 𝑋 is [𝜅, 𝜅]-compact relative to 𝒢 for every 𝜅 with 𝜇 ≤ 𝜅 ≤ 𝜆.

Proof. Similar to the proof of the classical result for [𝜇, 𝜆]-compactness,
see, e. g., [12, Proposition 8]. □

There is some connection between the compactness properties intro-
duced in Definition 4.2 and Definition 7.1. In order to deal with the
relationship between the two properties, it is convenient to introduce a
common generalization.

Definition 7.3. If 𝑋 is a topological space and ℱ and 𝒢 are families of
subsets of 𝑋, we say that 𝑋 is ℱ-[𝜇, 𝜆]-compact relative to 𝒢 if and only
if the following holds.

For every sequence (𝐺𝛼)𝛼∈𝜆 of elements of 𝒢, if, for every 𝑍 ⊆ 𝜆 with
∣𝑍∣ < 𝜇, there exists 𝐹 ∈ ℱ such that

∩
𝛼∈𝑍 𝐺𝛼 ⊇ 𝐹 , then

∩
𝛼∈𝜆 𝐺𝛼 ∕= ∅.

Thus, ℱ-[𝜇, 𝜆]-compactness is ℱ-[𝜇, 𝜆]-compactness relative to 𝒢 when
𝒢 is the family of all closed subsets of 𝑋.

On the other hand, [𝜇, 𝜆]-compactness relative to 𝒢 is ℱ-[𝜇, 𝜆]-compact-
ness relative to 𝒢 when ℱ = 𝒮.

Frolík [6] introduced a notion equivalent to 𝒵-[𝜔, 𝜆]-compactness rel-
ative to 𝒪 under the name almost 𝜆-quasicompactness. Additionally, he
called the property of being 𝒵-[𝜇, 𝜆]-compact relative to 𝒪 for every car-
dinal 𝜆 almost 𝜇-quasi-Lindelöfness.

Proposition 7.4. Suppose that 𝜆 and 𝜇 are infinite cardinals, and let
𝜅 = sup{𝜆𝜇′ ∣ 𝜇′ < 𝜇}. Suppose that 𝑋 is a topological space and ℱ is
a family of subsets of 𝑋. Let ℱ∗ (ℱ∗

≤𝜅, respectively) be the family of all
subsets of 𝑋 which are the closure of the union of some family of (≤ 𝜅,
respectively) sets in ℱ . Then

(1) the following conditions are equivalent:
(a) 𝑋 is ℱ-[𝜇, 𝜆]-compact.
(b) 𝑋 is ℱ-[𝜇, 𝜆]-compact relative to ℱ∗.
(c) 𝑋 is ℱ-[𝜇, 𝜆]-compact relative to ℱ∗

≤𝜅.
(2) Suppose, in addition, that all members of ℱ are nonempty. If 𝑋

is [𝜇, 𝜆]-compact relative to ℱ∗
≤𝜅, then 𝑋 is ℱ-[𝜇, 𝜆]-compact.

Proof. In (1), the implications (a) ⇒ (b) ⇒ (c) are trivial.



50 P. LIPPARINI

In order to show that (c) ⇒ (a) holds, let (𝐶𝛼)𝛼∈𝜆 be a sequence of
closed sets of 𝑋 such that, for every 𝑍 ⊆ 𝜆 with ∣𝑍∣ < 𝜇, there exists
𝐹𝑍 ∈ ℱ such that

∩
𝛼∈𝑍 𝐶𝛼 ⊇ 𝐹𝑍 .

For 𝛼 ∈ 𝜆, let 𝐶 ′
𝛼 be the closure of

∪
𝛼∈𝑍 𝐹𝑍 . Clearly, for every 𝛼 ∈ 𝜆,

we have 𝐶𝛼 ⊇ 𝐶 ′
𝛼. Since there are 𝜅 subsets of 𝜆 of cardinality < 𝜇, that

is, we can choose 𝑍 in 𝜅-many ways, we have that each 𝐶 ′
𝛼 is the closure

of the union of ≤ 𝜅 elements from ℱ . Thus, we can apply (c) in order to
get

∩
𝛼∈𝜆 𝐶

′
𝛼 ∕= ∅; hence,

∩
𝛼∈𝜆 𝐶𝛼 ⊇ ∩

𝛼∈𝜆 𝐶
′
𝛼 ∕= ∅.

(2) is immediate from (1)(c) ⇒ (a), since if ℱ is a family of nonempty
subsets of 𝑋, then [𝜇, 𝜆]-compactness relative to some family 𝒢 implies
ℱ-[𝜇, 𝜆]-compactness relative to 𝒢. □

Remark 7.5. The value 𝜅 = sup{𝜆𝜇′ ∣ 𝜇′ < 𝜇} in Proposition 7.4 can be
improved to 𝜅 = the cofinality of the partial order 𝑆𝜇(𝜆) (see [16]).

Acknowledgment. We wish to express our gratitude to X. Caicedo and
S. Garcia-Ferreira for stimulating discussions and correspondence.

References

[1] P. S. Alexandrov and P. S. Urysohn, Mémoire sur les espaces topologiques
compacts, Verh. Konink. Akad. Wetensch. Atd. Natuur. Sekt. 1 14 (1929), no.
1, 1–96.

[2] Xavier Caicedo, On productive [𝜅, 𝜆]-compactness, or the Abstract Compact-
ness Theorem revisited. Unpublished manuscript. 1995.

[3] , The abstract compactness theorem revisited, in Logic and Foundations
of Mathematics (Florence, 1995). Ed. Andrea Cantini, Ettore Casari, and
Pierluigi Minari. Synthese Library, 280. Dordrecht: Kluwer Acad. Publ., 1999.
131–141.

[4] W. Wistar Comfort and Stylianos A. Negrepontis, Chain Conditions in Topol-
ogy. Cambridge Tracts in Mathematics, 79. Cambridge-New York: Cambridge
University Press, 1982.

[5] Hans-Dieter Donder, Regularity of ultrafilters and the core model, Israel J.
Math. 63 (1988), no. 3, 289–322.

[6] Zdeněk Frolík, Generalisations of compact and Lindelöf spaces (Russian),
Czechoslovak Math. J. 9 (84) (1959), 172–217.

[7] Salvador García-Ferreira, Some remarks on initial 𝛼-compactness, < 𝛼-
boundedness and 𝑝-compactness, Topology Proc. 15 (1990), 11–28.

[8] , On two generalizations of pseudocompactness, Topology Proc. 24
(1999), Summer, 149–172 (2001).

[9] John Ginsburg and Victor Saks, Some applications of ultrafilters in topology,
Pacific J. Math. 57 (1975), no. 2, 403–418.

[10] Irving Glicksberg, Stone-Čech compactifications of products, Trans. Amer.
Math. Soc. 90 (1959), 369–382.



PSEUDOCOMPACTNESS, ULTRAFILTER CONVERGENCE 51

[11] Paolo Lipparini, Productive [𝜆, 𝜇]-compactness and regular ultrafilters, Topol-
ogy Proc. 21 (1996), 161–171.

[12] , Compact factors in finally compact products of topological spaces,
Topology Appl. 153 (2006), no. 9, 1365–1382.

[13] , Combinatorial and model-theoretical principles related to regular-
ity of ultrafilters and compactness of topological spaces. III. Available at
arXiv:0804.3737 [math.GN].

[14] , Combinatorial and model-theoretical principles related to regular-
ity of ultrafilters and compactness of topological spaces. VI. Available at
arXiv:0904.3104 [math.LO].

[15] , More generalizations of pseudocompactness. Available at
arXiv:1003.6058 [math. GN].

[16] , More on regular and decomposable ultrafilters in ZFC, MLQ Math.
Log. Q. 56 (2010), no. 4, 340–374.

[17] , Every weakly initially 𝔪-compact topological space is 𝔪pcap. To ap-
pear in Czechoslovak Mathematical Journal. (Available at arXiv: 1005.0307
[math.GN].)

[18] , Transfer of ultrafilter decomposability. In preparation.
[19] Teklehaimanot Retta, Some cardinal generalizations of pseudocompactness,

Czechoslovak Math. J. 43(118) (1993), no. 3, 385–390.
[20] Victor Saks, Ultrafilter invariants in topological spaces, Trans. Amer. Math.

Soc. 241 (1978), 79–97.
[21] Victor Saks and R. M. Stephenson, Jr., Products of 𝔐-compact spaces, Proc.

Amer. Math. Soc. 28 (1971), 279–288
[22] C. T. Scarborough and A. H. Stone, Products of nearly compact spaces,

Trans. Amer. Math. Soc. 124 (1966), 131–147.
[23] R. M. Stephenson, Jr., Pseudocompact spaces, in Encyclopedia of General

Topology. Ed. Klaas Pieter Hart, Jun-iti Nagata, and Jerry E. Vaughan. Am-
sterdam: Elsevier, 2004. 177–181.

[24] R. M. Stephenson, Jr., and J. E. Vaughan, Products of initially 𝔪-compact
spaces, Trans. Amer. Math. Soc. 196 (1974), 177–189.

[25] J. E. Vaughan, Some recent results in the theory of [𝑎, 𝑏]-compactness in
TOPO 72—General Topology and its Applications. Ed. Richard A. Alò,
Robert W. Heath, and Jun-iti Nagata. Lecture Notes in Mathematics, Vol.
378. Berlin: Springer, 1974. 534–550.

[26] , Some properties related to [𝔞, 𝔟]-compactness, Fund. Math. 87
(1975), no. 3, 251–260.

Partimento di Matematica; Viale della Ricerca Scientifica; II Univer-
sità di Roma (Tor Vergata); I-00133 Rome, Italy

URL: http://www.mat.uniroma2.it/~lipparin




