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INDUCED MAPPINGS BETWEEN
THE HYPERSPACES (C(X) OF CONTINUA
AND UNIVERSAL MAPPINGS

ANTONIO PELAEZ

ABsTrRACT. In 1980, Professor Sam B. Nadler, Jr., proved that
if f:Y — X is a surjective map from a continuum Y onto a
metrizable chainable continuum X, then the induced map C(f) :
C(Y) — C(X) is universal. Later, in 2002, Jorge Bustamante, Raul
Escobedo, and Fernando Macias-Romero, proved that if f: Y — X
is a surjective map between metrizable continua, where X has zero
surjective semispan, then the induced map C(f) : C(Y) — C(X) is
universal. In this paper, we extend the first result to the non-metric
case and the second one to the rim-metrizable case.

1. PRELIMINARIES

Given the relations U and V on a set X, the inverse relation of U is
the set
U= {(yv‘T) : (LU,y) € U}a
and the composition of U and V is the set

U+V ={(z,z) : there exists a y € X such that
(z,y) € U and (y,2) € V}.

We also write 1V =V and, for a positive integer n, (n + 1)V =nV + V.

The diagonal of X is the set A = {(z,z) : « € X}. An entourage of
the diagonal is a set V' C X x X containing A such that V = —V; the
family of all entourages of the diagonal is denoted by Dx. If we have
x,y € X and V € Dx such that (z,y) € V, then we say that the distance

2010 Mathematics Subject Classification. Primary 54H25; Secondary 54B20,
54E15.
Key words and phrases. Hausdorff continua, induced mappings, surjective semi-
span, universal mappings.
(©2011 Topology Proceedings.
53



54 A. PELAEZ

between x and y is less than V and we write | x —y | < V; otherwise, we
write | x —y | > V. If for every pair of points z,y of a set A C X and
V € Dx, we have that | x —y | <V, ie., if Ax ACV, we say that the
diameter of A is less than V and we write 6(A) < V; otherwise, we write
5(A) > V.

Given a point x € X and V' € Dx, the ball with center x and radius V
(briefly, the V-ball about x) is the set B(z,V)={ye X : |z—y| <V}
For aset A C X and a V € Dx, the V-ball about A is the set B(A,V) =
U{B(z,V): 2z € A}.

A uniformity on a set X is a subfamily U of Dx such that

Ul. If Veld and VC W € Dx, then W € U.

U2. TV, W el, then VNW el

U3. For every V € U, there exists W € U such that 2W C V.

Ud. NU = A.

Theorem 1.1 ([2, Theorem 8.1.1]). For every uniformity U on a set X,
the family
O ={G C X : for every x € G there exists a V € U
such that B(z,V) C G}

is a topology on X and the topological space (X, 0) is a Ti-space.

The topology O is called the topology induced by the uniformity U.
If X is a topological space and its topology is induced by a uniformity
U, we say that U is a uniformity on the space X.

The following lemma is a consequence of |2, Corollary 8.1.3].

Lemma 1.2. Let U be a uniformity on the space X. The net {xq}aca
X converges to x € X if and only if, for every U € U, there exists ag € A
such that | xo —x | < U for every o > ay.

Lemma 1.3. Let U be a uniformity on the space X. Suppose that the
nets {Totaech, {Yataca n X converge to x and y, respectively. If, for
every U € U, there exists ag € A such that | o — yo | < U for every
a > aq, then x = y.

Proof. Suppose that © # y. Let W,U € U such that 3W C U and
|z—y| >U. Let ap € Asuch that |zq —x | <W,|ya—y| <W and
| o — Yo | < W for every a > ag. Then | 2 —y | < 3W C U, which is a
contradiction. O

The space (X, O), constructed in Theorem 1.1, is a Tychonoff space.

Theorem 1.4 (|2, Theorem 8.1.20]). The topology of a space X can be
induced by a uniformity on the set X if and only if X is a Tychonoff
space.
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Theorem 1.5 ([2, Theorem 8.3.13]). For every Hausdor(f compact topo-
logical space X, there exists exactly one uniformity U on the set X that
induces the original topology of X. All entourages of the diagonal A C
X x X which are open in the Cartesian product X x X form a base for
the uniformity U.

Definition 1.6. A uniform space (X,U) is compact if X with the topol-
ogy induced by U is a compact space.

A mapping f: X — Y between the uniform spaces (X,U) and (Y, V)
is uniformly continuous with respect to the uniformities U and V if for
every V € V there exists U € U such that | f(z) — f(y) | < V whenever
| £ —y | < U. In this case, we write f : (X,U) — (Y,V). It follows
from the definition and Theorem 1.1 that f is a continuous mapping of
the space X with the topology induced by U to the space Y with the
topology induced by V.

Theorem 1.7 ([9, Corollary 1.8]). Let U and V be uniformities on the
Hausdorff compact spaces X and Y, respectively. A mapping f: X — Y
is continuous if and only if f is uniformly continuous with respect to the
uniformities U and V.

A hyperspace of a topological space X is a family of subsets of X.
The hyperspace 2% is the family of all non-empty closed subsets of X.
The hyperspace Z(X) is the subfamily of 2% consisting of all non-empty
compact closed subsets of X. The hyperspace C,(X) is the subfamily of
Z(X) consisting of all non-empty compact closed subsets of X with at
most n components. We write C(X) = C1(X).

The Vietoris topology T on 2% is the topology generated by the family
of all sets of the form

(Uy,...,U,)y={Ce€2X:CCUU---UU, and CNU; # )
for each 1 <14 <n},

where Uy, ..., U, are open subsets of X (see [2, Problem 2.7.20(a)]). The
hyperspaces Z(X) and C,,(X) are considered as subspaces of 2% with the
Vietoris topology.

The weight of a topological space X is denoted by w(X).

From [2, Problem 3.12.27(a) and (b)], we have the following result.

Theorem 1.8. If X is a Hausdorff compact space, then the hyperspace
2X s a Hausdorff compact space and w(2X) = w(X).

Definition 1.9. A continuum is a nonempty Hausdorff compact con-
nected topological space. A subcontinuum is a continuum contained in a
space.
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By [3, Corollary 14.10], we obtain the following theorem.

Theorem 1.10. If X is a metrizable continuum, then the hyperspaces
2% and C(X) are metrizable continua.

Given a continuous function f : X — Y between Hausdorff topological
spaces, the induced mapping between the hyperspaces Z(X) and Z(Y) is
the mapping Z(f) : Z(X) — Z(Y) defined by Z(f)(C) = f[C]. The
restriction Z(f) |c,(x) is denoted by C,(f). If X is compact, then 2% =
Z(X), and we write 2/ = Z(f).

Proposition 1.11 (|2, Problem 3.12.27(e)]). If f : X — Y is a continu-
ous function and Z(X) and Z(Y') have the Vietoris topology, then Z(f)
18 CONtinuous.

Let U be a uniformity on a Tychonoff space X. Given U € U, let
2V ={(C,D) e 2¥ x 2% : C C B(D,U) and D C B(C,U)}.

The family {2U :Uel } is a base for a uniformity 2 on the hyper-
space 2% (see [2, Problem 8.5.16(a)]).

Given a Tychonoff space X, we have two topologies on 2X: the Vietoris
topology T and the induced topology 2€ by the uniformity 2“, where U is
a uniformity on the space X. Those two topologies coincide on Z(X) (see
[2, Problem 8.5.16(c)]). If (X,U) is compact, then (2%,24) is compact
(see [2, Problem 8.5.16(f)]), and 7= 2°.

Theorem 1.12. Let U and V be uniformities on the Tychonoff spaces X
and Y, respectively. If f : X — Y is uniformly continuous with respect
toU and V, then Z(f) is uniformly continuous with respect to QMZ(X) =

{EZX)x2(X))n2Y .U eU} and 2V 5.

Proof. Let V € V; then there exists U € U such that | f(x) — f(y) | <V
whenever | 2 —y | < U. Let C,D € Z(X) such that | C — D | < 2Y.
Since C C B(D,U) and D C B(C,U), we have that f[C] C B(f[D],V)
and f[D] C B(f[C],V). Then | Z(f)(C)—Z(f)(D) | < 2V, which means
that Z(f) is uniformly continuous with respect to QMZ(X) and QVZ(Y). a

Definition 1.13. A mapping f : (X,U) — (Y,V) is a U-map, where
U € U, provided that 6(f~!(y)) < U for each y € Y.

Theorem 1.14. Let U and V be uniformities on the Tychonoff spaces
X and Y, respectively. If f : (X,U) — (Y, V) is a U-map, then Z(f) :
(Z(X),QZ”Z(X)) — (Z(Y),QVZ(Y)) is a 2V -map.

Proof. By Theorem 1.12, the mapping Z(f) is uniformly continuous. Let
C,D € (Z(f))"Y(E), where E € Z(Y). Let ¢ € C. Since f[C] = f[D] =
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E, there exists d € D such that f(c) = f(d), then | ¢ —d | < U which
means that C C B(D,U). Similarly, D C B(C,U). So, | C — D | <
2Y; therefore, § ((Z(f))"*(E)) < 2Y, which means that Z(f) is a 2U-
map. ([l

An inverse system is a family S = {Xa,ff,A}, where (A, <) is a
directed set, X, is a topological space for every o € A, and for any
a, B € A satisfying o < 83, f(f : Xg =+ X, is a continuous mapping such
that

i) f& is the identity map on X, for every a € A, and
i) f1=f%0 f3 for any o, 8,7 € A satisfying a < 8 <.

The maps f2 are called bonding maps and the spaces X, are called coor-
dinate spaces.

Given a point & in a product [[{ X, : @ € A}, we write & = (Za)aea-

Let S = {Xa, 12, A} be an inverse system. The subspace of the prod-
uct [[{Xa : @ € A} consisting of all points 4 such that z, = f2(zg) for
any a, 3 € A satisfying o < f is called the inverse limit of the inverse
system S, which is denoted by h;nS or by X,. We define the projection
map f2: Xy — X, by fAN%) = z4.

A morphism from an inverse system S = {Xa, 12, A} into the inverse
system S’ = {Ya,gg, A} is a family h = {h, : a € A} of continuous map-
pings hy : X, — Y, such that gohg = hoo f2 for any o, 8 € A satisfying
a < 3. Every morphism § between the inverse systems S and S’ induces
a continuous mapping hp : Xy — YA between their inverse limits such
that g2 o hy = ha o f2 (see [2, p. 101]).

The following is a well-known result (see [8, Theorem 2.5]).

Theorem 1.15. Let S = {X,, f? A} be an inverse system of Haus-
dorff compact spaces. Then the families 25 = {2Xu,2fc€,A} and C(S) =
{C(Xa),C(ff),A} are inverse systems, and the continuous mapping h :
pLLgN im2S defined by h(E) = (f2[E))

e (m8)] = mcts

A subset ¥ of a directed set A is cofinal provided that, for every o € A,
there exists 8 € X such that a < . A subset X of a directed set A is
a chain provided that, for any «, 8 € X, we have that a« < S or 8 < a.
Let 7 > Ny be a cardinal number. A directed set A is called T-complete
provided that, for each chain ¥ C A with | ¥ | < 7, there exists supX € A.

Let S = {X,, f?, A} be an inverse system and let > C A be a chain with
v =supX € A. By [2, Exercise 2.5.F|, the morphism {f : « € X} induces

aen S Q homeomorphism and
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a continuous mapping h-, : X, — im{X,, f?, ¥} such that fJ = fZ o h,
—

for every a € 3. Note that h, is defined by h,(z,) = (fJ(74)) ex-

Definition 1.16. An inverse system S = {X,, f2 A} is 7-continuous

provided that, for each chain ¥ C A with | ¥ | < 7 and v = supX, the

induced map h : X, — lim{X,, f2,}, by the morphism {f] : « € X},
—

is a homeomorphism.
From the proof of [8, Theorem 3.4], we obtain the following theorem.

Theorem 1.17. If S = {X,, f2, A} is a T-continuous inverse system
of Hausdorff compact spaces, then the inverse systems 2° and C(S) are
T-continuous.

Definition 1.18. An inverse system S = {X,,, 2, A} is 7-complete if S
is T-continuous and A is T-complete.

From Theorem 1.17 and the definition of a 7-complete inverse system,
we obtain the following result.

Theorem 1.19. If S = {X,, f5,A} is a T-complete inverse system of
Hausdorff compact spaces, then the inverse systems 2° and C(S) are 7-
complete.

Definition 1.20. An inverse system S = {X,, f5, A} is an inverse 7-
system if S is 7-complete and w(X,) < 7 for each oo € A. If 7 = Ry, then
inverse T-system is called an inverse o-system.

From Theorem 1.8 and Theorem 1.19, we have the following.

Theorem 1.21. If S = {X,, f, A} is an inverse T-system of Haus-
dorff compact spaces, then the inverse systems 2° and C(S) are inverse
T-8ystems.

Theorem 1.22 (|6, Theorem 1.5]). Let X be a Hausdorff compact space
with w(X) > Ny. Then for each cardinal number 7 < w(X), there exists an
inverse T-system {Xq, f2, A} of Hausdorff compact spaces with surjective
bonding maps such that X is homeomorphic to Xy .

Remark 1.23. In the previous theorem, the directed set A is constructed
using the weight of X, and this set can be used in the inverse 7-system
satisfying Theorem 1.22 for another space Y with the same weight.

Definition 1.24. A topological space X has the fized point property
provided that, for every continuous mapping f : X — X, there exists
x € X such that f(x) = x.
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Definition 1.25. Let X and Y be two topological spaces. A continuous
mapping f : X — Y is universal if, for every continuous mapping ¢ :
X — Y, there exists € X such that f(z) = g(z).

It is not difficult to see that if f : X — Y is universal, then f is
surjective and Y has the fixed point property.

Theorem 1.26 ([6, Theorem 2.1]). Let S = {X,, [} A} and S =
{Ya,gg,A} be two inverse T-systems of Hausdorff compact spaces with
onto bonding maps. If h = {hy:a €A} : S — S’ is a morphism of
universal mappings, then the induced map hp : Xpx — YA is universal.

Definition 1.27. A continuous mapping f : X — Y between topological
spaces is monotone provided that all fibers f~!(y) are connected.

From the proof of [5, Theorem 3.7(1) and (3)], we have the following.

Theorem 1.28. Let S = {X,, %, A} be a T-complete inverse system of
Hausdorff compact spaces with onto bonding maps. Then there exists a
T-complete inverse system M(S) = {My,m2, A} of Hausdorff compact
spaces with monotone surjective bonding maps such that the space {iLnS

is homeomorphic to the space imM (S).
—

Definition 1.29. A topological space X is rim-metrizable if it has a basis
B such that every U € B has metrizable boundary.

In the previous theorem, each space M, is obtained by the monotone-
light factorization of f2. So, if X is rim-metrizable, by [12, Theorem
1.2 and Theorem 3.2], we have that w(X,) = w(M,). This implies the
following result.

Theorem 1.30. Let S = {X,, f?, A} be an inverse T-system of Haus-
dorff compact spaces with onto bonding maps. If X is rim-metrizable,
then there exists an inverse T-system M(S) = {M,,m2, A} of Hausdorff
compact spaces with monotone surjective bonding maps such that the space
XA is homeomorphic to the space My .

From [11, Theorem 15|, we have the following result.

Theorem 1.31. Let {X,, f2 A} and {Yy, g%, A} be two inverse T-systems
of Hausdorff compact spaces with onto bonding maps. If h : XA — Ya
is a continuous mapping, then there exist a cofinal subset ¥ of A and
a morphism b = {hy:a €%} : {X,, f2, 5} = {Ya,¢5, 3} such that
hs =¢ ohog ', where g: X5 — X5, and ¢’ : Yo — Ys. are the homeo-
morphisms defined by g((Ta)acn) = (Ta)acs and ¢'((Ya)acr) = (Ya)acs
(see [2, Corollary 2.5.11]).
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2. UNIVERSAL MAPPINGS THEOREMS

In this section, we extend the results in [7, Theorem 2.11] and [1] to
the non-metric case. In particular, we give an easier proof of [6, Theorem
4.2] in Theorem 2.3.

Theorem 2.1. Let (X,U) and (Y, V) be two compact uniform spaces and
let f: X =Y be a continuous mapping. If, for every V€V, there exists
a V-map fy fromY into a space Zy such that fy o f is universal, then
f is universal.

Proof. Let g : X — Y be a continuous mapping and let V € V. Since
fvof: X — Zy is universal, there exists y € X such that fy (f(zv)) =
fv(g(zv)). Then | f(zv) — g(zy) | < V. By the compactness of X, we
can assume that the net {zy }y ey converges to a point € X. Since the
net {f(xy)}vey converges to f(x) and the net {g(xv)}vey converges to
g(x), by Lemma 1.3, we have that f(x) = g(z). Then f is universal. O

Definition 2.2. Let U/ be a uniformity on a continuum X. The contin-
uum X is chainable provided that for every U € U there exists a surjective
U-map fy : X — [0,1] (see [9, Theorem 2.10]).

Theorem 2.3. LetU be a uniformity on a chainable continuum X and let
V be a uniformity on a continuum Y. For any continuous onto mapping
f:Y = X, the induced mapping C(f) : C(Y) = C(X) is universal.

Proof. Let U € U and let fyy : X — [0,1] be a surjective U-map. By
[7, Theorem 2.11], the induced mapping C(fy o f) : C(Y) — C([0,1])
is universal. It is not difficult to see that C(fy o f) = C(fu) o C(f).
By Theorem 1.14, C(fy) is a 2Y-map. Then, by Theorem 2.1, C(f) is
universal. ]

We couldn’t translate the proof of [1, Theorem 4.1] using only unifor-
mities, so we give a generalization using inverse limits in Theorem 2.7.
Let 7 denote the projection map from X X Y onto X.

Definition 2.4. Let U be a uniformity on a continuum X. The surjective
semispan of X is the set

o5(X) ={V € U : there exists a continuum Zy C X x X
such that m1[Zy] = X and Zy NV = 0}.

In the realm of metric spaces, the emptiness of the surjective semispan
is characterized with the condition of having zero surjective semispan as
A. Lelek defined in [4] (see [9, Theorem 3.2]).

From [10, Theorem 3.7], we have the following theorem.
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Theorem 2.5. Let f : X — Y be a monotone surjective map. If of(X) =
0 then ol (Y) = 0.

Theorem 2.6 (|1, Theorem 4.1]). Let X be a metrizable continuum with
zero surjective semispan. If f 'Y — X is a continuous map from a
metrizable continuum Y onto X, then the induced map C(f) : C(Y) —
C(X) is universal.

The following theorem generalizes Theorem 2.6.

Theorem 2.7. Ifh:Y — X is a surjective continuous mapping between
rim-metrizable continua, where X has empty surjective semispan, then
the induced map C(h) : C(Y) — C(X) is universal.

Proof. By [2, Theorem 3.1.22], we consider only the following two cases.

Case 1: w(X) =w(Y) > ¥y. By Theorem 1.22, there exist two inverse
o-systems S = {Xo, f5,A} and " = {Y,, 95, A} of Hausdorff compact
spaces with surjective bonding maps such that X is homeomorphic to X
and Y is homeomorphic to Y. So, we can assume that h: Yy — X,. By
Theorem 1.30, we can assume that each g° and each f? are monotone;
then C(S’) and C(S) have surjective bonding maps and, by Theorem 1.21,
are inverse o-systems. By [2, Problem 6.3.16(a)], each projection map
fé‘ is monotone. So, by Theorem 2.5, each X, has empty surjective
semispan. By Theorem 1.31, we can assume that h is the induced map
by a morphism h = {hy:a € A} : S — S. Then C(h) is the induced
mapping by the morphism {C(hq) : @ € A} : C(S’) = C(S). By Theorem
2.6, each C(h,) : C(Yy) — C(X4) is universal. Thus, by Theorem 1.26,
C(h) is universal.

Case 20 w(Y) > w(X) > Ny. Let 7 = w(X). By Theorem 1.22, there
exists an inverse T-system S’ = {Ya, g2, A} of Hausdorff compact spaces
with surjective bonding maps such that Y is homeomorphic to Y). By
Theorem 1.30, we can assume that each g2 is monotone; then C(S’) has
surjective bonding maps and, by Theorem 1.21, is an inverse 7-systems.
By [2, Problem 6.3.16(a)], each projection map g2 is monotone. So, by
[12, Theorem 3.2], each Y, is rim-metrizable. Consider the inverse system
S = {Xa,ff,A}, where each X, = X and each f? is the identity map
on X. So, we can assume that h : YA — X,. By Theorem 1.31, we can
assume that h is the induced map by a morphism h = {h, : a € A} : S’ —
S. Then C(h) is the induced mapping by the morphism {C(h,) : @ € A}.
Since w(X,) = w(Yy) for each o € A, by Case 1, each C(h,) : C(Y,) —
C(X4) is universal. Thus, by Theorem 1.26, C(h) is universal. O

Question 2.8. Is Theorem 2.7 valid if we remove rim-metrizable?
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