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AN UPPER SEMI-CONTINUOUS MODEL
FOR THE LORENZ ATTRACTOR

BENJAMIN MARLIN

Abstract. In examining the Poincaré map of the Lorenz system,
a multi-valued map is suggested by numerical work. We examine
the inverse limit of this and related maps in trying to understand
the structure of the attractor.

1. Introduction

In considering the Poincaré map of the Lorenz system
dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz

an interesting Ruelle plot is encountered in the vicinity of the non-zero
critical points, as shown in Figure 1. In [8], the values of σ = 10, β = 8

3 ,
and ρ = 28 were used, and many investigators use these values of σ and
β while varying ρ. In [3], the form of a first return map on the interval is
derived from considerations of the branched manifold. Numerical experi-
mentation suggested a clear set of curves in the Ruelle plot with ρ = 30,
which is the value we have used.

The restriction of r2 to [−p, p], where p ≈ 8.79, suggests a graph which
is set-valued, and all the image sets appear to be finite. If we assume that
this numerical result approximates a union of arcs, we may analyze the
inverse limit of r2 in the interval, and this will give us an approximation of
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Figure 1. The Ruelle plot r on the left. As the Poincaré
map is not a self-map, we examine r2 on the right as well.
Note the inner partition of [−p, p].

the attractor. In [7], such an analysis was carried out with a continuous,
single-valued map. This approach was suggested by a comment in [2] that
the unstable manifold theorem gives a map from the stable manifold of a
fixed point back to itself and that the unstable manifold does the same
for the inverse. In this case, the function in question is the Poincaré map
for the flow of the Lorenz system. In this paper, we examine the inverse
system given by analyzing a set-valued function. In using a set-valued
function, we are attempting to examine the map from both manifolds
to themselves through the projection onto one axis. Our tool allows the
maps to be interchanged, however, yielding an interesting inverse limit.

2. Definitions

By a flow on an Rn associated with a system of differential equations,
we mean a function ϕ : Rn × R→ Rn so that ϕt(x) = φ(t) is the unique
solution of the system so that φ(0) = x. Under certain conditions, we
may choose S ⊂ Rn so that for each s ∈ S there exists τ(x) > 0 so that
ϕτ(x)(s) ∈ S. In this case, we call S the Poincaré section for the flow and
define the Poincaré map P : S → S by P (s) = ϕτ(x)(s).

For a flow with a Poincaré map P : S → S, we may define a Ruelle
plot as follows. Let s ∈ S and xk ∈ Rn be given by xk = P k(s) for
each k ∈ N ⊂ N. We pick one coordinate j ∈ {1, ..., n} and define
a collection r̂ = {(πj(xk), πj(xk+1)|k ∈ N}. If N is a relatively large
set (and especially if x0 is chosen near an attractor), the image traced
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out by r̂ may suggest a function ř : R → R, having the semi-conjugacy
πj ◦ P |S = ř ◦ πj .

A set-valued function on X is a function f : X → 2X . We will work
with such set-valued functions which are upper semi-continuous (u.s.c.)
maps. While a more technical definition is available, we will use the
equivalency, shown in [6], which is to say: A set-valued function f on
X such that f−1(x) has finitely many components for each x ∈ X and
{(x, y)|x ∈ X, y ∈ f(x)} ⊂ X ×X is closed.

For a function f : X → X, the inverse limit, lim
←
{X, f} is a set M ⊂∏

n∈N
X so that x ∈ M provided that πn(x) = f ◦ πn+1(x) for all n ∈ N.

A subject of recent interest has been to replace the function with a u.s.c.
map. Where the distinction is important, we will refer to a u.s.c. inverse
limit with a u.s.c. map f : X → 2X as the set M ⊂

∏
n∈N

X so that x ∈M

provided that πn(x) ∈ f ◦ πn+1(x).
Frequently, we refer to a Cantor set, using the standard definition.

Since we are here considering the canonical “middle-thirds” Cantor set,
we have chosen to represent this as C throughout.

3. Inverse Limit Results for the Simplest Model

An initial attempt at a model for this system might follow the technique
of [7] in approximating each paired branch of the Ruelle plot with a single
curve. For simplicity, we first approach this with piecewise linear maps
βm for m ≥ 0. Let I = [0, 1] and define βm : I → 2I to be the union
of the lines with slope m through the points (0, 0) and (1, 1). We may
express this algebraically for 1 < m ≤ 2 as

βm(x) =


{mx} if x < 1− 1

m

{mx,mx−m+ 1} 1− 1
m ≤ x ≤

1
m

{mx−m+ 1} x > 1
m .

Although the Ruelle plot technique suggests a connection for which
m > 1, we may extend the definition of the family for 0 ≤ m < 1 by
βm(x) = {mx,mx −m + 1}. (See Figure 2.) An immediate observation
may be made about the inverse limits of these maps for which m > 1.

Lemma 3.1. Let m > 1 and f : [0, 1] → [0, 1] be a function so that
f(x) = mx for x ≤ 1

m . Then M = lim
←
{[0, 1], f} contains an arc.

Proof. Let x ∈ [0, 1
m ]. Then (x, xm ,

x
m2 , ...) ∈ M as well. This establishes

a continuous image of [0, 1
m ] in M . �
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Figure 2. Members of the family of u.s.c. maps βm :
[0, 1]→ 2[0,1] for m > 1 (left) and m < 1 (right).

Lemma 3.1 and its proof are a simple observation made in [5], but we
have separated them here for reference. The proof, while trivial, suggests
a more general statement, as the critical detail is simply that

x

mn
vanishes

as n→∞.

Lemma 3.2. Let I be an arc with endpoint a and let J be a subcontinuum
of I containing a. Let f : I → I be a function so that f |J is a homeo-
morphism with a being the only fixed point of f in J . If there exists b ∈ J
so that (f−1)n(b)→ a as n→∞, then lim

←
{I, f} contains an arc.

Proof. This follows from the proof of Lemma 3.1 by simply replacing x
mn

with
(
f−1

)n
(x). �

Consequently, we may conclude that lim
←
{I, βm} contains an arc, and

an argument from symmetry implies that it contains a pair of symmetric
arcs. In a similar vein, we may expect lim{[−p, p], r2} to contain such
a pair of arcs as well. Unfortunately, although more general, this is a
relatively uninteresting result. Specificity allows us to say more.

Proposition 3.3. For 1 < m ≤ 2, Mm = lim
←
{I, βm} is homeomorphic

to the product of an arc and a Cantor set.

Proof. This proceeds much in the manner of [1] and [4], with the
appropriate adjustments for a u.s.c. map. We define a new u.s.c. map
Bm : I × I → 2I×I so that B(x1, x2) is a two-element set if 1 − 1

m ≤
x ≤ 1

m and a one-element set otherwise (this should sound familiar). If
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x2 < 1 − 1
m , let Bm(x1, x2) =

{(
x
3 ,mx

)}
. Symmetrically, if x2 > 1

m ,
define Bm(x1, x2) =

{(
x+1
3 ,mx−m+ 1

)}
. For 1 − 1

m ≤ x ≤ 1
m , define

Bm(x1, x2) =
{(

x
3 ,mx

)
,
(
x+1
3 ,mx−m+ 1

)}
. For ease of reference, this

is represented by Figure 3.

Figure 3. On the left, the pre-image I×I, with hashing
added to distinguish the regions. On the right, the image
under Bm.

We have constructed Bm to be semi-conjugate to βm using the pro-
jection onto the x2 axis. As n → ∞, the width of individual images of
foliations of I × I goes to zero, so that the semi-conjugacy, acting on the
attracting set Bm = ∩n>0B

n
m(I×I), becomes a conjugacy. Consequently,

the attracting set of I × I under Bm is homeomorphic toMm. �

As a differentiable flow is a reversible system, we might also want to
examine the inverse limit of

(
r2
)−1. The map βm for m < 1 is actually

easier to work with and the same techniques apply. Due to the symmetry
of inverses, we find that β−1m = β 1

m
. It is interesting to note that, for

m ≥ 1
2 , the map is a surjection and we can be assured that the inverse

limit exists. A cursory inspection might suggest that, since the situation
of Lemma 3.1 is reversed, we could expect only a trivial inverse limit.
This is not quite true.

Proposition 3.4. For m < 1
2 , Mm = lim

←
{I, βm} is homeomorphic to a

Cantor set.

Proof. Applying the technique of Proposition 3.3, but with m < 1, we
create two images of I × I:

[
0, 13
]
× [0,m] and

[
2
3 , 1
]
× [1−m, 1]. We find
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that π2 ◦Bm(I × I) is separated into two intervals, and thus that π2 ◦Bm
will be a Cantor set, just as π1 ◦ Bm is. �

Remark 3.5. For m > 1
2 , π2(Mm) = I as each image π2◦Bnm(I×I) = I.

Remark 3.6. For 1
2 ≤ m < 1, Mm must not contain any arcs, as

Bm(Bm) contracts vertically. But since π2 ◦Bnm(I2) = I, π2(Bm) = I, as
well.

Remark 3.7. We have neglected the case m = 1, as there βm = id,
meaning the inverse limit is simply an arc.

4. More Complex Models

When we have committed to the use of set-valued maps, such as βm,
it seems a relatively small step to extend this to what may be a more
robust model. Let a ∈ I be chosen so that a ≈ 1

2 (this specification may
seem somewhat arbitrary—it is intended to create a model which closely
resembles the observed plots). Define β̃a : I → 2I as the union of four
line segments: the segment through (0,0) and (a, 1), the segment through
(0,0) and (1−a, 1), the segment through (1,1) and (a, 0), and the segment
through (1,1) and (1− a, 0). This may be described algebraically as

β̃a(x) =



0 if x = 0

{xa ,
x

1−a} if 0 < x < a

{ x
1−a ,

x−a
1−a} if a ≤ x ≤ 1− a

{x−a1−a ,
x−(1−a)

a } if 1− a < x < 1

1 if x = 1.

A further—and much more general—step would be to consider a union
of four twice-differentiable curves ĝ = g1∪g2∪g3∪g4 on [0,1] with the same
endpoints so that g1(0) = g2(0) = 0, g′1(0) > g′2(0) > 1, g′′1 (x), g′′2 (x) > 0,
g3(x) = g1(1 − x), and g4(x) = g2(1 − x). (See Figure 4.) These are
designed to mimic the symmetry of r2 and to satisfy the conditions of the
following.

Theorem 4.1. Let I be an arc with an endpoint a and let J be a subcon-
tinuum of I containing a. Let f : I → 2I be a semicontinuous function
such that f |J consists of the union of two homeomorphisms f0 and f1 so
that each of lim

←
{I, fk} contains an arc. Then M = lim

←
{I, f} contains a

cone over a Cantor set.

Proof. Let c be the binary representation of a point of the canonical
middle-thirds Cantor set, C, and let x ∈ J . Construct m(x, c) ∈ M
by taking m0 = x and mn = f−1cn (mn−1). As each fk is a surjective
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Figure 4. On the left, the linear model, β̃a for r2. On
the right, the suggested qualitative model ĝ.

homeomorphism, the function defined by following the itinerary of c will
be a homeomorphism, establishing the relation between J and each of a
collection of arcs indexed by the Cantor set. Observing that m(a) is the
same regardless of c, then {m(x, c)|x ∈ J, c ∈ C} is a cone over a Cantor
set. �

Remark 4.2. As the theorem may be applied on [0, 1] about both 0 and
1, lim
←
{[0, 1], β̃a} contains a symmetric pair of cones over Cantor sets.

Remark 4.3. If we consider p to be the positive fixed point of the Ruelle
plot r2, we may apply the theorem to M = lim

←
{[−p, p], r2}. M contains

a pair of cones over a Cantor set, as the theorem can be applied to the
symmetric branchings about ±p.

Remark 4.4. The fact that r2 maps an interval around 0 to both an
interval containing p and another containing −p suggests that the struc-
ture of M is very complicated. Under iteration, neighborhoods of −p will
expand while migrating toward the neighborhood of p. After approaching
0, the images may follow either the upper or the lower branch to a neigh-
borhood of ±p. Consequently, periodic points of all periods exist and sets
may be constructed that limit on them. This is an area of interest for
further work, but is beyond the scope of the present paper.
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5. Extensions of Interest

One method to progress in this vein is a change of the domain. Note
that β̃a(a) = β̃a(1− a) = {0, 1}, and similarly for r2. If we identify 0 and
1, then rather than u.s.c. maps acting on [0, 1], we are instead interested
in u.s.c. maps on S1—this time with connected graphs. The identification
in the domain means that the binary representations of points in C are also
identified. Consequently, the inverse limits for both β̃a and r2 are difficult
to picture. As each u.s.c. map contains homeomorphisms fairly close to
the squaring map, it seems likely that the inverse limit contains, at the
very least, a copy of the dyadic solenoid with a cross section identified
as a single point. This diverges significantly from our interest in the
cross section of the Lorenz attractor, but it seems an area for further
exploration.

It may also be of interest to explore whether the u.s.c. inverse systems
obtained through these techniques more closely resemble the attractor
approximated numerically. The techniques can also be extended to ex-
amine u.s.c. inverse systems accounting for numerical error by replacing
the point images in a continuous map with intervals of small diameter
(relative to the error bounding, that is). Finally, the disconnected graph
seems to have been a key element of this exploration, and the author has
observed such in Ruelle plots of other systems near hyperbolic points.
It would be of interest to know what behaviors this characterizes and
what may be said using the u.s.c. inverse system tool, which allows for
this possibility.
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