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CONTINUOUS ITINERARY TOPOLOGIES
IN HIGHER DIMENSIONS

STEWART BALDWIN

Abstract. We study the application of itinerary topologies to the
investigation of higher dimensional dynamical systems and show
that many of the results which hold for one-dimensional systems
hold in the more general case. In particular, we show that a knead-
ing set (an analogue of kneading sequences in one dimension) can
often be used to get information about these systems in the same
way that a single kneading sequence can be used in one dimension.

1. Introduction

The concept of itineraries has proved to be an enormously valuable tool
in the analysis of dynamical systems. The standard example consists of
a continuous function f : R → R which is unimodal, i.e., there is a c ∈ R
such that f is strictly increasing on one of the intervals (−∞, c], [c,∞)
and strictly decreasing on the other. The three sets (−∞, c), {c}, and
(c,∞) are then labeled with the three symbols L, C, and R (left, center,
and right), respectively. The itinerary of a point x ∈ R is then the infinite
sequence ⟨S0, S1, S2, ...⟩, where Sn is (respectively) the symbol L,C,R if
and only if fn(x) is in the interval (respectively) (−∞, c), {c}, (c,∞).
In this way, the sequence ⟨Sn⟩ of symbols encodes the behavior of the
sequence ⟨fn(x)⟩. As shown in [4], the kneading sequence of the function
f , defined to be the itinerary of f(c), offers a great deal of information
about the dynamical system defined by f (see also [5] and [1]). In [2]
and [3], we showed that much useful information could be obtained by
placing a natural topology on the set of symbols in such cases. This
“symbol” topology is given in the next definition. We follow that with a
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132 S. BALDWIN

list of some of the basic definitions and notation which will be used in
this paper.

Definition 1.1. If X is a topological space, Σ is a set of symbols (often,
but not necessarily, finite), and S = {Sa : a ∈ Σ} is a partition of X (i.e.,
a collection of nonempty pairwise disjoint subsets of X whose union is
X), then qS : X → Σ is defined so that qS(x) is the unique a ∈ Σ such
that x ∈ Sa, and Σ is given the (often non-Hausdorff) quotient topology
with respect to the map q, which we shall call the symbol topology of Σ
with respect to the partition S. If q : X → Σ is a quotient map, then a
partition Sq can be defined similarly.

Definition 1.2. Let ω, N, Z, and R be the sets of nonnegative integers,
positive integers, integers, and real numbers, respectively, with the usual
topologies. If X is a set and f : X → X, then f0 is defined to be the
identity function on X, and fn is f composed with itself n times for
n ∈ N. If ā = ⟨an : n ∈ ω⟩ is an infinite sequence (i.e., a function with
domain ω), then the shift of ā, denoted by σ(ā), is the sequence b̄ (also
with domain ω) obtained by letting bn = an+1. If X is a topological
space, we note that the shift map σ : Xω → Xω is continuous. An arc is
a space homeomorphic to the unit interval [0, 1]. An open arc is a space
homeomorphic to (0, 1). A continuum is a compact, connected metric
space. A tree is a connected union of finitely many arcs which contains
no copies of the circle. A dendrite is a uniquely arcwise connected, locally
connected continuum. A continuum C is tree-like if for every ϵ > 0 there
is a continuous f : C → T for some tree T such that for every t ∈ T ,
f−1(t) has diameter less than ϵ. A dendroid is a tree-like, uniquely arcwise
connected continuum.

If α is a finite sequence of length n (i.e., a function with domain
{0, 1, 2, ..., n − 1} for some positive integer n) and β is a finite or infi-
nite sequence, then αβ represents the concatenation of the sequences α
and β, i.e., the sequence γ such that γi = αi for i = 0, 1, 2, ..., n − 1 and
γi+n = βi for all i in the domain of β. For finite sequences α, αk represents
the concatenation of k copies of α, and α represents the concatenation of
infinitely many copies of α. If n ∈ ω and α is either an infinite sequence
or a finite sequence of length longer than n, then α|n denotes α restricted
to the set {0, 1, 2, ..., n− 1}.

If X = Πi∈IXi is a product space, then we let πi : X → Xi denote the
projection onto the ith coordinate.

In the example above, the set {L,C,R} is given a topology in which L
and R are isolated points, and the only neighborhood of C is the whole
space. Itineraries are then members of the product space {L,C,R}ω
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(where ω is the set of nonnegative integers). The lack of the Haus-
dorff property in this and similar examples seems disadvantageous at first
glance, but the set of realized itineraries is often a Hausdorff subspace of
{L,C,R}ω.

In the present paper, we consider generalizations of these ideas in two
main directions. First, in [2] and [3], we considered only symbol topologies
in which there was a single point p of Σ such that the subspace topology
Σ \ {p} was Hausdorff, and we would like to examine some more general
symbol topologies here. Second, and more important, the partitions of
topological spaces used to define symbol spaces in the previous results
usually consisted of taking a singleton {c} as one element of the partition
and letting the other elements of the partition be the components of the
complement of {c}. Here, we would like to examine more general parti-
tions. This will lead to results in which a “kneading set” takes the place
of the kneading sequence. A key point of these generalizations is that
they will be able to accommodate higher dimensional examples, while
the previous papers on itinerary topologies only covered examples in one
dimension.

The use of itinerary topologies in this paper will follow a number of
closely related themes. Four themes which will be followed in this paper
can be roughly described as

(1) the classification of dynamical systems, in which a system is de-
scribed by means of a certain amount of combinatorial data, called
the kneading set (the analogue of the kneading sequence in one
dimension);

(2) the reconstruction of a dynamical system (or a similar one) using
only the combinatorial information which describes it (roughly
speaking, reversing the process described in item 1);

(3) the investigation of how information about the kneading set can
lead to information about the original dynamical system;

(4) the attempt to determine conditions which decide whether or not
a given collection of combinatorial data can be the kneading set
for a dynamical system of some desired type.

Definition 1.3. Let X be a topological space and let f : X → X.
Let S = {Sa : a ∈ Σ} be a partition of X, and let q : X → Σ be
the corresponding quotient map. Then for each x ∈ X, the itinerary
of x with respect to f and S is the sequence ιSf (x) : ω → Σ given by
[ιSf (x)]n = q(fn(x)) for each n ∈ ω. The subscripts and superscripts of ιSf
will generally be suppressed whenever S and f are clear from context.

The definition of the symbol topology was motivated by the following
easy result.
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Proposition 1.4. For a fixed partition S and function f : X → X, the
itinerary function ιSf is continuous as a function from X into Σω (with
the product topology induced by the symbol topology on Σ).

Proposition 1.5. Let ι : X → Σω be the itinerary function defined with
respect to a function f : X → X and a partition S indexed by Σ. Then
ι ◦ f = σ ◦ ι; i.e., ι is a semiconjugacy from the map f to the shift map
σ on Σω.

Definition 1.6. We say that a function f : X → X satisfies the unique
itinerary property with respect to a partition S if ι is one-to-one as a map
from X to Σω. We say that f satisfies the itinerary separation property
(ISP) if, whenever x ̸= y, we have that ι(x) and ι(y) can be separated by
open sets in the topology of Σω (equivalently, for some n ∈ ω, [ι(x)]n and
[ι(y)]n can be separated by open sets in the topology of Σ).

Clearly, the itinerary separation property implies the unique itinerary
property. In the examples which were covered in [2] and [3], the two
properties were equivalent, and only the unique itinerary property was
given a name. As we shall see, they are not equivalent in the more general
setting covered here, and it is the ISP which leads to the important results.
This can be seen from the following theorem.

Theorem 1.7. If a continuous function f : X → X satisfies the ISP with
respect to a partition S of a compact space X, then ιS is a homeomorphism
from X onto its range.

Proof. Trivial, since the map is one-to-one, the domain is compact, and
the range is Hausdorff. �

This simple result gives one of the main motivations for defining itinerary
topologies, allowing us to identify points with their itineraries.

In results on the interval (e.g., [4]), dendrites (e.g., [3]), and dendroids
(e.g., [2]), a feature which was common to all of them was the existence
of a single “turning point” c, the only point at which the function was
not locally one-to-one. The partition used generally consisted of {c} and
all components of the complement of {c} (or occasionally some variation
of this which put two or more components in the same member of the
partition). The kneading sequence of the function was defined as the
itinerary of f(c) [4] or as the itinerary of c [2], [3]. Historically, the former
convention is more common, but the difference is unimportant in the case
of a single turning point, since the kneading sequence gives the same
information in either convention. However, it will be important to use
the analogue of the latter convention in the generalizations covered here.
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Definition 1.8. Let f : X → X be a continuous function on a topological
space. The turning set of f will be defined as the set of all x ∈ X such
that f is not locally one-to-one at x, i.e., f |U is not one-to-one for any
neighborhood U of X.

The definition of turning set given here will suffice for many examples,
including the dendrite maps of [3], but not the dendroid maps of [2],
where a more complicated definition of “turning point” was needed (i.e., a
point where the function was not locally arcwise one-to-one). The present
definition will suffice for a large class of examples, as seen in more detail
below. It is not clear that there is a single simple definition which will
suffice for all interesting examples.

We now give several examples.

Example 1.9. Let [a, b] ⊆ R, and let f : [a, b] → [a, b] be a continuous
function with n turning points c2 < c4 < c6 < ... < c2n (it will be
convenient to use only the even integers). Let Σ = {1, 2, ..., 2n, 2n + 1},
let Si = {ci} for i even, let Si = (ci−1, ci+1) for i odd, 3 ≤ i ≤ 2n − 1,
and let S0 = [a, c2) and S2n−1 = (c2n, b]. In the symbol topology on Σ,
odd elements i will be isolated points (because the corresponding Si’s are
open sets), and the smallest neighborhood of an even i is {i− 1, i, i+ 1}.
If, in addition, we have that |f(y)− f(x)| > |y−x| for distinct x, y in the
same Si, then f will satisfy the ISP for this partition. In this example,
each singleton of the turning set is an element of the partition.

The following example shows that the unique itinerary property does
not imply the itinerary separation property.

Example 1.10. Let I be the unit interval, and let f : I → I be a
continuous function which maps each of the intervals [0, 1

3 ], [
1
3 ,

2
3 ], [

2
3 , 1]

linearly onto I. Let Σ = {0, 1, 2, 3}, let S0 = { 1
3 ,

2
3}, and let S1, S2, and

S3 be the components of I \ S0. Then the quotient topology on Σ has
1, 2, and 3 as isolated points and all of Σ as the only neighborhood of
0. Then f has the unique itinerary property with respect to Σ (since
the application of f triples the distance for any two points in the same
S − N), but 0 and 2

3 have itineraries which cannot be separated in Σω.
Of course, a finer partition like the one described in the previous example
would give the ISP.

A similar example in 2 dimensions gives a more general idea of what
might be needed to refine to a more suitable partition.

Example 1.11. Let A, B, and C be the vertices of an equilateral triangle
T in the plane (where T includes the points inside the triangle), and let D,
E, and F be the midpoints of the sides BC, AC, and AB, respectively.
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Let f : T → T be one of the continuous maps whose restrictions map
each of the triangles ∆AEF , ∆BDF , ∆CDE, and ∆DEF linearly onto
T (i.e., the four small triangles are folded together and then expanded by
a factor of two to map back onto the triangle T ). Let Σ consist of the five
elements {0, aef, bdf, cde, def} (the three digit symbols are useful here),
and partition T by letting S0 be the boundary of ∆DEF (i.e., S0 is the
turning set of f), and letting Saef , Sbdf , Scde, and Sdef each be the obvious
component of T \ S0, with corresponding quotient map q : T → Σ. Then
f is easily seen to satisfy the unique itinerary property, but the itineraries
of A and D cannot be separated in Σω because f(A) = f(D), and aef
and 0 cannot be separated in the topology of Σ. However, we can get
the itinerary separation property by using a finer partition, as follows.
Let Σ′ = {aef, bdf, cde, def, cd, ce, de, c, d, e}, keep Saef , Sbdf , Scde, and
Sdef the same as before, and divide S0 into six sets, where Sd = {D},
Se = {E}, and Sf = {F}, and Sde, Sdf , and Sef are each the obvious
components of S0 \ {D,E, F}.

It will also be useful to briefly describe the symbol topology thus ob-
tained on Σ′. A basis would consist of the sets {aef}, {bdf}, {cde}, {def},
{de, cde, def}, {df, bdf, def}, {ef, aef, def}, {d, de, df, bdf, cde, def},
{e, de, ef, aef, cde, def}, and {f, df, ef, aef, bdf, def}. (In each, the set
is the smallest open subset of Σ′ containing the first element listed.) Note
that this space is T0 but not T1, and that {aef, bdf, cde, def} is a dense
open subset of Σ′, which is Hausdorff in the subspace topology. Note also
that the places where the symbol topology is more complicated correspond
exactly to the turning set of f .

More complicated partitions are not always needed on higher dimen-
sional spaces, as the following example shows.

Example 1.12. Let X be the rectangle [−1, 1] × [0,
√
2] in the plane,

and define f : X → X by f(x, y) = (1 −
√
2y,

√
2|x|) (i.e., the rectangle

is folded along the y-axis, rotated by ninety degrees, expanded by a fac-
tor of

√
2, and mapped to the original rectangle. In this case, a simpler

partition suffices to get the itinerary separation property. Let S0 be the
intersection of X and the y-axis, and let S1 and S2 be the components
which remain. In this case, given any two points a, b ∈ X, continued
applications of f will always result in an n such that one of fn(a) and
fn(b) is in S1 and the other is in S2. On the other hand, an example like
g(x, y) = (1 − 2|y|, 1 − 2|x|) on the square [−1, 1] × [−1, 1] which folds
the square in both ways would need a partition similar to the previous
example in order to get the itinerary separation property.

It is easy to see that n-dimensional counterparts of this example can
be defined with expansion factor n

√
2.
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Clearly, it is easier to get the ISP (or the unique itinerary property)
with a finer partition than with a coarser partition. If Σ has the indiscrete
topology (e.g., when each member of the partition is dense in X), then
the ISP cannot hold (except in the trivial case where X is a singleton). A
partition which is too fine may satisfy the ISP and yet not give interesting
information on the dynamics (such as the trivial case of using singletons).
In the case of a partition of a space X into a finite number (at least two)
of sets, it is easy to show that the corresponding symbol space Σ will
be non-Hausdorff whenever the ISP holds and X has a nondegenerate
connected subset (a very simple exercise). However, interesting examples
also exist in which the space Σ is infinite (e.g., [2]).

In order to prove some of the desired results, we need to impose some
restrictions on the allowed topologies which we use as symbol spaces for
partitions. The class K of topological spaces which we define here is both
general enough to cover all the symbol topologies which have been used
in the previous results from [2] and [3] and restricted enough to allow for
some interesting additional results. Further experiments will most likely
lead to a refinement of the list of symbol topologies under consideration.

Definition 1.13. Given a topological space Σ, define a relation ≼ on Σ
given by x ≼ y if and only if every open set containing y also contains
x. The relation is easily seen to be reflexive and transitive, and ≼ is
antisymmetric if and only if X is a T0 space. A point x ∈ Σ which is
minimal with respect to this ordering is called T0-minimal, i.e., if and
only if for every y ∈ Σ distinct from x there is an open set containing x
but not y.

We define K to be the class of all topological spaces Σ satisfying the
following properties:

(1) Σ is T0.
(2) For all a, b ∈ Σ, either a ≼ b or b ≼ a, or a and b can be separated

by open sets in Σ.
(3) Σ is second countable.
(4) The set H of all T0-minimal elements of Σ is a dense open subset

of Σ.
(5) There is no infinite chain with respect to the ordering ≼. (So,

in particular, if a ∈ Σ is not T0-minimal, then b ≼ a for some
T0-minimal b ∈ Σ.

(6) H is a locally compact separable metric space in the subspace
topology.

If Σ ∈ K, we let H(Σ) be the set of all T0 minimal points of Σ and let
Z(Σ) = Σ \ Z(Σ).
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Although many of our results will cover all of K, there are two simple
subclasses of K which together seem to cover the examples studied so far.
Note that these examples fail to be even T1.

Proposition 1.14. Every finite T0 space is in K.

Example 1.15. If X is a complex (a finite union of simplices), define a
partition of X by letting each equivalence class be a simplex minus all
of its subsimplices. Then the resulting symbol space is a finite T0 space.
(The topology Σ′ from Example 1.11 is an example of this.)

Proposition 1.16. If H is a topological space, define H∗ by adding a
single point ∗ to H, letting H be open as a subspace of H∗, and letting
the whole space H∗ be the only neighborhood of ∗. Then for every locally
compact separable metric space H, H∗ ∈ K. There were many examples
of symbol spaces of this kind in [2] and [3] (where they were also finite).

For the benefit of those who spend most or all of their time in Hausdorff
spaces, we end this section with the following reminders.

Proposition 1.17. (1) A compact subset of a non-Hausdorff space
need not be closed.

(2) In a non-Hausdorff space, a convergent sequence need not have a
unique limit.

(3) A second-countable space is compact if and only if every sequence
has a convergent subsequence.

(4) If X is first-countable and Y is any topological space, then a func-
tion f : X → Y is continuous if and only if for every sequence
⟨xn⟩ from X converging to a point x, the sequence ⟨f(xn)⟩ con-
verges to f(x).

2. Acceptable Sets and Admissible Sequences

In the examples on one-dimensional spaces, there was a single turning
point, and the kneading sequence was the itinerary of that point. In the
more general examples covered here, we have a larger set of points which
we want to follow, and we are interested in singling out these itineraries
as the kneading set. Although the set of points of interest will often be
the set of turning points, that will not always be the case (e.g., the results
of [2]), and in general, the “interesting” set of points will depend on the
partition used and the symbol topology thus obtained.

Definition 2.1. Let q : X → Σ ∈ K be a quotient map giving a partition
S of X, let f : X → X have the ISP with respect to S, and let Z = Z(Σ).
We define the kneading set of f with respect to the partition S, denoted
Af,S , to be the set of all itineraries which start in Z, i.e., Af,S = {ι(x) :
x ∈ q−1(Z)}.
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Definition 2.2. Let Σ ∈ K, let Z = Z(Σ), and let Z ′ = {α ∈ Σω :
α0 ∈ Z}. If A ⊆ Σω, then we let σω(A) =

∪
n∈ω σn(A) (i.e., σω(A) is

the closure of A under the shift operation). We say that a nonempty
set A ⊆ Σω is acceptable with respect to the space Σ if and only if the
following conditions are true.

(1) A ⊆ Z ′, i.e., every element of A starts in Z;
(2) A is compact in the topology of Σω;
(3) σω(A) ∩ Z ′ ⊆ A, i.e., every shift of an element of A which starts

in Z is in A;
(4) if α, β ∈ A and n ∈ ω, and α ̸= σn(β), then α and σn(β) can be

separated in Σω.

In the similar definitions given for dendrites [3] and dendroids [2], A
and Z were both singletons.

Example 2.3. Let Σ = {∗, 1, 2}, and topologize Σ by letting 1 and
2 be isolated points, with Σ being the only neighborhood of ∗. Then
H(Σ) = {1, 2}, Z(Σ) = {∗}, and Σ = H∗. Note that in this simple
topology, two sequences α, β ∈ Σω can be separated by open sets if and
only if there is an n ∈ ω such that one of αn and βn is 1 and the other
is 2. Let A = {∗12, ∗1122}. Then it is routine to check that each of
the sequences ∗12, 12, 2, ∗1122, 1122∗, 122∗1, 22∗11, and 2∗112 (i.e., all
possible shifts of elements of A) can be separated by open sets from each
element of A, from which it follows that A is acceptable.

Example 2.4. Let Σ be as in Example 2.3, and let A = {∗1122, ∗1222}.
Then 2∗122 is a shift of ∗1222 which cannot be separated from ∗1122,
and thus A is not acceptable. However, each singleton from A would be
acceptable.

Example 2.5. Let Σ be as in Example 2.4, and let A = {∗1∗122}.
Then A fails to satisfy Definition 2.2(3), because ∗122∗1 is a shift of
∗1∗122 which starts in Z but is not in A. However, {∗1∗122, ∗122∗1} is
acceptable.

Proposition 2.6. Let q : X → Σ ∈ K be a quotient map giving a partition
S of a compact Hausdorff space X, and let f : X → X have the ISP with
respect to S. Then Af,S is acceptable with respect to Σ.

Proof. Since Σ ∈ K, Z = Z(Σ) is a closed subset of Σ. Thus q−1(Z) is
a closed subset of X, and therefore compact. A is the continuous image
of q−1(Z) under the map ι, and is thus also compact. Property (4) of
acceptability follows from the ISP. The rest is simple. �

The following definition will indicate how we can turn acceptable sets
into dynamical systems.
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Definition 2.7. If A is acceptable and α ∈ Σω, then we say that α is
A-consistent if σω({α})∩Z ′ ⊆ A (i.e., every shift of alpha which starts in
Z is a member of A), and we say that α is A-admissible if and only if it
is A-consistent and every element β of σω({α}) can be separated by open
sets in Σω from every element γ of A such that β ̸= γ. For acceptable
A, we define DA,Σ = {α ∈ Σω : α is A-admissible}. We give DA,Σ the
topology inherited from Σω.

We refer the reader to [2] and [3] for many examples involving dendroids
and dendrites. We note a couple of trivial examples and give more details
on one of our previous higher dimensional examples.

Example 2.8. Suppose Σ = H∗ for some locally compact separable
metric H and A consists of the single element ∗, where ∗ is the point of
Σ whose only neighborhood is all of Σ. Then DA,Σ = A, for no other
sequence from Σω can be separated from ∗.

Example 2.9. Suppose Σ ∈ K and A = ∅, which is vacuously acceptable.
Then DA,Σ = (H(Σ))ω. Thus, shifts on a finite number of symbols are
included in this setting.

Example 2.10. Let f : X → X be Example 1.12. We show that ι : X →
DA,Σ is a homeomorphism. Let α ∈ DA,Σ, and let n be at least such that
αn = 0, with n = ∞ if there is no such n ∈ ω.

Case 1: n ∈ ω. Then there is an xn ∈ X such that ι(xn) = σn(α).
By backwards induction on i < n, define Xi−1 to be the unique element
of a ∈ Sαi such that f(a) = xi, using the fact that S1 and S2 both map
homeomorphically onto X via f . Then the point x = x0 thus obtained
has an itinerary which cannot be separated from α, so that ι(x) = α.

Case 2: Similar to Case 1. Let x ∈
∩

n∈ω f−nSαn
(there will be exactly

one such element). Then ι(x) and α cannot be separated in DA,Σ, and
therefore ι(x) = α.

Proposition 2.11. Suppose that Σ ∈ K is such that H(Σ) is discrete, and
let A be acceptable. Then A contains the turning set of σ : DA,Σ → DA,Σ.

Proof. Given α ∈ DA,Σ \A, we have α0 ∈ H(Σ). Since H(Σ) is open and
discrete in Σ, {α0} is open in Σ, and thus π−1

0 ({α}) is a neighborhood of
α on which σ is one-to-one. �

Proposition 2.12. Let A be acceptable with respect to Σ. Then every
element of A is A-admissible.

Proposition 2.13. DA,Σ is closed under the shift operation σ.
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With this simple observation, we have the obvious question of how the
continuous map σ : DA,Σ → DA,Σ behaves as a dynamical system. We
first need to check that the topology on DA,Σ is a reasonable one.

Proposition 2.14. If A is acceptable with respect to Σ, then any two
distinct elements of DA,Σ can be separated by open sets in Σω (and thus,
DA,Σ is Hausdorff in the subspace topology).

Proof. Let α and β be distinct elements of DA,Σ, and let n ∈ ω be such
that a = αn ̸= βn = b. Let α′ = σn(α) and β′ = σn(β).

Case 1: a, b ∈ H(Σ). Then a and b can be separated in Σ, and therefore
α and β can be separated in Σω.

Case 2: a ∈ H(Σ) and b ∈ Z(Σ). Then β ∈ A, by A-consistency of β,
so α′ can be separated from β′ in DA,Σ, by A-admissability of α, and the
same is therefore true of α and β.

Case 3: b ∈ H(Σ) and a ∈ Z(Σ). Symmetric to Case 2.
Case 4: a, b ∈ Z(Σ). Then α′, β′ ∈ A can be separated by open sets in

Σω by (4) in Definition 2.2, and therefore α and β can be separated. �
The following result shows that if A was defined as the kneading set of

a dynamical system on a compact Hausdorff space, then DA,Σ contains a
copy of the original system.

Theorem 2.15. Let q : X → Σ ∈ K be a quotient map giving a partition
S of a compact Hausdorff space X, and let f : X → X have the ISP with
respect to S. Let A = Af,S . Then ι : X → DA,Σ is a homeomorphism
onto its range.

Proof. As in Theorem 1.7, ι is a one-to-one continuous map from a com-
pact space to a Hausdorff space. �
Lemma 2.16. Let A be acceptable with respect to Σ and let α ∈ Σω

be A-consistent. Then there is a unique A-admissible β ∈ Σω such that
α ≼ β.

Proof. By Proposition 2.14, there clearly cannot be two distinct such β’s,
so we need only to prove existence. If α is A-admissible, then we are done.
Thus, suppose that α is not A-admissible. Then there is n ∈ ω and γ ∈ A
such that σn(α) and γ are distinct and cannot be separated by open sets
in Σω. We prove by induction on n that we can find an appropriate β.

Thus, suppose n = 0. We claim that γ is the desired element β.
Suppose that it is not the case that α ≼ γ. Then there is an m ∈ ω such
that γm has an open neighborhood U in Σ such that αm /∈ U . Since α
and γ cannot be separated in Σω, and it is not the case that αm ≼ γm, we
must have γm ≼ αm (by condition (2) of Definition 1.13), and therefore
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αm is not T0-minimal, so αm ∈ Z(Σ). Thus, σm(α) is a member of A
which cannot be separated from σn(γ), contradicting acceptability of γ.

Now, suppose that the result is true for all m < n. Then it is true
for m = n − 1, so there is an A-admissible β′ such that σ(α) ≼ β′. Let
β′′ = ⟨α0⟩β′. Then α ≼ β′′, and if β′′ is acceptable, we are done. Thus,
suppose that β′′ is not acceptable. Then there is an element β of A such
that β and some shift γ of β′′ cannot be separated. However, the only
shift of β′′ which is not also a shift of β′ is β′′ itself, so we must have
γ = β′′ (since β′ is acceptable). Since σi(β) and σi(β′′) are A-admissible
for all i ≥ 1, we must have that β0 and β′′

0 cannot be separated. But
β′′
0 = α0 ∈ H(Σ) (since α0 ∈ Z(Σ) would imply that α was in A and

therefore A-admissible). Thus, α ≼ β′′ ≼ β, and β is as desired. �

Definition 2.17. If α is A-consistent, then the unique β such that β is
A-admissible and α ≼ β, as given by the previous lemma, will be called
χA(α).

Theorem 2.18. χA is continuous as a function from the set C of all
A-consistent sequences (with the subspace topology from Σω) onto DA,Σ.

Proof. By contradiction. Suppose that ⟨α(k) : k ∈ ω⟩ is a sequence from
C converging to α ∈ C such that ⟨χA(α

(k)) : k ∈ ω⟩ does not converge
to χA(α). For convenience, let β = χA(α) and β(k) = χA(α

(k)). Then
we can find an open set U in Σω containing β which contains none of the
points β(k) for k ∈ Γ0, where Γ0 is an infinite subset of ω.

Case 1: There is a coordinate m ∈ ω such that for infinitely many
k ∈ Γ0 (say, for k ∈ Γ1, an infinite subset of Γ0), β

(k)
m ∈ Z(Σ). Without

loss of generality, we may assume that m is least possible, and by shrinking
Γ1 further to an infinite Γ2 ⊆ Γ1, we get that β

(k)
n ∈ H(Σ) for all n < m

and all k ∈ Γ2. Let γ(k) = σm(β(k)) for k ∈ Γ2. Then γ(k) ∈ A; so
by compactness of A, we can shrink Γ2 to an infinite Γ3 such that the
⟨γ(k) : k ∈ Γ3⟩ converges to some γ ∈ A. Since β

(k)
n = α

(k)
n for all

k ∈ Γ3, n < m, for each n < m, we have that ⟨β(k)
n : k ∈ Γ3⟩ converges to

some β′
n ∈ H(Σ). Define δ ∈ Σω by δn = β′

n for n < m, and δn = γn−m

for n ≥ m. Then δ ∈ C, so let η = χA(δ). Then ⟨β(k) : k ∈ Γ3⟩ converges
to η, and therefore, since α(k) ≼ β(k) for all k, ⟨α(k) : k ∈ Γ3⟩ converges
to both β and η, which is impossible unless η = β. But then U contains
all but finitely many β(k), k ∈ Γ3, a contradiction.

Case 2: For every m ∈ ω, β(k)
m ∈ H(Σ) for all but finitely many k. Note

that α
(k)
m = β(k) for all k,m such that β

(k)
m ∈ H(Σ), and therefore that

⟨β(k) : k ∈ ω⟩ converges to α. Thus, since α ≼ β, ⟨β(k) : k ∈ ω⟩ also
converges to β, a contradiction. �
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Proposition 2.19. If A ⊆ B are both acceptable sets with respect to the
same Σ ∈ K, then χB is a well-defined continuous semiconjugacy from
DA,Σ onto DB,Σ.

Proof. It is immediate from the definition that every A-consistent se-
quence is also B-consistent. The fact that χB commutes with the shift
map is clear. �

Since D∅,Σ = (H(Σ))ω, we have the following corollary as a special
case.

Corollary 2.20. χA|(H(Σ))ω : (H(Σ))ω → DA,Σ is onto.

Note that if H(Σ) is finite, then (H(Σ))ω is just the Cantor set, and the
previous proposition gives a semiconjugacy from the shift map on finitely
many symbols onto the shift map on DA,Σ.

Theorem 2.21. Let A be acceptable with respect to Σ ∈ K, with H =
H(Σ) compact. Then DA,Σ is a compact metric space.

Proof. The hypotheses imply that D = DA,Σ is second countable, so in
order to prove compactness, we need only to show that every sequence
has a convergent subsequence. We avoid an additional layer of notation
by thinking of an infinite sequence as an infinite set (which is no prob-
lem since any reordering of a convergent sequence is still a convergent
sequence). Thus, let E be an infinite subset of D. There are two cases.

Case 1: There is an n ∈ ω such that for infinitely many α ∈ E, αn ∈
Z = Z(Σ). Fix the least such n. Then by thinning E to a set E′ ⊆ E, still
infinite, we can get that for all α ∈ E′, αn ∈ Z and αm ∈ H for all m < n.
Then {σn(α) : α ∈ E′} ⊆ A, so by compactness of A, there is an infinite
En ⊆ E′ such that {σn(α) : α ∈ En} converges to an element γ ∈ A. For
each i ≥ n, let βi = γi−n. We now thin En to an infinite subset En−1 such
that {αn−1 : α ∈ En−1} converges in H (which is compact by hypothesis)
to an element we call βn−1. By backwards induction on i < n, we let
Ei be an infinite subset of Ei+1 such that {αi : α ∈ Ei} converges in H
to an element we call βi. We have now defined a β ∈ Σω such that E0

converges to β. Now β might not be A-admissible, but it is A-consistent,
because it was obtained from an element of A by appending elements of
H to the front. Thus, χA(β) is acceptable, and since β ≼ χA(β), E0 also
converges in D to χA(β).

Case 2: For every n ∈ ω, αn ∈ H for all but finitely many α ∈ E. The
argument is similar to Case 1, except that we need a diagonal argument.
Let E0 be an infinite subset of E such that {α0 : α ∈ E0} converges in
H to a point β0 ∈ H. Proceeding by induction, let En+1 be an infinite
subset of En such that {αn : α ∈ En} converges in H to a point βn ∈ H.
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Let E′ be an infinite set which picks one point from each En, then E′

converges to β, which, as a subset of Hω, is automatically A-consistent.
As in Case 1, the sequence also converges to χA(β) ∈ D.

We have now shown that D is a second countable compact Hausdorff
space. Thus, by the Urysohn metrization theorem, D is metric. �

Corollary 2.22. If A is acceptable with respect to some Σ = H∗, with H
a locally compact separable metric space, then DA,Σ is a separable metric
space.

Proof. Let H1 be the one-point compactification obtained from H by
adding a point ∞ /∈ H, and now form Σ′ = H∗

1 by adding the point ∗.
Then A is still acceptable with respect to Σ′, so DA,Σ′ is a compact metric
space by the previous theorem. But DA,Σ is a subspace of DA,Σ′ . �

Theorem 2.23. Let Σ ∈ K with H(Σ) a compact metric space. Then a
set D ⊆ Σω is DA,Σ for some A which is acceptable with respect to Σ if
and only if the following four conditions hold.

(1) D is a compact metric subspace of Σω;
(2) D is closed under the shift operation;
(3) any two elements of D can be separated by open sets in Σ; and
(4) D is maximal with respect to these properties.

Proof. (⇒) Immediate from the definition of DA,Σ, and Theorem 2.21.
(⇐) Suppose D ⊆ Σω satisfies properties (1)–(4). Let A = D∩π−1

0 (Z),
where Z = Z(Σ). Then A is a closed, and therefore compact, subset of
D. Condition (1) of Definition 2.2 follows from the definition of A, and
(3) follows because D is closed under the shift operation and because of
the definition of A, and the same observation shows that every element
of D is A-consistent. Finally, condition (3) of this theorem guarantees
that all items of interest can be separated in Σω, giving the rest of the
definitions of acceptability for A, and A-admissibility of all elements of
D, giving D ⊆ DA,Σ. D = DA,Σ then follows by maximality of D. �

3. Connectedness

In this section we prove some theorems involving various versions of
connectedness under the special case that the symbol topology Σ under
consideration is H∗ for some space H. Recall that in this section, H∗ will
have a point ∗ such that the only neighborhood of ∗ is all of H∗.

Definition 3.1. Let Σ∈K. A set X ⊆ Σω will be called n-compatible
with respect to a finite sequence α = ⟨α0, α1, ..., αn−1⟩ from H(Σ) if and
only if all β ∈ X and all i < n, αi ≼ βi.
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Theorem 3.2. Let Σ = H∗, where H is a locally compact separable
metric space, let A ̸= ∅ be acceptable with respect to Σ, and let α, β ∈
DA,Σ. Suppose that the set {α, β} is N -compatible with respect to the
finite sequence ⟨τ0, τ1, ..., τN−1⟩, i.e., τi ≼ αi, βi for 0 ≤ i ≤ N − 1.
Then there is an arc from α to β in DA,Σ, which is also N -compatible
with respect to the same sequence. Thus, in particular, DA,Σ is arcwise
connected.

Proof. Let α′ be defined by α′
i = τi for i < N and α′

i = αi for i ≥ N .
Define β′ similarly from β. Then α′ and β′ are A-consistent elements
of Σω with α = χA(α

′) and β = χA(β
′). Fix an element γ ∈ A. Let

Q be the set of all dyadic rational numbers in [0, 1], and let C be the
set of all A-consistent sequences. We define f : Q → C by induction on
the denominator of q ∈ Q. Let f(0) = α′ and f(1) = β′. Suppose that
p
2k

∈ Q with p odd, and suppose that δ = f(p−1
2k

) and η = f(p+1
2k

) have
been defined.

Case 1: There is an n ∈ ω such that δn and ηn are distinct and neither
is ∗. Let n be the least such, and for each i ∈ ω, define θi+n = γi. For
each i < n such that δi = ηi ̸= ∗, let θi = δi = ηi. For each i < n such
that δi = ηi = ∗, let θi be an arbitrary member of H(Σ). For each i < n
such that δi ̸= ηi, let θi be whichever one of δi and ηi is not equal to ∗.
Now that θ has been defined, note that θ ∈ C, and let f( p

2k
) = θ.

Case 2: For every n ∈ ω, either δn = ηn or one of δn and ηn is ∗. Then
let θi be whichever one (or both) of δi and ηi is distinct from ∗, or an
arbitrary element of H(Σ) if δi = ηi = ∗.

It is easy to check by induction on k that the first k− 1 coordinates of
p
2k

are from H, and therefore that if ⟨xn : n ∈ ω⟩ is a sequence of dyadic
rational numbers converging to a non-dyadic member of [0, 1], then the
f(xn)’s agree on arbitrarily large initial segments as n gets large, and thus
converge to a member of Hω. Thus, we can extend f in the obvious way
to [0, 1], and we have constructed a continuous function f : [0, 1] → C.
Then χA ◦ f : [0, 1] → DA,Σ is a path from α to β. It is easy to see from
the construction that for every x ∈ [0, 1] and every i < N , [f(x)]i = τi,
and thus the range of f is N -compatible. Since applying χA does not
change this, we get an N -compatible arc from α to β. Finally, since any
two elements of DA,Σ are 0-compatible, we get an arc between any two
elements of DA,Σ. �

Corollary 3.3. Let Σ = H∗ where H is discrete, and let A be acceptable
with respect to Σ. Then DA,Σ is locally connected.
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Proof. If U = Πn∈ωUn is a basic open set where each Un is either a
singleton in H or all of Σ and α, β ∈ U , then the arc between α and β
constructed in the previous theorem is a subset of U . �

The following theorem recaps some facts about connectedness from [2]
and[3].

Theorem 3.4. Let Σ = H∗ ∈ K and suppose that A is acceptable with
respect to Σ.

(1) If A is a singleton and H is finite, then DA,Σ is a dendrite.
(2) If A is a singleton and H is a compact zero-dimensional metric

space, then DA,Σ is a dendroid.

In order to prove a similar result for simple connectedness, we need a
couple of lemmas.

Lemma 3.5. Let Y ⊆ R2 be a convex compact two-dimensional disk, let
B be the boundary of Y , and suppose that W is a closed subset of B which
is nowhere dense in the topology of B. Then there is a dendrite V ⊆ Y
whose set of endpoints is either W or W ∪{a} for some a ∈ B \W , which
intersects B \W in at most the point a, and such that every component
of Y \ V is convex.

Proof. This is easily seen to be true if W is finite, so assume that W is
infinite. For certain (perhaps not all) finite sequences s of 0’s and 1’s, we
define arcs As ⊆ B. Let A0 and A1 each be an arc or a singleton in B
whose union contains all of W , such that A0 and A1 are disjoint and the
endpoints (or only point in the case of a singleton) are in W . Suppose
As has been defined. If As is a singleton, then define As⟨0⟩ = As and
leave As⟨1⟩ undefined. If As is not a singleton, then let As⟨0⟩ and As⟨1⟩
be disjoint subsets of As, each an arc or a singleton having endpoints in
W such that their union contains all of As ∩W . We may assume that we
shrink the As’s sufficiently so that if s is any infinite sequence of 0’s and
1’s such that As|n exists for all n, then

∩
n∈ω As|n is a singleton from W ,

so that each point of W can be written uniquely as such an intersection.
Now, let x⟨⟩ be any point of the interior of Y , where ⟨⟩ is the empty
sequence. If xs has been defined and As⟨i⟩ exists (i = 0, 1), then define
xs⟨i⟩ to be the median of the triangle formed by xs and the endpoints
of As⟨i⟩ if As⟨i⟩ is an arc, and the midpoint of xs and As⟨i⟩ if the latter
is a singleton. The dendrite V required will be the union of W , all line
segments from xs to xs⟨i⟩, and possibly one additional line segment from
x⟨⟩ to B (the latter if needed). �
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Proposition 3.6. Suppose V and A are dendrites. Let E be a closed
zero-dimensional subset of V and suppose that f : E → A is continuous.
Then f can be extended to a continuous f ′ : V → A.

Proof. Case 1: V = [0, 1]. For each closed interval I ⊆ [0, 1] with end-
points in E and interior disjoint from E, extend f to an f ′ on I by making
f ′|I one-to-one or constant. Since A is a dendrite, it is easily checked that
f ′ is continuous.

Case 2: V ̸= [0, 1]. Since E is closed and zero-dimensional, it is homeo-
morphic by means of a homeomorphism h : E → E′ to a closed nowhere-
dense subset E′ of the unit interval [0, 1]. Then g = f ◦ h−1 : E′ → A
can be extended to a continuous g′ : [0, 1] → A by Case 1, and h can be
extended to a function h′ on all of V by the Tietze extension theorem.
Then f ′ = g′ ◦ h′ is the desired function. �

Lemma 3.7. Suppose that Σ = H∗, where H is a finite discrete space,
that A is acceptable with respect to Σ, and that A is a dendrite. Let Y ⊆
R2 be a convex compact two-dimensional disk, let B be the boundary of Y ,
and suppose that f : B → D = DA,Σ is a continuous map such that f(B)
is n-compatible with respect to the finite sequence α = ⟨α0, α1, ..., αn−1⟩.
Then D can be written as the union of countably many convex compact
disks Dk, k ∈ ω with boundaries Bk in such a way that f can be extended
to f ′ : B′ → D, where B′ is the closure of the union of the Bk’s, such
that for each k ∈ ω, there exists an αn ∈ H (which depends on k) such
that f ′(Bk) is n+1-compatible with respect to the sequence ⟨α0, ..., αn⟩ of
length n+ 1.

Proof. Assume that f(B) is not n + 1-compatible with respect to any
sequence of length n + 1 extending α, for otherwise we are done. Then
πn ◦ f(B) contains at least two distinct elements of H. Thus, there is a
maximal collection I of disjoint open arcs in B such that for each I ∈ I,
f(I) is n + 1-compatible. We may clearly do this so that W = B \

∪
I

is nowhere dense in B and such that πn(f(W )) = {∗}. Thus, by Lemma
3.5, we can find a dendrite V such that V divides Y into countably many
smaller convex disks. If V intersects B in a point u outside of W (there
will only be one such point, if any), divide V into a dendrite V ′ and
an arc V ′′ such that u ∈ V ′′ and V ′ contains every point of W . Since
πn(f(W )) = {∗}, we have that σn ◦ f : W → A. Thus, by Lemma 3.6,
σn ◦ f extends to a function g : V → A. Extend f to V by defining
f ′(v) = χA(αg(v)). If necessary, use Theorem 3.2 to extend f ′ further
to V ′′. Then if β = f ′(v) where v ∈ V ′′, then [f(u)]n ≼ βn, and if
β = f ′(v) where v ∈ V ′, then βn = ∗. From this, it is easy to see that
if B′ is the boundary of any disk into which V divides Y , then f ′(B) is
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n+1-compatible with respect to some sequence of length n+1 extending
α. �
Theorem 3.8. If Σ = H∗, where H is a finite discrete space, A is ac-
ceptable with respect to Σ, and A is a dendrite, then D = DA,Σ is simply
connected.

Proof. Let Y be the unit disk in the plane and let B be the boundary
of Y . We show that any continuous f : B → D can be extended to
a continuous f ′ : Y → D. Apply Lemma 3.7 to get f ′ extending f ,
defined on the boundaries of countably many smaller convex compact
disks, and 1-compatible on each such boundary. Then apply Lemma 3.7
again on each of the smaller disks, and so forth, repeating the argument
by induction infinitely many times. By using finitely many applications
of Theorem 3.2 at each stage to divide larger disks, if necessary, we may
assume that all disks after stage n have diameter less than 1

n . At the end
of this process we get an f ′ defined on a dense subset of Y . Each point
in x not in this dense set will be the intersection of a nested sequence
of compact convex disks, the boundaries of which are n-compatible with
respect to sequences of arbitrarily large length n, limiting on a sequence
α ∈ Hω giving a natural definition of f ′(x) = χA(α) at all such points,
just as in the proof of Theorem 3.2, except in one higher dimension. The
resulting extension is a continuous map on the entire disk which extends
the circle map. �
Proposition 3.9. If Σ = H∗ and A is acceptable with respect to Σ, then
for every a, b ∈ H and α ∈ Σω, ⟨a⟩α is A-admissible if and only if ⟨b⟩α
is A-admissible.

Theorem 3.10. If Σ = H∗, where H is a finite discrete space, A is
acceptable with respect to Σ, and DA,Σ is simply connected, then A is
connected.

Proof. By contradiction. Suppose that A is not connected. Then H has
at least two distinct points c and e, because otherwise A would be either
∅ or {∗}, both of which are vacuously connected. Let C = π−1

0 ({c, ∗})
(viewing D = DA,Σ as the domain of π0). Then, since {c, ∗} is a closed
subset of Σ, C is a closed subset of D and therefore compact. Note also
that C is arcwise connected, for any two elements of C are 1-compatible
with respect to the sequence ⟨c⟩, and thus connected by an arc which is
also 1-compatible with respect to ⟨c⟩ and therefore a subset of C. Thus,
since A is a subset of C which is not connected, there is an arc connecting
two different components of A. By taking a subarc if necessary, we can
get a path f : [0, 1] → C such that f(0) = α, f(1) = β, and f(x) ∈ C \A
for all x ∈ (0, 1), and α and β are in different components of A. Similarly,
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let E = π−1
0 ({e, ∗}). Then we can get an arc g : [0, 1] → E such that

g(0) = α, g(1) = β, and g(x) ∈ E \ A for all x ∈ (0, 1). To do this, we
simply replace all of the c’s in the first coordinates of f(x), 0 < x < 1, by
e’s, using Proposition 3.9 to see that all of the g(x)’s are in D.

Combining f and g by gluing their domains at the points 0 and 1 where
they agree, we get a continuous function h from the unit circle S into D
such that h(1, 0) = α, h(−1, 0) = β, h(z) ∈ π−1

0 (c) for all z in the upper
half plane, and h(z) ∈ π−1

0 (e) for all z in the lower half plane. By simple
connectedness of D, we can extend h to a continuous function on the unit
disk T . Then X1 = (π0 ◦ h)−1(c) and X2 = (π0 ◦ h)−1(H \ {c}) are two
disjoint open subsets of T , one containing all points of S in the lower half
plane and one containing all points of S in the upper half plane. It follows
that X3 = T \ (X1 ∪ X2) must contain a connected subset Y such that
(−1, 0), (1, 0) ∈ Y . But then h(Y ) is a connected subset of A containing α
and β, contradicting that α and β were in different components of A. �

Question 3.11. Let Σ = H∗, where H is a finite discrete space. Is it
possible to find an acceptable A with respect to Σ such that A is connected
but not locally connected?

4. Miscellaneous Results and Questions

In this section we prove a few miscellaneous results and point out some
things which indicate that further refinements of the theory might be
desirable, such as making some changes in the class of spaces Σ under
consideration or making some adjustments in the definition of an accept-
able set.

For example, if one takes an f : X → X, defines a partition of X for
which f has the ISP, and such that Σ ∈ K, then takes the appropriate ac-
ceptable set A ⊆ Σω to define a new dynamical system σ : DA,Σ → DA,Σ

in which the old system can be embedded, then the quotient topology
on Σ of the natural map π0 : DA,Σ → Σ will be the same as the original
topology on Σ given by the quotient map q : X → Σ of the partition used.
However, it is not clear that this is true if one starts with Σ.

Question 4.1. If Σ ∈ K and A is acceptable with respect to Σ, then is
the quotient topology generated on Σ by the map π0 : DA,Σ → Σ always
the same as the original topology on Σ?

Hopefully, the answer to this question is yes, but if the negative answer
turns out to be correct, then that might suggest either using a more
restricted class of spaces than K or modifying the definition of acceptable
in order to eliminate such examples.
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Some of the abstract dynamical systems σ : DA,Σ → DA,Σ which
are defined from an arbitrary acceptable set seem to look like something
other than what was intended in the original definition. As an example,
note that in the standard examples, the part of the space which corre-
sponded to Z(Σ) (which in turn corresponded to the acceptable set) was
small compared to the space itself. Thus, in the dendrite and dendroid
examples, the acceptable set corresponded to a singleton from the orig-
inal space. In the two-dimensional examples given here, the acceptable
set corresponded to a one-dimensional set. An unusual partition on an
otherwise well-known example shows that this is not always the case.

Example 4.2. Let I = [0, 1] and let f : I → I be given by f(x) =
1 − |2x − 1| (the “slope 2 tent map”). Define a partition {S1, S2, S3, S4}
on I by letting S1 = [0, 1

4 ], S2 = ( 14 ,
1
2 ), S3 = {1

2}, and S4 = ( 12 , 1].
Note that we have the C and R part of the standard {L,C,R} partition,
but we have divided the L part into two pieces in an unorthodox way.
Thus, we have Σ = {1, 2, 3, 4}, with the set {{1, 2}, {2}, {2, 3, 4}, {4}}
as a basis for the symbol topology on Σ, with H = H(Σ) = {2, 4} and
Z(Σ) = {1, 3}. Given any distinct x, y ∈ I, there is an n ∈ ω such that
one of fn(x), fn(y) is in S1 ∪ S2 = [0, 1

2 ) and the other is in S4 = ( 12 , 1],
so since both 1 and 2 can be separated from 4 in the symbol topology,
f has the ISP with respect to this partition. Therefore, ι : I → Σω is
a homeomorphism onto its range by Theorem 1.7. From this, it is easy
to see that A = {ι(x) : x ∈ S1 ∪ S3} (i.e., all itineraries from the range
of ι which start in Z) is acceptable with respect to Σ. It is routine, but
tedious, to check that the set of all A-admissible sequences is exactly the
range of ι so that ι : I → DA,Σ is a homeomorphism. Thus, A has interior
in DA,Σ.

Definition 4.3. We say that an acceptable set A on a symbol space
Σ ∈ K is strongly acceptable if (H(Σ))ω ∩DA,Σ is dense in Σω.

Intuitively, this says that a dense set of points in the dynamical system
spends its entire orbit in the part of the partition defined by H(Σ). As
is easily seen from the following proposition, Example 4.2 does not give a
strongly acceptable set.

Proposition 4.4. If A is strongly acceptable, then A is nowhere dense
in DA,Σ.

Proof. Suppose that A had interior in DA,Σ and let H = H(Σ). Then
there would be a nonempty open set U in Σω such that DA,Σ ∩ U ⊆ A,
which would give Hω ∩DA,Σ ∩ U ⊆ Hω ∩A = ∅, a contradiction. �
Question 4.5. Does either of the conditions “A is nowhere dense as a
subspace of DA,Σ” or “DA,Σ is dense in Σω” imply the other?
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The following result shows that all acceptable sequences covered in [2]
and [3] were also strongly acceptable.

Theorem 4.6. Suppose that Σ ∈ K is such that H(Σ) has at least two
points. Then every countable acceptable set A with respect to Σ such that
A ∩ Zω = ∅ is also strongly acceptable.

Proof. Let H = H(Σ), and suppose that A is a countable acceptable set
with respect to Σ ∈ K such that A ∩ Zω = ∅. Note that this last fact
implies that every α ∈ A has infinitely many n ∈ ω such that αn ∈ H,
for otherwise some shift of α would be in A ∩ Zω. Let U be a nonempty
basic open set in Σω, say U = Πn∈ωUn, where each Un is open in Σ and
Un = Σ for all but finitely many n ∈ ω, say for n ≤ N . Let a and b be
two different elements of H, and for each n ≤ N , let cn ∈ H ∩ Un (using
the fact that H is a dense subset of Σ). Let G be the set of all sequences
α such that αn = cn for n ≤ N and αn is either a or b. Then G is a
subset of Hω ∩ U which is homeomorphic to the Cantor set. Note that
every element of G is A-consistent. We will be done if we can show that
there is an α ∈ G such that χA(α) = α. Let B = χA(G). Then each
element of B′ = B \ Hω is of the form γα′ for some α′ ∈ A and some
finite sequence γ such that for all n in the domain of γ, γn = cn if n ≤ N
and γn is either a or b if n > N . This fact comes from the observation
that if β = χA(α) and βn ̸= αn, then βn ∈ Z, and therefore σn(β) ∈ A.
Thus, since A is countable, and there are only countably many such γ’s,
B′ is countable. Let β ∈ B′, say β = χA(α) where α ∈ G. Then βn ∈ H
for infinitely many n ∈ ω, and αn = βn for all such n. It follows that
χ−1
A (β) is nowhere dense in the Cantor set G. Thus,

∪
β∈B′ χ

−1
A (β) is a

first category subset of G, so there is an α ∈ G such that χA(α) = α.
Thus, α ∈ Hω ∩DA,Σ ∩ U , and we are done. �

One of the properties which played a big role in [3] was self-similarity.
The dendrites Dτ (where τ was an acceptable sequence) constructed there
were self-similar; i.e., there existed finitely many subdendrites D1, D2, ...,
Dn, overlapping at only the turning point, whose union was all of Dτ ,
such that each one mapped homeomorphically to all of Dτ via the shift
map. The following result shows that we have something similar here.

Proposition 4.7. Let Σ ∈ K and suppose that A is acceptable with respect
to Σ, and suppose that B is a maximal n-compatible subset of D = DA,Σ.
Then σn : B → D is a homeomorphism.

Proof. Let γ = ⟨γ0, γ1, ..., γn−1⟩ be a sequence of length n which witnesses
that B is n-compatible, and let B′ = {γα : α ∈ D}. Then σn : B′ → D is
obviously a homeomorphism and is the composition of χA : B′ → B, and
σn : B → D. �
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If we try to use this result to claim self-similarity in our present case,
we run into the following problem.

Question 4.8. Does the intersection of two distinct 1-compatible sets
necessarily have empty interior?

If the answer to this question is “no” (and we conjecture that it is),
then any counterexample would seem not to satisfy the spirit of the idea
of self-similarity. With this possibility in mind, we offer the following
definition of two possible versions for self-similarity.

Definition 4.9. Let Σ ∈ K and suppose that A is acceptable with respect
to Σ. Let D = DA,Σ. We say that σ : D → D is weakly self-similar if and
only if any distinct pair of 1-compatible sets intersects in a nowhere-dense
set. For each b ∈ H(Σ), let C(b) be the closure in D of the set π−1

0 (b)∩D.
We say that σ : D → D is strongly self-similar if and only if each C(b)
maps homeomorphically onto all of D via σ.

It is easy to check that every strongly self-similar example is also
weakly self-similar. Example 4.2 is weakly self-similar but not strongly
self-similar. The following result shows that strong acceptability implies
strong self-similarity for a large class of Σ.

Theorem 4.10. Let Σ = H∗, where H is a locally compact separable
metric space. Suppose that A is strongly acceptable with respect to Σ.
Then σ : D → D = DA,Σ is strongly self-similar.

Proof. Let b ∈ H. If α ∈ C(b) \ π−1
0 (b), then b ≼ α0, for otherwise, α0

could be separated from b in Σ contradicting that α is in the closure of
π−1
0 (b). Thus, C(b) is 1-compatible with respect to the sequence ⟨b⟩, and

therefore σ is one-to-one on C(b). We will be done if we can show that
π−1
0 (b) ∩ D is dense in any 1-compatible set containing π−1

0 (b) ∩ D, for
that would show that C(b) is a maximal 1-compatible set. Since Σ = H∗,
this is the same as showing that every α such that α0 = ∗ is in the closure
of π−1

0 (b) ∩D. Thus, pick α such that α0 = ∗, and let U = Πn∈ωUn be
a basic open set containing α, where Un is Σ for n = 0 and for all but
finitely many n. Then, by strong acceptability of A, U ∩ D ∩ Hω ̸= ∅.
Pick β ∈ U ∩ D ∩ Hω. Then if β0 = b, we are done. Otherwise, define
β′ by letting β′

0 = b and β′
n = βn for n ̸= 0, and β′ is A-admissible by

Proposition 3.9. Thus, we have β′ ∈ U ∩π−1
0 (b)∩D, and we are done. �

Question 4.11. Is the hypothesis Σ = H∗ necessary?
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