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CONNECTED INVERSE LIMITS
WITH A SET-VALUED FUNCTION

VAN NALL

Abstract. In this paper we provide techniques to build set-valued
functions whose resulting inverse limits will be connected.

1. Introduction

Inverse limits have been used by topologists for decades to study con-
tinua. More recently, inverse limits have begun to play a role in dynamical
systems, at least among researchers who are interested in the role that
the topological structure of attractors, orbit spaces, or Julia sets play in
the dynamics generated by continuous functions between compact spaces.
Also recently, William S. Mahavier [5] introduced the study of inverse
limits with set-valued functions on intervals, and later W. T. Ingram and
Mahavier [4] generalized to set-valued functions on compact sets. There is
a growing body of research into the structure of these generalized inverse
limits. It has even been suggested that they, too, could play a role in
the study of dynamical systems. That may be, but since we are at the
beginning of the study of generalized inverse limits, there are some very
basic things that need to be better understood.

For example, with continuous functions defined between one dimen-
sional continua, the resulting inverse limit is a one dimensional contin-
uum. In the case of generalized inverse limits, it is possible to have a
set-valued function between intervals with a one dimensional graph such
that the inverse limit with this function is infinite dimensional, and it is
possible to have a set-valued function between intervals with a connected
graph that yields an inverse limit that is not connected. In fact, Sina
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168 V. NALL

Greenwood and Judy Kennedy [1] have shown that in the collection of
all sets that are generalized inverse limits with bonding functions whose
graphs are closed connected subsets of [0, 1] × [0, 1], those sets that are
homeomorphic to the Cantor set form a dense Gδ set. In addition, we do
not have general criteria for determining whether or not a given set-valued
function will produce the relatively rare occurrence of a connected gener-
alized inverse limit. Indeed, it looks like such a set of criteria would be
very complicated. Our response will be to take a constructive approach to
the problem of connected generalized inverse limits. That is, our goal is to
provide techniques to build set-valued functions whose resulting inverse
limits will be connected. For example, we consider such questions as, If
lim←− f is connected, then what sorts of sets can be added to the graph of
f to yield a set-valued function g such that lim←− g is still connected?

2. Definitions and Notation

A continuum is a compact and connected Hausdorff space. If {Xi}
is a countable collection of compact spaces, then Π∞

i=1Xi represents the
countable product of the collection {Xi}, with the usual product topol-
ogy. Elements of this product will be denoted with bold type and the
coordinates of the element in italic type, so that, for example, x =
(x1, x2, x3, . . .) ∈ Π∞

i=1Xi. For each i, let πi : Π∞
i=1Xi → Xi be defined

by πi(x) = πi((x1, x2, x3, . . .)) = xi. The same notation will be used in
the case of Πn

i=1Xi ; that is, πi : Πn
i=1Xi → Xi is defined by πi(x) =

πi((x1, x2, x3, . . . , xn)) = xi. Also, for 1 ≤ j < k ≤ n, πj,k : Πn
i=1Xi →

Πk
i=jXi is defined by πj,k((x1, x2, x3, . . . , xn)) = (xj , xj+1, . . . , xk).
For each i, let fi : Xi+1 → 2Xi be a set-valued function where 2Xi

is the hyperspace of compact subsets of Xi. The inverse limit of the
sequence of pairs {(fi, Xi)}, denoted lim←− (fi, Xi), is defined to be the set
of all (x1, x2, x3, . . .) ∈ Π∞

i=1Xi such that xi ∈ fi(xi+1) for each i. The
functions fi are called bonding functions and the spaces Xi are called
factor spaces. The notation lim←− fi will also be used for lim←− (fi, Xi) when
the sets Xi are understood. In this paper, we will work exclusively with
the case where there is a single set-valued function f from a continuum
X into 2X , and lim←− f = lim←− fi where fi = f for each i. The notation
lim←−G will sometimes be used for lim←− f when G is the graph of f . The
notation Gn will be used in the following way. Let G1 = X, and for each
integer n > 1, let Gn be the set of all (x1, x2, . . . , xn) ∈ Πn

i=1X such that
(xi+1, xi) ∈ G. When more than one function is involved, e.g., f and g, we
will use Gn(f) and Gn(g). Note that this is similar to the notation used
in [3] except that in [3], the set Gn is considered as a subset of Π∞

i=1X.
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A set-valued function f : X → 2Y into the compact subsets of Y is
upper semi-continuous (usc) if for each open set V ⊂ Y , the set {x :
f(x) ⊂ V } is an open set in X. A set-valued function f : X → 2Y

where X is Hausdorff and Y is compact is usc if and only if the graph
of f is compact in X × Y [4, Theorem 4, p. 58]. It is therefore easy
to see that if f : X → 2Y is usc and X and Y are compact Hausdorff
spaces and G is the graph of f , then the set-valued function f−1 which
has graph G−1 = {(y, x) : (x, y) ∈ G} is also usc from Y to 2X . A
set-valued function f : X → 2Y will be called surjective if for each y ∈ Y ,
there is a point x ∈ X such that y ∈ f(x). In this paper, we are only
considering inverse limits with a single bonding function and we need
for that assumption to imply that πi,i+1(lim←− f) is homeomorphic to the
graph of f for each i. For that reason, it is essential to require that the
function f be surjective. Finally, for a fixed continuum X and integers
m and n, the symbol ⊕ represents the binary operation ⊕ : Πn

i=1X ×
Πm

i=1X → Πm+n
i=1 X defined by (x1, x2, x3, . . . , xn) ⊕ (y1, y2, y3, . . . , ym) =

(x1, x2, x3, . . . , xn, y1, y2, y3, . . . , yn).

3. Results

It is easy to construct a surjective set-valued function with a connected
graph whose composition with itself has a disconnected graph (see Exam-
ple 3.4). Since the graph of the composition of the function with itself
is homeomorphic to the projection of the inverse limit with this function
into the first and third coordinates, such an inverse limit would not be
connected.

Before the first example, we present a couple of theorems that can
be used to show the connectivity of a large class of inverse limits. The
first is a generalization of results of Ingram [2, Theorem 3.3 and Theorem
4.2]. It is known that a surjective continuum-valued usc function from a
continuum X to 2X yields a connected inverse limit [3, Theorem 4.7]. So
we want to know when the inverse limit with a function that is the union
of continuum-valued functions is connected. The following is the most
general possible union theorem for this type of function in the sense that
the most general union theorem must require that the union be closed so
that the resulting function is usc; the most general union theorem must
require that the union be connected since the graph of the function used
to form the inverse limit is a continuous projection of the inverse limit;
and finally, the restriction to surjective set-valued functions was explained
earlier, so the most general union theorem should require that the union
is the graph of a surjective function.
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Theorem 3.1. Suppose X is a compact metric space, and {Fα}α∈Λ is a
collection of closed subsets of X ×X such that for each x ∈ X and each
α ∈ Λ, the set {y ∈ X : (x, y) ∈ Fα} is nonempty and connected, and
such that F =

∪
α∈Λ

Fα is a closed connected subset of X ×X such that for

each y ∈ X, the set {x ∈ X : (x, y) ∈ F} is nonempty. Then lim←−F is
connected.

Proof. Assume X is a compact metric space and {Fα}α∈Λ is a collection
of closed subsets of X × X such that for each x ∈ X and each α ∈ Λ,
the set {y ∈ X | (x, y) ∈ Fα} is nonempty and connected, and such that
F =

∪
α∈Λ

Fα is a closed connected subset of X × X such that for each

y ∈ X, the set {x ∈ X | (x, y) ∈ F} is nonempty. Recall that G1 = X,
and for each integer n > 1, the set of all (x1, x2, . . . , xn) ∈ Πn

i=1X such
that (xi+1, xi) ∈ F for i = 1, . . . , n−1 is called Gn. For each integer n > 1
and each α ∈ Λ, let Gn,α be the set of all (x1, x2, . . . , xn) ∈ Gn such that
(x2, x1) ∈ Fα. Then, clearly, each Gn is compact and Gn =

∪
α∈Λ

Gn,α.

Note that G2 is homeomorphic to F . So G1 and G2 are compact and
connected. Assume n > 2 and Gn−1 is connected. Let Ψα : Gn,α →
Gn−1 be the continuous function defined by Ψ(x) = π2,n(x). If y =
(y1, y2, . . . , yn−1) ∈ Gn−1, then Ψ−1

α (y) = {(z, y1, y2, . . . , yn−1) | (y1, z) ∈
Fα} is homeomorphic to {z | (y1, z) ∈ Gα} which, by assumption, is non-
empty and connected. Therefore, Ψα is a monotone continuous surjection
onto a compact connected set. It follows that Gn,α is connected for each
α.

Note that since for each y ∈ X, the set {x ∈ X | (x, y) ∈ F} is
nonempty, each coordinate projection of Gn is X and the projection
onto the first two coordinates of Gn is F−1. Now suppose H and K
are nonempty closed subsets of Gn such that Gn = H ∪ K. Let H∗ be
the set of all pairs (a, b) ∈ F such that there is a (y1, y2, . . . yn) ∈ H such
that b = y1 and a = y2, and let K∗ be the set of all pairs (a, b) ∈ F such
that there is a (y1, y2, . . . yn) ∈ K such that b = y1 and a = y2. Since
H∗ and K∗ are the respective projections of H and K onto their first two
coordinates, H∗ and K∗ are continuous images of H and K, and therefore
they are nonempty closed sets whose union is the connected set F . So
H∗ ∩K∗ ̸= ∅. Let (c, d) ∈ H∗ ∩K∗. There exists y = (y1,y2, . . . yn) ∈ H
such that y1 = c and y2 = d; there exists z = (z1, z2, . . . zn) ∈ K such
that z1 = c and z2 = d; and there exist α ∈ Λ such that (d, c) ∈ Fα.
Thus, the connected set Gn,α, which is a subset of Gn, contains both y
and z. It follows that H ∩K ̸= ∅, and therefore Gn is connected.

By induction, it follows that Gn is connected for each n. For each n, let
G∗

n be the set of all (x1, x2, . . . , xn, . . .) ∈ Π∞
i=1X such that (x1, x2, . . . xn) ∈



CONNECTED INVERSE LIMITS WITH A SET-VALUED FUNCTION 171

Gn. Then G∗
n is compact and connected for each n, and since lim←−F =

∞∩
n=1

G∗
n , it follows that lim←−F is connected . �

Let {fi}∞i=0 be given by fi(x) = 1
i + x( 1

i+1 −
1
i ) for 0 ≤ x ≤ 1 and i

odd, fi(x) = 1
i+1 + x( 1i −

1
i+1 ) for 0 ≤ x ≤ 1 and i even, and f0(x) = 0

for 0 ≤ x ≤ 1. The conditions for both of the union theorems in [2,
Theorem 3.3 and Theorem 4.2] require that the collection contains a single
function whose graph contains a point in each of the graphs of the other
functions in the collection, and {fi}∞i=0 does not meet that requirement.
However, {fi}∞i=0 does satisfy the conditions of Theorem 3.1. So lim←−

∪
i≥0

fi

is connected.

Lemma 3.2. Suppose X is a Hausdorff continuum, f : X → 2X is a usc
set-valued function, and, for each n, Gn is the set of all (x1, x2, . . . , xn) ∈
Πn

i=1X such that xi+1 ∈ f(xi) for i = 1, . . . , n−1. Then lim←− f is connected
if and only if Gn is connected for each n.

Proof. The proof is contained in the last two sentences of the proof of
Theorem 3.1. �

Theorem 3.3. Suppose X is a Hausdorff continuum and f : X → 2X is
a surjective usc set-valued function. Then lim←− f is connected if and only
if lim←− f−1 is connected.

Proof. Assume X is a Hausdorff continuum and f : X → 2X is a sur-
jective usc set-valued function. For each n, let Gn be the set of all
(x1, x2, . . . , xn) ∈ Πn

i=1X such that xi ∈ f(xi+1) for each i such that
1 ≤ i ≤ n − 1, and let G−1

n be the set of all (x1, x2, . . . , xn) ∈ Πn
i=1X

such that xi ∈ f−1(xi+1) for each i such that 1 ≤ i ≤ n − 1. Then
(x1, x2, . . . , xn) ∈ Gn if and only if (xn, xn−1, . . . , x1) ∈ G−1

n . Therefore,
Gn and G−1

n are homeomorphic. Since lim←− f is connected if and only if
Gn is connected for each n by Lemma 3.2 and lim←− f−1 is connected if and
only if G−1

n is connected for each n, it follows that lim←− f is connected if
and only if lim←− f−1 is connected. �

Example 3.4. Define f : [0, 1]→ 2[0,1] to be the function whose graph is
the union of the following two sets: A = {(x, y) : 0 ≤ x ≤ 1 and y = 1

2x}
and B = {(x, y) : 1

2 ≤ x ≤ 1 and y = 2x − 1}. In Figure 1, A is the
graph of f1 and B is the graph of f2. The function f is usc since the
graph of f is compact [4, Theorem 4, p. 58], and the graph of f is clearly
connected. It is easy to see that the graph of f ◦ f is not connected since
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(.5, 0)

(1, .5)

f 2

f1

Graph of f = f1 ∪ f2

f 1
◦ f

2

f1 ◦ f1

f 2
◦
f 2

f2 ◦ f1
(.5, 0) (.75, 0) (1, 0)

(1, .5)

Graph of f2

the point (1, 0) is an isolated point in the graph of f ◦ f = f2. Therefore,
lim←− f = lim←− (A ∪ B) is not connected. Let us label A1 = {(x, y) ∈ A :

x ≤ 2
3}, A2 = {(x, y) ∈ A : x ≥ 2

3}, B1 = {(x, y) ∈ B : x ≤ 2
3}, and

B2 = {(x, y) ∈ B : x ≥ 2
3}. Then A and A1 ∪ B2 are each the graph of

a continuous function from [0, 1] into [0, 1]. Also, the set A ∪ (A1 ∪ B2)
is closed and connected and is the graph of a surjective usc function from
[0, 1] to 2[0,1]. Therefore, by Theorem 3.1, lim←−A∪(A1∪B2) = lim←−A∪B2 is
connected, whereas it has been noted that lim←− (A∪B2)∪B1 = lim←−A∪B is
not connected. Similarly, with the use of Theorem 3.1 and Theorem 3.3, it
can be seen that lim←−A1∪B is connected but lim←− (A1∪B)∪A2 = lim←−A∪B
is not connected. This demonstrates the necessity in Theorem 3.1 for the
assumption that each function have domain all of X. Also, A1 ∪B is the
graph of a very simple usc function with a connected inverse limit such
that if one adds the set A that is the graph of a straight line defined on all
of [0, 1], one gets A∪B, which has disconnected inverse limit. This raises
the question that motivates the next two theorems: If lim←− f is connected,
then what sort of set can one add to the graph of f and obtain the graph
of a set-valued function with inverse limit that is still connected?

The following theorem was first suggested by Chris Mouron. Its use-
fulness is certainly hindered by the difficulty of checking the condition
fg = gf . One exception is the case where g is the identity function. An-
other easy-to-check case would be if g is a constant function with value b
and f(b) = {b}.

Theorem 3.5. Suppose X is a Hausdorff continuum and f : X → 2X is a
surjective usc set-valued function such that lim←− f is connected, g : X → X
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is a continuous function such that fg = gf , and the graphs of f and g
are not disjoint. Then lim←− f ∪ g is connected.

Proof. Assume X is a Hausdorff continuum and f : X → 2X is a surjective
usc set-valued function such that lim←− f is connected, g : X → X is a
continuous function such that fg = gf , and the graphs of f and g are
not disjoint. For each positive integer n > 1, let Gn(f ∪ g) be the set

of all (x1, x2, . . . , xn) ∈
n

Π
i=1

X such that xi ∈ f ∪ g(xi+1) for 1 ≤ i < n;

let Gn(f) be the set of all (x1, x2, . . . , xn) ∈ Gn(f ∪ g) such that xi ∈
f(xi+1) for each i < n; and for each j < n, let Gj

n be the set of all
(x1, x2, . . . , xn) ∈ Gn(f ∪ g) such that xj = g(xj+1). We will show that
Gn(f ∪ g) is connected for each n > 1. Since G2(f ∪ g) is homeomorphic
to the graph of f ∪ g, it is connected. Assume Gn−1(f ∪ g) is connected.

From the definitions above, it follows that Gn(f ∪g) = Gn(f)∪
n−1
∪

j=1
Gj

n.

Since the graphs of f and g are not disjoint, there is a point z in X such
that g(z) ∈ f(z), and for each j < n, there is an x ∈ Gn(f) such that
πj+1(x) = z. Therefore, x ∈ Gn(f)∩Gj

n. Since lim←− f is connected, Gn(f)

is connected by Lemma 3.2. So we will show that Gj
n is connected for

each j < n from which it follows that Gn(f ∪ g) is connected.
To see that G1

n is connected, note that the function that sends (x1, x2,
. . . , xn−1) ∈ Gn−1 to (g(x1), x1, x2, . . . , xn−1) ∈ G1

n is a homeomorphism
from Gn−1(f ∪ g) onto G1

n.
For each j < n−1, consider the function Ψj : Π

n
i=1X → Πn

i=1X defined
by Ψi(x) = π1,j(x) ⊕ (g(πj+2(x))) ⊕ πj+2,n(x). It is obvious that each
Ψj is continuous. We will show that the restriction of Ψj to Gj

n maps Gj
n

onto Gj+1
n .

Let x be an element of Gj
n. That is, assume x ∈ Gn, and assume

πj(x) = g(πj+1(x)). Now either πj+1(x) = g(πj+2(x)) or πj+1(x) ∈
f(πj+2(x)). If πj+1(x) = g(πj+2(x)), then x ∈ Gj+1

n , and Ψj(x) = x. So
Ψj(x)) ∈ Gj+1

n . If πj+1(x) ∈ f(πj+2(x)), then πj(x) ∈ g(f(πj+2(x))) =
f(g(πj+2(x)). So Ψj(x) = π1,j(x)⊕(g(πj+2(x)))⊕πj+2,n(x) is an element
of Gj+1

n . Therefore, Ψj maps Gj
n into Gj+1

n .
Now let x be an element of Gj+1

n . That is, assume x ∈ Gn and as-
sume πj+1(x) = g(πj+2(x)). Now either πj(x) = g(πj+1(x)) or πj(x) ∈
f(πj+1(x)). If πj(x) = g(πj+1(x)), then x ∈ Gj

n, and Ψj(x) = x. So
x ∈ Ψj(G

j
n). If πj(x) ∈ f(πj+1(x)), then πj(x) ∈ f(g(πj+2(x))) =

g(f(πj+2(x)). So there is a z ∈ f(πj+2(x)) such that πj(x) = g(z). There-
fore, w = π1,j(x)⊕ (z)⊕ πj+2,n(x) is an element of Gj

n, and Ψj(w) = x.
Again, this implies that x ∈ Ψj(G

j
n). Therefore, Ψj maps Gj

n onto Gj+1
n .
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It follows, then, that each Gj
n is connected, and therefore Gn is con-

nected. By induction, we have that each Gn is connected. So, from
Lemma 3.2, it follows that lim←− f ∪ g is connected. �

Example 3.4 shows that one must be very careful about what one adds
to the graph of a function whose inverse limit is connected in order to have
the union of the two graphs be a function with connected inverse limit.
For example, it is possible to add the graph of a straight line defined on all
of [0, 1] to the graph of a very simple set-valued function f : [0, 1]→ [0, 1]
with connected lim←− f and have the inverse limit be not connected. We
will show that under some conditions, one can add a section of the graph
of the identity function or a section of the graph of a constant function
and the inverse limit will remain connected.

Theorem 3.6. Suppose X is a Hausdorff continuum, and f : X → 2X

is a surjective usc set-valued function such that lim←− f is connected, D is
a closed subset of X, and g : D → X is a mapping such that the graph of
f∪g is connected, and if x is in the boundary of D in X, then g(x) ∈ f(x).
If, in addition, the mapping g is defined by g(x) = x for each x ∈ D or
for some a ∈ X the mapping g is defined by g(x) = a for each x ∈ D,
then lim←− f ∪ g is connected.

If, in addition, the mapping g is defined by g(x) = x for each x ∈ D,
or for some a ∈ X, the mapping g is defined by g(x) = a for each x ∈ D,
then lim←− f ∪ g is connected.

Proof. Assume X is a Hausdorff continuum, and f : X → 2X is a sur-
jective usc set-valued function such that lim←− f is connected, D is a closed
subset of X, and g : D → X is a function such that the graph of f ∪ g is
connected, and if x is in the boundary of D in X, then g(x) ∈ f(x).

Recall that for n > 1, the set Gn(f) is the set of all (x1, x2, . . . , xn) ∈
Πn

i=1X such that xi ∈ f(xi+1) for 1 ≤ i < n and Gn(f ∪ g) is the
set of all (x1, x2, . . . , xn) ∈ Πn

i=1X such that xi ∈ f(xi+1) ∪ g(xi+1) for
1 ≤ i < n. Now, for n > 1, define G0

n = Gn(f ∪ g), and for each
1 ≤ j ≤ n−1, define Gj

n as the set of all (x1, x2, . . . , xn) ∈ Gn(f ∪g) such
that xi ∈ f(xi+1) for n − j ≤ i < n. Note that for each n > 1, we have
Gn(f) = Gn−1

n ⊂ Gn−2
n ⊂ · · · ⊂ G0

n = Gn(f ∪ g). Note also that Gn(f) is
connected for each n > 1 since lim←− f is connected.

By Lemma 3.2, we must show that G0
m = Gm(f ∪ g) is connected

for each m > 1. Suppose it is not the case that G0
m is connected for

each m > 1. Let n be the smallest natural number such that Gj
n is not

connected for some j such that 0 ≤ j < n − 1. Since Gn−1
n = Gn(f)

is connected, there is a k such that Gk+1
n is connected and Gk

n is not
connected. It will be shown that for each x ∈ Gk

n \ Gk+1
n , there is a
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connected subset of Gk
n containing x and a point of Gk+1

n . This contradicts
that Gk

n is not connected.
Note that G1

2 = G2(f), which is connected, and G0
2 is homeomorphic

to the graph of f ∪ g, which is connected. Therefore, n > 2.
Assume that g(x) = x for each x ∈ D. Let x ∈ Gk

n \ Gk+1
n . Then

πn−k−1(x) ∈ f ∪ g(πn−k(x)) and πn−k−1(x) ∈ X \ f(πn−k(x)). So
πn−k−1(x) = g(πn−k(x)) = πn−k(x) and πn−k(x) ∈ D. Let x′ =
π1,n−k−2(x) ⊕ πn−k,n(x). That is, x′ is obtained by removing the (n −
k − 1)th coordinate of x. Note that x′ ∈ Gk

n−1.
Let W be the set of all z ∈ Gk

n−1 such that πn−k(z) ∈ D, and let K
be the component of W that contains x′. Since the graphs of f and g
are closed and the graph of f ∪ g is connected, there is a point y in the
connected set Gk

n−1 such that πn−k(y) ∈ D and πn−k(y) = g(πn−k(y)) ∈
f(πn−k(y)). If y ∈ K, let y′ = y. If y is not in K, then K contains a point
y′ in the boundary of W in Gk

n−1. It follows that πn−k(y
′) is in the bound-

ary of D in X, and therefore πn−k(y
′) = g(πn−k(y

′)) ∈ f(πn−k(y
′)). So

K is a continuum such that πn−k(K) ⊂ D, and K contains x′ and a point
y′ such that πn−k(y

′) = g(πn−k(y
′)) ∈ f(πn−k(y

′)). Now let F : K → Gk
n

be defined by F (z) = π1,n−k(z)⊕πn−k,n−1(z). That is, insert a new coor-
dinate between the (k− 1)th coordinate and the kth coordinate of z equal
to the kth coordinate of z. This map F is clearly a homeomorphism on
K, and K∗ = F (K) is a continuum in Gk

n that contains x since x = F (x′)
and the point F (y′), which is in Gk+1

n .
So Gk

n is connected, a contradiction. It follows that G0
n = Gn(f ∪ g) is

connected for each n. Therefore, lim←− f ∪ g is connected in the case that
g(x) = x for each x ∈ D.

Now assume there is an a ∈ X such that g(x) = a for each x ∈ D. Let
x ∈ Gk

n \Gk+1
n . Then πn−k−1(x) ∈ f ∪ g(πn−k(x)) and πn−k−1(x) ∈ X \

f(πn−k(x)). It follows that πn−k−1(x) = a = g(πn−k(x)) and πn−k(x) ∈
D. So let x′ = πn−k,n(x), and note that x′ ∈ Gk

n−k+1 = Gn−k+1(f).
Let W be the set of all z ∈ Gk

n−k+1 such that π1(z) ∈ D, and let K
be the component of W that contains x′. Since the graphs of f and g
are closed and the graph of f ∪ g is connected, there is a point y in the
connected set Gk

n−k+1 such that π1(y) ∈ D and a = g(π1(y)) ∈ f(π1(y)).
If y ∈ K, let y′ = y. If y is not in K, then K contains a point y′ in the
boundary of W in Gk

n−k+1. It follows that π1(y
′) is in the boundary of

D in X, and therefore a = g(π1(y
′)) ∈ f(π1(y

′)). So K is a continuum
such that π1(K) ⊂ D, and K contains x′ and a point y′ such that a =
g(π1(y

′)) ∈ f(π1(y
′)). Note that since the first coordinate of each point in

K is in D, if we attach π1,n−k−1(x) to any point in K, the result is a point
in Gk

n. That is, let F : K → Gk
n be defined by F (z) = π1,n−k−1(x) ⊕ z.
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This map F is clearly a homeomorphism on K, and K∗ = F (K) is a
continuum in Gk

n that contains x since x = F (x′) and the point F (y′),
which is in Gk+1

n .
So Gk

n is connected, a contradiction. It follows that G0
n = Gn(f ∪ g)

is connected for each n. Therefore, lim←− f ∪ g is also connected in the case
that g(x) = a for each x ∈ D. �

When we apply the results in Theorem 3.6 and Theorem 3.3 to the
case where f : [0, 1]→ 2[0,1] and lim←− f is connected, we see that if we add
to the graph of f a horizontal line of the form {(x, a) : c ≤ x ≤ d} where
{c, d} ⊂ f−1(a) ∪ {0, 1} or we add to the graph of f a vertical line of the
form {(a, x) : c ≤ x ≤ d} where {c, d} ⊂ f(a) ∪ {0, 1}, then the inverse
limit with this new set-valued function will be connected.

For a usc set-valued function f : X → 2X and a continuous function
g : X → X, the usc set-valued function g−1fg is given by y ∈ g−1fg(x)
if and only if g(y) ∈ f(g(x)). We say a usc function h : X → 2X is a
semi-conjugate of a usc function f : X → 2X if and only if there is a
continuous surjective function g : X → X such that gh = fg. It is easy
to check that this requirement is equivalent to saying h = g−1fg. It is
also easy to see that h being semi-conjugate of f does not imply that f
is a semi-conjugate of h.

Theorem 3.7. Suppose X is a Hausdorff continuum, f : X → 2X is a
surjective usc set-valued function, g : X → X is continuous and surjective,
and lim←− g−1fg is connected, then lim←− f is connected.

Proof. Assume X is a Hausdorff continuum, f : X → 2X is a sur-
jective usc set-valued function, g : X → X is continuous and surjec-
tive, and lim←− g−1fg is connected. For each n, let Gn be the set of all
(x1, x2, . . . , xn) ∈ Πn

i=1X such that xi ∈ f(xi+1) for i ≤ n − 1, and
for each n, let G′

n be the set of all (x1, x2, . . . , xn) ∈ Πn
i=1X such that

xi ∈ g−1f(g(xi+1)) for i ≤ n − 1. It will be shown that the continuous
function that sends (x1, x2, . . . , xn) to (g(x1), g(x2), . . . , g(xn)) maps G′

n

onto Gn.
Let (x1, x2, . . . , xn) be an element of G′

n. Since xi ∈ g−1fg(xi+1)
for each i ≤ n − 1, it is true that g(xi) ∈ f(g(xi+1)) for each i ≤ n − 1.
Therefore, (g(x1), g(x2), . . . , g(xn)) ∈ Gn. Now, for each (y1, y2, . . . , yn) ∈
Gn, let (x1, x2, . . . , xn) be an element of Πn

i=1X such that xi ∈ g−1(yi) for
each i ≤ n. Since for each i ≤ n, it is true that yi ∈ f(yi+1) = f(g(xi+1)),
it follows that for each i ≤ n, it is true that xi ∈ g−1(yi) ⊂ g−1f(g(xi+1)).
Thus, (x1, x2, . . . , xn) ∈ G′

n. Therefore, the continuous function that
sends (x1, x2, . . . , xn) to (g(x1), g(x2), . . . , g(xn)) maps G′

n onto Gn.
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Since lim←− g−1fg is connected, G′
n is connected for each n. Therefore,

Gn is connected for each n. Thus, lim←− f is connected by Lemma 3.2. �

The previous theorem is most likely to be useful for producing new
functions with disconnected inverse limit since if f : X → 2X is a set-
valued function such that lim←− f is not connected, then for any continuous
function g : X → X, the lim←− g−1fg will also be not connected.
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