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A LOWER BOUND ON THE
WIDTH OF SATELLITE KNOTS

ALEXANDER ZUPAN

Abstract. Thin position for knots in S3 was introduced by David
Gabai in Foliations and the topology of 3-manifolds III [J. Differ-
ential Geom. 26 (1987), 479–536] and has been used in a variety
of contexts. We conjecture an analogue to a theorem of Horst
Schubert and Jennifer Schultens concerning the bridge number of
satellite knots. For a satellite knot K, we use the companion torus
T to provide a lower bound for w(K), proving the conjecture for
K with a 2-bridge companion. As a corollary, we find thin position
for any satellite knot with a braid pattern and 2-bridge companion.

1. Introduction

Thin position for knots in S3 was introduced by David Gabai [2] and
has since been studied extensively. Although thin position has been used
in a variety of arguments, there are relatively few methods for putting
specific knots into thin position. Thin position of a knot always provides
a useful surface; either a level sphere is a bridge sphere for the knot or
the thinnest thin sphere is incompressible in the complement of the knot,
as shown by Ying-Qing Wu [9].

In some sense, width can be considered to be a refinement of bridge
number, although recently Ryan Blair and Maggie Tomova [1] have shown
that one cannot always recover the bridge number of a knot K from the
thin position of K. On the other hand, if K is small, then w(K) = 2·b(K)2

and any thin position of K is a minimal bridge position [8]. In his seminal
paper on the subject, Horst Schubert [6] proved that for any two knots K1
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and K2, b(K1#K2) = b(K1) + b(K2) − 1. An updated proof by Jennifer
Schultens appears in [7].

Unfortunately, we cannot hope for a similar statement to hold for
width. In [5], Martin Scharlemann and Schultens establish max{w(K1),
w(K2)} as a lower bound for w(K1#K2), and Blair and Tomova [1] prove
that this bound is sharp in some cases, while Yo’av Rieck and Eric Sedg-
wick [4] demonstrate that the bound is never sharp for small knots. Both
Schubert and Schultens also prove the following theorem.

Theorem 1.1. Let K be a satellite knot with pattern K̂ and companion
J , and let n be the winding number of K̂. Then

b(K) ≥ n · b(J).
We make an analogous conjecture.

Conjecture 1.2. Let K be a satellite knot with pattern K̂ and companion
J , and let n be the winding number of K̂. Then

w(K) ≥ n2 · w(J).
In this paper, we provide a weaker lower bound for w(K). Our main

theorem follows.

Main Theorem. Let K be a satellite knot with pattern K̂, and let n be
the winding number of K̂. Then

w(K) ≥ 8n2.

This proves the conjecture in the case that the companion J is a 2-
bridge knot, since the width of such J is 8. As a corollary, if K is a
satellite with a 2-bridge companion and its pattern K̂ is a braid with
index n, then any thin position is a minimal bridge position for K.

2. Preliminaries

Let K be a knot in S3, and let M(K) denote the collection of Morse
functions h : S3 → R with exactly two critical points, denoted ±∞, such
that h|K is also Morse. (Equivalently, we could fix some Morse function
h and look instead at the collection of embeddings of S1 isotopic to K
in S3.) For every h ∈ M(K), let c0 < c1 < · · · < cn denote the critical
values of h|K . Choose regular values c0 < r1 < c1 < · · · < rn < cn, and
define

w(h) =

n∑
i=1

|K ∩ h−1(ri)|,

b(h) =
n+ 1

2
,

trunk(h) = max |K ∩ h−1(ri)|.
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Now, let

w(K) = min
h∈M(K)

w(h),

b(K) = min
h∈M(K)

b(h),

trunk(K) = min
h∈M(K)

trunk(h).

These three knot invariants are called the width , the bridge number, and
the trunk of K, respectively. Width was defined by Gabai [2], bridge
number by Schubert [6], and trunk by Ozawa [3]. Observe that b(K)
is the least number of maxima (or minima) of any embedding of K. If
h ∈ M(K) satisfies w(K) = w(h), we say that h is a thin position for
K. If all maxima of h occur above all minima, we say that h is a bridge
position for K, and if b(h) = b(K), we call h a minimal bridge position
for K.

In [5], the authors give an alternative formula for computing width,
which involves thin and thick levels. Let h ∈ M(K) with critical and
regular values as defined above. Then h−1(ri) is a thick level if |K ∩
h−1(ri)| > |K ∩ h−1(ri−1)|, |K ∩ h−1(ri+1)| and h−1(ri) is a thin level if
|K ∩ h−1(ri)| < |K ∩ h−1(ri−1)|, |K ∩ h−1(ri+1)|, where 1 < i < n. Note
that if h is a bridge position for K, then h has exactly one thick level
and no thin levels. Letting a1, . . . , am denote the number of intersections
of the thick levels with K and letting b1, . . . , bm−1 denote the number of
intersection of the thin levels with K, the width of h is given by

w(h) =
1

2

(
m∑
i=1

a2i −
m−1∑
i=1

b2i

)
.

In particular, we see that for every h ∈ M(K), there exists ai ≥ trunk(K),
which implies that

w(K) ≥ trunk(K)2

2
.

The knots we will be concerned with are satellite knots: Let K̂ be a
knot contained in a solid torus V with core C such that every meridian of
V intersects K̂, and let J be any nontrivial knot. Suppose that φ : V → S3

is an embedding such that φ(C) is isotopic to J in S3. Then K = φ(K̂)

is called a satellite knot with companion J and pattern K̂. Essentially, to
construct a satellite knot K, we start with a pattern in a solid torus and
then “tie” the solid torus in the shape of the companion J .

We will need several more definitions to state the main result. Let K̂
be a pattern contained in a solid torus V . The winding number of K̂,
#(K̂), is the absolute value of the algebraic intersection number of any
meridian disk of V with K̂. Equivalently, if α : S1 → V is an embedding
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such that α(S1) = K̂ and r : V → S1 is a strong deformation retract of
V onto its core, then #(K̂) agrees with the degree of the map r ◦ α. Let
K̂ be a pattern contained in a solid torus V . We say that K̂ is a braid of
index n if there is a foliation of V such that every leaf is a meridian disk
intersecting K̂ exactly n times.

In the case that K̂ is a braid of index n, it is clear that #(K̂) = n.
For an example, consider Figure 1. On the left, we see a braid pattern of
index 3, K̂, contained in a solid torus V . On the right, V is embedded in
such a way that its core is a trefoil. Thus, the knot K on the right is a
satellite knot with trefoil companion and pattern K̂.

Figure 1. On the left, pattern K̂ is shown contained in
a solid torus. On the right, we see a satellite knot K with
pattern K̂ and trefoil companion.

3. Reducing the Saddle Points
on the Companion Torus

From this point on, we set the convention that K is a satellite knot
with companion J and pattern K̂ contained in a solid torus V̂ , φ is an
embedding of V̂ into S3 that takes a core of V̂ to J , V = φ(V̂ ), and
T = ∂V . Further, we will let h ∈ M(K) and perturb V slightly so that
h|T is Morse. We wish to restrict our investigation to tori T with only
certain types of saddle points.

In this vein, we follow [7], from which the next definition is taken.
Consider the singular foliation, FT , of T induced by h|T . Let σ be a leaf
corresponding to a saddle point. Then one component of σ is the wedge
of two circles s1 and s2. If either is inessential in T , we say that σ is an
inessential saddle. Otherwise, σ is an essential saddle.
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The next lemma is the Pop Over Lemma [7, Lemma 1].

Lemma 3.1. If FT contains inessential saddles, then after a small isotopy
of T , there is an inessential saddle σ in T such that

(1) s1 bounds a disk D1 ⊂ T such that FT restricted to D1 contains
only one maximum or minimum,

(2) for L, the level surface of h containing σ, D1 co-bounds a 3-ball
B with a disk D̃1 ⊂ L such that B does not contain ±∞ and such
that s2 lies outside of D̃1.

In the following lemma, we mimic Lemma 2 of [7] with a slight modi-
fication to preserve the height function h on K.

Lemma 3.2. There exists an isotopy ft : S3 → S3 such that f0 = Id,
h = h ◦ f1 on K, and the foliation of T induced by h ◦ f1 contains no
inessential saddles.

Proof. Suppose that T has an inessential saddle, σ, lying in the level 2-
sphere L. By the previous lemma, we may suppose that σ is as described
above, and suppose without loss of generality that D1 contains only one
maximum. By slightly pushing D1 into int(B), we can create another
3-ball B′ such that B′ ∩ D1 = ∅ and (K ∪ T ) ∩ int(B) ⊂ B′. First, we
construct an isotopy which pushes B′ below L into a small neighborhood
of D̃1 and then cancels the maximum of D1 with the saddle point σ. Now,
there exists a monotone increasing arc beginning at the highest point of
B′, passing through the disk D̃2 ⊂ L bounded by s2, intersecting only
maxima of T , and disjoint from K. Thus, we may construct another
isotopy which pushes B′ upward through a regular neighborhood of α,
increasing the heights of maxima of T if necessary, until the minima and
maxima of K ∩ int(B′) are restored to their original heights. We see that
after performing both isotopies, T has one fewer inessential saddle and
no new critical points have been created. See Figure 2. Repeating this
process, we eliminate all inessential saddles via isotopy. �

Thus, from this point forward, we may replace any h ∈ M(K) with
h ◦ f1 from the lemma without changing the information carried by h|K ;
thus, we may suppose that the foliation FT contains no inessential saddles.
It follows that if γ is a loop contained in a level 2-sphere that bounds a
disk D ⊂ T , then h|D has exactly one critical point, a minimum or a
maximum. For if not, D would contain a saddle point, which would
necessarily be inessential.
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Figure 2. An illustration of the process of eliminating
an inessential saddle described in the proof of Lemma 3.2

4. The Connectivity Graph

For each regular value r of h|T,K , we have that h−1(r) is a level 2-sphere
and h−1(r)∩T is a collection of simple closed curves. Let γ1, . . . , γn denote
these curves.

A bipartite graph is a graph together with a partition of its vertices into
two sets A and B such that no two vertices from the same set share an
edge. We will create a bipartite graph Γr from h−1(r) as follows: Cut the
2-sphere h−1(r) along γ1, . . . , γn, splitting h−1(r) into a collection of pla-
nar regions R1, . . . , Rm. The vertex set {v1, . . . , vm} of Γr corresponds to
the regions R1, . . . , Rm, and the edges correspond to the curves γ1, . . . , γn
that do not bound disks in T . For each such γi, make an edge between
vj and vk if γi = Rj ∩ Rk in h−1(r). To see that Γr is bipartite, we
create two vertex sets Ar and Br, letting vi ∈ Ar if Ri ⊂ V , and vi ∈ Br

otherwise. We call Γr the essential connectivity graph with respect to the
regular value r of h, where the word “essential” emphasizes the fact that
edges correspond to only those γi that are essential in T . Note that since
each γi separates h−1(r), the graph Γr must be a tree. An endpoint of Γr

is a vertex that is incident to exactly one edge.
We remark that the term “connectivity graph” also appears in [5], but

the two notions are not related. In the above definition, the essential con-
nectivity graph represents adjacencies between components of intersec-
tions of V and S3 \ V with a single level 2-sphere. In [5], the connectivity
graph is more global, representing adjacencies between components of a
3-manifold cut along certain level surfaces.

For instance, Figure 3 depicts a possible level 2-sphere and correspond-
ing essential connectivity graph. Observe that since V is a knotted solid
torus, T is only compressible on one side, and every compressing disk for
T is a meridian of V . This leads to Lemma 4.1.
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Figure 3. A level 2-sphere at left and its corresponding
essential connectivity graph at right. Note that dotted
curves on the left correspond to curves bounding disks in
T .

Lemma 4.1. If vi ∈ Γr is an endpoint, then vi ∈ Ar.

Proof. Suppose Ri is the region in h−1(r) corresponding to vi. Then ∂Ri

contains exactly one essential curve in T , call it γ, and some (possibly
empty) set of curves that bound disks in T . Since each of these disks
contains only one maximum or minimum by the discussion above, any
two such disks must be pairwise disjoint. Thus, we can glue each disk to
Ri to create an embedded disk D such that ∂D = γ. Now, push each
glued disk into a collar of T in V , so that T ∩ int(D) = ∅, and thus D is
a compressing disk for T . We conclude D ⊂ V and int(Ri) ∩ int(D) ̸= ∅,
implying Ri ⊂ V and vi ∈ Ar. �

Using similar arguments, we prove the next lemma.

Lemma 4.2. Suppose that v1, . . . , vn ⊂ Γr are endpoints corresponding
to regions R1, . . . , Rn ⊂ h−1(r). Then γ1, . . . , γn bound meridian disks
D1, . . . , Dn ⊂ V such that K ∩Di ⊂ Ri for all i.

Proof. The existence of the disks D1, . . . , Dn is given in the proof of
Lemma 4.1. Thus, suppose that ∆ is a disk glued to Ri to construct
Di. When we push ∆ into a collar of T , we can choose this collar to be
small enough so that it does not intersect K. Thus, we may suppose that
∆ ∩ K = ∅ for every such ∆, which implies that all intersections of K
with Di must be contained in Ri. �

We note that Lemma 4.1 and Lemma 4.2 are inspired by the proof
of Theorem 1.9 of [3]. Essentially, Lemma 4.2 demonstrates that even
though the set of meridian disks D1, . . . , Dn may not be level, we may
assume they are level for the purpose of bounding below the number of
intersections of K with h−1(r), since any intersection of K with one of
these disks occurs in one of the level regions Ri. Let r be a regular value of
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h|T,K . We define the trunk of the level 2-sphere h−1(r), denoted trunk(r),
to be the number of endpoints of Γr.

For example, if r is the regular value whose essential connectivity graph
is pictured in Figure 3, then trunk(r) = 6. We are now in a position to
use the winding number of the pattern K̂.

Lemma 4.3. Let r be a regular value of h|T,K .
• If trunk(r) is even, then |K ∩ h−1(r)| ≥ #(K̂) · trunk(r).
• If trunk(r) is odd, then |K ∩ h−1(r)| ≥ #(K̂) · [trunk(r) + 1].

Proof. First, suppose that m = trunk(r) is even and let n = #(K̂). Since
each meridian of V has algebraic intersection ±n with K, we know that
each meridian must intersect K in at least n points. Let v1, . . . , vm be
endpoints of Γr corresponding to regions R1, . . . , Rm. By Lemma 4.2,
|K ∩ Ri| = |K ∩ Di| ≥ n for each i. Further, since these regions are
pairwise disjoint, it follows that |K ∩h−1(r)| ≥ n ·m, completing the first
part of the proof.

Now, suppose that m is odd. If N1 is the algebraic intersection number
of K with R = ∪Ri, we have that

N1 =

m∑
i=1

±n.

In particular, as m is odd, it follows that |N1| ≥ n. Let R′ = h−1(r)−R.
Then R′ ∩ R ⊂ T , so K does not intersect R′ ∩ R. Let N2 denote the
algebraic intersection number of K with R′. Since h−1(r) is a 2-sphere
which bounds a ball in S3, h−1(r) is homologically trivial, implying that
the algebraic intersection of K with h−1(r) is zero. This means N1+N2 =
0, so |N2| ≥ n, and thus |K ∩R′| ≥ n. Lastly,

|K ∩h−1(r)| = |K ∩R|+ |K ∩R′| =
m∑
i=1

|K ∩Ri|+ |K ∩R′| ≥ n · (m+1).

�

5. Bounding the Width of Satellite Knots

We will use the trunk of the level surfaces to impose a lower bound on
the trunk of a knot K, which in turn forces a lower bound on the width
of K. We need the following lemma.

Lemma 5.1 ([3, Claim 2.4]). Let S be a torus embedded in S3, and let
h : S3 → R be a Morse function with two critical points on S3 such that
h|S is also Morse. Suppose that for every regular value r of h|S, all curves
in h−1(r)∩S that are essential in S are mutually parallel in h−1(r). Then
S bounds solid tori V1 and V2 in S3 such that V1 ∩ V2 = T .
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As a result of this lemma, we have the following corollary.

Corollary 5.2. There exists a regular value r of h|T,K such that trunk(r)
≥ 3.

Proof. Suppose not, and let r be any regular value of h|T,K such that
h−1(r) contains essential curves in T . Such a regular value must exist;
otherwise, T could not contain a saddle point. By assumption, trunk(r) ≤
2, so Γr has exactly two endpoints, v1 and v2. But this implies that Γr is
a path, and thus all essential curves in h−1(r) are mutually parallel. As
this is true for every such regular value r, we conclude by Lemma 5.1 that
V is an unknotted solid torus, contradicting the fact that K is a satellite
knot with nontrivial companion J . �

This brings us to our main theorem.

Theorem 5.3 (Main Theorem). Suppose K is a satellite knot with pat-
tern K̂, where n = #(K̂). Then

w(K) ≥ 8n2.

Proof. Choose a height function h ∈ M(K) such that trunk(h) =
trunk(K). Since K is a satellite knot, K is contained in a knotted solid
torus V . Let T = ∂V , and if necessary perturb T slightly so that h|T is
also Morse. By Corollary 5.2, there exists a regular value r of h such that
trunk(r) ≥ 3. From Lemma 4.3, it follows that |K ∩ h−1(r)| ≥ 4n. Since
trunk(K) = trunk(h), and trunk(h) corresponds to the level of h with the
greatest number of intersections with K, we have trunk(h) ≥ 4n. Finally,
using the lower bound for width based on trunk,

w(K) ≥ trunk(K)2

2
≥ 8n2,

as desired. �

Corollary 5.4. Suppose K is a satellite knot, with pattern K̂ and com-
panion J . If K̂ is a braid of index n and J is a 2-bridge knot, then
w(K) = 8n2 and any thin position for K is a minimal bridge position.

Proof. For such K we can exhibit a Morse function h ∈ M(K) such that
w(h) = 8n2, b(h) = 2n, and trunk(h) = 4n. By [7], b(K) = b(h), so h is
both a bridge and thin position for h, and further every minimal bridge
position h′ for K satisfies w(h′) = 8n2 and is also thin. It follows from
the proof of the above theorem that trunk(K) = 4n, so any h ∈ M(K)
that is not a minimal bridge position satisfies w(h) > 8n2. �
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