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KLEIN BOTTLES AND
MULTIDIMENSIONAL FIXED POINT SETS

ALLAN L. EDMONDS

Abstract. We show that for any action of a finite p-group on a
torus, all components of the fixed point set have the same dimen-
sion. In contrast, we give two systematic constructions of families
of group actions on other aspherical manifolds whose fixed point
sets contain components of differing dimensions.

1. Introduction

The starting point for this note is the observation that a linear action
of a finite group on a torus has the property that all components of the
fixed point set have the same dimension.

This led to a search for a topological reason for this phenomenon and
we show that, for any action of a finite p-group on a torus, all components
of the fixed point set have the same dimension. At its heart the reason is
that the torus is aspherical and has abelian fundamental group.

The form of the result then suggested the possibility of actions on other
aspherical manifolds, with nonabelian fundamental group, for which the
fixed point set contains components of differing dimensions.

The most well-known example of such an action is given by an in-
volution on the Klein bottle with fixed point set consisting of two iso-
lated points and a circle. It is somewhat more difficult to find similar
orientation-preserving actions and actions of larger periods.

We generalize the construction of the Klein bottle to produce a variety
of orientation-preserving actions on orientable aspherical manifolds with
fixed point set containing components of differing dimensions. Such ex-
amples arise only beginning in dimension 4. We give two different families
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272 A. L. EDMONDS

of such examples. They all occur on manifolds that are virtually fibered,
that is on manifolds that are finite quotients of a direct product of lower
dimensional manifolds. In that sense we view them as generalized Klein
bottles.

We give a second construction of such actions on aspherical manifolds
with multidimensional fixed point sets via a process of equivariant hyper-
bolization. These exist in abundance but have a somewhat artificial feel
to them. While the generalized Klein bottles are perhaps too standard,
these hyperbolized examples are perhaps too exotic.

It appears to be an open problem to produce orientation-preserving
actions of a finite cyclic group of prime order on a closed orientable hy-
perbolic manifold such that the fixed point set contains components of
differing dimensions.

2. Linear Actions on the Torus

One can examine explicit linear actions on a torus by bare-hands calcu-
lation of their fixed point sets. But the simplest approach to the problem
of dimension seems to be through a more abstract result.

Proposition 2.0.1. Let a group G act on a Lie group L via a homomor-
phism G → AutL. Let x ∈ LG. Then left translation λx : L → L is a
G-homeomorphism taking the identity e ∈ L to x.

The proof is straightforward and may be left to the reader.

Corollary 2.0.2. If a finite group G acts on a torus Tn via a homomor-
phism G → GL(n,Z), then all components of Fix(G,Tn) have the same
dimension.

In the next section we sketch a proof of a topological analog for p-group
actions on the torus. Crucial ingredients are Smith theory and the fact
that π1(T

n) is abelian.

3. Group Actions on Aspherical Manifolds

We begin with a summary of some generalities about lifting a group
action through a covering map. See [3, pp. 230–234] for a fuller discussion.
For simplicity, we assume our spaces are manifolds. The first results are
immediate from elementary covering space theory.
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3.1. Extending a group action to the universal
covering.

Proposition 3.1.1 (Fundamental Extension). If G acts on connected
manifold X, then there is an extension

1 → π → E → G → 1

where π is the group of deck transformations of the universal covering X̃

and E is the group of all lifts of all elements of G to X̃.

3.2. Lifting a group action to a covering space.

Suppose G acts on a connected manifold X with universal covering pr :
X̃ → X. Let x ∈ F = Fix(G,X). Then the action of G on X induces an
action on π1(X,x).

Proposition 3.2.1 (Lifting Criterion). For any y ∈ pr−1(x) there is a
unique action of G on the universal covering X̃ fixing y such that pr :

X̃ → X is a G-map.

Corollary 3.2.2 (Splitting Criterion). The choice of y ∈ pr−1(x) deter-
mines a splitting of the fundamental extension 1 → π → E → G → 1.

For x ∈ F , let Fx denote the path component of x in F . Lift the group
action to the universal covering by choosing a fixed point y over x, as
above. Let Fix(G, X̃)y denote the path component corresponding to y in
Fix(G, X̃).

Proposition 3.2.3. The restriction of the given covering map pr : X̃ →
X to Fix(G, X̃)y → Fx is a regular covering map with deck transformation
group identified with Im[π1(Fx, x) → π1(X,x)] ⊂ π1(X,x)G.

Proof sketch. A deck transformation δ preserving Fix(G, X̃) corresponds
to the class [pr(λ)] in π1(X,x), where λ is a path in X̃ from y to δ(y). If
δ(y) lies in Fix(G, X̃)y, then the path λ can be chosen to lie in Fix(G, X̃)y
as well. Further details of the verification may be left to the reader. �

Remark 3.2.4. If Fix(G, X̃) is path-connected then the path λ above can
be chosen within Fix(G, X̃). It follows that π1(X,x)G = Im[π1(Fx, x) →
π1(X,x)], a fact we shall use below.
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3.3. Application of basic Smith theory.

Recall that a manifold is said to be aspherical if its universal covering
space is contractible. Smith theory gives restrictions on actions of p-
groups on contractible or acyclic spaces.

We begin by recalling the main global and local statement about p-
group actions on contractible manifolds. For simplicity we assume here
that the group actions under consideration are locally linear. Alterna-
tively, one must deal with C̆ech cohomology and possible local pathology.
See, for example, the analysis in [4].

Theorem 3.3.1 (Existence and properties of fixed points). Suppose G is
a finite p-group and acts on a Zp-acyclic n-manifold Y .

(1) F = Fix(G,Y ) is mod p acyclic; in particular, F is nonempty and
connected, and

(2) F is a (cohomology) manifold of even codimension (if the action
of G is orientation-preserving).

See [1, Chapter 3] for a detailed treatment of Smith theory.
Next, we apply basic Smith theory to a lifted action.

Proposition 3.3.2. Let a finite p-group G act on an aspherical manifold
X with nonempty fixed point set F . For x ∈ F , let Fx denote the path
component of x in F , and let the group action be lifted to the universal
covering by choosing a fixed point over x. Then Fix(G, X̃) is Zp-acyclic.

Because the domain of the covering map Fix(G, X̃) → Fx is Zp-acyclic
with deck transformation group π1(X,x)G, it follows that

H∗(π1(X,x)G;Zp) = H∗(Fx;Zp).

And since Fx is a compact (cohomology) n-manifold without boundary for
some n, we have that Hn(π1(X,x)G;Zp) ̸= 0 and Hk(π1(X,x)G;Zp) = 0
for k > n. Therefore, the dimension of Fx is given by cdZp(π1(X,x)G),
the mod p cohomological dimension of π1(X,x)G. (See [2] for basic infor-
mation about the cohomological dimension of discrete groups.) We state
this interpretation more formally as follows.

Theorem 3.3.3 (Dimension Formula). If G is a finite p-group acting
on a closed, orientable, aspherical manifold X and x ∈ Fix(G,X), then
we have a Zp-acyclic covering F̃ → Fx with deck transformation group
π1(X,x)G; hence, dim(Fx) = cdZp(π1(X,x)G).

Corollary 3.3.4. If a finite p-group G acts topologically on a torus Tn,
then all (nonempty) components of the fixed point set have the same di-
mension, given by RankH1(Tn)G.
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Proof. This follows from the Dimension Formula and the universal coef-
ficient theorem. �

4. The Klein Bottle

We view the Klein bottle as the quotient space K2 = S1×C2 S
1, where

the generator of C2 acts freely, reversing orientation, on the torus S1×S1

by the formula
(z, w) 7→ (z̄,−w),

where z and w are complex numbers of unit modulus.
There is an induced action of C2 on K2 given by

[z, w] 7→ [z̄, w̄].

It is easy to determine the fixed point set consists of two isolated points
and a simple closed curve.

What makes this example work is that there are two commuting actions
of C2 on the circle, one of which has isolated fixed points and the other
of which acts freely.

In our first families of higher dimensional examples, we produce spaces
X admitting two commuting actions of a group Cp such that one acts with
isolated fixed points and the other acts freely. These yield our generalized
Klein bottles.

5. Generalized Klein Bottles

Suppose that G = Cp acts in two ways on a space X. Choosing a
generator of G, we denote one action by x 7→ a(x) and the other by
x 7→ b(x). Suppose b(x) ̸= x for all x ∈ X and suppose that ab = ba. We
may interpret this as saying that a and b generate an action of the larger
group Cp × Cp, which in practice will be effective.

Let Y be another space on which G acts with fixed points, with the
generator acting by y 7→ g(y). Then G acts freely on Y × X via the
diagonal action g × b. We now define the associated generalized Klein
bottle to be the quotient space Z = Y ×G X by this action, with the
action of G induced by g × a. We write [y, x] 7→ [g(y), a(x)].

In this case the fixed point set has a description as the following disjoint
union:

Fix(G,Z) =

p−1⊔
i=0

{[y, x] : gy = giy, ax = bix}.

Each of these p pieces is the image of the corresponding (g× a)-invariant
subspace of Y ×X.

The part corresponding to i = 0 can be described as

Y g ×G Xa.
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This is the part of the fixed point set that comes from fixed points in
Y ×X.

The part when i = 1 is of the form

Y ×G Xa−1b

since in these cases, the equation gy = gy implies no condition on y and
ax = bx is equivalent to the condition a−1bx = x.

When 2 ≤ i ≤ p− 1, the corresponding part of the fixed point set is of
the form similar to that when i = 0,

Y g ×G Xa−1bi ,

since the condition gy = giy is equivalent to the condition gy = y in this
case, because p is prime.

In the simplest cases we use Y = X with the action g = a. The
usefulness of the slightly more general construction is that it allows for
iterating the construction.

5.1. Application I.

Here we produce examples of actions of Cp, for all prime periods p, on
2n-manifolds, where n = p− 1, by making use of commuting actions on a
torus. In these examples n grows with p.

Theorem 5.1.1. For any prime p there is a smooth action of the group
Cp on a flat manifold M2n, where n = p−1, with fixed point set consisting
of p(p− 1) isolated points, together with a copy of the n-torus Tn.

Proof. Fix a prime p and set n = p−1. Then there is an action of Cp×Cp

on the n-torus Tn, which, using a convenient model of the torus suggested
by the referee, we describe as follows.

Let V be the R-algebra R[t]/I, where I is the principal ideal ΦR[t]
where Φ = 1+ t+ t2 + · · ·+ tp−1. Let ζ denote the class of t in V . Let L
denote the lattice Z[ζ] ⊂ V and identify Tn = V/L.

Now define mappings a : V → V and b : V → V by

a(v) = ζv and b(v) = v + v0,

where

v0 := (ζ − 1)−1 =
1

p
(ζ + 2ζ2 + 3ζ3 + · · · (p− 1)ζp−1).

Then one may check that a and b preserve the lattice L, and that for any
v ∈ V one has ab(v) − ba(v) = 1 ∈ L. It follows that a and b induce
commuting homeomorphisms α, β : Tn → Tn, and that α is a group
isomorphism of Tn, while β is a translation of Tn, each of order p.



MULTIDIMENSIONAL FIXED POINT SETS 277

Of course, Fix(β, Tn) = ∅. We will observe that Fix(α, Tn) is a sub-
group of Tn of order p. And Fix(β−kα, Tn) is a translate of Fix(α, Tn).

We may compute directly that

Fix(α, Tn) = {[v] ∈ Tn : (ζ − 1)v ∈ L} = (ζ − 1)−1L/L

∼= L/(ζ − 1)L ≈ Z[t]/⟨t− 1,Φ⟩ = Z[t]/⟨t− 1, p⟩
∼= Z/pZ

and

Fix(β−kα, Tn) = {[v] ∈ Tn : (ζ − 1)v − kv0 ∈ L}
= {[v] ∈ Tn : v − kv20 ∈ (ζ − 1)−1L}
= k[v20 ] + Fix(α, Tn)

In particular, |Fix(β−kα, Tn)| = |Fix(α, Tn)| = p for each integer k.
Now Cp acts freely on Tn × Tn by α × β and we denote the quotient

manifold by M2n = Tn ×Cp Tn. Then the Cp action on Tn × Tn given
by α× α induces an action of Cp on M2n by the formula

γ([v, w]) = [α(v), α(w)].

Now α × α has p2 isolated fixed points that project to p fixed points in
M2n. In addition, there are fixed points in M2n that do not come from
such upstairs fixed points. The latter would be the images of points (v, w)
such that

(α(v), α(w)) = (αi(v), βi(w)).

For i = 1, this gives a copy of Tn. For each i = 2, . . . , p − 1, it gives
another p isolated points. �

Remark 5.1.2. By iterating this construction, one obtains actions of Cp

on manifolds of the form (· · · ((Tn ×Cp
Tn) ×Cp

Tn) × · · · ) ×Cp
Tn (k

factors), where n = p − 1 and k ∈ {2, 3, 4, . . . }, having fixed point set
containing components of all dimensions 0, n, 2n, . . . , (k − 1)n.

Remark 5.1.3. The actions in this section may be viewed as acting by
isometries on geometric manifolds whose universal covering is of the form
Rkn = Rn × Rn × · · · × Rn, where Rn denotes the standard Euclidean
n-space.

5.2. Application II.

Here we produce a rather more flexible family of actions with multidi-
mensional fixed point sets. We make use of a certain action of Cp × Cp

on a 2-dimensional surface.



278 A. L. EDMONDS

Lemma 5.2.1. There is an action of Cp×Cp on a 2-dimensional surface
X2 with the property that a chosen generator α of the first factor acts
with a nonempty set of isolated fixed points and a chosen generator β of
the second factor acts freely.

The smallest examples have orbit surface of genus one and two fixed
points.

Proof. We start with a surface W 2 of genus at least one that will be the
orbit space of the action. Choose points w1, w2, . . . wm in W 2, m ≥ 2 (and
m even if p = 2). Choose a base point w0 ∈ W 2 − {w1, w2, . . . wm}. Let
a1, b1, . . . ah, bh be standard generators of π1(W

2, w0) and let c1, c2, . . . cm
denote generators corresponding to loops going once around the respective
punctures, all connected appropriately to a base point w0, so that

[a1, b1][a2, b− 2] · · · [ah, bh] c1c2 · · · cm = 1.

Define a surjective homomorphism

π1(W
2 − {w1, w2, . . . wm};w0) → Cp × Cp

by mapping each ci 7→ αji to a nontrivial power ji of α, 0 < ji < p such
that the total exponent sum satisfies the condition

∑
i ji ≡ 0 mod p.

Map a1 7→ β, say, and map all other generators trivially.
The corresponding p2-fold regular branched cover has the required

property. �

For use below we note that the equation α(x) = βi(x), for 1 ≤ i ≤ p−1,
has a nonempty finite set of solutions. One can see this by considering
how the homomorphism

π1(W
2 − {w1, w2, . . . wm};w0) → Cp × Cp

corresponding to β−iα evaluates nontrivially on the generators ci.

Theorem 5.2.2. Suppose the finite cyclic group Cp acts on Y n with fixed
point set F . Then Cp acts on Y n ×Cp X2 with fixed point set consisting
of copies of F together with copies of Y n.

Proof. Let γ : Y n → Y n denote the action of a generator of Cp. We view
Cp as acting (freely) on Y n ×X2 by (y, x) 7→ (γ(y), β(x)) with quotient
Zn+2 = Y n ×Cp X2. Then let Cp act on Zn+2 by [y, x] 7→ [γ(y), α(x)].

As in earlier calculations, we see that the fixed point set of Cp on Zn+2

contains fixed points [y, x] where γ(y) = y and α(x) = x, which yield
copies of F . In addition, it contains fixed points [y, x] where α(x) = βi(x),
1 ≤ i ≤ p− 1, which yield copies of Y n.

�



MULTIDIMENSIONAL FIXED POINT SETS 279

Corollary 5.2.3. The finite cyclic group Cp acts on an orientable as-
pherical 4-manifold with fixed point set containing both isolated points
and surfaces.

Proof. Let Z = X2×CpX
2, where X2 is the surface with action of Cp×Cp

described above. �
Iterating the construction one obtains the following.

Corollary 5.2.4. The finite cyclic group Cp acts on an orientable aspher-
ical 2k-manifold, with fixed point set containing components of dimensions
0, 2, . . . , 2k − 2 of k different dimensions.

Remark 5.2.5. The actions in this section may be viewed as acting by
isometries on geometric manifolds whose universal covering is of the form
H2 ×H2 × · · · ×H2, where H2 denotes the hyperbolic plane.

6. Hyperbolization

Another way of producing Cp actions on aspherical manifolds with mul-
tidimensional fixed point sets is through the process of hyperbolization
due originally to Gromov. We briefly outline this approach which pro-
duces orientation-preserving actions with multidimensional fixed point
sets for any Cp in any dimension greater than 3. The manifolds con-
structed this way tend to be a bit more exotic, having universal coverings
that are not usually simply connected at infinity.

6.1. Hyperbolization.

We refer the reader to [5] and [6] for more details. A hyperbolization
functor H assigns to each simplicial or cubical complex (perhaps suitably
subdivided) an aspherical complex built inductively by replacing all n-cells
by aspherical n-manifold building blocks (with π1-injective boundaries) in
the same pattern.

Vertices and edges do not need to be changed. One might choose, for
example, H(D2) = once-punctured torus (or Möbius band, etc.). Higher-
dimensional asphericalized n-cells are built inductively.

The details of the construction need not concern us here. Moreover,
there are several variations on the process. While the construction had
its origin in considerations of negative curvature, those are not a concern
here.

It suffices to say that there is an hyperbolization functor H such that
for any (triangulated or cubulated) n-manifold X, the space H(X) is an
aspherical n-manifold.

Although one does not explicitly need it here, one can arrange the
hyperbolization to have the following additional properties. There is a
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map H(X) → X that is inductively defined, mapping each hyperbolized
cell of H(X) to the corresponding ordinary cell of X. If X is orientable,
then one can arrange that H(X) is also orientable. With sufficient care,
one can arrange that this map is surjective on homology and π1 and,
indeed, is a degree 1 normal map in the sense of surgery theory.

One key point is that the local structure of a neighborhood of a point
in H(X) is the same as that of the corresponding point of X. This is
what ensures that the result of hyperbolization of a manifold is again a
manifold.

6.2. Equivariant hyperbolization.

Here are a couple of immediate consequences.
We consider a PL group action on a PL n-manifold. We understand

this to mean that there is an equivariant triangulation or cubulation of the
PL manifold. Such a triangulation or cubulation can be assumed to have
the property that for any cell and any group element, the group element
either moves the open cell off of itself or fixes it pointwise. This can
always be achieved by subdividing a cell structure preserved by the group
action. If we apply the hyperbolization process to such a triangulation or
cubulation, the result is a new aspherical manifold with a group action
permuting the hyperbolized cells in exactly the same pattern that the
original group action permutes the original cells. The preceding discussion
implies the following result.

Theorem 6.2.1 (Equivariant Hyperbolization). If a finite group G acts
simplicially or cubically on a manifold X, then the hyperbolization H(X)
can be constructed with G action so that the hyperbolization map is G-
equivariant (indeed, isovariant):

(H(X),H(F )) → (X,F ).

Moreover, local neighborhoods of points in H(X) are equivalent to the
neighborhoods of corresponding points in X.

6.3. Applications of equivariant hyperbolization.

We conclude with a couple of immediate applications.

Corollary 6.3.1. All local patterns of fixed points and normal represen-
tations that occur for n-manifolds also occur for aspherical n-manifolds.

Corollary 6.3.2. There exist Cp actions (any p) on aspherical 4-manifolds
with both isolated points and surfaces of fixed points.

Proof. For example, a standard Cp action on CP 2 with fixed point set
consisting of an isolated point and a 2-sphere yields an action of Cp on an



MULTIDIMENSIONAL FIXED POINT SETS 281

aspherical 4-manifold with fixed point set consisting of an isolated point
and a surface of some higher genus determined by the number of 2-cells
in the fixed 2-sphere in an equivariant triangulation of CP 2. �

Many other examples in higher dimensions can be constructed by hy-
perbolizing interesting actions on familiar non-aspherical n-manifolds.
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