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NETS DEFINING ENDS OF TOPOLOGICAL SPACES

MATT INSALL AND MAŁGORZATA ANETA MARCINIAK

Abstract. This article uses nets to define ends of topological
spaces, modifying the sequence-based idea introduced in 1931 by
Hans Freudenthal. We connect the lack of ends with the com-
pactness of a topological space more firmly than did Freudenthal’s
original presentation. Specifically, we prove the following general-
ization of Freudenthal’s related result:

Main Theorem: If X is a connected, exquisitely remotely locally
connected, and locally boundary compact topological space, then
e(X) = 0 implies that X is compact.

1. Introduction

The concept of an end formally captures the intuitive notion one might
informally call “a hole at infinity” of a topological space. The following
definition of ends was introduced by Hans Freudenthal in [1] and used
by Heinz Hopf in [3]. This concept has been applied successfully in the
theory of complex manifolds; see, for example, [2] and [4].

Definition 1.1 (Ends of a topological space). Let X be a connected topo-
logical space. Let F be the family of all monotone decreasing sequences
σ = {Us}s∈N : N → τ , where τ is the given topology on X, such that

(1) each U ∈ σ[N] is nonempty connected and has compact boundary,
and
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(2)
∩

σ[N] = ∅, where σ is the closed set-valued mapping defined by
σ(j) = σ(j), for j ∈ N.

Freudenthal introduced the relation ∼ on F given by {Un}n∈N ∼ {Vm}m∈N
if and only if for every m ∈ N there exists n ∈ N such that Un ⊆ Vm. The
set F/∼ of ∼-sections (see [5]) of this relation is the set of Freudenthal
ends of X.

It can be shown that ∼ is an equivalence relation (see [1] and [4]).
In fact, this relation can be defined equivalently as follows: {Un}n∈N ∼
{Vm}m∈N if and only if for every n ∈ N there exists m ∈ N such that
Vm ⊆ Un. (Thus, in particular, the ∼-sections are ∼-equivalence classes,
and the set F/∼ is a quotient of F by the equivalence relation ∼.) The
number of ends in the sense intended by Freudenthal, i.e., the cardinality
of the set F/∼, will herein be denoted by eF (X).

This article reformulates the definition given by Freudenthal, using nets
instead of sequences. We denote by e(X) the cardinality of the set of ends
of X, according to our revised definition. We also introduce new local (“at
infinity”) notions related to connectedness and compactness, and prove,
under mild assumptions, that having no ends implies compactness.

Theorem 1.2. If X is a connected, exquisitely remotely locally connected,
and locally boundary compact topological space, then e(X) = 0 implies that
X is compact.

2. Definitions and Examples

As indicated above, the following definition of ends is a modification
of that introduced by Freudenthal. The main difference is in replacing
sequences of open sets by nets of open sets. For the sequel, let us say that
a net ν in τ is nested provided that for any indices α and β in the domain
of ν, if α precedes β, then ν(β) ⊆ ν(α).

Definition 2.1 (Ends of a topological space). Let X be a connected
topological space, and let F be the family of all nested nets ν = {Uλ}λ∈Λ :
Λ → τ , where Λ is a directed set, such that

(1) each U ∈ ν[Λ] is nonempty and connected, with compact bound-
ary, and

(2)
∩
λ∈Λ

Uλ = ∅ .

In a manner similar to Freudenthal’s approach, we define the equivalence
relation ∼ on F as follows: Let µ = {Uλ}λ∈Λ and ν = {Vγ}γ∈Γ be
members of F , with domains Λ and Γ, respectively. Then µ ∼ ν if and
only if, for every γ ∈ Γ, there exists λ ∈ Λ such that µ(λ) ⊆ ν(γ). The
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elements of the set of equivalence classes F/ ∼ are the ends of X. The
number of ends is denoted by e(X).

In the original definition, condition (1) is accompanied by the addi-
tional assumption that each Uλ has nonempty boundary. This assump-
tion is not necessary, since it is implied by the connectedness of X, as
shown in Lemma 3.7 below.

The short proof of the following proposition justifies that ∼ is an equiv-
alence relation.

Proposition 2.2. The relation ∼ is an equivalence relation.

Proof. The relation ∼ is reflexive, since for every net {Uλ}λ∈Λ and any
index λ ∈ Λ, Uλ ⊆ Uλ. If {Uλ}λ∈Λ ∼ {Vγ}γ∈Γ and {Vγ}γ∈Γ ∼ {Wκ}κ∈K ,
then for any κ there exists γ so that Vγ ⊆ Wκ. For this γ, there further
exists λ so that Uλ ⊆ Vγ . In particular, for any κ, there exists λ so that
Uλ ⊆ Wκ, which proves the transitivity of ∼.

For symmetry, we must prove that if {Uλ}λ∈Λ ∼ {Vγ}γ∈Γ , then {Vγ}γ∈Γ

∼ {Uλ}λ∈Λ. That is, we assume that, for every γ ∈ Γ, there exists λ ∈ Λ
so that Uλ ⊆ Vγ , and we must show that, for every λ ∈ Λ, there exists
γ ∈ Γ such that Vγ ⊆ Uλ. Assume otherwise; i.e., there exists λ0 so that
for all γ, Vγ is not a subset of Uλ0 , which implies that Vγ \Uλ0 ̸= ∅. Notice
that for each γ

∂(Vγ \ Uλ0) ⊆
[
(∂Uλ0) ∩ V γ

]
∪ [(∂Vγ) ∩ (X \ Uλ0)] .

Consequently, (∂Uλ0)∩V γ is a compact set in X for any γ, and for γ2 ≽ γ

we have (∂Uλ0) ∩ V γ2 ⊆ (∂Uλ0) ∩ V γ . Therefore,∩
γ∈Γ

[
(∂Uλ0) ∩ V γ

]
̸= ∅.

Then
∅ ≠

∩
γ∈Γ

[
(∂Uλ0) ∩ V γ

]
⊆
∩
γ∈Γ

V γ = ∅,

which is a contradiction. �

Definition 2.3. Two nets {Uλ}λ∈Λ and {Vγ}γ∈Γ are disjoint if Uλ∩Vγ =
∅ for all λ ∈ Λ and γ ∈ Γ.

The proof of the following theorem is analogous to the proof of Theorem
2.3.3 in [4].

Theorem 2.4. Let X be a connected and locally connected topological
space and, for each ι ∈ I, let νι = {U (ι)

λ }λ∈Λι be a net that defines an
end in X. Further assume that this family (νι)ι∈I satisfies the following
properties:
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(1) If ι1, ι2 ∈ I and ι1 ̸= ι2, then νι1 is disjoint with νι2 .

(2) For any choice function ϕ : I →
∪

ι∈I Λι, the set X \
∪
{U (ι)

ϕ(ι) :

ι ∈ I} is compact.
Then e(X) = |I|; i.e., the collection of ends of X has the same cardinality
as I.

Proof. By way of contradiction, let ζ = {Uλ}λ∈Λ be a net that defines
an end in X and suppose that ζ is not equivalent to any νι, ι ∈ I.
From the definition of nonequivalent nets there exists a choice function
ϕ : I →

∪
ι∈I Λι such that for any λ ∈ Λ and any ι ∈ I, Uλ is not a subset

of U (ι)
ϕ(ι). We claim that for each λ ∈ Λ,

Uλ \

(∪
ι∈I

U
(ι)
ϕ(ι)

)
̸= ∅.

Assume otherwise; i.e., for some λ̃ ∈ Λ

Uλ̃ \

(∪
ι∈I

U
(ι)
ϕ(ι)

)
= ∅.

Then for this λ̃ ∈ Λ, we have

Uλ̃ ⊆
∪
ι∈I

U
(ι)
ϕ(ι).

If |I| = 1, then the contradiction is immediate since ζ is not equivalent
to νι, where I = {ι}. If |I| > 1, then assumption (1) implies that Uλ̃ is
not connected or it is a subset of exactly one set U

(ι)
ϕ(ι). In both cases,

we obtain a contradiction. Thus, for all λ ∈ Λ, Uλ \
(∪

ι∈I U
(ι)
ϕ(ι)

)
̸= ∅.

Then Wλ = Uλ \
(∪

ι∈I U
(ι)
ϕ(ι)

)
is a closed nonempty subset of a compact

set X \
(∪

ι∈I U
(ι)
ϕ(ι)

)
. Note that {Wλ}λ∈Λ is a nested net of nonempty

closed subsets of a compact set. Since ∅ ̸=
∩

λ∈Λ Wλ ⊆
∩

λ∈Λ Uλ = ∅, we
obtain a contradiction with the assumption that ζ = {Uλ}λ∈Λ defines an
end. �

Let us consider a few examples of connected, noncompact spaces and
their ends.

Example 2.5. Clearly, from Theorem 2.4, the complex plane C has ex-
actly one end described by the net consisting of the sets of the form
Ur = {z ∈ C : |z| > r} with r > 0. Let X = C \ Z, then each integer
a ∈ Z yields another end described by Ua

λ = {z ∈ X : |z − a| < λ}, where
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0 < λ < 1
2 . Assumption (2) of Theorem 2.4 holds; in particular, the sets

of the form X \

Ur ∪
∪

a∈Z,λ∈Λ

Ua
λ

 are compact. Clearly, assumption (1)

of Theorem 2.4 holds, since Ua1

λ ∩ Ua2

λ = ∅ for a1 ̸= a2, so e(X) = ℵ0.

Example 2.6. Let now X = C \ Q. Then X has an end defined by the
net given by Ur = {z ∈ X : |z| > r}, where r ranges over all positive
irrational numbers. Other ends are determined by the nets consisting of
the sets of the form Ua

λ = {z ∈ X : |z − a| < λ} for a ∈ Q and where
λ ranges over all positive irrational numbers. Note that for fixed λ1 and
λ2 and any a1 there exists a2 so that Ua1

λ1
∩ Ua2

λ2
̸= ∅, so assumption (1)

of Theorem 2.4 is not fulfilled. However, for any fixed a1 and λ1, there

exist a2 and λ2 so that Ua1

λ1
∩Ua2

λ2
= ∅. Clearly X \

Ur ∪
∪

a∈Q,λ∈Λ

Ua
λ

 is

compact; thus, assumption (2) of Theorem 2.4 holds. Hence, e(X) ≥ ℵ0.

Example 2.7. Let X = C \K, where K is the Cantor set in the interval
[0, 1]. Then X has an end defined by the net consisting of the sets of the
form Ur = {z ∈ X : |z| > r} with r > 2. Other ends are defined by the
nets consisting of the sets Ua

λ = {z ∈ X : |z − a| < λ}, where a ∈ K and
(a± λ) /∈ K. The nets retain similar properties as in Example 2.6, but in
this case, e(X) ≥ c.

Since the sets Uλ from the definition of ends occur frequently hereafter,
we introduce terminology to help us consistently refer to them.

Definition 2.8 (Truffles and Morsels). By a truffle in a topological space
X, we mean a closed set with compact boundary, whose interior is con-
nected, but not compact. A morsel in X is a set whose closure is a truffle.

3. Local Boundary Compactness

The usual definition of local compactness can be relaxed to a version
that focuses on the boundary.

Definition 3.1. Let X be a topological space and let p be any point of X.
Then X is locally boundary compact at p if it has a basis of neighborhoods
with compact boundaries at this point. We say that X is locally boundary
compact if it is locally boundary compact at each of its points.

Spaces that are locally compact are locally boundary compact. But
spaces that are locally boundary compact need not be locally compact.
Topological spaces C \ Q and C \ K as described in Example 2.6 and
Example 2.7 are locally boundary compact but not locally compact. Note
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that irrational real numbers in C\Q do not have compact neighborhoods.
Numbers from [0, 1] that are not in the Cantor set in C \ K do not have
compact neighborhoods.

Boundary compact sets admit properties that are crucial for the con-
struction of nets defining ends.

Lemma 3.2. Let X be a noncompact space and let C be an open cover
of X that consists of boundary compact sets and does not have a finite
subcover. Then, for any U ∈ C, we have U ̸= X.

Proof. Assume that U = X. Since ∂U is compact and C is an open cover,
we can choose a finite subcover C1, . . . , Cn for ∂U . Then C1, . . . , Cn, U is
a finite subcover of C that covers U = X. Thus, C has a finite subcover
which contradicts the assumption. �

Definition 3.3. Let (P,≼) be an ordered set and let {xλ}λ∈Λ be a net
in P . Also, let {yα}α∈A be a net in P , where A is a directed subset of Λ.
We say that {yα}α∈A is a refinement of {xλ}λ∈Λ provided that for each
λ ∈ Λ, there is α ∈ A such that yα ≼ xλ.

Definition 3.4. A topological space X is remotely locally boundary com-
pact provided that for each nested net N = {Uλ}λ∈Λ of open sets with
nonempty boundary such that

∩
λ∈Λ Uλ = ∅, there is a refinement of N

consisting of nonempty boundary compact open sets.

In general, local boundary compactness and remote local boundary
compactness are not equivalent properties; however, it is also not clear
whether one property implies the other under some natural additional
assumptions about the topological space. If X is a connected topological
space and E(X) is the collection of all ends of X, then the space Y =
X ∪ E(X) has the following natural topology: For each end e ∈ E(X), a
neighborhood base at e is the collection of all sets of the form {e} ∪ U ,
where U is a member of some net that defines e. For each point p ∈ X,
a neighborhood base at p is the collection of all open U ⊆ X for which
p ∈ U .

Theorem 3.5. The topological space Y = X ∪ E(X) is locally boundary
compact if and only if X is both locally boundary compact and remotely
locally boundary compact.

Proof. If X is locally boundary compact and remotely locally boundary
compact, then each point in Y has a base of neighborhoods that consists
of boundary compact sets. Thus, Y is locally boundary compact. If Y is
locally boundary compact, then X, as a topological subspace, is locally
boundary compact as well. Moreover, since each point e ∈ E(X) ⊆ Y has
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a base of neighborhoods that is boundary compact, X is remotely locally
boundary compact. �

Here is an example of a locally boundary compact space which is not
remotely locally boundary compact.

Example 3.6. Let X = [0, 1]× (0, 1]. Then X is locally boundary com-
pact, since it is locally compact. Let us choose the net consisting of the
sets of the form Uλ = (0, λ)×(0, λ) for λ ∈ (0, 1). Then

∩
λ∈Λ Uλ = ∅, but

the net {Uλ}λ∈Λ does not admit a refinement consisting of nonempty open
sets with compact boundaries. Then X is not remotely locally boundary
compact.

In the sequel, we shall use this concept of local boundary compactness
to generalize a result of Freudenthal that relates the number of ends to
compactness of the space. To do so, we need a lemma that helps us
find connected (open) subsets with compact boundary of open sets with
compact boundary. In fact, it is through the application of this lemma
that the value of defining the notion of a truffle will become observable.

Let us recall that a subset U of a topological space is not connected if
there exist mutually separated sets A and B (i.e., A∩B = A∩B = ∅) in
X so that U = A ∪B (Theorem 26.4 [6]).

Lemma 3.7. Let U be an open set with nonempty compact boundary. If
U = A ∪ B, where A and B are mutually separated, then A and B have
compact boundaries and at least one has nonempty boundary. In partic-
ular, a proper nonempty open subset of a connected space has nonempty
boundary.

Proof. If U = A ∪B with A ∩B = A ∩B = ∅, then

∂U = U \ U = (A ∪B) \ (A ∪B) = (A \ (A ∪B)) ∪ (B \ (A ∪B)) =

(∂A \B) ∪ (∂B \A)) = ∂A ∪ ∂B,

which proves that ∂A and ∂B are closed subsets of a nonempty compact
set ∂U . Thus, they are compact, and at least one of them is nonempty.

For the second part of the lemma, note that if a nonempty open set A
has empty boundary, then A = A, and X = A∪(X\A) is a decomposition
of X into disjoint nonempty open sets, which is not possible in a connected
space. �

Even if U is open, there is no guarantee that at least one of its connected
components is open. If such is the case, however, the following remark
applies.

Remark 3.8. Let an open set U have nonempty compact boundary.
Then all open connected components of U have compact boundaries. If, in
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addition, the topological space X is connected, then each open connected
component of U has a nonempty compact boundary. Note that these
open connected components of U are morsels.

4. Connectedness Properties

Any refinement of a net of open sets retains the property of empty
intersection of the closures.

Lemma 4.1. Let {Uλ}λ∈Λ be a nested net of nonempty open sets with∩
λ∈Λ Uλ = ∅, and let {Vα}α∈A be a refinement of the given net. Then∩
α∈A V α = ∅.

Proof. Since, for any λ ∈ Λ, there exists α ∈ A such that Vα ⊆ Uλ, we
have

∩
α∈A V α ⊆

∩
λ∈Λ Uλ = ∅. �

There are cases in which such a refinement does not consist solely of
connected sets.

Definition 4.2. A topological space X is remotely locally connected if
any nested net of nonempty open sets {Uλ}λ∈Λ, such that

∩
λ∈Λ Uλ = ∅,

has a nested refinement {Vα}α∈A, which consists of nonempty connected
open sets.

Still, such refinements might not consist of boundary-compact sets,
even if the original net had this property.

Definition 4.3. A topological space X is exquisitely remotely locally
connected if any nested net of nonempty open sets {Uλ}λ∈Λ, such that∩

λ∈Λ Uλ = ∅, has a nested refinement {Vα}α∈A, which consists of non-
empty open morsels.

Remotely locally connected spaces need not be locally connected. How-
ever, locally connected spaces are always remotely locally connected since
any connected component of an open set is then open (Theorem 27.9 [6]).
We have the following result.

Theorem 4.4. Let X be a connected topological space and let {Uλ}λ∈Λ

be a nested net of nonempty open, boundary compact sets, such that∩
λ∈Λ Uλ = ∅. If one of the sets Uλ0 is locally connected, then there

exists a nested refinement {Vα}α∈A of the net {Uλ}λ∈Λ, which consists of
nonempty open morsels.

Proof. If Uλ0 is locally connected, then all connected components of all
sets Uλ for λ ≽ λ0 are open by Theorem 27.9 [6] and have compact bound-
aries by Remark 3.8. Thus, it is possible to choose a nested refinement
{Vα}α∈A consisting of nonempty open morsels. �
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Example 4.5. Let W denote the Warsaw circle. The space W \ {p}, ob-
tained by removing a given point p on the limit bar of W , is not remotely
locally connected since there is no base of connected neighborhoods of
p. The space W \ {x}, obtained from the Warsaw circle by removing
a given point x on the arc of W , is remotely locally connected but not
locally connected. However, any nested net of open, boundary compact
sets {Uλ}λ∈Λ in W \ {x}, such that

∩
λ∈Λ Uλ = ∅, admits a refinement

consisting of nonempty open morsels. Hence, this space is exquisitely
remotely locally connected.

Definition 4.6. Let X be a topological space and let A be the collection
of nested nets, µ = {Uλ}λ∈Ω, of nonempty open sets in X such that∩

λ∈Ω Uλ = ∅. Define on A the binary relation

µ = {Uλ}λ∈Ω ∼ ν = {Vγ}γ∈Γ

if and only if, for all γ ∈ Γ, there exists λ ∈ Ω such that Uλ ⊆ Vγ .
Then the ∼-sections are called semi-ends of X and the set A is the set of
semi-ends of X.

Note that by not requiring compact boundaries in the above definition,
we, in general, lose symmetry of the relation ∼. However, we do have the
following result.

Theorem 4.7. Let X be a connected and exquisitely remotely locally
connected topological space with a semi-end. Then X has an end.

Proof. Let µ = {Uλ}λ∈Λ be a net from the definition of a semi-end. Since
X is exquisitely remotely locally connected, there is a refinement {Vα}α∈A

that consists of open morsels and defines an end since
∩

α∈A V α = ∅. �

5. Compactness Vs. Ends

Recall that the notation e(X) describes the number of ends of X and
the notation eF (X) describes the number of ends in the sense formalized
by Freudenthal. Clearly, eF (X) ≤ e(X), since a sequence is a specific
kind of net. In the following theorems, let us focus on topological spaces
with e(X) = 0.

Theorem 5.1. If X is compact, then e(X) = 0.

Proof. If X is compact, then there is no nested net of closed sets with
empty intersection. Thus, condition (2) of Definition 2.1 cannot be ful-
filled. �

Note: The preceding theorem generalizes a result of Freudenthal, in which
only ends defined by sequences of open sets are considered.
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In general, the converse of this theorem is not true. Consider the
following example.

Example 5.2. Let X = (0, 1)× (0, 1) ∪ {(0, 0)} be an open square with
the point {(0, 0)} attached. Then X is not compact, but e(X) = 0, since
all nested nets in X that consist of boundary compact open sets have
nonempty intersection.

The following proves the converse of this theorem using some assump-
tions about the space X.

Theorem 5.3. If X is a connected, exquisitely remotely locally connected,
and locally boundary compact topological space, then e(X) = 0 implies that
X is compact.

Proof. In the spirit of Freudenthal’s work, we shall show that if X is
not compact, then e(X) ̸= 0. Assume that X is not compact, and let
C be an open cover of X that has no finite subcover. If X is locally
boundary compact, assume that each member of C is boundary compact.
Let F = {

∪n
j=1 Fj |n < ω, F1, . . . Fn ∈ C}. Note that if X is locally

boundary compact, then each member of F is boundary compact. Note
that X =

∪
F , but X /∈ F . Let

D = {X \ F |F ∈ F},
and note that in case X is locally boundary compact, each member of D
(and each of its open connected components, according to Remark 3.8)
is boundary compact and nonempty by Lemma 3.2. Order D by reverse
inclusion, and for all δ ∈ D, let Uδ = δ; then {Uδ}δ∈D is a nested net in
the topology of X. Now∩

δ∈D

U δ =
∩
δ∈D

(X \ Fδ) = X \
∪
δ∈D

Fδ = ∅.

We may produce an end of X as follows: Since X is remotely locally con-
nected, let {Vα}α∈A be a nested refinement of {Uδ}δ∈D which consists of
nonempty connected open sets. Since X is locally boundary compact and
is exquisitely remotely locally connected, we can assume that {Vα}α∈A

consists of open morsels. Clearly, since
∩

α∈A V α ⊆
∩

δ∈D U δ, we have∩
α∈A V α = ∅, so e(X) ̸= 0. �

6. Further Research

Recall that since any sequence defining an end in the sense of Freuden-
thal also defines an end in the sense introduced in this article, eF (X) ≤
e(X). The question arises whether the converse holds under other natural
hypotheses. For example, in [1], second countability of the original space
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X is assumed, although Freudenthal comments that this assumption can
be removed. Here we have removed it; moreover, we have generalized the
concept of an end in doing so. But, in fact, one may now ask whether
reinstatement of certain relaxed versions of first or second countability
axioms can be employed in place of some of the hypotheses in our main
theorem. Such investigation would lead to interesting results, in our view.
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