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MODELS OF HYPERSPACES

ALEJANDRO ILLANES

Abstract. In this expository paper we discuss most of what is
known about models of hyperspaces of metric continua.

1. Introduction

A continuum is a nondegenerate compact connected metric space. Given
a continuum X, with metric d, we consider the following hyperspaces of
X.

2X = {A ⊂ X : A is nonempty and closed in X},
Cn(X) = {A ∈ 2X : A has at most n components},
Fn(X) = {A ∈ 2X : A has at most n points},

C(X) = C1(X).
All the hyperspaces are considered with the Hausdorff metric H [17,

Definition 2.1 and Theorem 2.2] defined as
H(A,B) = max{max{d(a,B) : a ∈ A}max{d(b, A) : b ∈ B}},

where d(a,B) = min{d(a, b) : b ∈ B}.
The hyperspace Fn(X) is known as the n-symmetric product ofX. The

hyperspace F1(X) is an isometric copy of X inserted in each one of the
hyperspaces.

In the theory of hyperspaces it is very useful to have geometric ideas
of how they look. Since they are defined as certain classes of subsets of
a given space, this task is not easy. For this reason, we try to construct
models for them. A model for a given hyperspace K(X) is a topologically
equivalent space, where the elements are points instead of subsets.
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From the geometric point of view, models of hyperspaces is a very
attractive subject. Moreover, models are a very powerful tool to suggest
properties and results on hyperspaces. Unfortunately, as we will see, there
are only a few hyperspaces that can be modeled.

In this paper we present a survey of what has been made on models
of hyperspaces of metric continua. Previous versions, in Spanish, of this
topic can be found in [13, Chapter 3] and [14]. In this paper we update the
information with new developed models. Here, we privilege the geometric
ideas; for example, we do not prove the continuity of any function. Some
of the models included here are explained with more detail in Chapter II
of [17].

2. The unit interval, C(X)

The simplest continuum is the unit interval [0, 1]. Notice that

C([0, 1]) = {[a, b] : 0 ≤ a ≤ b ≤ 1}.

It is easy to check that the function ϕ : C([0, 1]) → R2 (R2 is the
Euclidean plane) given by ϕ([a, b]) = (a, b) is a homeomorphism between
C([0, 1]) and the triangle T = {(a, b) ∈ R2 : 0 ≤ a ≤ b ≤ 1}, represented
in Figure 1.

Figure 1

Thus, we can say that this triangle is a model for C([0, 1]). Observe
that the set of elements in C([0, 1]) that contain 0 (intervals of the form
[0, b]) is represented by an edge of T . Similarly, the set of elements of
C([0, 1]) containing 1 is represented by another edge of T . The set of
singletons F1([0, 1]) is represented on the third edge of T (the diagonal).
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Sometimes it is more useful to represent C([0, 1]) by using the map
ψ : C([0, 1])→ R2 given by ψ([a, b]) = (a+b2 , b−a). Notice that the image
of ψ is the triangle illustrated in Figure 2.

Figure 2

3. The circle, C(X)

Let S1 be the unit circle in R2, centered at the origin. For each subarc
A of S1 let m(A) be the middle point of A in S1 and let L(A) be the
length of A. Then define ϕ : C(S1)→ R2 by

ϕ(A) =

{
[1− (L(A)/2π)]m(A), if A 6= S1,
(0, 0), if A = S1.

It is easy to check that ϕ is a homeomorphism between C(S1) and the
unit disc. Thus, a model for C(S1) is this disc.

Figure 3

Take a point p ∈ S1. For later use, we need to identify the image under
ϕ of the set C = {A ∈ C(S1) : p ∈ A}. By the homogeneity of S1 we
suppose that p = (0, 1). The best way to visualize C is recognizing its
boundary, which is given by the set {A ∈ C(S1) : A is a subarc of S1
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and p is an end point of A}∪{S1, {p}}. We start at {p}, we consider arcs
having p as their end point and draw the images of them under ϕ, then
we obtain the curve in Figure 4. Now we see that C has the shape of a
heart.

Figure 4

4. The simple triod, C(X)

Another simple continuum is the simple triod T defined as the union
of three arcs L1, L2 and L3, called the legs of T , joined by a point v
called the vertex of T (Figure 5). The hyperspace C(T ) is the union of
C(L1), C(L2), C(L3) and Cv(T ) = {A ∈ C(T ) : v ∈ A}. By the model in
section 2, each set C(Li) can be represented as a convex triangle. Given
an element A of Cv(T ), A is uniquely determined by the lengths of the
intersections of A with the legs of T . So, they can be represented by a
vector with three coordinates (a, b, c).

Figure 5

Varying the three lengths a, b and c we obtain a convex cube in R3.
Thus C(T ) is the union of a convex cube in R3 with three convex triangles
attached, as it is pictured in Figure 6.
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Figure 6

5. The noose, C(X)

The following continuum we consider is the noose N which is the union
of a simple closed curve S and an arc J intersecting at a point v that is
an end point of J . The hyperspace C(N) is the union of C(S), C(J) and
Cv(N) = {A ∈ C(N) : v ∈ A}. By the previous examples, the set C(J)
can be represented as a convex triangle and C(S) can be represented as
a disc. Moreover, the elements A of Cv(N) are uniquely determined by
A ∩ S and by the length of A ∩ J .

Figure 7

For each element B ∈ C(S) such that v ∈ B, we can enlarge B by
using a subarc of J containing v. Thus, for each such B, in the model of
C(N) we have to put an arc. As we saw in section 3, the set Cv(S) of all
such elements B is a two cell with the shape of a heart. Hence, a model
for Cv(S) is the cylinder Cv(S)× [0, 1]. To this cylinder we add the disc
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C(S) and the convex triangle C(J). Now, it is not difficult to see that a
model for C(N) is the space represented in Figure 8.

Figure 8

6. No more locally connected models for C(X) in R3

A finite graph is a continuum that can be put as a finite union of arcs
whose pairwise intersections are finite. A simple n-od is a finite graph G
that is the union of n arcs emanating from a single point, v, and otherwise
disjoint from one another. The point v is called the vertex of G.

Now consider the continuum H with the shape of the letter H. Let J
be the transversal arc, as in Figure 9.

Figure 9

Since the subcontinua of H containing J can be enlarged in four in-
dependent directions, thus obtaining four lengths a, b, c and d, C(H)
contains a 4-cell and C(H) cannot be embedded in R3.
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If X contains a simple 4-od with vertex v, similarly as we did with the
simple triod, it can be seen that Cv(X) = {A ∈ C(X) : v ∈ A} is a 4-cell.
Thus C(X) is not embeddable in R3.

Figure 10

Let Z be a locally connected continuum such that C(Z) is embeddable
in R3. Then C(Z) is finite dimensional. Thus, (see the historical re-
marks in [17, p. 44]) Z is a finite graph. By the paragraphs above, Z
contains neither two ramification points nor a simple 4-od. This implies
that Z has at most one ramification point and it is of order at most 3.
Therefore, Z is either an arc, a simple closed curve, a simple triod or a
noose. Therefore, if Z is a locally connected continuum, then C(Z) is
embeddable in R3 if and only if Z is one of the continua described in
sections 2, 3, 4 or 5.

Figure 11
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7. More continua X for which C(X) is embeddable in R3

There are more continua X for which C(X) is embeddable in R3. For
example, S. B. Nadler, Jr. showed that there are exactly eight hereditarily
decomposable continua X such that cone(X) is homeomorphic to C(X).
These continua are pictured in Figure 12.

Figure 12

Since almost all of them can be embedded in R2, their hyperspace
C(X) can be embedded in R3. Another example X such that C(X) is
embeddable in R3 is the Buckethandle continuum (see Figure 29, p. 193
of [17]) for which it is also known that C(X) is homeomorphic to its cone.
One more example X is the continuum consisting of a simple triod with
a ray surrounding it, X is illustrated in Figure 13.

Figure 13
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The model for C(X) is in Figure 14.

Figure 14

This model consists of a solid rocket (homeomorphic to the cube with
three triangles of Figure 6) surrounded by an infinite sheet converging to
it. This model was useful for showing a tree-like continuum X such that
its hyperspace C(X) does not have the fixed point property (see [15]).
The general problem of characterizing those continua X for which C(X)
is embeddable in R3 seems to be very difficult. In fact, an answer to the
following old problem by J. Krazinkiewicz is not known.

Problem 7.1. (see Question 3.5 of [24]) Is it true that if C(X) is em-
beddable in R3, then X is embeddable in R2?

We can also ask a similar question as Problem 7.1 for n ≥ 3, that is,
we can ask if the fact that C(X) is embeddable in Rn+1 implies that X
is embeddable in Rn. This question can be easily solved since if n ≥ 3
and C(X) is embeddable in Rn+1, then C(X) is finite dimensional. This
implies that (see Corollary 73.11 of [17]) X is 1-dimensional, so X is
embeddable in R3.

An n-od in a continuum X is a subcontinuum B of X for which there
exists a subcontinuum A of B such that B−A has at least n components.
It is known [17, Theorem 70.1] that X contains an n-od if and only if
C(X) contains an n-cell. Very recently, V. Martínez de la Vega and
N. Ordoñez have found a characterization of locally connected continua
X for which C(X) is embeddable in R4 (and R5).
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8. Locally connected continua X for which C(X) is
embeddable in R4 and R5

Theorem 8.1. [21] Let X be a locally connected continuum. Then the
following are equivalent.

(a) C(X) is embeddable in R4,
(b) dim(C(X)) ≤ 4,
(c) X contains no 5-ods,
(d) C(X) contains no 5-cells,
(e) X is one of the continua in Figure 15.

Figure 15

Theorem 8.2. [21] Let X be a locally connected continuum. Then the
following are equivalent.

(a) C(X) is embeddable in R5,
(b) dim(C(X)) ≤ 5,
(c) X contains no 6-ods,
(d) C(X) contains no 6-cells,
(e) X is one of the continua in Figure 15 or X = Z ∪ J , where Z is of

one of the continua in Figure 15 and J is an arc such that Z ∩ J = {p}
(for some p ∈ Z) and p is an end point of J .
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The proofs of Theorems 8.1 and 8.2 depend on the construction of the
models of C(X) (in R4) of the continua in Figure 16.

Figure 16

The construction of the models of the continua in Figure 16 is difficult.
In [21], V. Martínez de la Vega and N. Ordoñez gave explicit formulas for
embedding their hyperspaces C(X) in R4. In particular, the formulas for
the θ-curve are really complex. So this procedure seems not to be useful
for proving a similar result for Rn, for n ≥ 6. The following question
remains open.

Question 8.3. [21, Problem 2]. Given n ≥ 6 and a continuum X, are
the following equivalent?

(a) C(X) is embeddable in Rn,
(b) dim(C(X)) ≤ n.

More results and questions on the topic of embedding the hyperspace
C(X) in some space Rn can be found in Chapter III of [24].

9. Infinite dimensional models for Cn(X)

In the literature, we can find some models for the hyperspace C(X),
in the case that C(X) is infinite dimensional. For example, C. Eberhart
and S. B. Nadler, Jr. constructed models for smooth fans in [8]. In [17,
Example 6.1] the hyperspace is constructed of the continuum called Fω,
which is the continuum that is the union of countably infinitely many arcs
J1, J2,... satisfying the following conditions: All the arcs Ji emanate from
a single point, v, and are otherwise disjoint from one another and lim Jn =
{v}. The most important result about infinite dimensional models is the
one given by the following fundamental theorem.

Theorem 9.1. ([7] and [6] for the case n ≥ 2). Let X be a continuum.
Then the following are equivalent.

(a) C(X) is homeomorphic to the Hilbert cube,
(b) X is locally connected and each arc in X has empty interior,
(c) Cn(X) is homeomorphic to the Hilbert cube.
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10. Cn([0, 1]) for n ≥ 2

R. M. Schori has shown that C2([0, 1]) is a 4-cell by using the following
argument [10, Lemma 2.2]. Let C1

0 = {A ∈ C2([0, 1]) : 0, 1 ∈ A} and
C1 = {A ∈ C2([0, 1]) : 1 ∈ A}. The typical elements of C1

0 are of the form
A = [0, a] ∪ [b, 1], where 0 ≤ a ≤ b ≤ 1. We can define ϕ(A) = (a, b).
Then ϕ is not a function since ϕ([0, 1]) = ϕ([0, a]∪ [a, 1]) = (a, a) for each
a ∈ [0, 1]. The image of ϕ is the triangle T in Figure 1. If we identify the
diagonal ∆ of T to a point we obtain the space T/∆ and now ϕ is a well
defined homeomorphism between C1

0 and T/∆. This proves that C1
0 is a

2-cell. It is easy to show that the function ψ : C1
0 × [0, 1] → C1 given by

ψ(A, t) = t+(1− t)A is continuous, surjective and its only nondegenerate
fiber is the set C1

0 × {1}. Thus, C1 is homeomorphic to the cone of
C1

0 . Hence, C1 is a 3-cell. Finally, the function σ : C1× [0, 1]→ C2([0, 1])
given by σ(A, t) = tA is continuous, surjective and its only nondegenerate
fiber is C1 × {0}. Hence, C2([0, 1]) is homeomorphic to the cone over C1.
Therefore, C2([0, 1]) is a 4-cell.

In [11], it has been shown that, if n ≥ 3, then {A ∈ Cn([0, 1]) : A has
a neighborhood in Cn(X) that is a 2n-cell} = Cn([0, 1]) − Cn−1([0, 1]).
In particular, this implies that Cn([0, 1]) is not a 2n-cell. The author has
constructed a model for C3([0, 1]) and he is able to show that C3([0, 1])
can be embedded in R6. The following problem remains unsolved.

Problem 10.1. Is Cn([0, 1]) embeddable in R2n for each (for some) n ≥
4?

11. Cn(S1) for n ≥ 2

In [12] it is shown that C2(S1) is the cone over a solid torus. The proof
is difficult and it seems that it cannot be generalized for n ≥ 3. Nothing
else is known for Cn(S1) (n ≥ 3). The following questions are interesting.

Problem 11.1. (a) Find a model for C3(S1); (b) Is Cn(S1) the cone over
a continuum for some (for all) n ≥ 3?; (c) Is Cn(S1) embeddable in R2n

for each (for some) n ≥ 3?

In [19, Theorem 3.1] it was shown that if X is a simple m-od, then
C(X) is the cone over the set {A ∈ Cn(X) : A contains an end point
of X}. In [20] V. Martínez de la Vega proved that if G is a finite graph
such that Cn(G) is a cone for some n ≥ 2, then G is either an m-od
or a simple closed curve. So, the answer to Problem2.8 (b) could give a
characterization of those finite graphs G for which Cn(G) is a cone.
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12. Models for 2X

In the early 1920’s, in Poland it was conjectured that 2[0,1] is a Hilbert
cube. It was not until the 1970’s when this problem was solved by D. W.
Curtis and R. M. Schori who proved the following fundamental theorem.

Theorem 12.1. [7]. Let X be a continuum. Then the following are
equivalent.

(a) X is locally connected,
(b) 2X is homeomorphic to the Hilbert cube.

Although models of some very specific examples have been constructed
for 2X , the only significant result about models for 2X is Theorem 12.1.

13. The unit interval, Fn(X)

As before, in the topic of models, the simplest continuum is the unit
interval [0, 1].

Let ϕ : F2([0, 1])→ R2 be given by ϕ({a, b}) = (min{a, b},max{a, b}).
Clearly, ϕ is an embedding whose image is the convex triangle {(a, b) ∈
R2 : 0 ≤ a ≤ b ≤ 1}. Thus, F2([0, 1]) is a 2-cell.

Figure 17

In order to construct a model for F3([0, 1]) let us consider again the
map ϕ : F3([0, 1]) → R2 given by ϕ(A) = (minA,maxA). Then ϕ is a
continuous function whose image is the triangle T in Figure 17. Given
(a, b) ∈ T , the fiber ϕ−1((a, b)) is the set {{a, b, c} : a ≤ c ≤ b}. In the
case that a < b, the set {{a, b, c} : a ≤ c ≤ b} is a simple closed curve
since c runs over the interval [a, b] and {a, a, b} = {a, b, b}. In the case
that a = b, ϕ−1((a, b)) = {{a, b, c} : a ≤ c ≤ b} = {{a}}. Thus to obtain
a model for F3([0, 1]) we need to put a circle at each point (a, b) ∈ T such
that a < b. This can be realized by taking the revolution body that can
be obtained by rotating T around its diagonal. Therefore, F3([0, 1]) is a
3-cell.
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Figure 18

In the case that n ≥ 4, K. Borsuk and S. Ulam, in the first pa-
per about symmetric products, proved that Fn([0, 1]) is not an n-cell
[3, Theorem 7]. A detailed study of the hyperspaces Fn([0, 1]) was made
by R. N. Andersen, M. M. Marjanović and R. M. Schori in [1]. In partic-
ular, in Theorem 2.1 of [1], it was shown that F4([0, 1]) is homeomorphic
to cone(D2) × [0, 1], where D2 is the Dunce hat. Recall that D2 is the
space that can be obtained by identifying the edges of a convex triangle
according to the arrows shown in Figure 19.

Figure 19

First, identify two of the arrows to obtain a cone; second, identify the
vertex of the cone to a point in its base to obtain the space in Figure 20;
finally, identify the two simple bold closed curves in Figure 20.
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Figure 20

It is easy to see that D2 can be constructed in R3. So, F4([0, 1]) is
embeddable in R5. This answers the following question for the case n = 4.
This question is open for n ≥ 5.

Question 13.1. [3, last paragraph]. Is Fn([0, 1]) embeddable in Rn+1 for
every n ≥ 5?

14. The circle, Fn(X)

The symmetric product F2(S1) is the Moebius Strip. We can see this
by using the following argument. Let NA = {{p, q} ∈ F2(S1) : p 6= −q}.
Let A : NA → C(S1), m : NA → S1, L : NA → R and ϕ : NA → R2 be
given by

A({p, q}) = the shorter arc joining p and q in S1,
m({p, q}) = the middle point of A({p, q}),
L({p, q}) = the length of A({p, q}), and
ϕ({p, q}) = (1− ( 1

2πL({p, q})))m({p, q}).
Notice that ϕ is a homeomorphism between NA and the annulus R =

{z ∈ R2 : 1
2 < |z| ≤ 1}. If we want to extend ϕ to the set A = {{z,−z} ∈

F2(S1) : z ∈ S1}, by continuity and depending on the way we approximate
{z,−z} by elements {p, q} ∈ NA, we should define ϕ({z,−z}) with two
values, namely, ϕ({z,−z}) = w or −w, where 2w is the point obtained
by rotating z by π

2 . To solve this ambiguity, we need to identify points
w and −w. Notice that the points w are the points of the circle B =
{u ∈ R2 : |u| = 1

2}. The quotient space obtained from R0 = R ∪ B by
the identification is the Moebius strip M . In Figure 21 we show how this
strip can be obtained. We start with the annulus and we cut it by two
arrows a and b. Then we make the transformations marked in Figure 21
to get the strip M .
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Figure 21

For further use, we need to represent inM the set Dp={{p, z} :z∈S1}.
According to the definition of ϕ, the image of this set consists of two arcs
B1 and B2 in the annulus R0. If we follow the transformations that
we have made to obtain the Moebius strip M , we can see that Dp is
homeomorphic to a simple closed curve B that touches the boundary of
M in exactly one point. This simple closed curve is represented at the
end of Figure 22. It is important to remark that in this representation
of the Moebius strip the curve B can be pictured entirely without dotted
lines.

Figure 22

As we have seen, some models of hyperspaces are easy to construct.
There are other more complicated examples for which a specific approach
is necessary. To illustrate how difficult may it be to construct a model,
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let us mention that K. Borsuk made a mistake. He published a paper
[2] claiming that F3(S1) is homeomorphic to S1 × S2, where Sn is the
unit sphere in Rn+1. Three years later, R. Bott [4] corrected this fact
by proving that F3(S1) is homeomorphic to S3. J. Mostovoy pointed out
that an interesting illustration of the non-triviality of Bott’s theorem is
the result attributed to E. Schepin which says that the embedding knot
(F1(S1)) is a trefoil knot (see Theorem 2 of [23]).

Even when no models for Fn(S1) (n ≥ 4) have been constructed, in [25]
and [27] some topological properties of these spaces have been studied.

15. The simple triod, F2(X)

Consider a simple 3-od Y as illustrated in Figure 23. Let J1 = L1∪L2,
J2 = L2 ∪ L3 and J3 = L3 ∪ L1. Note that F2(T ) = F2(L1) ∪ F2(L2) ∪
F2(L3). Since each Ji is an arc, we know that F2(Ji) can be viewed as
a convex triangle. Thus, to obtain a model for F2(Y ) we need to take
the three triangles F2(J1), F2(J2) and F2(J3) and identify the points that
represent elements of F2(Y ) appearing in more than one triangle. For
example, F2(J1)∩F2(J2) = F2(L2) which is a subtriangle in both triangles
F2(J1) and F2(J2). In Figure 23, we picture the triangles F2(J1), F2(J2)
and F2(J3) with the parts that need to be identified. The resulting space
is a convex triangle with three wings attached to it.

Figure 23

E. Castañeda has recently found a model for F3(Y ) [26]. He showed
that F3(Y ) is the cone over a torus with four disks attached to it, one as
an "equator" and the three other ones as "meridians" (Figure 24).
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Figure 24

16. The simple 4-od, F2(X)

Let X be a simple 4-od with vertex v, as in the Figure 25, where
L is one of the legs. Let T be the simple triod obtained by removing
the leg L from X. By the previous example, F2(T ) is a convex triangle
with three wings. Note that F2(X) = F2(T ) ∪ F2(L) ∪ 〈T, L〉, where
〈T, L〉 = {{p, q} ∈ F2(X) : p ∈ T and q ∈ L}. Observe that 〈T, L〉 is
homeomorphic to T × L, 〈T, L〉 ∩ F2(T ) = {{v, p} ∈ F2(X) : p ∈ T}
is a simple triod located on the convex triangle and 〈T, L〉 ∩ F2(L) =
{{v, q} ∈ F2(X) : q ∈ L} corresponds to the middle arc in T × L. Thus,
to obtain a model for F2(X) we have to put together three pieces, namely
the triangle with wings, T × L and a convex triangle. The final model is
illustrated in Figure 25, where the space (T × L) ∪ F2(J) is attached to
the triangle with wings by the simple triod on the triangle.

Figure 25
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17. The noose, F2(X)

Recall that the noose N is the union of a simple closed curve S and an
arc J joined by a point v that is an end point of J . As in the previous
example, F2(N) = F2(S)∪F2(J)∪〈S, J〉, where 〈S, J〉 = {{p, q} ∈ F2(N) :
p ∈ S and q ∈ J}. Note that 〈S, J〉 is homeomorphic to S × J , 〈S, J〉 ∩
F2(S) = {{v, q} ∈ F2(N) : q ∈ S} is a simple closed curve in F2(N) as the
one we have constructed in the example of the Moebius strip (Figure 22)
and 〈S, J〉 ∩ F2(J) = {{v, p} ∈ F2(N) : p ∈ J} is an arc in the cylinder
S×J . Therefore, the model for F2(N) can be obtained as it is illustrated
in Figure 26, where the arrows indicate how the simple closed curve in
the strip is attached to the base of the cylinder. Notice that, since we
can see the curve in the strip, the rest of the strip can be pushed down in
such a way that this attachment can be done in the space R3.

Figure 26

18. The figure eight continuum, F2(X)

Let Y be the "figure eight" continuum. That is, Y is the union of
two simple closed curves S1 and S2 whose intersection is one-point set
{v}. Note that F2(Y ) = F2(S1) ∪ F2(S2) ∪ 〈S1, S2〉, where 〈S1, S2〉 =
{{p, q} ∈ F2(Y ) : p ∈ S1 and q ∈ S2}. Given a point p ∈ S1, the
set of points Rp = {{p, q} : q ∈ S2} is a simple closed curve. Thus⋃
{Rp : p ∈ S1} is a union of pairwise disjoint simple closed curves.

Since p runs over the simple closed curve S1, we can see that 〈S1, S2〉
is homeomorphic to the product S1 × S1. Therefore, 〈S1, S2〉 is a torus.
Notice that Rv = {{v, q} : q ∈ S2} is an "equator" of the torus 〈S1, S2〉
and the set R = {{p, v} : p ∈ S1} is a "meridian" of the torus. Since
F2(S1)∩〈S1, S2〉 = R, F2(S2)∩〈S1, S2〉 = Rv and F2(S1)∩F2(S2) = {{v}},
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we have that F2(Y ) is the union of a torus with two Moebius strips at-
tached by R and Rv. The representation of the model for F2(Y ) is illus-
trated in Figure 27.

Figure 27

Note that, since each one of the sets R and Rv in the Moebius strips
can be seen, the final model for F2(Y ) can be constructed in R3 (in order
to see this we can image the following: in order to attach F2(S1) to the
torus by the set R we can imagine the curve R in a vertical plane P in
front of us in the space R3, then we can push the rest of F2(S1) behind P
in such a way that F2(S1) is in one of the halves in which R3 is divided
by P and that F2(S1) ∩ P = R. Then we can make a rigid movement
to put F2(S1) on the upper part of the torus. The Moebius strip F2(S2)
must be attached to the torus from inside the tube.

We have shown that F2(Y ) can be embedded in R3. E. Castañeda [5]
proved that F2(simple 5-od) contains a topological copy of the cone over
the complete graph K5 and then, using tools from low-dimensional topol-
ogy, he showed that this cone is not embeddable in R3. Thus, F2(simple 5-
od) is not embeddable in R3. He also found that F2(figure H-continuum)
contains a topological copy of the topological cone over the complete
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bipartite graph K3,3 and then he showed that F2(figure H-continuum) is
not embeddable in R3. Therefore, if a finite graph G either contains two
vertices or it contains a vertex of order at least 5, then F2(G) is not em-
beddable in R3. The two last paragraphs can be resumed in the following
theorem.

Theorem 18.1. [5, Theorem 3]. Given a locally connected continuum X
we have that F2(X) can be embedded in R3 if and only if X is embeddable
in the figure eight continuum.

Figure 28

19. The sin( 1
x )-continuum, F2(X)

In [5, Problem 2] E. Castañeda asked if Theorem 18.1 can be extended
for all continua X. In [16] the author constructed a model for F2(sin( 1

x )-
continuum) and proved that it can be embedded in R3. In fact, he proved
that if X is any compactification of the ray [0,∞) with an arc as the
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remainder, then F2(X) can be embedded in R3. To see how complex this
model is, we describe some steps of the construction of F2(Z), where Z
is the sin( 1

x )-continuum.
(a) Put a copy of Z in R2 × {0} (Figure 29).

Figure 29

(b) Put a sequence {Zn}∞n=1 of copies of Z converging to Z in such a
way that the remainder of each Zn is R and the sets Z − {R}, Z1 − {R},
Z2 − {R},... are pairwise disjoint (Figure 30).

Figure 30

(c) Join some cuspides and some valleys in Figure 30 as it is shown in
Figure 31. In this way infinitely many quadrilaterals are formed. Some
of them point upward and some of them point downward.
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Figure 31

(d) For each one of these quadrilaterals and on each of its edges put
a triangle as it is shown in Figure 32. For those quadrilaterals pointing
upward, the triangles are constructed in R2× [0,∞) with one of their ver-
tices in R2 × {1}; for the quadrilaterals pointing downward, the triangles
are constructed in R2× (−∞, 0], with vertices in R2×{−1}. On the seg-
ments of the first constructed copy of Z (Figure 29), we put triangles that
make the whole set closed. This requires to put, on the segment R, two
triangles T1 and T2, one with the third vertex in R2 × {1} and the other
one in R2×{−1}. Thus we obtain a subcontinuum W of R3. Finally, the
triangles T1 and T2 are folded (and identified) until they become a single
triangle T contained in R2 × {0}, which has R as an edge. By this, we
obtain a map ϕ : T1 ∪ T2 → T . The rest of W (W − (T1 ∪ T2)) follows
continuously the folding movement in such a way that we extend ϕ so that
ϕ|W−(T1∪T2) : W − (T1 ∪ T2) → ϕ(W − (T1 ∪ T2)) is a homeomorphism.
The continuum resulting from W after identifying T1 and T2 is a model
for F2(Z).

20. More questions

Problem 20.1. [16]. Characterize finite graphs G such that F2(G) is
embeddable in R4.
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Figure 32

Problem 20.2. [16]. Is it true that, for a finite graph G, F2(G) is embed-
dable in R4 if and only if G is embeddable in R2? Is F2(K5) embeddable
in R4?

The sufficiency in the first part of Problem 12 is true by the result in
[22, Theorem 1] which says that F2([0, 1]2) = [0, 1]4. In [22] one can find
more results about F2([0, 1]m).

21. The Hilbert cube, Fn(X)

We denote by Q the Hilbert cube. V. V. Fedorchuk proved that for
each n ≥ 2, Fn(Q) is homeomorphic to Q [9, p. 223]. However, Q is not
the only continuum X for which Fn(X) is homeomorphic to Q. In [18, p.
139] it was shown that if X is the union of two Hilbert cubes joined by a
point, then F2(X) is homeomorphic to Q. This is the only case we know
in which two different spaces can have the same symmetric product.

Question 21.1. Do there exist two non-homeomorphic finite-dimensional
continua X and Y such that F2(X) is homeomorphic to F2(Y )?

Combining Fedorchuk’s Theorem and Theorems 9.1 and 12.1, we can
conclude that Q has the property that all its hyperspaces (2Q, Cn(Q) and
Fn(Q)) are homeomorphic to Q. We do not know if Q is the only space
with this property.

Question 21.2. Does there exist a continuum X, non-homeomorphic
to the Hilbert cube such that X is homeomorphic to each one of its
hyperspaces 2X , Cn(X) and Fn(X) (for all n)?
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