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ALMOST COMPLETENESS AND THE EFFROS OPEN
MAPPING PRINCIPLE IN NORMED GROUPS

A. J. OSTASZEWSKI

Abstract. We extend van Mill’s version of the Effros Open
Mapping Principle from analytic groups to almost complete
normed groups.

1. Introduction

We extend to the class of almost complete normed groups (definitions
below), a class which includes Polish (i.e. separable, completely metriz-
able) topological groups, a result that was originally proved by Effros
[8] for Polish topological groups acting transitively and continuously on
a non-meagre metric space. This has recently been improved by van
Mill [27] to analytic metric groups with separately continuous, transitive
action on a non-meagre metric space. Thus van Mill’s variant includes
meagre analytic groups acting transitively on a non-meagre metric space
(for an example see [27, Remark 2]). In fact van Mill’s argument ap-
plies more generally to analytic normed groups. Below we admit (sep-
arately) continuous actions by non-analytic normed groups, but at the
price of the normed groups being non-meagre (and so Baire by virtue of
almost completness). In this connection we note the result due to [16] and
[11, Th. 2.3.6 p. 355] that a Baire analytic topological group is Polish.

A metric space is almost complete if it contains a dense absolute Gδ

(for a relaxation see Th. 2.3 below). The notion of ‘almost complete-
ness’ is due to Frolík in [10] (but its name to Michael [17] – see also
[1] and [4]). To state our version of the Effros Open Mapping Theo-
rem we first recall the definition of normed groups and group actions.
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In the next section we recall the notion of analyticity and its connection
with Cantor’s Theorem; this will allow us to formulate a convergence cri-
terion (Lemma 2.2) applicable under almost completeness (in lieu of the
Cauchy criterion under completeness), a key tool alongside the notion of
a (continuous) map that is ‘irreducible in category’ recalled at the end of
that section.

Definition 1.1 (Normed groups). 1. For T an algebraic group with neu-
tral element e = eT , say that || · || : T → R+ is a group-norm ([4]) if the
following properties hold:
(i) Subadditivity (Triangle inequality): ||st|| ≤ ||s||+ ||t||;
(ii) Positivity : ||t|| > 0 for t ̸= e and ||e|| = 0;
(iii) Inversion (Symmetry): ||t−1|| = ||t||.
Then (T, ||.||) is called a normed group.
2. The group-norm generates a right and a left norm-topology via the
right-invariant and left-invariant metrics dTR(s, t) := ||st−1|| and dTL(s, t) :=
||s−1t|| = dTR(s

−1, t−1). In the right norm-topology the right shift ρt(s) :=
st is a uniformly continuous homeomorphism, since dR(sy, ty) = dR(s, t),
so in particular the group is a right topological group; likewise in the left
norm-topology the left shift λs(t) = st is a uniformly continuous home-
omorphism. Since dTL(t, e) = dTL(e, t

−1) = dTR(e, t), convergence at e is
identical under either topology, and generated by sets of the form B−1B,
for B open or closed balls centered at e. In the absence of a qualifier, the
‘right’ norm-topology is to be understood.
3. See Section 2 for a characterization of almost-complete normed groups.

Recall that a normed group G acts continuously on X if there is
a continuous mapping φ : G × X → X such that φ(e, x) = x and
φ(gh, x) = φ(g, φ(h, x)). In view of applications, it is convenient to re-
gard G as having the topology generated by the left-invariant metric
dGL (g, h) := ||g−1h||. Thus g : x → φ(g, x) is a continuous self-map of
X with a continuous inverse, and so is an autohomeomorphism, denoted
g(.). The action is separately continuous if g : x → φ(g, x) is continuous
(so again an autohomeomorphism) and ξx : g → φ(g, x) is continuous.
By a theorem of Bouziad ([5]), if the normed group G is Baire, as will
be the case below, a separately continuous action is necessarily jointly
continuous. The action is transitive if for any x, y in X there is g ∈ G
such that g(x) = y. The action of G on X is weakly micro-transitive if for
each x ∈ X and each neighbourhood (abbreviated henceforth to nhd) A
of eG the set

cl(Ax) = cl{ax : a ∈ A}
has x as an interior point (in X). We noted that the nhds of eG under
either norm topology are the same, so the weak microaction property is
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a norm property, rather than a topological property of G. The action is
micro-transitive if for x ∈ X and each nhd A of eG the set

Ax = {ax : a ∈ A}

is a nhd of x. This is again a norm property. We refer to Ax as an x orbit
(the A-orbit of x).

Theorem 1.2 (Main Theorem). Let the normed group G have separately
continuous and transitive action on X. If under either norm topology G
is separable and almost complete (so Baire), and X is non-meagre, then
the action of G is micro-transitive.

A tribute to the importance of the Effros’s result is the existence of
several proofs with varying contexts, including [2], [12], [7], one attributed
to Becker in [14] (based on the Kuratowski-Ulam, category analogue of
the Fubini, theorem), as well as the already cited [27]. The last of these
papers describes the historical development and applications to functional
analysis and continuum theory; our interest arises with its application to
topological regular variation (which draws on the ‘crimping property’ – for
the definition and its derivation from the Effros Theorem see [4] Th.3.15,
and for its applications see [3]). Our proof of the current version of the
Effros Theorem blends the argument in [2] with that in [27], and relies on
the convergence criterion of Lemma 2.2 below, valid in analytic spaces.
It has recently emerged in [24] that the Effros Theorem is intimately
connected with the notion of shift-compactness (for which see the survey
[20], in this same volume), a fact that yields an altogether different, short
proof of Th. 1.2, applicable beyond the separable context unlike the other
proofs (by contradiction rather than directly, referring to one sequence
rather than the two below); see also [18] for further background.

Remarks. 1. Working still under dGL and with G acting transitively, if for
each fixed k the shift ρk : g → gk is a homeomorphism of G (having a
continuous inverse ρk−1), in particular if G is a topological group, then
open-ness of any one map ξy implies open-ness of all the other maps
ξx. Indeed, by transitivity write ky = x for some k ∈ G; then g(x) =
g(k(y)) = gk(y), so that ξx(g) = ξy ◦ ρk(g), and then ξx is open (as a
composition of two open maps).
If all the maps ξx are open, then for any fixed x and H an open nhd of
eG the set Hx is open, and so x ∈ Hx is an open nhd of x, i.e. the action
is microtransitive.
2. The theorem may be generalized in such a way that, in the case of a
topological group, for T almost open (i.e. Baire non-meagre) in G the set
Tt−1x is almost open for quasi all t ∈ T . For details see [18].
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2. Analytic Cantor Theorem and convergent
sequences

Recall that Cantor’s Theorem on the intersection of a nested sequence
of closed (or compact, as appropriate) sets has two formulations: (i) re-
ferring to vanishing diameters (in a complete-space setting), and (ii) to
(countable) compactness. Our first aim in this section is to give a topo-
logical version that is in this same spirit but appropriate to an analytic,
rather than complete or compact, context. For this we need first to recall
that, in a metric space, a set is analytic if it is the continuous image of a
Polish space P (as before, a separable topologically complete metrizable
space), i.e. of the form f(P ) for f continuous and P Polish – see [13] for
details.

Although our concern here is with metric spaces, there are several ad-
vantages in discussing analytic sets in the broader context of Hausdorff
topological spaces, arising from explicitly exposing their underlying topo-
logical nature. The brief account below will suffice here – see [19] for a
wider discussion.

For X a Hausdorff space write K = K(X) for the family of compact
subsets of a space X, and ℘(X) for the power set. Following the the nota-
tion of [13], write I for NN endowed with the product topology (treating
N as discrete), and with i|n := (i1, ..., in), for i ∈ I and n ∈ N, put
I(i|n) = {j ∈ I : j|n = i|n}, a basic open nhd in I. For X a Hausdorff
space a map K : I → ℘(X) is called compact-valued if K(i) is compact
for each i ∈ I, and singleton-valued if each K(i) is a singleton. K is upper
semicontinuous if, for each i ∈ I and each open U in X with K(i) ⊆ U,
there is a nhd N = I(i|n) of i such that K(j) ⊆ U for each j in N, i.e.
K(i|n) ⊆ U for some n, where we write K(i|n) := K(I(i|n)). A subset
of X is K-analytic if it is the image K(I) under an upper-semicontinuous
compact-valued map.

The following result is implicit in a number of situations, and goes back
to Frolík’s characterization of completely regular Čech-complete spaces as
Gδ in some compactification ([10]; see [9] §3.9).

Theorem 2.1 (Theorem AC – Analytic Cantor Theorem, [19]). Let X
be a Hausdorff space, and let A = K(I) be K-analytic in X, where K is
compact-valued and upper semicontinuous.
Suppose that Fn ⊆ X is a decreasing sequence of closed sets in X such
that

Fn ∩K(i1, ..., in) ̸= ∅,
for some i = (i1, ...) ∈ I and each n. Then

K(i) ∩
∩
n

Fn ̸= ∅.
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Equivalently, if there are open sets Vn in I with clVn+1 ⊆ Vn and diamIVn ↓
0 such that Fn ∩K(Vn) ̸= ∅, for each n, then
(i)

∩
n clVn is a singleton, {i} say,

(ii) K(i) ∩
∩

n Fn ̸= ∅.

Proof. If not, then
∩

n K(i) ∩ Fn = ∅ and so, by compactness, K(i) ∩
Fp = ∅ for some p, i.e. K(i) ⊆ X\Fp. So by upper semicontinuity
Fp ∩ K(I(i1, ..., in)) = ∅ for some n ≥ p, yielding the contradiction
Fn ∩K(I(i1, ..., in)) = ∅. �

We will make use of the following immediate corollary.

Lemma 2.2 (Convergence criterion). In a normed group for rn ↘ 0 and
αn = an · ... · a1 with clBrn+1(an+1) ⊆ Brn(e)an, if X = K(I) is an
analytic subset and K(i1, ..., in) ∩Brn(αn) ̸= ∅ for some i ∈ I, then the
sequence {αn} is convergent.

Proof. Indeed, αn → α, if {α} = K(i)∩
∩

n Fn for Fn = cl(Brn(αn)). �

The convergence criterion may be used to derive the following charac-
terization of almost complete normed groups – for the proof see [21, Th.
2].

Theorem 2.3 (Characterization Theorem (Almost completeness)). In a
separable normed group X under dXR , the following are equivalent:
(i) X is a non-meagre absolute-Gδ modulo a meagre set (i.e. is almost
complete);
(ii) X contains a non-meagre analytic subset;
(iii) X is non-meagre and almost analytic, i.e. non-meagre and analytic
modulo a meagre set.

Definition 2.4. (cf. [9] Ex. 3.1.C). Call a map f : X → Y irreducible
on X in the sense of category if there is no proper closed F ⊆ X such
that modulo a meagre set f(F ) equals f(X).
Equivalently: for non-empty open V in X the set f(V ) is non-meagre in
Y . In particular, for f continuous, if W is open in Y and meets f(X) then,
as V = f−1(W ) is non-empty and open in X, the set W ∩f(V ) = f(V ) is
non-meagre. For brevity, we shall say that a set S is heavy (resp. heavy
on W ) if S ∩V (resp. S ∩W ∩V ) is non-meagre for each open V meeting
S (resp. meeting S ∩W ). We follow [6] in using this term; [27, Prop. 2.2]
calls sets that are dense and heavy ‘fat’. Note that if S is heavy, then it
is dense and heavy on the interior of clS.

The following result is the first step in [27, Prop. 2.2] and is inspired
by a theorem of Levi [15]; more in fact is true – see [19]. We repeat the
proof as it is short.
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Lemma 2.5. For a continuous surjective map f : X → Y with X separa-
ble, there is a closed set X ′ ⊆ X such that the restriction map f ′ := f |X ′

is irreducible on X ′ in the sense of category.

Proof. Let U be the family of open sets U such that f(U) is meagre; put
U :=

∪
U , X ′ := X\U (which is closed) and f ′ := f |X ′. By separa-

bility there is a countable open family V with U =
∪

V; then f(U) =∪
V ∈V f(V ), being a countable union of meagre sets, is meagre. Suppose

that for some V open in X the set f ′(V ∩X ′) is meagre; as V \X ′ ⊆ U,
one has f(V ) ⊆ f ′(V ∩X ′)∪f(U), which is meagre. So V ∈ U and V ⊆ U,
so that V ∩X ′ is empty; so f ′ is irreducible. �

3. Proof of the Effros Theorem

We first give the normed-group version of a key result; that will require
a definition. In what follows we use letters from the beginning of the
alphabet for (open) subsets in G and letters from the end for (open)
subsets of X.

For the next result note that, since dGL (g, h) = dGR(g
−1, h−1), the map

g → g−1 from (G, dGL ) to (G, dGR) is an isometry. So if G is separable
in either norm topology, then it is separable in the other; likewise with
almost completeness.

Theorem 3.1 (Effros’ Theorem – weak micro-transitive form). Let the
normed group G act on X transitively. If G is separable under either
norm topology and X is non-meagre, then the action of G is weakly micro-
transitive.

Proof. Here it is convenient to work under dGL so that each left shift
λg(h)=gh is a (uniformly) continuous bijection, as dGL (gh

′, gh)=dGL (h
′, h),

likewise its inverse λg−1 and so λg is a homeomorphism. So if H is an open
nhd of eG, then gH is open in the left norm-topology. As G is second-
countable there are elements gn in G such that {gnH : n ∈ ω} covers G.
Fix x ∈ X. Now G acts transitively on X, so {gnHx : n ∈ ω} covers X.
As X is non-meagre, for some n the set cl(gnHx) has non-empty interior.
That is, for some non-empty open set W in X the set gnHx is dense in
W. Then Hx is dense in the open set U := g−1

n (W ); indeed for any open
V ⊆ g−1

n (W ), the set gn(V ) is open (since gn : X → X is a homeomor-
phism) and, being contained in W , meets gnHx. So V meets Hx. Thus
∅ ̸= U ⊆int(cl(Hx)).
As Hx is dense in U, for some h ∈ H, the point hx is in U, i.e. in
int(cl(Hx)). So x ∈ h−1int(cl(Hx))=int(cl(h−1Hx))⊆int(cl(H−1Hx)),
since h is a homeomorphism. But sets of the form H−1H with H nhds of
eG form a basis for the open nhds of eG, so x is in the interior of cl(Ax)
for any nhd A of eG. �
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Theorem 3.2 (Effros’ Theorem from weak micro-transitivity). If the
normed group G is almost complete under the right norm-topology and
the separately continuous action of G on X is weakly micro-transitive,
then the action of G is micro-transitive.

Proof. Let d = dX be any metric on X and for a fixed x ∈ X denote by
ξ := ξx : G → X the evaluation map ξx(g) = g(x), which is continuous.
Fix x in X, and let H0 = K0 = Bε(e) be any open ball about e = eG.
By the Characterization Theorem (Th. 2.3), the group G, being almost
complete, is almost analytic, i.e., modulo a meagre set, is the continuous
image of a Polish space, P say under continuous f say. As G is separable
metrizable, Lemma 2.5 applies and, for some closed P0 ⊆ P (so again a
Polish space), we may as context permits dual use of the letter G write
H0 = K0 = G(P0)∪N with N meagre and G(.) an irreducible continuous
map on P0, i.e. with the property that G(A) is heavy for each non-empty
open subset A of P0. Without loss of generality, G0 = G(P0) is dense.
(Otherwise expand N to a meagre Fσ. Then G0\N is a Gδ and comeagre;
then, G being a Baire space, G0\N is dense.) We put Q0 = P0 and
without loss of generality assume that diam(P0) = 1.
Pick U0 open with x ∈ U0 ⊆cl(H0x). Let y ∈ U0; we will show that
y = gx for some g ∈ H−1

0 H0.
We work inductively. We begin with the (rather long) first step in the
induction. We then set out the general inductive step (which follows the
same pattern). What follows is a ‘back and forth’ argument, performed
within successively smaller sub-orbits of the orbit H0x of x and sub-
orbits of the orbit K0y with the intention of showing that the limiting
sub-orbits meet (i.e. hx = ky for some h ∈ H0 and k ∈ K0, so that for
g = k−1h ∈ H−1

0 H0 one has y = gx).
Put x0 = x and y0 = y. We thus have

x0 ∈ U0 ⊆ cl(H0x0) with y0 ∈ U0,

where the diameter of U0 is less than 1 without loss of generality.
We first work within the y orbit: by weak microaction pick open V0 with
diameter less than 1 = 20 such that y0 ∈ V0 ⊆cl(K0y0). Thus

x0 ∈ U0 ⊆ cl(H0x0) with y0 ∈ U0 and y0 ∈ V0 ⊆ cl(K0y0). (ind-0)

Combining the information about y0, we have y0 ∈ U0∩V0, so that U0∩V0

is non-empty open; furthermore U0 ∩ V0 ⊆ U0 ⊆cl(H0x). So the x orbit
H0x in particular meets U0 ∩ V0, i.e. there is h′

1 ∈ H0 such that

x′
1 := h′

1x0 ∈ U0 ∩ V0 ⊆ V0. (1′)

As x′
1 = h′

1x0 ∈ U0 ∩ V0, we have h′
1 ∈ A′

0 := ξ−1(U0 ∩ V0) ∩H0, so this
open set is non-empty. (Recall that ξ is continuous.) As G0 = G(P0) is
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dense and heavy, A′
0∩G0 is non-empty, and so by continuity G−1(A′

0) is a
non-empty open subset of P0. By Lemma 2.5 there is thus a closed subset
P1 ⊆ P0, with diam(P1) <diam(P0)/2 = 2−1, such that G(P1) ⊆ A′

0 and
G(P1) is heavy. So for some non-empty open A0 ⊆ A′

0 the set G(P1)
is dense and heavy on A0. For h1 ∈ A0 ⊆ A′

0 ⊆ ξ−1(U0 ∩ V0) we have
ξ(h1) = h1(x) ∈ U0 ∩ V0, so

x1 := h1x0 ∈ U0 ∩ V0 ⊆ V0. (1)

Now there exists a ball H1 about eG of diameter at most ε/2 such that
H1h1 ⊆ A0 ⊆ H0, and G1 := G(P1) is dense and heavy on H1h1.
Now we work in the orbit of h1x0 : by weak microaction, for some U1

open and of diameter less than 2−1 in X,

x1 = h1x0 ∈ U1 ⊆ cl(H1h1x0). (2′)

By (1) and (2′) and (ind-0), x1 ∈ U1 ∩ V0 ⊆ V0 ⊆cl(K0y0). So here too
the orbit K0y0 meets U1 ∩ V0 and so there is k′1 ∈ K0 such that

y′1 := k′1y0 ∈ U1 ∩ V0.

Write ξ̃ := ξy. Since k′1 ∈ Ã′
0 := ξ̃−1(U1 ∩ V0) ∩ K0, this open set is

non-empty. As G0 is dense and heavy in G, Ã′
0 ∩ G0 is non-empty and

so G−1(Ã′
0) is a non-empty subset of Q0. There is thus a closed subset

Q1, with diam(Q1) <diam(Q0)/2 = 2−1, such that G(Q1) ⊆ Ã′
0 and

G(Q1) is heavy. So for some non-empty open Ã0 ⊆ Ã′
0 the set G(Q1)

is dense and heavy on Ã0. For k1 ∈ Ã0 ⊆ Ã′
0 ⊆ ξ̃−1(U1 ∩ V0) we have

ξ̃(k1) = k1(y) ∈ U1 ∩ V0, so

y1 := k1y0 ∈ U1 ∩ V0 ⊆ V0. (2)

Now there exists a ball K1 about eG of diameter less than ε2−1 such that
K1k1 ⊆ Ã0 ⊆ K0, and G̃1 := G(Q1) is dense and heavy on K1k1.
Working again in the y1 orbit: by weak microaction, for some V1 open
with diameter less than 2−1

y1 ∈ V1 ⊆ cl(K1y1).

This completes the first step in the induction, as we now have closed sets
P1, Q1 in P, open nhds H1,K1 of eG of diameter less than ε2−1, points
h1, k1 in G, points x1, y1 in X, and open sets U1, V1 in X with diameter
less than 2−1 such that

x1 ∈ U1 ⊆ cl(H1x1) with y1 ∈ U1 and

y1 ∈ V1 ⊆ cl(K1y1), (ind-1)
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and

G1 := G(P1) is dense and heavy on H1h1,

G̃1 := G(Q1) is dense and heavy on K1k1.

In general suppose that we now have closed sets Pn−1, Qn−1 in P, open
nhds Hn−1,Kn−1 of the identity in G of diameter less than ε2−(n−1),
points h1, ..., hn−1 and k1, ..., kn−1 in G, points x1, .., xn−1 and y1, ..., yn−1

in X with xi = hixi−1 and yi = kiyi−1 for i ≤ n − 1, and open sets
Un−1, Vn−1 in X with diameter less than 2−(n−1) such that

xn−1 ∈ Un−1 ⊆ cl(Hn−1xn−1) with yn−1 ∈ Un−1 and

yn−1 ∈ Vn−1 ⊆ cl(Kn−1yn−1). (ind-(n− 1))

and

Gn−1 := G(Pn−1) is dense and heavy on Hn−1ηn−1,

where ηn−1 := hn−1 · ... · h1,

G̃n−1 := G(Qn−1) is dense and heavy on Kn−1κn−1,

where κn−1 := kn−1 · ... · k1,

with diam(Pn−1) < 2−(n−1) and likewise diam(Qn−1) < 2−(n−1).
Then yn−1 ∈ Un−1 ∩ Vn−1 ⊆ Un−1 ⊆cl(Hn−1xn−1), so as above there is
h′
n ∈ Hn−1 such that

x′
n := h′

nxn−1 ∈ Un−1 ∩ Vn−1 ⊆ Vn−1. (1′ : n)

Write ξn−1 := ξx(n−1). As x′
n = h′

nxn−1 ∈ Un−1 ∩ Vn−1 and x′
n =

h′
nηn−1x0 with h′

n ∈ Hn−1, we have h′
nηn−1 ∈ A′

n−1 := ξ−1
n−1(Un−1 ∩

Vn−1) ∩ Hn−1ηn−1, and this open set is non-empty (as ξn−1 is contin-
uous). As Gn−1 = G(Pn−1) is dense and heavy on A′

n−1 we have that
A′

n−1 ∩ Gn−1 is non-empty and so G−1(A′
n−1) is a non-empty subset of

Pn−1. There is thus a closed subset Pn, with diam(Pn) <diam(Pn−1)/2 <
2−n, such that G(Pn) ⊆ A′

n−1 and G(Pn) is heavy. So for some non-
empty open An−1 ⊆ A′

n−1 the set G(Pn) is dense and heavy on An−1. For
hn ∈ An−1 ⊆ A′

n−1 ⊆ ξ−1
n−1(Un−1∩Vn−1) we have ξn−1(hn) = hn(xn−1) =

hnηn−1 ∈ Un−1 ∩ Vn−1, so

xn := hnxn−1 ∈ Un−1 ∩ Vn−1 ⊆ Vn−1. (1 : n)

Now there exists a ball Hn about eG of diameter at most ε2−n such that
Hnhnηn−1 ⊆ An−1 ⊆ Hn−1ηn−1, and one has that G(Pn) dense and
heavy on Hnηn for ηn = hn · ηn−1.
Next we work in the orbit of hnxn−1 : by weak microaction, for some Un

open and of diameter less than 2−n in X,

xn = hnxn−1 ∈ Un ⊆ cl(Hnhnxn−1). (2′ : n)
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By (1:n), (2′:n) and (ind-(n−1)), xn ∈ Un∩Vn−1 ⊆ Vn−1 ⊆cl(Kn−1yn−1).
So here too the orbit Kn−1yn−1 meets Un∩Vn−1 and so there is k′n ∈ Kn−1

such that
y′n := k′nyn−1 ∈ Un ∩ Vn−1.

Write ξ̃n−1 := ξy(n−1). Since k′n ∈ Ã′
n−1 := ξ̃−1

n−1(Un ∩Vn−1)∩Kn−1κn−1,

this open set is non-empty. As G̃n−1 is dense and heavy in Kn−1κn−1 by
the inductive hypothesis, Ã′

n−1 ∩ G̃n−1 is non-empty and so G−1(Ã′
n−1)

is a non-empty subset of Qn−1. There is thus a closed subset Qn, with
diam(Qn) <diam(Qn−1)/2 < 2−n, such that G(Qn) ⊆ Ã′

n−1 and G(Qn)

is heavy. So for some non-empty open Ãn−1 ⊆ Ã′
n−1 the set G(Qn) is

dense and heavy on Ã′
n−1. For kn ∈ Ãn−1 ⊆ Ã′

n−1 ⊆ ξ̃−1
n−1(Un ∩ Vn−1) we

have ξ̃n−1(kn) = kn(yn−1) ∈ Un ∩ Vn−1, so

yn := knyn−1 ∈ Un ∩ Vn−1 ⊆ Vn−1. (2 : n)

Now there exists a ball Kn about eG of diameter less than ε2−n such that
Knκn ⊆ Ãn−1 ⊆ Kn−1κn−1, and G̃n := G(Qn) dense and heavy on Knκn

for κn = kn · κn−1.
Working again in the yn orbit: by weak microaction, for some Vn open
with diameter less than 2−n

yn ∈ Vn ⊆ cl(Knyn).

This completes the general induction step, as we now have subsets Pn, Qn

in P , sets Hn,Kn nhds of the identity in G, points xn, yn and sets Un, Vn

in X such that xn ∈ Un with yn ∈ Un and yn ∈ Vn ⊆cl(Knyn).
By Lemma 2.2, the products ηn = hnhn−1...h1 and κn = knkn−1...k1
are convergent sequences, with limit say h and k resp. Thus h ∈cl(H0)
and k ∈cl(K0) =cl(H0), which are closed balls centered at eG. Thus
k−1h ∈cl(H0)

−1cl(H0). But sets of the form B−1B with B a closed ball
around eG are a base for the topology at eG, so k−1h is as small as we
wish.
For fixed x the map g → gx is continuous and hnhn−1...h1 → h, so
xn = hnhn−1...h1x → hx, and likewise yn = knkn−1...k1y → ky. (For
instance, if G ⊆ Auth(X) has the supremum metric derived from dX ,

then dX(hnhn−1...h1x, hx) ≤ d̂(hnhn−1...h1, h) → 0.)
But xn and yn have a common limit (since xn, yn ∈ Un and dX -diam(Un)→
0), so hx = ky. Thus y = k−1hx, as promised. �

Theorems 3.1 and 3.2 now yield the Main Theorem (Th. 1.2).
Acknowledgement. I am grateful to the Referee for a careful read-

ing of the paper and useful comments regarding exposition, and much
indebted to Henryk Toruńczyk for bringing to my notice Ancel’s work
and his own. A study of [2] has led to a broadening of perspectives on the
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Effros Theorem both here and in the companion papers cited after Th.
1.2, also beyond – in topological regular variation, the original motiva-
tion, an area developed jointly with Nick Bingham, whose mathematical
taste has thus left a mark here also.
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