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APPLICATIONS OF CONVERGENCE SPACES TO
VECTOR LATTICE THEORY

JAN HARM VAN DER WALT

Abstract. We introduce the concept of a locally solid convergence
vector lattice as a generalization of locally solid Riesz spaces. This
notion provides an appropriate context for a number of natural
modes of convergence that cannot be described in terms of the
usual Hausdorff-Kuratowski-Bourbaki (HKB) notion of topology.
We discuss the dual and completion of a locally solid convergence
vector lattice. As applications of this new concept we present a
Closed Graph Theorem for linear operators on a class of vector
lattices, and a duality result for locally convex, locally solid Riesz
spaces.

1. Introduction

Many of the most important spaces that arise in analysis are vector
lattices. Recall [1, page 3] that a subset A of a vector lattice L is called
solid whenever

∀ f ∈ A, g ∈ L :
|g| ≤ |f | ⇒ g ∈ A.

(1.1)

A vector space topology on L is called locally solid if it has a basis at 0
consisting of solid sets [1, Definition 5.1].

As a first example, we may note that the space C(X) of continuous,
real valued functions on a topological space is a vector lattice with re-
spect to the pointwise ordering, and comes equipped with a host of useful
topologies, such as the topology of pointwise convergence. Recall that
this topology has a basis at 0 consisting of sets of the form

B(ϵ, F ) = {f ∈ C(X) : |f(x)| < ϵ, x ∈ F},(1.2)
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312 JAN HARM VAN DER WALT

where F is any finite subset of X. Note that the sets B(ϵ, F ) all satisfy

∀ f ∈ B(ϵ, F ), g ∈ C(X) :
|g| ≤ |f | ⇒ g ∈ B(ϵ, F ).

(1.3)

Therefore the topology of pointwise convergence is an example of a locally
solid topology on C(X). Similarly, the spaces Lp(Ω), with Ω a σ-finite
measure space and 1 ≤ p ≤ ∞, are locally solid Riesz spaces with respect
to their natural norm topologies. More generally, any Banach lattice is a
locally solid Riesz space. On the other hand, a number of fundamental
topological processes on a vector lattice cannot be described in terms of
HKB topology, see Examples 1.2 and 1.4 in the following.

Recall [8] that topological convergence of nets is characterized by the
so called Moore-Smith Axioms (MS1) to (MS4) given below in terms of
sequences.

Consider a mapping σ : S ∋ s 7→ σ(s) ∈ P(X) from the set S of
sequences in X to the powerset P(X) of X. Here σ(s) is interpreted as
the set of limits of s. Note that if σ(s) = ∅, then s does not converge to
any member of X. If there is a topology τ on X so that σ(s) is the set of
τ -limits of s for all s ∈ S, then the following conditions are satisfied:

(MS1) If s is the sequence with all terms equal to x, then x ∈ σ(s).
(MS2) If x ∈ σ(s), then x ∈ σ(s′) for all subsequences of s′ of s.
(MS3) If every subsequence s′ of s contains a further subsequence s′′ so

that x ∈ σ(s′′), then x ∈ σ(s).
(MS4) Assume that sn = (xnm), xn ∈ σ(sn) for every n ∈ N, and x ∈ σ(s)

where s = (xn). Then there exists a strictly increasing mapping
δ : N → N so that x ∈ s′ where s′ = (xnδ(n)).

Condition (MS3) is usually referred to as the Urysohn property, while
(MS4) is, for obvious reasons, called the Diagonal property.

A more general notion of topology, which may describe notions of
convergence that do not satisfy the Moore-Smith Axioms, is that of a
convergence structure and a convergence space, see for instance [3].

Definition 1.1. A convergence structure on a set X is a mapping λ from
X into powerset of the set of all filters on X that satisfies the following:

(i) For all x ∈ X, the filter [x] = {F ⊆ X : x ∈ F} belongs to λ(x).
(ii) If F ∈ λ(x) and G ⊇ F , then G ∈ λ(x).
(iii) If F ,G ∈ λ(x), then F ∩ G ∈ λ(x).

If λ is a convergence structure on X, then the pair (X,λ) is called a
convergence space. If there is no ambiguity, we will denote the pair (X,λ)
by X alone. If F ∈ λ(x) we say that F converges to x.



CONVERGENCE VECTOR LATTICES 313

Every topology τ on a set X is identified with a convergence structure
λτ on X given by

F ∈ λτ (x) ⇔ F contains the τ−neighborhood filter at x.

However, not all convergence structures can be defined in this way.
In connection with the aforementioned non-topological modes of

convergence on a vector lattice L, we recall the following well known
topological notion of convergence.

Example 1.2. Let X be a compact topological space. A sequence (fn)
in C(X) converges to f ∈ C(X) in the uniform topology whenever

∀ ϵ > 0 :
∃ Nϵ ∈ N :
∀ x ∈ X, n ∈ N, n ≥ Nϵ :

|f(x)− fn(x)| < ϵ.

(1.4)

Note that the condition (1.4) in Example 1.5 is equivalent to

∃ u ∈ C(X), u ≥ 0 :
∀ ϵ > 0 :
∃ Nϵ ∈ N :
∀ n ∈ N, n ≥ Nϵ :

−ϵu ≤ f − fn ≤ ϵu,

which is formulated entirely in terms of the vector lattice structure of
C(X). Thus one may generalize the notion of uniform convergence in
C(X) to an arbitrary vector lattice L, see for instance [6, Theorem 16.2].

Definition 1.3. A sequence (fn) in L converges relatively uniformly to
f ∈ L whenever

∃ u ∈ L, u ≥ 0 :
∀ ϵ > 0 :
∃ Nϵ ∈ N :
∀ n ∈ N, n ≥ Nϵ :

|f − fn| ≤ ϵu.

(1.5)

In contradistinction with uniform convergence on C(X), relatively
uniform convergence on an arbitrary vector lattice is, in general, not
induced by a topology. In this regard, we denote by C0(R) the space
of continuous, real valued functions defined on R with compact carrier,
that is, each f ∈ C0(R) satisfies f(x) = 0 for all x outside some compact
set K ⊂ R. The space C0(R) is a vector lattice with respect to the usual
pointwise order. In this space, relatively uniform convergence does not
satisfy the Diagonal Property, see [6, Excercise 16.9].
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Example 1.4. Let (Ω,M,m) be a σ-finite measure space and 1 ≤ p ≤
∞. A sequence (fn) in Lp(Ω) converges boundedly almost everywhere to
f ∈ Lp(Ω) whenever

∃ u ∈ Lp(Ω), E ⊂ Ω, m(E) = 0 :
∀ x ∈ Ω \ E :

1) |fn(x)| ≤ u(x), n ∈ N
2) (fn(x)) converges to f(x) in R.

(1.6)

The relevance of the concept of boundedly almost everywhere conver-
gence is demonstrated by its role in the Lebesgue Dominated Convergence
Theorem: If a sequence (fn) converges boundedly almost everywhere to

f in L1(Ω), then
∫
fn(x)dx converges to

∫
f(x)dx.

We may note that (1.6) is equivalent to the condition

∃ (un) ⊂ Lp(Ω) :
1) −un ≤ f − fn ≤ un, n ∈ N
2) un+1 ≤ un, n ∈ N
3) inf{un : n ∈ N} = 0.

(1.7)

Since (1.7) is formulated only in terms of the vector lattice structure of
Lp(Ω), we may generalize the notion of boundedly almost everywhere
convergence to an arbitrary vector lattice L, see for instance [6, Theorem
16.1].

Definition 1.5. A sequence (fn) in L order converges to f ∈ L whenever

∃ (un) ⊂ L :
1) −un ≤ f − fn ≤ un, n ∈ N
2) un+1 ≤ un, n ∈ N
3) inf{un : n ∈ N} = 0.

(1.8)

In general there is no topology on L that induces order convergence
of sequences. Indeed, even on L1(Ω) order convergence is not induced
by a topology. In fact, while order convergence in this space satisfies the
Diagonal Property [6, Theorem 71.8], the Urysohn property may fail, see
[9]: There exists a sequence (fn) in L, which does not order converge to
0, with the property that every subsequence of (fn) contains a further
subsequence that order converges to 0. Thus order convergence in L1(Ω)
is not induced by a topology, since convergent sequences in a topological
space satisfy the Urysohn Property. Note that, in general, order conver-
gence satisfies neither the Urysohn property, nor the Diagonal property,
see for instance [2].
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As indicated in Examples 1.2 and 1.4, relatively uniform convergence
and order convergence are both natural generalizations of important modes
of convergence. Furthermore, the aforementioned concepts of convergence
play a fundamental role in vector lattice theory. However, neither rela-
tively uniform convergence, nor order convergence can be completely de-
scribed in terms of HKB topology. Thus a more general notion of topology
is needed to provide a suitable context for these and other non-topological
modes of convergence that appear in vector lattice theory. In this regard,
we introduce the concept of a locally solid convergence vector lattice as
a generalization of that of a locally solid Riesz space [1]. This notion
is shown to provide a suitable context for both relatively uniform con-
vergence and order convergence. Moreover, the full power and utility of
the theory of convergence vector spaces is now at one’s disposal. In this
regard, we apply such methods to obtain a Closed Graph Theorem, as
well as a duality result for locally convex locally solid Riesz spaces.

For notation and results related to vector lattices we refer the reader
to [1, 6]. All definitions and results concerning convergence spaces may
be found in [3, 4].

2. Locally solid convergence vector lattices

We now introduce the core concept to which this paper is devoted.
Namely, a locally solid convergence vector lattice.
Definition 2.1. Let L be a vector lattice. A vector space convergence
structure λ on L is called locally solid, and the pair (L, λ) a locally solid
convergence vector lattice, if for every F ∈ λ(0) there is a coarser filter
G ∈ λ(0) that has a basis consisting of solid sets.

Clearly every locally solid Riesz space L is a locally solid convergence
vector lattice. Indeed, a filter F converges to 0 in L if and only if V(0) ⊆
F , where V(0) denotes the neighborhood filter at 0 in L. Since L is locally
solid, V(0) has a basis consisting of solid sets. Two more examples are
given in the following.
Example 2.2. Let L be an Archimedean vector lattice. A filter F on L
converges to f ∈ L with respect to the order convergence structure λo,
see [2, 11], if and only if

∃ (ln), (un) ⊂ L :
(1) sup{ln : n ∈ N} = f = inf{un : n ∈ N}
(2) ln ≤ ln+1 ≤ un+1 ≤ un, [ln, un] ∈ F , n ∈ N.

(2.1)

The convergence structure λo is a Hausdorff vector space convergence
structure, and is clearly locally solid. Furthermore, a sequence (fn) in L
converges to f ∈ L with respect to λo if and only if (fn) order converges
to f .
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Example 2.3. Let L be an Archimedean vector lattice and denote by
λr the Mackey modification of λo, that is, a filter F converges to 0 with
respect to λr if and only if there is a set U ⊆ L which is bounded with
respect to λo so that NU ⊆ F , where N denotes the neighbourhood
filter at 0 in R. According to [12, Proposition 2.1], the bounded sets
with respect to λo are precisely the order bounded sets in L. Thus the
convergence structure λr may be characterized as follows [12, Corollary
2.2]:

F ∈ λr(0) ⇔

 ∃ u ∈ L+ :
∀ n ∈ N :

[− 1
nu,

1
nu] ∈ F .

(2.2)

It is immediate that λr is a locally solid vector space convergence structure
on L. Moreover, a sequence (fn) in L converges to f ∈ L with respect to
λr if and only if (fn) converges relatively uniformly to f .

The relatively uniform convergence structure λr satisfies the following
minimality property.
Proposition 2.4. Let L be a a locally solid convergence vector lattice.
For any u ∈ L+, the filter F = [{[− 1

nu,
1
nu] : n ∈ N}] converges to 0 in

L. In particular, if L is an Archimedean vector lattice, then the relatively
uniform convergence structure λr is the finest locally solid convergence
structure on L.
Proof. Let λ be a locally solid convergence structure on L. Consider any
u > 0 in L. We show that the filter

F = [{[− 1

n
u,

1

n
u] : n ∈ N}]

converges to 0 with respect to λ. In this regard, we recall that, due to the
joint continuity of scalar multiplication, the filter Nu converges to 0 in L
with respect to any vector space convergence structure, thus in particular
with respect to λ. Since λ is locally solid, it follows that there is some filter
G with a basis B of solid sets so that G converges to 0 and G ⊆ Nu. Thus
for each B ∈ B there exists nB ∈ N such that {αu : |α| ≤ 1

nB
} ⊆ B. Since

each B ∈ B is solid, it follows that [− 1
nu,

1
nu] ⊆ B for all n ∈ N, n ≥ nB ,

which implies that G ⊆ F . Thus F ∈ λ(0).
If L is Archimedean, it now follows from Example 2.3 that λr is the

finest locally solid convergence structure on L. �
The remainder of this section is devoted to some basic results on locally

solid convergence vector lattices. These are mainly straightforward
generalizations of results that hold for locally solid Riesz spaces, which
can be found in [1, Section 5]. Therefore we will not give complete proofs
of all results.
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Proposition 2.5. Let λ be a vector space convergence structure on a
vector lattice L. Consider the following statements:

(i) λ is a locally solid convergence structure.
(ii) The mapping

∨
: L × L ∋ (f, g) 7→ f ∨ g ∈ L is uniformly

continuous.
(iii) The mapping

∧
: L × L ∋ (f, g) 7→ f ∧ g ∈ L is uniformly

continuous.
(iv) The mapping L ∋ u 7→ |u| ∈ L is uniformly continuous.
(v) The mapping L ∋ u 7→ u+ ∈ L is uniformly continuous.
(vi) The mapping L ∋ u 7→ u− ∈ L is uniformly continuous.

The statement (i) implies (ii) to (vi).

Proof. We show that (i) implies (ii). In this regard, consider filters F ,G ∈
λ(0). Without loss of generality, we may assume that F and G each
have a basis {Fi : i ∈ I}, respectively {Gj : j ∈ J}, consisting
of solid sets. It must be shown that there is a filter H ∈ λ(0) so that
∆(H) ⊆ (

∨
×
∨
)(∆(F × G)) where ∆(H) = [{∆(H) : H ∈ H}], with

∆(H) = {(u, v) ∈ L×L : u− v ∈ H}. The filter ∆(F ×G) is defined in
the same way. We note that (

∨
×
∨
)(∆(F × G)) is based on sets of the

form Hi,j = {(u ∨ v, f ∨ g) : u − f ∈ Fi, v − g ∈ Gj}, with i ∈ I and
j ∈ J . For all f, g, u, v ∈ L the inequality |u∨ v− f ∨ g| ≤ |f −u|+ |g− v|
holds. Therefore

Hi,j ⊆
{
(u, v)

∃ f ∈ Fi, g ∈ Gj :
|u− v| ≤ |f |+ |g|

}
for all i ∈ I and j ∈ J . Since Fi and Gj are solid, it therefore follows
that Hi,j ⊆ {(u, v) : u− v ∈ Fi +Gj} = ∆(Fi + Gj). Hence we have
∆(F + G) ⊆ (

∨
×
∨
)(∆(F × G)), which verifies that (i) implies (ii).

It is easily seen that (ii) implies (iii), (v) and (vi), while (iv) follows from
(v) and (vi). Thus the proof is complete. �

Remark 2.6. We note that conditions (ii) to (vi) are in fact equivalent.
Furthermore, in the topological case (i) is also equivalent to each of (ii) to
(vi). However, this is not the case for vector space convergence structures
in general, as will be shown in Section 5.

Proposition 2.7. Let L be a locally solid convergence vector lattice, with
convergence structure λ. The following statements are true.

(i) The order bounded subsets of L are bounded with respect to λ.
(ii) The adherence of a solid subset of L is solid.
(iii) The adherence of a Riesz subspace of L is a Riesz subspace of L.

In particular, the adherence of an ideal in L is an ideal in L.
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Proof of (i). This follows immediately from Proposition 2.4.
(ii). Let A ⊆ L be a solid set and f ∈ a(A). Then there is a filter
F ∈ λ(f) so that A ∈ F . Consider g ∈ L with |g| ≤ |f | and the filter
G =

∨
(
∧
(g, |F|),−|F|). According to Proposition 2.5, G converges to

(g ∧ |f |) ∨ (−|f |) = g. For every h ∈ A we have (g ∧ |h|) ∨ (−|h|) ≤ |h|.
Since A is solid it follows that

∨
(
∧
(g, |A|),−|A|) ⊆ A so that A ∈ G, thus

g ∈ a(A).
(iii). Let K be a Riesz subspace of L and consider f ∈ a(K). It follows
from Proposition 2.5 and [3, Lemma 1.3.5] that f+ ∈ a(K). Since a(K)
is a linear subspace of L the result follows from [6, Theorem 11.8]. If K
is also an ideal in L, then it follows from (ii) above that a(K) is an ideal
in L. �
Proposition 2.8. Let L be a Hausdorff locally solid convergence vector
lattice with convergence structure λ. Then the following are true:

(i) L is Archimedean.
(ii) The cone L+ of L is closed.
(iii) If an increasing net (fα) converges to f in L, then (fα) increases

to f in L. Similarly, if (fα) is decreasing and converges to f in
L, then (fα) decreases to f in L.

(iv) Every band of L is closed in L.

Proof of (i). Suppose that there exists f, g ∈ L such that 0 ≤ nf ≤ g
for all n ∈ N. Then G = [{[0, 1

ng] : n ∈ N}] ⊆ [f ]. But according to
Proposition 2.4 the filter G converges to 0 in L so that [f ] converges to 0
in L. Since L is Hausdorff it follows that f = 0.

(ii). Consider f ∈ a(L+). Then there is a filter F ∈ λ(f) so that
L+ ∈ F . Without loss of generality we may assume that F has a basis
consisting of sets contained in L+. Hence |F| = F . But |F| ∈ λ(|f |)
according to Proposition 2.5. Since L is Hausdorff it therefore follows
that f = |f | ∈ L+, thus a(L+) = L+ so that L+ is closed.

(iii). The proof follows in precisely the same manner as in the topo-
logical case, see for instance [1, Theorem 5.6].

(iv). We claim that Dd = {g ∈ L : |f | ∨ |g| = 0, f ∈ D} is closed in
L for all nonempty D ⊆ L. In this regard, let F be a filter converging to
some h ∈ L and containing Dd. Without loss of generality we may assume
that F has a basis consisting of subsets of Dd. Then [0] =

∧
(|f |, |F|) for

all f ∈ D. But
∧
(|f |, |F|) converges to |f | ∧ |h| by Proposition 2.5. Since

L is Hausdorff it follows that |f | ∧ |h| = 0 for all f ∈ D. Hence h ∈ Dd

so that a(Dd) = Dd, where a(Dd) denotes the adherence of Dd in L, see
[3, Definition 1.3.1 (iii)]. Thus Dd is closed. Now recall [6, Theorem 22.3]
that, since L is Archimedean by (i), A = Add for each band A in L, so
that a(A) = A. �
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3. Permanence properties

In this section we consider some permanence properties of the class of
locally solid convergence vector lattices. In particular, we consider initial
and final vector space convergence structures. In general, neither initial
nor final constructions preserve local solidity, as the following examples
show.

Example 3.1. Let L = R2, with the usual coordinate-wise order, that
is, (u1, u2) ≤ (v1, v2) if and only if u1 ≤ v1 and u2 ≤ v2. Let K = R2

equipped with the lexicographical order, that is, (u1, u2) ≤ (v1, v2) if and
only if u1 < v1 or u1 = v1 and u2 ≤ v2. Note that L is an Archimedean
vector lattice, while K is non-Archimedean, see for instance [6, Example
18.6]. Let I : K → L denote the identity mapping. Consider on L the
usual metric topology, which is locally solid, and on K the initial conver-
gence structure with respect to I. Since I is injective, the initial conver-
gence structure on L is Hausdorff. Thus, according to Proposition 2.8,
this convergence structure is not locally solid, as K is non-Archimedean.

In fact, there is no locally solid convergence structure on K making
I continuous. To see that this is so, suppose that λ is a locally solid
convergence structure on K with respect to which I is continuous. Note
that for f = (1, 1) ∈ K, the interval A = [−f, f ] is bounded in K by
Proposition 2.7. Since I is continuous, I(A) = A is bounded in L. But

A = {(g1, g2) : −1 < g1 < 1} ∪ {(−1, g2) : g2 ≥ −1}

∪{(1, g2) : g2 ≤ 1}
(3.1)

is clearly not a bounded set in L.

Example 3.2. Let K = C(R), and let L be the vector lattice subspace of
K consisting of all functions that vanish identically outside (0, 1). Con-
sider any locally solid convergence structure on L, and the final vector
space convergence structure on K with respect to the inclusion mapping
ιL : L ∋ f 7→ f ∈ K. Suppose that K is locally solid. According to
Example 2.2 and Proposition 2.4, the filter

F = [{[− 1

n
,
1

n
] : n ∈ N}](3.2)

converges to 0 in K. Therefore, according to [3, Proposition 3.3.6] there
exists a filter G converging to 0 in L, and f1, ..., fk ∈ K such that

G +N f1 + ...+N fk ⊆ F .(3.3)
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This implies that, for each G ∈ G and n1, ..., nk ∈ N, there exists F ∈ F
such that

F ⊆

{
g +

k∑
i=1

αifi
(1) g ∈ G
(2) |αi| < 1

ni
, i = 1, ..., k

}
.

As G ⊆ L, this is clearly impossible, so that F does not converge to 0 in
L. Thus K is not locally solid.

As Examples 3.1 and 3.2 show, neither initial nor final constructions
preserve local solidity. However, it is possible to form initial and final
convergence structures in the class of locally solid convergence vector
lattices. These will not, in general, coincide with the initial and final
vector space convergence structures.

Recall [6, Definition 18.1 & Theorem 18.2] that a linear mapping
T : K → L from a vector lattice K into another vector lattice L is a
Riesz homomorphism whenever

∀ f, g ∈ K :
T (f ∧ g) = T (f) ∧ T (g).(3.4)

Also recall [1, page 3] that for a subset F of a vector lattice L, the solid
hull of F is the set

s(F ) =

{
g ∈ L

∃ f ∈ F :
0 ≤ |g| ≤ |f |

}
.(3.5)

Clearly s(F ) is a solid subset of L. In fact, it is the smallest solid subset
of L containing F . Note that for F,G ⊆ L we have

s(F +G) ⊆ s(F ) + s(G).(3.6)

In particular, if F and G are solid sets, then so is F +G. Property (3.6)
follows from the Dominated Decomposition Property [6, Corollary 15.6
(i)]. The following also holds. For all F,G ⊆ L,

s(F ∪G) = s(F ) ∪ s(G).(3.7)

More generally, if {Fi : i ∈ I} is a family of subsets of L, then

s

(∪
i∈I

Fi

)
=
∪
i∈I

s(Fi).(3.8)

For α ∈ R we have

s(αF ) = αs(F ).(3.9)

For a filter F on L we define the solid hull of F as

s(F) = [{s(F ) : F ∈ F}].
Since F ⊆ s(F ), it follows that

s(F) ⊆ F .(3.10)
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Theorem 3.3. Let {Li : i ∈ I} be a family of locally solid convergence
vector lattices, L a vector lattice and {Ti : Li → L} a family of linear
mappings. There exists a finest locally solid convergence structure on L
making all the Ti continuous.

Proof. First we show that there exists a locally solid convergence structure
λ on L such that every Ti : Li → L is continuous. In this regard, denote
by λ0 the final vector space convergence structure on L with respect to
the Ti. Now define λ as follows:

F ∈ λ(0) ⇔
(

∃ G1, ...,Gn ∈ λ0(0) :
s(G1) + ...+ s(Gn) ⊆ F

)
.(3.11)

For nonzero f ∈ L, let F ∈ λ(f) if and only if F − [f ] ∈ λ(0). To see that
λ is a vector space convergence structure on L we verify the conditions
of [3, Proposition 3.2.3]. Since λ0 is a vector space convergence structure
on L, condition (i) in [3, Proposition 3.2.3] follows from (3.7), while (v)
follows from (3.9) and (vi) follows from (3.10). Conditions (ii) and (iii)
are trivially satisfied. It remains to verify that NF ∈ λ(0) whenever
F ∈ λ(0), where N denotes the neighborhood filter at 0 in R. Note that
{( 1n ,

1
n ) : n ∈ N} is a basis for N . Furthermore, since solid sets are

balanced [1, page 3], it follows that (− 1
n ,

1
n )s(G) ⊆ s(G) for every G ⊆ L.

Thus s(G) ⊆ NG for every filter G on L. Now suppose that F ∈ λ(0),
and let G1, ...,Gn ∈ λ0(0) be the filters associated with F through (3.11).
Then it follows that

s(G1) + ...+ s(Gn) ⊆ N s(G1) + ...+N s(Gn)

⊆ N (s(G1) + ...+ s(Gn))

⊆ NF

so that NF ∈ λ(0). Hence λ is a vector space convergence structure on L.
Since the sum of solid sets is again a solid set, it follows from (3.11) that
λ is locally solid. Since λ0 is finer than λ, it follows that the mappings
Ti : Li → L are all continuous with respect to λ.

We now show that λ is the finest locally solid convergence structure
on L making the Ti continuous. In this regard, suppose that λ1 is a
locally solid convergence structure on L with respect to which the Ti are
continuous. Then, λ0 being the final vector space convergence structure
on L with respect to the Ti, it follows that λ1 is coarser than λ0. Thus
for each F ∈ λ0(0) there exists a coarser filter G ∈ λ1(0) with a basis
consisting of solid sets. Then G = s(G) ⊆ s(F) so that s(F) ∈ λ1(0).
Since λ1 is a vector space convergence structure, it follows from (3.11)
that λ is finer than λ1. �
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Theorem 3.4. Let L be a vector lattice, {Li : i ∈ I} a family of locally
solid convergence vector lattices and {Ti : L → Li : i ∈ I} a family
of order bounded linear mappings. There exists a coarsest locally solid
convergence structure on L making all the Ti continuous.

Proof. Denote by λ0 the initial convergence structure on L with respect
to the family of mappings {Ti : L → Li : i ∈ I}. Let F ∈ λ(0) if
and only if s(F) ∈ λ0(0), and for f ̸= 0, let F ∈ λ(f) if and only if
F − [f ] ∈ λ(0). We show that λ is a vector space convergence structure
on L by verifying the conditions of [3, Proposition 3.2.3]. Condition (i)
follows from (3.7) and the fact that λ0 is a convergence structure on L,
while (ii) is trivially satisfied. Condition (iii) follows from (3.6), as λ0 is a
vector space convergence structure on L. To see that property (iv) holds,
consider F ∈ λ(0), that is, s(F) ∈ λ0(0). For n ∈ N and F ∈ F we have(

− 1

n
,
1

n

)
F =

∪
|α|< 1

n

αF.

Thus (3.9) and (3.8) imply that

s

((
− 1

n
,
1

n

)
F

)
=

∪
|α|< 1

n

αs(F ).

Since solid sets are balanced [1, page 3] it therefore follows that

s

((
− 1

n
,
1

n

)
F

)
⊆ s(F ).

Hence s(F) ⊆ s(NF) so that s(NF) ∈ λ0(0), and consequently NF ∈
λ(0). Condition (v) follows from (3.9). It remains to verity that N f ∈
λ(0) for all f ∈ L. In this regard, note that

(
− 1

n ,
1
n

)
f ⊆

[
− 1

n |f |,
1
n |f |

]
.

Therefore s
((
− 1

n ,
1
n

)
f
)
⊆
[
− 1

n |f |,
1
n |f |

]
so that G ⊆ s(N f), with G =

[{
[
− 1

n |f |,
1
n |f |

]
: n ∈ N}]. Since each Ti is order bounded, it follows

that there exists g ∈ L+
i such that Ti([− 1

n |f |,
1
n |f |]) ⊆ [− 1

ng,
1
ng] for all

n ∈ N. Hence Ti(G) converges to 0 in Li for each i ∈ I by Proposition
2.4. Hence G ∈ λ0(0) so that s(N f) ∈ λ0(0). Consequently, N f ∈ λ(0).
Since all the conditions of [3, Proposition 3.2.3] are satisfied, λ is a vector
space convergence structure on L.

Furthermore, λ is finer than λ0 so that all the Ti are continuous with
respect to λ. Moreover, λ is locally solid. Indeed, s(F) has a basis
consisting of solid sets for all F ∈ λ(0). But s(F) ⊆ F and s(s(F)) =
s(F) ∈ λ0(0). Hence s(F) ∈ λ(0).

Lastly we verify that λ is the coarsest locally solid convergence struc-
ture on L making the Ti continuous. In this regard, consider a locally
solid convergence structure λ1 on L such that all the Ti are continuous.
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Consider a filter F ∈ λ1(0). Without loss of generality, we may assume
that F has a basis consisting of solid sets, in which case s(F) = F ∈ λ0(0).
Thus F ∈ λ(0), and the proof is complete. �

The following result gives sufficient conditions for the initial conver-
gence structure to be locally solid.

Theorem 3.5. Let {Li : i ∈ I} be a family of locally solid convergence
vector lattices, L a vector lattice and {Ti : L → Li : i ∈ I} a family of
Riesz homomorphisms. Then the initial convergence structure on L with
respect to the family of mappings {Ti : L→ Li} is locally solid.

Proof. Let F converge to 0 in L with respect to the initial convergence
structure. Fix i ∈ I. Since Ti(F) converges to 0 in Li and Li is locally
solid, there exists a filter Gi with a basis consisting of solid sets such that
Gi converges to 0 in Li and Gi ⊆ Ti(F). That is,

∀ G ∈ Gi :
∃ Fi ∈ F :

T (Fi) ⊆ G.
(3.12)

Consider any f ∈ s(Fi). Thus there exists g ∈ Fi such that 0 ≤ |f | ≤ |g|.
But Ti is a Riesz homomorphism so that 0 ≤ |Ti(f)| = Ti(|f |) ≤ Ti(|g|) =
|Ti(g)|. Since G is solid (3.12) implies that Ti(f) ∈ G. Thus Gi ⊆ Ti(s(F))
so that Ti(s(F)) converges to 0 in Li. Since this holds for all i ∈ I it
follows that s(F) converges to 0 in L. But s(F) ⊆ F has basis consisting
of solid sets. Thus the initial convergence structure on L with respect to
the family of mappings {Ti : L→ L : i ∈ I} is locally solid. �

Corollary 3.6. Products and subspaces of locally solid convergence vector
lattices are locally solid.

Proof. Let K denote the Cartesian product of a family {Li : i ∈ I} of
locally solid convergence vector lattices. Note that K is a vector lattice
with respect to the coordinate-wise order

f = (fi) ≤ g = (gi) ⇔
(

∀ i ∈ I :
fi ≤ gi

)
.

Since (fi) ∧ (gi) = (fi ∧ gi), it follows that the projections πi : K → Li

are Riesz homomorphisms. Therefore the product convergence structure
on K is locally solid by Theorem 3.5.

Furthermore, any vector lattice subspace K of a locally solid con-
vergence vector lattice L is locally solid, since the inclusion mapping
K ∋ f 7→ f ∈ L is a Riesz homomorphism. The result follows from
Theorem 3.5. �
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4. The dual of a locally solid convergence vector
lattice

This section is devoted to the study of the dual of a locally solid con-
vergence vector lattice. In this regard, we recall that for a locally solid
convergence vector lattice L there are two dual structures for L, namely,
the topological dual L′ of L consisting of all continuous linear functionals
on L, and the order dual L∼ of L consisting of all order bounded linear
functionals on L [13, Section 85]. The following result relates these two
structures.
Proposition 4.1. Let L be a locally solid convergence vector lattice with
convergence structure λ. The topological dual L′ of L is an ideal in the
order dual L∼ of L.
Proof. Since every continuous functional maps bounded sets in L into
bounded sets in R, it follows by Proposition 2.7 (i) that L′ is a linear
subspace of L∼. To see that L′ is a Riesz subspace of L∼, consider φ ∈ L′

and a filter F ∈ λ(0). Note that, for all F ⊆ L we have F ⊆ F+ − F−

so that F+ − F− ⊆ F . Thus we may assume that F has a basis B
consisting of positive sets, that is, sets contained in L+. Furthermore,
we may assume that [0, g] ⊆ B for each B ∈ B and g ∈ B. According
to [13, Theorem 83.6] we have φ+(f) = sup{φ(g) : 0 ≤ g ≤ f} and
φ−(f) = sup{−φ(g) : 0 ≤ g ≤ f} for all f ∈ L+. Therefore φ+(B) ⊆
φ(B) + (−ϵ, ϵ) for all B ∈ B, ϵ > 0. Thus φ(F) + N ⊆ φ+(F) so that
φ+(F) converges to 0 in R. Hence φ+ is continuous. In the same way, it
follows that φ− is continuous. The result now follows from [6, Theorem
11.8].
Now consider ψ ∈ L∼ and φ ∈ L′ such that |ψ| ≤ |φ|. In particular, this
means that ψ+ ≤ |φ| and ψ− ≤ |φ|. Again consider a filter F with a
basis B consisting of positive sets such that [0, g] ⊆ B for each B ∈ B and
g ∈ B. It follows that α ∈ |φ|(B) for all B ∈ B, f ∈ B and α ∈ R such
that 0 ≤ α ≤ |φ|(f). Thus 0 ≤ ψ+(f) ≤ |φ|(f), f ∈ L+, implies that
ψ+(B) ⊆ |φ|(B) for all B ∈ B. Hence |φ|(F) ⊆ ψ+(F) so that ψ+(F)
converges to 0 in R. Therefore ψ+ ∈ L′ and, in the same way, ψ− ∈ L′

so that ψ = ψ+ − ψ− ∈ L′. �
In the setting of convergence vector spaces, the natural convergence

structure for the dual of a convergence vector space is the continuous
convergence structure [3, Definition 1.1.5].
Definition 4.2. Let L be a (real) convergence vector space. Let

ω : L′ × L ∋ (φ, f) 7→ φ(f) ∈ R
denote the evaluation mapping. A filter F in L′ converges to φ ∈ L′ with
respect to the continuous convergence structure if

∀ f ∈ L, G converging to f in L :
ω(F × G) converges to φ(f) in R.
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The distinguishing feature of the continuous convergence structure is
that it makes the evaluation mapping continuous. In fact, it is the largest
convergence structure on L′ with this property. One should note that if
L is a Hausdorff locally convex space, then there is no topology on L′

making ω continuous, unless L is a normed space.
We will denote the topological dual L′ of L, equipped with the con-

tinuous convergence structure, by L′
c. Since the dual L′ of a locally solid

convergence vector lattice L is an ideal in the order dual of L, it is a
vector lattice in its own right. In particular, the order on L′ is defined as

φ ≤ ψ ⇔
(

∀ f ∈ L+ :
φ(f) ≤ ψ(f)

)
.(4.1)

Theorem 4.3. Let L be a locally solid convergence vector lattice with
convergence structure λ. Then L′

c is a locally solid convergence vector
lattice.

Proof. Let G converge to 0 in L′
c, that is, for every f ∈ L and every F

converging to f in L, the filter

ω(G × F) = [{{φ(g) : φ ∈ G, g ∈ F} : G ∈ G, F ∈ F}]

converges to 0 in R. Consider the filter s(G) = [{s(G) : G ∈ G}]. Clearly
s(G) ⊆ G. We claim that s(G) converges to 0 in L′

c. In this regard, consider
f ∈ L and a filter F ∈ λ(f) of the form F = H + f where H ∈ λ(0)
has a basis consisting of solid sets. According to Proposition 2.5 the filter
F+ = [{{f++h+ : h ∈ H} : H ∈ H}] converges to f+. Hence ω(G×F+)
converges to 0 in R. Hence, for all ϵ > 0, there exists Gϵ ∈ G, Hϵ ∈ H
such that {φ(f+ + h+) : φ ∈ Gϵ, h ∈ Hϵ} ⊆ (−ϵ, ϵ). Since f+ + h+ ≥ 0
it follows that ψ(f+ + h+) ∈ (−ϵ, ϵ) for all ψ ∈ s(Gϵ), h ∈ Hϵ, so
that ω(s(G) × F+) converges to 0 in R. In the same way, ω(s(G × F−)
converges to 0 in R, where F− = [{{f−+h− : h ∈ H} : H ∈ H}]. Since
F+−F− ⊆ F , it follows that ω(s(G)×F) ⊇ ω(s(G)×F+)−ω(s(G)×F−).
Therefore ω(s(G)) converges to 0 in R, so that s(G) converges to 0 in
L′
c. �

Theorem 4.3 has important implications for locally solid convergence
vector lattices, and locally convex locally solid Riesz spaces in particular.
As will be shown in Section 5, the fact that continuous convergence is
locally solid on L′ implies that every complete, Hausdorff locally convex,
locally solid Riesz space is isomorphic, both as a convergence vector space
and as a vector lattice, to its second dual.
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5. Completeness and Completion

We now turn to the issue of completion and completeness. In particu-
lar, we consider the completion L̂ of a Hausdorff locally solid convergence
vector lattice L. By a completion of a convergence vector space L we
mean a complete convergence vector space containing L as a dense sub-
space with the property that any continuous linear mapping T : L → K,
with K a complete, Hausdorff convergence vector space, admits a contin-
uous extension T̂ : L̂ → K. It should be noted that not every Hausdorff
convergence vector space admits such a completion [4]. In particular, a
completion L̂ of L exists if and only if every Cauchy filter in L contains
a bounded set. We will restrict ourselves to the case when L admits a
completion.

We now show that L̂ is a vector lattice. In this regard, we recall
[6, Theorem 11.4] that a cone in a (real) vector space L is a set L+ with
the following properties:

∀ f, g ∈ L+, α ∈ R, α ≥ 0 :
1) f + g ∈ L+

2) αf ∈ L+

3) −f ∈ L+ ⇒ f = 0.

(5.1)

Every cone in L induces a partial order on L through the relation

f ≤ g ⇔ g − f ∈ L+.(5.2)

With respect to the order (5.2) L is an ordered vector space. L is a vector
lattice if and only if sup{f, 0} exists in L for every f ∈ L, see [6, Theorem
11.5 (v)].
Theorem 5.1. Let L be a Hausdorff locally solid convergence vector
lattice admitting a completion L̂, and denote by L̂+ the adherence aL̂(L

+)

of L+ in L̂. Then L̂+ is a cone in L̂, and L̂ is a vector lattice with respect
to the order induced by L̂+. Furthermore L is a vector lattice subspace of
L̂.

Proof. The first two properties in (5.1) follow from the continuity of
addition and scalar multiplication on L̂, and the corresponding proper-
ties of the positive cone L+ in L. To verify the third condition, consider
f ∈ L̂+ such that −f ∈ L̂+. Then there exists Cauchy filters F and G
in L, with bases BF and BG , respectively, consisting of sets in L+, such
that F converges to f and G converges to −f in L̂, see [10, Proposition
2.3]. Then F + G converges to 0 in L̂ so that there is a filter H ⊆ F + G
with a basis consisting of solid sets which converges to 0 in L. Then for
each H ∈ H there exist F ∈ BF and G ∈ BG such that F + G ⊆ H.
Since F,G ⊆ L+ it follows that 0 ≤ h ≤ h + g for all h ∈ F and g ∈ G.
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Since H may be taken to be a solid set, it thus follows that F ⊆ H.
Therefore H ⊆ F so that F converges to 0 in L, and hence in L̂. Since L̂
is Hausdorff, it follows that f = 0. Therefore L̂+ is a cone in L̂.
Now we show that L̂ is a vector lattice with respect to the order (5.2)
induced by L̂+. The mapping L ∋ f 7→ f+ ∈ L is uniformly continuous by
Proposition 2.5 (v). Therefore there exists a unique uniformly continuous
mapping p : L̂ → L̂ which extends L ∋ f 7→ f+ ∈ L. We claim that
p(f) = sup{f, 0} for all f ∈ L̂. In this regard, we note that p(f) ∈ L̂+

by [3, Lemma 1.3.5], thus p(f) ≥ 0. Now pick a Cauchy filter F in
L which converges to f in L̂. Then p(F) − F = F+ − F in L, and
p(F)− F converges to p(f)− f in L̂. Let G be the filter in L with basis
[{{g+ − g : g inF} : F ∈ F}]. Then p(F)−F ⊆ G so that G converges
to p(f) − f in L̂. But G has a basis consisting of sets in L+. Therefore
p(f)− f ∈ L̂+ so that f ≤ p(f). Suppose f ≤ g and 0 ≤ g in L̂ for some
g ∈ L̂. Consider Cauchy filters F and G in L, with bases BF and BG ,
respectively, consisting of sets in L+, such that F converges to g− f and
G converges to g in L̂. Then the filter H = G − p(G − F) converges to
g − p(f) in L̂. But H is contained in the filter

K = [{{u− u+ + v+ : u ∈ G, v ∈ F} : G ∈ BG , F ∈ BF}].

Since L̂ is Hausdorff and p is uniformly continuous, K converges to g−p(f)
in L̂. But each G ∈ BG , F ∈ BF is contained in L+, hence u−u++v+ ≥ 0
in L for u ∈ G, v ∈ F . Therefore K has a basis consisting of sets in L+,
thus g − p(f) ∈ L̂+ so that p(f) ≤ g. Therefore p(f) = sup{f, 0} for all
f ∈ L̂ so that L̂ is a vector lattice.
To see that L is a sublattice of L̂, it is sufficient to observe that, for
f, g ∈ L

f ≤ g in L̂⇔ g − f ∈ L̂+ ⇔ g − f ∈ L+ ⇔ f ≤ g in L,

and sup{f, 0} in L is f+ = p(f), which is sup{f, 0} in L̂. �

As mentioned, the convergence vector space completion of a locally
solid convergence vector lattice need not be locally solid, as the following
example shows.

Example 5.2. Consider the Archimedean vector lattice C(R), equipped
with the order convergence structure. C(R) is not complete as a conver-
gence vector space, see for instance [2, Example 21]. If C(R)♯ denotes the
Dedekind order completion of C(R), then the completion Ĉ(R) of C(R) con-
sists of the set C(R)♯ equipped with the vector space convergence structure
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defined as

F ∈ λ♯o(0) ⇔


∃ (ln), (un) ⊂ C(R) :

1) ln ≤ ln+1 ≤ un+1 ≤ un, n ∈ N
2) sup{ln : n ∈ N} = 0 = inf{un : n ∈ N}
3) {f ∈ C(R) : ln ≤ f ≤ un} ∈ F , n ∈ N,

see [11, Theorem 29]. Note that the sets {f ∈ C(R) : ln ≤ f ≤ un} are
not solid in Ĉ(R). Therefore the convergence structure λ♯o is not locally
solid.

Remark 5.3. We note that while the completion L̂ of a Hausdorff, locally
solid convergence vector lattice is not locally solid, L̂ is a convergence
vector lattice in the sense that the mapping L̂×L̂ ∋ (f, g) 7→ sup{f, g} ∈ L̂
is uniformly continuous. Indeed, it is clear from the proof of Theorem 5.1
that the mapping L̂ ∋ f 7→ f+ ∈ L̂ is uniformly continuous. According
to Remark 2.6, L̂ is a convergence vector lattice.
Example 5.2 therefore shows that conditions (ii) to (vi) in Proposition 2.5
do not imply that a vector space convergence structure on a vector lattice
is locally solid.

6. Applications

In this section we present two nontrivial applications of the concepts
introduced and results obtained in Sections 2 and 3. In particular, we
present Closed Graph Theorems for a class of locally solid convergence
vector lattices, as well as a duality result for locally convex, locally solid
Riesz spaces.

6.1. A Closed Graph Theorem. In this section we present Closed
Graph Theorems for a class of locally solid convergence vector lattices.
We recall that a convergence vector space F is ultracomplete [3, Definition
6.1.1] whenever F is strongly first countable [3, Definition 1.6.5] and for
all F ∈ λ(0) there is a countable subset {Wn : n ∈ N} ⊆ F such that
[{
∑∞

n=kWn : k ∈ N}] ∈ λ(0).
The general Closed Graph Theorem in convergence vector spaces [3,

Theorem 6.2.6] is now formulated as follows.

Theorem 6.1. Let E be an inductive limit of Fréchet spaces and let F
be a convergence vector space admitting a finer vector space convergence
structure which is ultracomplete. Any closed linear mapping T : E → F
is continuous.

The basic result of this section is the following.
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Theorem 6.2. Let K and L be Archimedean locally solid convergence
vector lattices and T : K → L a closed linear operator. Assume that
there is a countable set B ⊆ L such that the ideal generated by B in L is
the whole space L. If K is the inductive limit of Fréchet spaces and L is
relatively uniformly complete, then T is continuous.

Proof. By Proposition 2.4 λr is finer than than the convergence structure
on L. Since L is the union of countably many of its principle ideals, it
follows from [12, Corollary 3.9] that λr is ultracomplete. The result now
follows from Theorem 6.1. �

The following particular cases of Theorem 6.2 are of interest.

Corollary 6.3. Let K and L be Archimedean locally solid convergence
vector lattices and T : K → L a regular, closed linear operator. Assume
that K has strong order unit e. If K is the inductive limit of Fréchet
spaces and L is relatively uniformly complete, then T is continuous.

Proof. Since T is regular, we may express T as T = S−P , where S and P
are positive linear operators. Since P and S are positive operators S(K)
is contained in the ideal generated in L by S(e), while P (K) is contained
in the ideal generated by P (e) in L. Hence the Dominated Decomposition
Property [6, Corollary 15.6 (i)] implies that T (K) is contained in the ideal
I generated by sup{S(e), P (e)} in K. Since L is relatively uniformly
complete, the ideal I is also relatively uniformly complete [6, Exercise
59.5]. The result now follows from Theorem 6.2. �

Corollary 6.4. [12, Corollary 3.11] Let K and L be relatively uniformly
complete Archimedean vector lattices, and T : K → L a linear mapping
with the property that

∀ f ∈ K :(
1) (fn) converges relatively uniformly to f
2) (Tfn) converges relatively uniformly to g

)
⇒ Tf = g

.

If there is a countable set B ⊂ L such that L is the ideal generated by B,
then T is order bounded.

6.2. Duality for locally solid Riesz spaces. In this section we ap-
ply the results obtained in Section 3 to locally convex, locally solid Riesz
spaces. For a convergence vector space E we denote by E′

c its topologi-
cal dual, equipped with the continuous convergence structure, and by E′′

c

the dual of E′
c, again equipped with the continuous convergence structure.
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The mapping

jE : E → E′′
c ,

where for x ∈ E we have

jE(x) : E
′
c ∋ φ 7→ φ(x) ∈ R,

is well defined, linear and continuous [3, Lemma 4.2.1]. The mapping jE
is injective if and only if E′

c separates the points of E. If E is a Hausdorff,
locally convex topological vector space, more can be said, see [3, Theorem
4.3.19 & Corollary 4.3.21].

Theorem 6.5. Let E be a Hausdorff, locally convex topological vector
space. Then E′′

c is a complete, Hausdorff locally convex topological vector
space, and jE is an isomorphism onto a dense subspace of E′′

c .
In particular, if E is complete, then jE(E) = E′′

c .

The following is an application of Theorem 6.5, Proposition 4.1 and
Theorem 4.3.

Theorem 6.6. Let L be a complete, Hausdorff locally convex locally solid
Riesz space. Then L′′

c is a complete locally convex, locally solid Riesz space
and the mapping jL : L → L′′

c is a convergence space isomorphism and a
Riesz isomorphism into (L′

c)
∼ ⊇ L′′

c .

Proof. That L′′
c is a locally solid convergence vector lattice follows

from Proposition 4.1 and Theorem 4.3. Theorem 6.5 implies that L′′
c

is complete and locally convex, and that jL is a convergence vector space
isomorphism. Since L′

c is an ideal in L∼ which separates the points of L,
it follows from [13, Lemma 109.1] that jL is a Riesz isomorphism. �

Theorem 6.6 may be compared with the following: If L is a norm
reflexive Banach lattice, then the natural mapping jL : L → L′′ is also a
Riesz isomorphism into (L′

c)
∼ ⊇ L′′

c . More generally, if L is a locally solid
locally convex space which is reflexive with respect to the strong topology
on L′ and L′′, then the mapping jL : L → L′′ is a Riesz isomorphism
into (L′)∼ ⊇ L′′. These results both follow from [13, Lemma 109.1]. Note
that, for L a locally solid locally convex space, it may also happen that
jL : L → L′′ is a lattice isomorphism without it being also a topological
isomorphism, see for instance [1, Theorem 22.4] for a characterization of
such spaces.
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