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T. TÂM NGUY ˜̂
EN PHAN

Abstract. We use pinched smooth hyperbolization to show that
every closed, nonpositively curved n-dimensional manifold M can
be embedded as a totally geodesic submanifold of a closed, nonpos-
itively curved (n + 1)-dimensional manifold M̂ of geometric rank
one.

Ralf Spatzier asked the author the following interesting question: “ For
a closed manifold M with sectional curvature ≤ 0 (e.g., a closed, non-
positively curved, locally symmetric manifold), is there a closed manifold
M̂ of one dimension higher with sectional curvature ≤ 0 and which has
geometric rank 1 (and thus is not a product) that contains M as a totally
geodesic submanifold?” The answer to this question is yes, thanks to re-
cent technology of pinched smooth hyperbolization [4]. In this paper we
give a construction of such a manifold M̂ .
Theorem 1. Let (M, gM ) be a closed, Riemannian manifold of dimension
n with sectional curvature κ(M) ≤ 0. There exists a closed, Riemann-
ian (n + 1)-dimensional manifold M̂ of geometric rank 1 with sectional
curvature κ(M̂) ≤ 0 and an isometric embedding f : M −→ M̂ .
Proof. Let △ be a smooth triangulation of M . We extend △ to a tri-
angulation of M × [0, 1]. We cone off the boundary of M × [0, 1] (which
has two components) and denote the resulting simplicial complex by X.
Then X is a manifold with one singular cone point ∗; that is, X \ {∗} is a
manifold. Let h(X) be a strict hyperbolization of X [2]. Then h(X) is a
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manifold with one singularity h(∗). We pick h(X) such that the faces of
each Charney–Davis hyperbolization piece have large enough width, as in
[4, Lemma 9.1.1], so that pinched smooth hyperbolization can be applied
to h(X) \ {h(∗)}.

Let W = h(X) \ {h(∗)}. Then W is a noncompact manifold with two
ends, each of which is homeomorphic to M × (0,∞). Using the same
proof given in [4, Section 11], there is a Riemannian metric g on W with
sectional curvature < 0 with the property that each end (with metric g)
is isometric to M × (a,∞) with metric

dt2 + e−2tgM .

The actual value of a is not crucial in this argument, so we assume a < −1.
(To be able to apply the method in [4, Section 11] it is required that the
Whitehead group of M be trivial if M has dimension > 4 [4, Theorem
7.9.1]. But, since M has a non-positively curved metric gM , this is true
by a result of F. T. Farrell and L. E. Jones [3].)

We truncate each end of W at t = 0 and glue the two boundary com-
ponents of the resulting manifold together. We then get a closed manifold
M̂ with a Riemannian metric g that is not smooth at the gluing. The
metric g is a warped product dt2 + e−2|t|gM , for −1 < t < 1. Therefore,
in order to smooth out the metric g, we just need to smooth out the
warping function e−2|t| around t = 0 without altering the nonpositivity
of the curvature.

Observe that since the metric gM is nonpositively curved, the warped
product metric dt2 +ϕ2(t)gM on R×M has nonpositive curvature if ϕ(t)
is a convex function by the Bishop–O’Neill curvature formula [1]. Thus,
we can pick ϕ to be a convex, smooth, even function that agrees with
e−2|t| outside a small neighborhood of t = 0 and assumes a minimum at
t = 0. We then obtain a Riemannian metric ĝ on M̂ that has sectional
curvature κ ≤ 0.

It is not hard to see that map f : M −→ M̂ , defined by identifying M
with cross section t = 0, is an isometric embedding due to the evenness
of ϕ(t). �
Remark 1. The theorem holds if we replace “ ≤ ” by “ < .”
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