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ASSOUAD–NAGATA DIMENSION AND
FINITE-TO-ONE LIPSCHITZ MAPS

TAKAHISA MIYATA AND TAKEHIRO YOSHIMURA

Abstract. W. Hurewicz characterized the covering dimension of a
separable metric space in terms of a finite-to-one closed map from a
zero-dimensional space onto the space. More recently, N. Brodskiy,
J. Dydak, J. Higes, and A. Mitra proved a metric space (X, d) has
Assouad–Nagata dimension 0 if it admits an ultrametric ρ on X so
that the identity map (X, ρ) → (X, d) is bi-Lipschitz. Motivated
by those results, we obtain a Hurewicz type characterization of
the Assouad–Nagata dimension in this paper. More precisely, we
show that a separable proper metric space X has Assouad–Nagata
dimension ≤ n if and only if it is the image of an at most (n+ 1)-
to-1 Lipschitz map from an ultrametric space such that the map
satisfies some cobounded condition.

1. Introduction

One of the well-known Hurewicz characterizations of covering dimen-
sion [7] states the following:

Theorem 1.1. Let X be a separable metric space and let n be a nonnega-
tive integer. Then dimX ≤ n if and only if there exist a zero-dimensional
space Y and a closed surjective map f : Y → X such that |f−1(x)| ≤ n+1
for each x ∈ X.

This result was generalized to a class of (nonseparable) metric spaces
by Kiiti Morita [9, Theorem 4]. The “ if ” part is a special case of the
dimension-raising theorem [9, Theorem 5] (see also [10] and [11] for more
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general cases). More recently, N. Brodskiy, J. Dydak, M. Levin, and
A. Mitra [4] obtained a Hurewicz-type theorem concerning dimension-
lowering maps for the Assouad–Nagata dimension. In this paper, we prove
an analog of Hurewicz’s theorem concerning finite-to-one maps (Theorem
1.1) for the Assouad–Nagata dimension which was introduced by Patrice
Assouad [1] under the name of Nagata dimension and extensively studied
by Urs Lang and Thilo Schlichenmaier [8].

On the other hand, ultrametric spaces play an important role in charac-
terizing zero-dimensionality in appropriate categories. A separable metric
space (X, d) has dimension 0 if and only if it admits an ultrametric ρ so
that the identity map (X, ρ) → (X, d) is a homeomorphism (see [6] and
[12]). A metric space (X, d) has Assouad–Nagata dimension ≤ 0 if and
only if it admits an ultrametric ρ so that the identity map (X, ρ) → (X, d)
is bi-Lipschitz [3, Theorem 3.3]. A metric space (X, d) has uniform di-
mension 0 if and only if it admits an ultrametric ρ so that the identity
map (X, ρ) → (X, d) is bi-uniform [3, Theorem 4.3].

In this paper, we characterize the Assouad–Nagata dimension in terms
of finite-to-one maps from ultrametric spaces. Here is the main theorem.

Main Theorem. Let X be a proper separable metric space and let n be
a nonnegative integer. Then the following conditions are equivalent.

(1) X has Assouad–Nagata dimension at most n.
(2) There exist an ultrametric space Z and a Lipschitz map f : Z →

X onto X such that |f−1(x)| ≤ n+1, and they have the following
property:
(B) There exists a constant c > 0 such that for each r > 0 and

for every subset B of X with diameter at most r, there exists
a subset A of Z with diameter at most cr and f(A) = B.

In the proof for the “ only if ” part of Theorem 1.1, Morita used the
condition dimX ≤ n to construct a decreasing sequence of closed covers,
based on which he defined a map from a subset of Baire’s zero-dimensional
space to the metric space. In this paper, in order to construct a decreasing
sequence of covers, we use the characterization of the Assouad–Nagata
dimension which is a modification of the characterization of asymptotic
dimension by G. Bell and A. Dranishnikov [2].

2. Preliminaries

Let (X, d) be a metric space and r > 0. For every subset A of X, let
diamA denote the diameter of A; A is said to be r-bounded if diamA ≤ r.
A family U of subsets of X is said to be r-disjoint if d(x, x′) > r for any
x and x′ that belong to different elements of U . The r-multiplicity of U
is defined as the largest number n so that no ball of radius r meets more
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than n elements of U . Recall that the mesh of U , denoted mesh(U), is
defined as sup{diamU : U ∈ U}, and the Lebesgue number of U , denoted
L(U), is defined as the supremum of positive numbers r so that for every
A ⊆ X of diamA ≤ r, there exists U ∈ U with A ⊆ U .

A map f : (X, dX) → (Y, dY ) between metric spaces is Lipschitz if
there exists a constant c > 0 such that dY (f(x), f(x′)) ≤ cdX(x, x′) holds
for all x, x′ ∈ X, and f is a λ-Lipschitz if the inequality holds for the
constant c = λ. The Lipschitz constant of a Lipschitz map f , denoted
Lip(f), is defined as inf{λ : f is a λ-Lipschitz map}.

For every nonnegative integer n, a metric space is said to have Assouad–
Nagata dimension at most n, denoted dimAN X ≤ n, provided there exists
a constant c > 0 such that for every r > 0, there exists a cover U = ∪n+1

i=1 Ui

of X so that each Ui is r-disjoint and mesh(U) ≤ cr.
For every countable simplicial complex K, let |K| be its geometric

realization. Embed |K| into ℓ2 by sending each vertex of K to an element
of an orthogonal basis of ℓ2, and let |K| be equipped with the metric
induced from that on ℓ2.

The Assouad–Nagata dimension is characterized in many ways (see [8]).
For our purpose, we modify the characterizations of asymptotic dimension
by Bell and Dranishnikov [2, Theorem 1] to obtain the characterizations
of the Assouad–Nagata dimension for separable metric spaces.

Proposition 2.1. Let X be a separable metric space. Then the following
are equivalent.

(1) dimAN X ≤ n.
(2) There exists a constant c1 > 0 such that for every r > 0, there

exists a countable open cover Ur of X with r-multiplicity at most
n+ 1 and mesh(Ur) ≤ c1r.

(3) There exists a constant c2 > 0 such that for every r > 0, there
exists a countable open cover Vr of X with multiplicity at most
n+ 1, mesh(Vr) ≤ c2r, and L(Vr) ≥ r.

(4) There exists a constant c3 > 0 such that for every r > 0, there
exist a uniform countable simplicial complex K of dimension n
and an r-Lipschitz map φ : X → |K| so that the family {φ−1(σ) :
σ ∈ K} is c3/r-bounded.

Proof. The implications (2) ⇒ (3) ⇒ (4) ⇒ (1) are proved by the same
argument as in the corresponding implications (3) ⇒ (4) ⇒ (5) ⇒ (2) of
[2, Theorem 1].
(1) is equivalent to the following condition:

(2a) There exists a constant c4 > 0 such that for every r > 0, there
exists a cover Wr of X with r-multiplicity at most n + 1 and
mesh(Wr) ≤ c4r.
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It remains to show (2a) ⇒ (2). Suppose that (2a) holds; let r > 0.
Let c4 > 0 be as in (2a). Then there exists a cover U3r of X with 3r-
multiplicity at most n + 1 and mesh(U3r) ≤ 3c4r. The cover W ′

r =
{Br(U) : U ∈ U3r} has r-multiplicity at most n + 1, and mesh(W ′

r) ≤
(3c4 + 2)r. Since X is separable, there exists a countable subcover Wr of
W ′

r. This Wr has the desired property in (2). �

We recall the notion of code space. For more details, the reader is
referred to [5].

Let N = {0, 1, . . .}. Then the code space on N is denoted by Σ =∏∞
i=1 N. For each k ∈ N, let Σk =

∏k
i=0 N and let Σ∗ = ∪∞

k=0Σk. If
σ = (a0, a1, . . .) ∈ Σ, then for each k ∈ N, write σ � k for the element
(a0, a1, . . . , ak) ∈ Σk.

For each real number s with 0 < s < 1, a metric on Σ is defined as
follows. If σ = (a0, a1, . . .) and τ = (b0, b1, . . .), let ds(σ, τ) = sk if ai = bi
for i ≤ k and ak+1 ̸= bk+1, and let ds(σ, τ) = 0 if σ = τ . This defines
an ultrametric ds on Σ. Recall that a metric d is an ultrametric if it
satisfies the ultra-triangle inequality: d(σ, τ) ≤ max{d(σ, θ), d(θ, τ)} for
σ, τ, θ ∈ Σ.

The set Σ is represented as an infinite tree such that the nodes at the
kth level are the elements of Σk. If k ≥ 1, for each element (a0, . . . , ak) ∈
Σk, let (a0, . . . , ak−1) ∈ Σk be its parent. Then the elements of Σ are in
one-to-one correspondence with the infinite paths starting at the root.

3. Proof of Main Theorem

First, suppose that dimAN X ≤ n. By Proposition 2.1(3), there exists a
constant c > 0 such that for each r > 0, there exists a countable open cover
Vr of X with multiplicity at most n + 1, mesh(Vr) ≤ cr, and L(Vr) ≥ r.
Without loss of generality, we can assume c > 1. Let U0 = {X}, and
for each k ∈ N, put Uk = V1/ck . Then Uk has multiplicity at most k + 1,
mesh(Uk) ≤ 1/ck−1, and L(Uk) ≥ 1/ck. This implies that for each U ∈ Uk,
there exists V ∈ Uk−1 such that U ⊆ V . We construct a tree as follows.
Let the nodes at the kth level be the elements of Uk. If k ≥ 1, for each
node U ∈ Uk, choose an element V ∈ Uk−1 so that U ⊆ V , and let V be
the parent of U . The nodes of the tree are in one-to-one correspondence
with the finite paths in the tree starting at the root. For each finite path α
starting at the root, write Uα for the element U ∈ Uk which corresponds to
α. Since each Uk is at most countable, every finite path α starting at the
root can be represented by α = (a0, a1, . . . , ak) ∈ Σk, and every infinite
path σ starting at the root can be represented by σ = (a0, a1, . . .) ∈ Σ.
Let Z be the set of σ = (a0, a1, . . .) ∈ Σ so that a0a1 · · · is an infinite
path starting at the root. Then we can write Uk as {Uσ�k : σ ∈ Z}. Let
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Z be equipped with the ultrametric d1/c. Define a map f : Z → X as
follows. There is a decreasing sequence Uσ�0 ⊇ Uσ�0 ⊇ Uσ�1 ⊇ Uσ�1 ⊇
· · · ⊇ Uσ�k ⊇ Uσ�k ⊇ · · · , and diamUσ�k → 0 as k → ∞. Since X is
proper, each Uσ�k is compact. So, ∩∞

k=0Uσ�k = ∩∞
k=0Uσ�k consists of a

single point, which we denote by f(σ).
The map f : Z → X is Lipschitz. Indeed, let σ, σ′ ∈ Z and let

d1/c(σ, σ
′) = 1/ck. Then σ �k = σ′ �k. This implies that f(σ), f(σ′) ∈ U

for some U ∈ Uk, and hence d1/c(f(σ), f(σ
′)) ≤ diamU ≤ meshUk ≤

1/ck−1 = cd1/c(σ, σ
′).

The map f satisfies |f−1(x)| ≤ n + 1 for each x ∈ X. Indeed, let
σ1, . . . , σn+2 ∈ Z, where σi ̸= σj for i ̸= j. Then there exists k such
that σi � k ̸= σj � k for i ̸= j. If x = f(σ1) = · · · = f(σn+2), then
x ∈ ∩n+2

i=1 Uσi�k ̸= ∅, contracting to the fact that Uk has multiplicity at
most n+ 1.

To show assertion (2), it remains to verify condition (B). Let r > 0,
and let B be a subset of X such that diamB ≤ r. We wish to show that
there exists a subset A of Z such that diamA ≤ cr, and f(A) = B. If
r ≥ 1, then the assertion is obvious since diamZ ≤ c. So we assume
r < 1. Let k be the nonnegative integer such that 1/ck+1 ≤ r < 1/ck.
There exist Uαi ∈ Ui where i = 0, . . . , k, such that B ⊆ Uαk

⊆ · · · ⊆ Uα0 .
Let A = {σ ∈ Z : σ � k = α0 · · ·αk, f(σ) ∈ B}. Then f(A) = B, and for
any σ, σ′ ∈ A, d1/c(σ, σ′) ≤ 1/ck < cr, which shows diamA ≤ cr.

Conversely, let f : Z → X be a Lipschitz map from an ultrametric
space Z onto X such that |f−1(x)| ≤ n+ 1 and it has property (B). Let
c1 > 0 be a constant such that for each r > 0 and for every subset B of X
with diameter ≤ r, there exists a subset A of Z with diameter at most c1r
and f(A) = B. Since dimAN Z = 0, then, by Proposition 2.1(3), there
exists a constant c2 > 0 such that for every r > 0, there exist a countable
open cover Ur of Z with multiplicity at most n+ 1, mesh(Ur) ≤ c2r, and
L(Ur) ≥ r. For each r > 0, let Vr = f(Uc1r) = {f(U) : U ∈ Uc1r}.

The multiplicity of Vr is at most n+ 1 since the multiplicity of Uc1r is
at most 1 and f is at most (n+ 1)-to-1.

If U ∈ Uc1r and x, x′ ∈ f(U), and if x = f(z) and x′ = f(z′), where
z, z′ ∈ U , then d(x, x′) ≤ Lip(f)d(z, z′) ≤ Lip(f)c1r. This shows that
mesh(Vr) ≤ Lip(f)c1r.

It remains to show that L(Vr) ≥ r. Let B be a subset of X such that
diamB ≤ r. By condition (B), there exists a subset A of Z such that
f(A) = B and diamA ≤ c1r. Then A ⊆ U for some U ∈ Uc1r, and hence
B = f(A) ⊆ f(U) and f(U) ∈ Vr. This shows that L(Vr) ≥ r, and
completes the proof of the theorem.



48 T. MIYATA AND T. YOSHIMURA

Remark 3.1. Since every ultrametric space has Assouad–Nagata dimen-
sion 0 and since every metric space with Assouad–Nagata dimension 0
admits an ultrametric in the Lipschitz category (see [3, Theorem 3.3]),
condition (2) in the theorem is equivalent to the following condition:

(3) There exist a metric space Z and a Lipschitz map f : Z → X
onto X such that dimAN Z ≤ 0, |f−1(x)| ≤ n+ 1, and they have
property (B).

References

[1] Patrice Assouad, Sur la distance de Nagata, C. R. Acad. Sci. Paris Sér. I Math.
294 (1982), no. 1, 31–34.

[2] G. Bell and A. Dranishnikov, Asymptotic dimension in Będlewo, Topology Proc.
38 (2011), 209–236.

[3] N. Brodskiy, J. Dydak, J. Higes, and A. Mitra, Dimension zero at all scales,
Topology Appl. 154 (2007), no. 14, 2729–2740.

[4] N. Brodskiy, J. Dydak, M. Levin, and A. Mitra, A Hurewicz theorem for the
Assouad–Nagata dimension, J. Lond. Math. Soc. (2) 77 (2008), no. 3, 741–756.

[5] Gerald A. Edgar, Measure, Topology, and Fractal Geometry. Undergraduate Texts
in Mathematics. New York: Springer-Verlag, 1990.

[6] J. de Groot, On a metric that characterizes dimension, Canad. J. Math. 9 (1957),
511–514.

[7] W. Hurewicz, Ueber stetige Bilder von Punktmengen, Koninklijke Akademie van
Wetenschappen: Proceedings of the Section of Sciences 29 (1926) 1014–1017.

[8] Urs Lang and Thilo Schlichenmaier, Nagata dimension, quasisymmetric embed-
dings, and Lipschitz extensions, Int. Math. Res. Not. 2005 (2005), no. 58, 3625–
3655.

[9] Kiiti Morita, A condition for the metrizability of topological spaces and for n-
dimensionality, Sci. Rep. Tokyo Kyoiku Daigaku. Sect. A. 5 (1955), 33–36.

[10] , On closed mappings and dimension, Proc. Japan Acad. 32 (1956), 161–
165.

[11] Keiô Nagami, Dimension Theory. With an appendix by Yukihiro Kodama. Pure
and Applied Mathematics, Vol. 37. New York-London: Academic Press, 1970.

[12] Jun-iti Nagata, On a relation between dimension and metrization, Proc. Japan
Acad. 32 (1956), 237–240.

(Miyata) Department of Mathematics and Informatics; Kobe University;
Nada-Ku, Kobe, Japan 657-8501

E-mail address: tmiyata@kobe-u.ac.jp

(Yoshimura) Department of Mathematics and Informatics; Kobe Univer-
sity; Nada-Ku, Kobe, Japan 657-8501

E-mail address: hxjtm429@yahoo.co.jp




