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ASSOUAD-NAGATA DIMENSION AND
FINITE-TO-ONE LIPSCHITZ MAPS

TAKAHISA MIYATA AND TAKEHIRO YOSHIMURA

ABsTrACT. W. Hurewicz characterized the covering dimension of a
separable metric space in terms of a finite-to-one closed map from a
zero-dimensional space onto the space. More recently, N. Brodskiy,
J. Dydak, J. Higes, and A. Mitra proved a metric space (X, d) has
Assouad—Nagata dimension 0 if it admits an ultrametric p on X so
that the identity map (X, p) — (X,d) is bi-Lipschitz. Motivated
by those results, we obtain a Hurewicz type characterization of
the Assouad-Nagata dimension in this paper. More precisely, we
show that a separable proper metric space X has Assouad—Nagata
dimension < n if and only if it is the image of an at most (n + 1)-
to-1 Lipschitz map from an ultrametric space such that the map
satisfies some cobounded condition.

1. INTRODUCTION

One of the well-known Hurewicz characterizations of covering dimen-
sion [7] states the following:

Theorem 1.1. Let X be a separable metric space and let n be a nonnega-
tive integer. Then dim X < n if and only if there exist a zero-dimensional
space Y and a closed surjective map f:Y — X such that |f~1(x)| <n+1
for each z € X.

This result was generalized to a class of (nonseparable) metric spaces
by Kiiti Morita [9, Theorem 4]. The “if” part is a special case of the
dimension-raising theorem [9, Theorem 5] (see also [10] and [11] for more
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general cases). More recently, N. Brodskiy, J. Dydak, M. Levin, and
A. Mitra [4] obtained a Hurewicz-type theorem concerning dimension-
lowering maps for the Assouad—Nagata dimension. In this paper, we prove
an analog of Hurewicz’s theorem concerning finite-to-one maps (Theorem
1.1) for the Assouad-Nagata dimension which was introduced by Patrice
Assouad [1] under the name of Nagata dimension and extensively studied
by Urs Lang and Thilo Schlichenmaier [8].

On the other hand, ultrametric spaces play an important role in charac-
terizing zero-dimensionality in appropriate categories. A separable metric
space (X, d) has dimension 0 if and only if it admits an ultrametric p so
that the identity map (X, p) — (X,d) is a homeomorphism (see [6] and
[12]). A metric space (X,d) has Assouad-Nagata dimension < 0 if and
only if it admits an ultrametric p so that the identity map (X, p) — (X, d)
is bi-Lipschitz [3, Theorem 3.3]. A metric space (X,d) has uniform di-
mension 0 if and only if it admits an ultrametric p so that the identity
map (X, p) — (X, d) is bi-uniform [3, Theorem 4.3].

In this paper, we characterize the Assouad—-Nagata dimension in terms
of finite-to-one maps from ultrametric spaces. Here is the main theorem.

Main Theorem. Let X be a proper separable metric space and let n be
a nonnegative integer. Then the following conditions are equivalent.

(1) X has Assouad—Nagata dimension at most n.

(2) There exist an ultrametric space Z and a Lipschitz map f : Z —
X onto X such that |f~1(z)| < n+1, and they have the following
property:

(B) There exists a constant ¢ > 0 such that for each r > 0 and
for every subset B of X with diameter at most r, there exists
a subset A of Z with diameter at most cr and f(A) = B.

In the proof for the “only if” part of Theorem 1.1, Morita used the
condition dim X < n to construct a decreasing sequence of closed covers,
based on which he defined a map from a subset of Baire’s zero-dimensional
space to the metric space. In this paper, in order to construct a decreasing
sequence of covers, we use the characterization of the Assouad-Nagata
dimension which is a modification of the characterization of asymptotic
dimension by G. Bell and A. Dranishnikov [2].

2. PRELIMINARIES

Let (X,d) be a metric space and r > 0. For every subset A of X, let
diam A denote the diameter of A; A is said to be r-bounded if diam A < r.
A family U of subsets of X is said to be r-disjoint if d(z,z’) > r for any
2 and 2’ that belong to different elements of U. The r-multiplicity of U
is defined as the largest number n so that no ball of radius  meets more
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than n elements of Y. Recall that the mesh of U, denoted mesh(lf), is
defined as sup{diam U : U € U}, and the Lebesgue number of U, denoted
L(U), is defined as the supremum of positive numbers r so that for every
A C X of diam A < r, there exists U € U with A C U.

A map f: (X,dx) — (Y,dy) between metric spaces is Lipschitz if
there exists a constant ¢ > 0 such that dy (f(z), f(z)) < edx(z,2’) holds
for all z,2' € X, and f is a A-Lipschitz if the inequality holds for the
constant ¢ = X. The Lipschitz constant of a Lipschitz map f, denoted
Lip(f), is defined as inf{\ : f is a A-Lipschitz map}.

For every nonnegative integer n, a metric space is said to have Assouad-
Nagata dimension at mostn, denoted dimany X < n, provided there exists
a constant ¢ > 0 such that for every r > 0, there exists a cover Y = U?:lll/li
of X so that each U; is r-disjoint and mesh(U) < cr.

For every countable simplicial complex K, let |K| be its geometric
realization. Embed |K| into £2 by sending each vertex of K to an element
of an orthogonal basis of £2, and let |K| be equipped with the metric
induced from that on £2.

The Assouad-Nagata dimension is characterized in many ways (see [8]).
For our purpose, we modify the characterizations of asymptotic dimension
by Bell and Dranishnikov [2, Theorem 1] to obtain the characterizations
of the Assouad—Nagata dimension for separable metric spaces.

Proposition 2.1. Let X be a separable metric space. Then the following
are equivalent.

(1) dimyny X < n.

(2) There exists a constant ¢c1 > 0 such that for every r > 0, there
ezists a countable open cover U, of X with r-multiplicity at most
n+ 1 and mesh(U,.) < ;7.

(3) There exists a constant co > 0 such that for every r > 0, there
exists a countable open cover V,. of X with multiplicity at most
n+ 1, mesh(V,) < cor, and L(V,) > r.

(4) There exists a constant c3 > 0 such that for every r > 0, there
exist a uniform countable simplicial complex K of dimension n
and an r-Lipschitz map ¢ : X — |K| so that the family {p='(o) :
o € K} is c3/r-bounded.

Proof. The implications (2) = (3) = (4) = (1) are proved by the same
argument as in the corresponding implications (3) = (4) = (5) = (2) of
[2, Theorem 1].
(1) is equivalent to the following condition:
(2a) There exists a constant ¢4 > 0 such that for every r > 0, there

exists a cover W, of X with r-multiplicity at most n + 1 and
mesh(W,) < ¢yr.
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It remains to show (2a) = (2). Suppose that (2a) holds; let » > 0.
Let ¢4 > 0 be as in (2a). Then there exists a cover Us, of X with 3r-
multiplicity at most n + 1 and mesh(Us,.) < 3cyr. The cover W, =
{B-(U) : U € Us,} has r-multiplicity at most n + 1, and mesh(W.) <
(3cs + 2)r. Since X is separable, there exists a countable subcover W, of
W/. This W, has the desired property in (2). O

We recall the notion of code space. For more details, the reader is
referred to [5].

Let N = {0,1,...}. Then the code space on N is denoted by ¥ =
[I°,N. For each k € N, let ) = [[F_ N and let ¥, = U2 %y, If
o = (ag,a1,...) € X, then for each k € N, write o [ k for the element
(ag,a1,...,ar) € Bg.

For each real number s with 0 < s < 1, a metric on ¥ is defined as
follows. If o = (ag, a1,...) and 7 = (bo, by, .. .), let ds(o,7) = s* if a; = b;
for i < k and agy1 # brs1, and let ds(o,7) = 0 if 0 = 7. This defines
an ultrametric ds on ¥. Recall that a metric d is an ultrametric if it
satisfies the ultra-triangle inequality: d(c,7) < max{d(c,0),d(0,7)} for
o, 7,0 € X.

The set X is represented as an infinite tree such that the nodes at the
kth level are the elements of Xi. If k > 1, for each element (ag,...,ar) €
Yk, let (ag,...,ar—1) € Xk be its parent. Then the elements of ¥ are in
one-to-one correspondence with the infinite paths starting at the root.

3. PROOF OF MAIN THEOREM

First, suppose that dim 4y X < n. By Proposition 2.1(3), there exists a
constant ¢ > 0 such that for each r > 0, there exists a countable open cover
V, of X with multiplicity at most n + 1, mesh(V,.) < er, and L(V,) > r.
Without loss of generality, we can assume ¢ > 1. Let Uy = {X}, and
for each k € N, put Uy, =V, /cx. Then Uy, has multiplicity at most k + 1,
mesh(Uy) < 1/c*~1 and L(Uy) > 1/c*. This implies that for each U € Uy,
there exists V' € Ui_1 such that U C V. We construct a tree as follows.
Let the nodes at the kth level be the elements of Uy. If k£ > 1, for each
node U € Uy, choose an element V € Uj,_1 so that U C V, and let V be
the parent of U. The nodes of the tree are in one-to-one correspondence
with the finite paths in the tree starting at the root. For each finite path «
starting at the root, write U, for the element U € U}, which corresponds to
«. Since each Uy, is at most countable, every finite path « starting at the
root can be represented by a = (ag,a1,...,ar) € X, and every infinite
path o starting at the root can be represented by o = (ag,a1,...) € 2.
Let Z be the set of ¢ = (ag,a1,...) € ¥ so that aga; --- is an infinite
path starting at the root. Then we can write Uy, as {Uyx : 0 € Z}. Let
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Z be equipped with the ultrametric dy/.. Define a map f : Z — X as

follows. There is a decreasing sequence Uy1g 2 Uspo 2 Uppi 2 Ugpr 2

) m D Usi 2 -+, and diamUyy, — 0 as k — oo. Since X is
proper, each Uy is compact. So, N Usii = ﬁzozom consists of a
single point, which we denote by f(o).

The map f : Z — X is Lipschitz. Indeed, let 0,0’ € Z and let
di/c(0,0") =1/c*. Then o |k = ¢’ | k. This implies that f(0), f(0') € U
for some U € Uy, and hence dy,.(f(0), f(o')) < diamU < meshidy, <
1/c"1 = cdy (o, 0”).

The map f satisfies |[f~1(z)] < n+ 1 for each z € X. Indeed, let
O1,...,0nt2 € Z, where o; # o; for © # j. Then there exists k such
that o; [k # o; [k for i # j. If © = f(o1) = -+ = f(ont2), then
x € NP0, 1k # 0, contracting to the fact that U, has multiplicity at
most n + 1.

To show assertion (2), it remains to verify condition (B). Let r > 0,
and let B be a subset of X such that diam B < r. We wish to show that
there exists a subset A of Z such that diam A < ¢r, and f(A) = B. If
r > 1, then the assertion is obvious since diam Z < c¢. So we assume
r < 1. Let k be the nonnegative integer such that 1/cF+1 < r < 1/cF.
There exist Uy, € U; where ¢ =0, ..., k, such that B C U,, C - C U,,.
Let A={oc€Z:0k=ay - ag, f(o) € B}. Then f(A) = B, and for
any 0,0’ € A, dyc(0,0") < 1/c* < cr, which shows diam A < cr.

Conversely, let f : Z — X be a Lipschitz map from an ultrametric
space Z onto X such that |f~!(z)| <n + 1 and it has property (B). Let
c1 > 0 be a constant such that for each » > 0 and for every subset B of X
with diameter < r, there exists a subset A of Z with diameter at most ¢1r
and f(A) = B. Since dimay Z = 0, then, by Proposition 2.1(3), there
exists a constant co > 0 such that for every r > 0, there exist a countable
open cover U, of Z with multiplicity at most n + 1, mesh(U,.) < cor, and
L(U,) > r. For each r > 0, let V, = f(Ue,r) = {f(U) : U € U, }.

The multiplicity of V, is at most n + 1 since the multiplicity of U, is
at most 1 and f is at most (n + 1)-to-1.

IfU € Ueyr and z,2' € f(U), and if z = f(z) and 2’ = f(2), where
2,2 € U, then d(z,2') < Lip(f)d(z,2") < Lip(f)cir. This shows that
mesh(V,) < Lip(f)eyr.

It remains to show that L(V,) > r. Let B be a subset of X such that
diam B < r. By condition (B), there exists a subset A of Z such that
f(A) = B and diam A < ¢y7. Then A C U for some U € U,,,, and hence
B = f(A) C f(U) and f(U) € V,. This shows that L(V,) > r, and
completes the proof of the theorem.
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Remark 3.1. Since every ultrametric space has Assouad—Nagata dimen-
sion 0 and since every metric space with Assouad—Nagata dimension 0
admits an ultrametric in the Lipschitz category (see [3, Theorem 3.3]),
condition (2) in the theorem is equivalent to the following condition:

(3) There exist a metric space Z and a Lipschitz map f: Z — X
onto X such that dimay Z <0, |[f~(z)] < n+ 1, and they have

property (B).
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