http://topology.auburn.edu/tp/

ASSOUAD-NAGATA DIMENSION AND FINITE-TO-ONE LIPSCHITZ MAPS

by

TAKAHISA MIYATA AND TAKEHIRO YOSHIMURA

Electronically published on July 2, 2012

Topology Proceedings

http://topology.auburn.edu/tp/ Web:

Mail: Topology Proceedings

> Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146 - 4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

E-Published on July 2, 2012

ASSOUAD-NAGATA DIMENSION AND FINITE-TO-ONE LIPSCHITZ MAPS

TAKAHISA MIYATA AND TAKEHIRO YOSHIMURA

ABSTRACT. W. Hurewicz characterized the covering dimension of a separable metric space in terms of a finite-to-one closed map from a zero-dimensional space onto the space. More recently, N. Brodskiy, J. Dydak, J. Higes, and A. Mitra proved a metric space (X,d) has Assouad–Nagata dimension 0 if it admits an ultrametric ρ on X so that the identity map $(X,\rho) \to (X,d)$ is bi-Lipschitz. Motivated by those results, we obtain a Hurewicz type characterization of the Assouad–Nagata dimension in this paper. More precisely, we show that a separable proper metric space X has Assouad–Nagata dimension $\leq n$ if and only if it is the image of an at most (n+1)-to-1 Lipschitz map from an ultrametric space such that the map satisfies some cobounded condition.

1. Introduction

One of the well-known Hurewicz characterizations of covering dimension [7] states the following:

Theorem 1.1. Let X be a separable metric space and let n be a nonnegative integer. Then dim $X \le n$ if and only if there exist a zero-dimensional space Y and a closed surjective map $f: Y \to X$ such that $|f^{-1}(x)| \le n+1$ for each $x \in X$.

This result was generalized to a class of (nonseparable) metric spaces by Kiiti Morita [9, Theorem 4]. The "if" part is a special case of the dimension-raising theorem [9, Theorem 5] (see also [10] and [11] for more

²⁰¹⁰ Mathematics Subject Classification. Primary. 54F45; Secondary. 54C10, 54E35.

Key words and phrases. Assouad–Nagata dimension, de Groot theorem, Hurewicz theorem, Lipschitz map, finite-to-one map, ultrametric space.

^{©2012} Topology Proceedings.

general cases). More recently, N. Brodskiy, J. Dydak, M. Levin, and A. Mitra [4] obtained a Hurewicz-type theorem concerning dimension-lowering maps for the Assouad–Nagata dimension. In this paper, we prove an analog of Hurewicz's theorem concerning finite-to-one maps (Theorem 1.1) for the Assouad–Nagata dimension which was introduced by Patrice Assouad [1] under the name of Nagata dimension and extensively studied by Urs Lang and Thilo Schlichenmaier [8].

On the other hand, ultrametric spaces play an important role in characterizing zero-dimensionality in appropriate categories. A separable metric space (X,d) has dimension 0 if and only if it admits an ultrametric ρ so that the identity map $(X,\rho) \to (X,d)$ is a homeomorphism (see [6] and [12]). A metric space (X,d) has Assouad–Nagata dimension ≤ 0 if and only if it admits an ultrametric ρ so that the identity map $(X,\rho) \to (X,d)$ is bi-Lipschitz [3, Theorem 3.3]. A metric space (X,d) has uniform dimension 0 if and only if it admits an ultrametric ρ so that the identity map $(X,\rho) \to (X,d)$ is bi-uniform [3, Theorem 4.3].

In this paper, we characterize the Assouad–Nagata dimension in terms of finite-to-one maps from ultrametric spaces. Here is the main theorem.

Main Theorem. Let X be a proper separable metric space and let n be a nonnegative integer. Then the following conditions are equivalent.

- (1) X has Assouad-Nagata dimension at most n.
- (2) There exist an ultrametric space Z and a Lipschitz map $f: Z \to X$ onto X such that $|f^{-1}(x)| \le n+1$, and they have the following property:
 - (B) There exists a constant c > 0 such that for each r > 0 and for every subset B of X with diameter at most r, there exists a subset A of Z with diameter at most cr and f(A) = B.

In the proof for the "only if" part of Theorem 1.1, Morita used the condition $\dim X \leq n$ to construct a decreasing sequence of closed covers, based on which he defined a map from a subset of Baire's zero-dimensional space to the metric space. In this paper, in order to construct a decreasing sequence of covers, we use the characterization of the Assouad–Nagata dimension which is a modification of the characterization of asymptotic dimension by G. Bell and A. Dranishnikov [2].

2. Preliminaries

Let (X,d) be a metric space and r > 0. For every subset A of X, let diam A denote the diameter of A; A is said to be r-bounded if diam $A \le r$. A family \mathcal{U} of subsets of X is said to be r-disjoint if d(x,x') > r for any x and x' that belong to different elements of \mathcal{U} . The r-multiplicity of \mathcal{U} is defined as the largest number n so that no ball of radius r meets more

than n elements of \mathcal{U} . Recall that the mesh of \mathcal{U} , denoted mesh(\mathcal{U}), is defined as $\sup\{\operatorname{diam} U: U \in \mathcal{U}\}$, and the Lebesgue number of \mathcal{U} , denoted $L(\mathcal{U})$, is defined as the supremum of positive numbers r so that for every $A \subseteq X$ of diam $A \leq r$, there exists $U \in \mathcal{U}$ with $A \subseteq U$.

A map $f:(X,d_X)\to (Y,d_Y)$ between metric spaces is Lipschitz if there exists a constant c > 0 such that $d_Y(f(x), f(x')) \le cd_X(x, x')$ holds for all $x, x' \in X$, and f is a λ -Lipschitz if the inequality holds for the constant $c = \lambda$. The Lipschitz constant of a Lipschitz map f, denoted $\operatorname{Lip}(f)$, is defined as $\inf\{\lambda: f \text{ is a } \lambda\text{-Lipschitz map}\}.$

For every nonnegative integer n, a metric space is said to have Assouad— Nagata dimension at most n, denoted $\dim_{AN} X \leq n$, provided there exists a constant c>0 such that for every r>0, there exists a cover $\mathcal{U}=\bigcup_{i=1}^{n+1}\mathcal{U}_i$ of X so that each U_i is r-disjoint and $\operatorname{mesh}(U) \leq cr$.

For every countable simplicial complex K, let |K| be its geometric realization. Embed |K| into ℓ^2 by sending each vertex of K to an element of an orthogonal basis of ℓ^2 , and let |K| be equipped with the metric induced from that on ℓ^2 .

The Assouad–Nagata dimension is characterized in many ways (see [8]). For our purpose, we modify the characterizations of asymptotic dimension by Bell and Dranishnikov [2, Theorem 1] to obtain the characterizations of the Assouad-Nagata dimension for separable metric spaces.

Proposition 2.1. Let X be a separable metric space. Then the following are equivalent.

- (1) $\dim_{AN} X \leq n$.
- (2) There exists a constant $c_1 > 0$ such that for every r > 0, there exists a countable open cover \mathcal{U}_r of X with r-multiplicity at most n+1 and $\operatorname{mesh}(\mathcal{U}_r) \leq c_1 r$.
- (3) There exists a constant $c_2 > 0$ such that for every r > 0, there exists a countable open cover V_r of X with multiplicity at most n+1, $\operatorname{mesh}(\mathcal{V}_r) \leq c_2 r$, and $L(\mathcal{V}_r) \geq r$.
- (4) There exists a constant $c_3 > 0$ such that for every r > 0, there exist a uniform countable simplicial complex K of dimension n and an r-Lipschitz map $\varphi: X \to |K|$ so that the family $\{\varphi^{-1}(\sigma): \varphi^{-1}(\sigma)\}$ $\sigma \in K$ } is c_3/r -bounded.

Proof. The implications $(2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (1)$ are proved by the same argument as in the corresponding implications $(3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (2)$ of [2, Theorem 1].

- (1) is equivalent to the following condition:
 - (2a) There exists a constant $c_4 > 0$ such that for every r > 0, there exists a cover W_r of X with r-multiplicity at most n+1 and $\operatorname{mesh}(\mathcal{W}_r) \leq c_4 r$.

It remains to show $(2a) \Rightarrow (2)$. Suppose that (2a) holds; let r > 0. Let $c_4 > 0$ be as in (2a). Then there exists a cover \mathcal{U}_{3r} of X with 3r-multiplicity at most n+1 and $\operatorname{mesh}(\mathcal{U}_{3r}) \leq 3c_4r$. The cover $\mathcal{W}'_r = \{B_r(U) : U \in \mathcal{U}_{3r}\}$ has r-multiplicity at most n+1, and $\operatorname{mesh}(\mathcal{W}'_r) \leq (3c_4+2)r$. Since X is separable, there exists a countable subcover \mathcal{W}_r of \mathcal{W}'_r . This \mathcal{W}_r has the desired property in (2).

We recall the notion of code space. For more details, the reader is referred to [5].

Let $\mathbb{N} = \{0, 1, \ldots\}$. Then the *code space* on \mathbb{N} is denoted by $\Sigma = \prod_{i=1}^{\infty} \mathbb{N}$. For each $k \in \mathbb{N}$, let $\Sigma_k = \prod_{i=0}^k \mathbb{N}$ and let $\Sigma_* = \bigcup_{k=0}^{\infty} \Sigma_k$. If $\sigma = (a_0, a_1, \ldots) \in \Sigma$, then for each $k \in \mathbb{N}$, write $\sigma \upharpoonright k$ for the element $(a_0, a_1, \ldots, a_k) \in \Sigma_k$.

For each real number s with 0 < s < 1, a metric on Σ is defined as follows. If $\sigma = (a_0, a_1, \ldots)$ and $\tau = (b_0, b_1, \ldots)$, let $d_s(\sigma, \tau) = s^k$ if $a_i = b_i$ for $i \le k$ and $a_{k+1} \ne b_{k+1}$, and let $d_s(\sigma, \tau) = 0$ if $\sigma = \tau$. This defines an ultrametric d_s on Σ . Recall that a metric d is an ultrametric if it satisfies the ultra-triangle inequality: $d(\sigma, \tau) \le \max\{d(\sigma, \theta), d(\theta, \tau)\}$ for $\sigma, \tau, \theta \in \Sigma$.

The set Σ is represented as an infinite tree such that the nodes at the kth level are the elements of Σ_k . If $k \geq 1$, for each element $(a_0, \ldots, a_k) \in \Sigma_k$, let $(a_0, \ldots, a_{k-1}) \in \Sigma_k$ be its parent. Then the elements of Σ are in one-to-one correspondence with the infinite paths starting at the root.

3. Proof of Main Theorem

First, suppose that $\dim_{AN} X \leq n$. By Proposition 2.1(3), there exists a constant c > 0 such that for each r > 0, there exists a countable open cover \mathcal{V}_r of X with multiplicity at most n+1, $\operatorname{mesh}(\mathcal{V}_r) \leq cr$, and $L(\mathcal{V}_r) \geq r$. Without loss of generality, we can assume c > 1. Let $\mathcal{U}_0 = \{X\}$, and for each $k \in \mathbb{N}$, put $\mathcal{U}_k = \mathcal{V}_{1/c^k}$. Then \mathcal{U}_k has multiplicity at most k+1, $\operatorname{mesh}(\mathcal{U}_k) \leq 1/c^{k-1}$, and $L(\mathcal{U}_k) \geq 1/c^k$. This implies that for each $U \in \mathcal{U}_k$, there exists $V \in \mathcal{U}_{k-1}$ such that $\overline{U} \subseteq V$. We construct a tree as follows. Let the nodes at the kth level be the elements of \mathcal{U}_k . If $k \geq 1$, for each node $U \in \mathcal{U}_k$, choose an element $V \in \mathcal{U}_{k-1}$ so that $\overline{U} \subseteq V$, and let V be the parent of U. The nodes of the tree are in one-to-one correspondence with the finite paths in the tree starting at the root. For each finite path α starting at the root, write U_{α} for the element $U \in \mathcal{U}_k$ which corresponds to α . Since each \mathcal{U}_k is at most countable, every finite path α starting at the root can be represented by $\alpha = (a_0, a_1, \dots, a_k) \in \Sigma_k$, and every infinite path σ starting at the root can be represented by $\sigma = (a_0, a_1, \ldots) \in \Sigma$. Let Z be the set of $\sigma = (a_0, a_1, \ldots) \in \Sigma$ so that $a_0 a_1 \cdots$ is an infinite path starting at the root. Then we can write \mathcal{U}_k as $\{U_{\sigma \upharpoonright k} : \sigma \in Z\}$. Let

Z be equipped with the ultrametric $d_{1/c}$. Define a map $f: Z \to X$ as follows. There is a decreasing sequence $\overline{U_{\sigma \uparrow 0}} \supseteq U_{\sigma \uparrow 0} \supseteq \overline{U_{\sigma \uparrow 1}} \supseteq U_{\sigma \uparrow 1} \supseteq U_{\sigma \uparrow 1} \supseteq \cdots \supseteq \overline{U_{\sigma \uparrow k}} \supseteq U_{\sigma \uparrow k} \supseteq \cdots$, and diam $U_{\sigma \mid k} \to 0$ as $k \to \infty$. Since X is proper, each $\overline{U_{\sigma \uparrow k}}$ is compact. So, $\bigcap_{k=0}^{\infty} U_{\sigma \uparrow k} = \bigcap_{k=0}^{\infty} \overline{U_{\sigma \uparrow k}}$ consists of a single point, which we denote by $f(\sigma)$.

The map $f: Z \to X$ is Lipschitz. Indeed, let $\sigma, \sigma' \in Z$ and let $d_{1/c}(\sigma, \sigma') = 1/c^k$. Then $\sigma \upharpoonright k = \sigma' \upharpoonright k$. This implies that $f(\sigma), f(\sigma') \in U$ for some $U \in \mathcal{U}_k$, and hence $d_{1/c}(f(\sigma), f(\sigma')) \leq \operatorname{diam} U \leq \operatorname{mesh} \mathcal{U}_k \leq 1/c^{k-1} = cd_{1/c}(\sigma, \sigma')$.

The map f satisfies $|f^{-1}(x)| \leq n+1$ for each $x \in X$. Indeed, let $\sigma_1, \ldots, \sigma_{n+2} \in Z$, where $\sigma_i \neq \sigma_j$ for $i \neq j$. Then there exists k such that $\sigma_i \upharpoonright k \neq \sigma_j \upharpoonright k$ for $i \neq j$. If $x = f(\sigma_1) = \cdots = f(\sigma_{n+2})$, then $x \in \bigcap_{i=1}^{n+2} U_{\sigma_i \mid k} \neq \emptyset$, contracting to the fact that \mathcal{U}_k has multiplicity at most n+1.

To show assertion (2), it remains to verify condition (B). Let r > 0, and let B be a subset of X such that diam $B \le r$. We wish to show that there exists a subset A of Z such that diam $A \le cr$, and f(A) = B. If $r \ge 1$, then the assertion is obvious since diam $Z \le c$. So we assume r < 1. Let k be the nonnegative integer such that $1/c^{k+1} \le r < 1/c^k$. There exist $U_{\alpha_i} \in \mathcal{U}_i$ where $i = 0, \ldots, k$, such that $B \subseteq U_{\alpha_k} \subseteq \cdots \subseteq U_{\alpha_0}$. Let $A = \{\sigma \in Z : \sigma \mid k = \alpha_0 \cdots \alpha_k, f(\sigma) \in B\}$. Then f(A) = B, and for any $\sigma, \sigma' \in A$, $d_{1/c}(\sigma, \sigma') \le 1/c^k < cr$, which shows diam $A \le cr$.

Conversely, let $f: Z \to X$ be a Lipschitz map from an ultrametric space Z onto X such that $|f^{-1}(x)| \le n+1$ and it has property (B). Let $c_1 > 0$ be a constant such that for each r > 0 and for every subset B of X with diameter $\le r$, there exists a subset A of Z with diameter at most c_1r and f(A) = B. Since $\dim_{AN} Z = 0$, then, by Proposition 2.1(3), there exists a constant $c_2 > 0$ such that for every r > 0, there exist a countable open cover \mathcal{U}_r of Z with multiplicity at most n+1, mesh $(\mathcal{U}_r) \le c_2r$, and $L(\mathcal{U}_r) \ge r$. For each r > 0, let $\mathcal{V}_r = f(\mathcal{U}_{c_1r}) = \{f(U): U \in \mathcal{U}_{c_1r}\}$.

The multiplicity of V_r is at most n+1 since the multiplicity of U_{c_1r} is at most 1 and f is at most (n+1)-to-1.

If $U \in \mathcal{U}_{c_1r}$ and $x, x' \in f(U)$, and if x = f(z) and x' = f(z'), where $z, z' \in U$, then $d(x, x') \leq \text{Lip}(f)d(z, z') \leq \text{Lip}(f)c_1r$. This shows that $\text{mesh}(\mathcal{V}_r) \leq \text{Lip}(f)c_1r$.

It remains to show that $L(\mathcal{V}_r) \geq r$. Let B be a subset of X such that diam $B \leq r$. By condition (B), there exists a subset A of Z such that f(A) = B and diam $A \leq c_1 r$. Then $A \subseteq U$ for some $U \in \mathcal{U}_{c_1 r}$, and hence $B = f(A) \subseteq f(U)$ and $f(U) \in \mathcal{V}_r$. This shows that $L(\mathcal{V}_r) \geq r$, and completes the proof of the theorem.

- Remark 3.1. Since every ultrametric space has Assouad–Nagata dimension 0 and since every metric space with Assouad–Nagata dimension 0 admits an ultrametric in the Lipschitz category (see [3, Theorem 3.3]), condition (2) in the theorem is equivalent to the following condition:
 - (3) There exist a metric space Z and a Lipschitz map $f: Z \to X$ onto X such that $\dim_{AN} Z \leq 0$, $|f^{-1}(x)| \leq n+1$, and they have property (B).

References

- [1] Patrice Assouad, Sur la distance de Nagata, C. R. Acad. Sci. Paris Sér. I Math. **294** (1982), no. 1, 31–34.
- [2] G. Bell and A. Dranishnikov, Asymptotic dimension in Będlewo, Topology Proc. 38 (2011), 209–236.
- [3] N. Brodskiy, J. Dydak, J. Higes, and A. Mitra, Dimension zero at all scales, Topology Appl. 154 (2007), no. 14, 2729–2740.
- [4] N. Brodskiy, J. Dydak, M. Levin, and A. Mitra, A Hurewicz theorem for the Assouad-Nagata dimension, J. Lond. Math. Soc. (2) 77 (2008), no. 3, 741–756.
- [5] Gerald A. Edgar, Measure, Topology, and Fractal Geometry. Undergraduate Texts in Mathematics. New York: Springer-Verlag, 1990.
- [6] J. de Groot, On a metric that characterizes dimension, Canad. J. Math. 9 (1957), 511–514.
- [7] W. Hurewicz, Ueber stetige Bilder von Punktmengen, Koninklijke Akademie van Wetenschappen: Proceedings of the Section of Sciences 29 (1926) 1014–1017.
- [8] Urs Lang and Thilo Schlichenmaier, Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions, Int. Math. Res. Not. 2005 (2005), no. 58, 3625– 3655.
- [9] Kiiti Morita, A condition for the metrizability of topological spaces and for ndimensionality, Sci. Rep. Tokyo Kyoiku Daigaku. Sect. A. 5 (1955), 33–36.
- [10] _____, On closed mappings and dimension, Proc. Japan Acad. 32 (1956), 161–165.
- [11] Keiô Nagami, Dimension Theory. With an appendix by Yukihiro Kodama. Pure and Applied Mathematics, Vol. 37. New York-London: Academic Press, 1970.
- [12] Jun-iti Nagata, On a relation between dimension and metrization, Proc. Japan Acad. 32 (1956), 237–240.

(Miyata) Department of Mathematics and Informatics; Kobe University; Nada-Ku, Kobe, Japan 657-8501

E-mail address: tmiyata@kobe-u.ac.jp

(Yoshimura) Department of Mathematics and Informatics; Kobe University; Nada-Ku, Kobe, Japan 657-8501

E-mail address: hxjtm429@yahoo.co.jp