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CONCERNING CHAINABILITY OF INVERSE LIMITS
ON [0, 1] WITH SET-VALUED FUNCTIONS

W. T. INGRAM

Abstract. Suppose that X1, X2, X3, . . . is a sequence of continua
and fi : Xi+1 → 2Xi is an upper semi-continuous set-valued func-
tion for each positive integer i; let G′

n = {x ∈
∏n+1

i=1 Xi | xi ∈
fi(xi+1) for 1 ≤ i ≤ n}. We show that if G′

n is a chainable con-
tinuum for each n ∈ N, then the inverse limit lim←−f is chainable.
We use this to show that two well-studied examples of inverse lim-
its on [0, 1] with set-valued functions, along with two companion
examples (the inverse limit with the inverses of those functions),
are chainable. In the process we prove a union theorem for chain-
able continua, specifically, if A and B are chainable continua such
that A ∩ B is a terminal C-set in each of A and B, then A ∪ B is
chainable.

1. Introduction

In two recent papers (see [5] and [6]), the author considered conditions
under which an inverse limit with a single set-valued bonding function on
[0, 1] is tree-like. These results suggest posing the following problem.

Problem 1.1. Find sufficient conditions on an upper semi-continuous
function f : [0, 1]→ 2[0,1] so that lim←−f is a chainable continuum.

Pertinent to this problem is a result of M. M. Marsh [9, Corollary 6]
that if f : X → 2X is an upper semi-continuous function on a continuum
X and there is a mapping g : X → X such that g−1 ⊆ G(f), then
lim←−f contains a homeomorphic copy of G(f). Thus, a function having a
graph that contains the inverse of a mapping cannot contain a triod or
a simple closed curve in its graph and produce a chainable inverse limit.
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On the other hand, there are examples of functions having a graph that
is an arc but for which the inverse limit contains a triod [4, Example 2.3
and Example 3.11]. The functions in both of these examples have graphs
containing the inverse of a mapping of [0, 1]. Examples of arcs that are
inverse limits with a single set-valued function that is not a mapping
include Example 2.2 and Example 2.6 of [4]. However, the author knows
of no previously published example of a chainable continuum other than
an arc that can be obtained as an inverse limit with a single set-valued
function that is not a mapping. In section 5 of this paper, we provide
such examples thus showing that Problem 1.1 is a reasonable problem to
consider. Constructing our proof that there are such examples led us to
what we believe to be a new theorem about the chainability of unions of
two chainable continua (see Theorem 3.2).

2. Definitions and Some Background Theorems

By a compactum we mean a compact metric space. IfX is a compactum
we denote the collection of closed subsets of X by 2X ; C(X) denotes
the connected elements of 2X . If each of X and Y is a compactum, a
function f : X → 2Y is said to be upper semi-continuous at the point x
of X provided that if V is an open subset of Y that contains f(x), then
there is an open subset U of X containing x such that if t is a point
of U , then f(t) ⊆ V . A function f : X → 2Y is called upper semi-
continuous provided it is upper semi-continuous at each point of X. If
f : X → 2Y is a set-valued function, by the graph of f , denoted G(f), we
mean {(x, y) ∈ X × Y | y ∈ f(x)}. It is known that if M is a subset of
X × Y such that X is the projection of M to its set of first coordinates,
then M is closed if and only if M is the graph of an upper semi-continuous
function [7, Theorem 2.1]. In the case that f is upper semi-continuous
and single-valued, i.e., f(t) is degenerate for each t ∈ X, f is a continuous
function. We call a continuous function a mapping; if f : X → Y is a
surjective mapping (i.e., for each y ∈ Y there is a point x ∈ X such that
y = f(x)), we denote that f is surjective by f : X →→ Y . If X and Y
are compacta, Y ⊆ X, and r : X → Y is a mapping, then r is called a
retraction provided f(x) = x for each x ∈ Y .

We denote by N the set of positive integers. If s = s1, s2, s3, . . . is a
sequence, we normally denote the sequence in boldface type and its terms
in italics. Suppose X is a sequence of compacta each having diameter
bounded by 1 and fn : Xn+1 → 2Xn is an upper semi-continuous function
for each n ∈ N. By the inverse limit of f , denoted lim←−f , we mean
{x ∈

∏
i>0Xi | xi ∈ fi(xi+1) for each positive integer i}; we call the

pair {X,f} an inverse limit sequence. Inverse limits on compacta with
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upper semi-continuous bonding functions are nonempty and compact [7,
Theorem 3.2]; they are metric spaces being subsets of the metric space∏

i>0Xi. Because every metric space has an equivalent metric that is
bounded by 1, we assume throughout that all of our spaces have metrics
bounded by 1. This allows us to use the metric d on this product given
by d(x,y) =

∑
i>0 di(xi, yi)/2

i. In the case that each fn is a mapping,
the definition of the inverse limit reduces to the usual definition of an
inverse limit on compacta with mappings. If A ⊆ N, we denote by pA
the projection of

∏
n>0Xn onto

∏
n∈AXn given by pA(x) = y provided

yi = xi for each i ∈ A. If A = {n}, p{n} is normally denoted pn. In the
case that A ⊆ B ⊆ N, we normally also denote the restriction of pA to∏

n∈B Xn by pA, inferring by context that we are using this restriction.
We denote the projection from the inverse limit into the ith factor space
by πi, and, more generally, for A ⊆ N, we denote by πA the restriction
of pA to the inverse limit. If {X,f} is an inverse limit sequence and
M = lim←−f , we say that M has the full projection property provided that
if H is a subcontinuum of M such that πi(H) = Xi for infinitely many
integers i, then H =M .

A set traditionally used in the proof that lim←−f is nonempty and com-
pact is {x ∈

∏
k>0Xk | xi ∈ fi(xi+1) for 1 ≤ i ≤ n}. Because this set

was originally denoted Gn, we adopt and use throughout this article the
notation G′

n = {x ∈
∏n+1

k=1 Xk | xi ∈ fi(xi+1) for 1 ≤ i ≤ n}. Note that
for A = {1, 2, . . . , n+ 1}, G′

n = πA(Gn).

A continuum is a compact, connected subset of a metric space. A
continuum M is said to be chainable provided that, for each ε > 0, there
is a finite collection C = {C1, C2, . . . , Cn} of open sets covering M such
that Ci ∩Cj ̸= ∅ if and only if |i− j| ≤ 1 and diam(Ci) < ε for 1 ≤ i ≤ n.
A triod is a continuum M containing a subcontinuum K (called the core of
the triod) such that M−K has at least three components. A continuum is
atriodic provided it does not contain a triod. A subset K of a continuum
M is a C-set in M provided it is true that if H is a subcontinuum of M
containing a point ofK and a point ofM−K, thenK ⊆ H. For additional
information on C-sets, see [2]. A subcontinuum C of a continuum M is
said to be terminal in M provided if H and K are subcontinua of M each
intersecting C, then H ⊆ K ∪ C or K ⊆ H ∪ C. If A is a set, Cl(A)
denotes the closure of A.

If Y1, Y2, Y3, . . . is a sequence of compact subsets of a compact metric
space Y and, for each i ∈ N, ψi : Y →→ Yi is a mapping of Y onto Yi, then
ψ1, ψ2, ψ3, . . . is said to converge uniformly to the mapping ψ : Y → Y
provided it is true that if ε > 0, then there is a positive integer N such
that d(ψ(x), ψn(x)) < ε for each n ≥ N and x ∈ Y . In a couple of our
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examples we make use of the following theorem of Fort and Segal as found
in [10, p. 30].

Theorem 2.1. Suppose Y is a compact metric space and Y1, Y2, Y3, . . .
is a sequence of compact subsets of Y such that, for each i ∈ N, there
exist surjective mappings gi : Yi+1 →→ Yi and ψi : Y →→ Yi such that
ψi = gi ◦ ψi+1. If ψ converges uniformly to the identity on Y , then Y is
homeomorphic to lim←− g.

Proof. It is not difficult to show that h : Y → lim←− g given by h(x) =

(ψ1(x), ψ2(x), ψ3(x), . . . ) is a surjective homeomorphism. We leave the
details to the reader (as does Sam B. Nadler, Jr., in [10, p. 30]). �

If f : X → Y is a mapping and ε > 0, then f is called an ε-map
provided that, for each point x ∈ Y , diam(f−1(x)) < ε. There are two
well-known characterizations of chainability. A proof of Theorem 2.2 may
be found in [8, Theorem 96 and Theorem 102]; the second theorem is a
consequence of Theorem 175 and Theorem 176 of [8].

Theorem 2.2. A continuum is chainable if and only if it is homeomor-
phic to an inverse limit on arcs with mappings.

Theorem 2.3. A continuum M is chainable if and only if, for each ε > 0,
there is an ε-mapping f of M onto an arc.

3. Atriodicity and Unions of Chainable Continua

In [1] it is shown that if A and B are chainable continua with a point
in common, then A ∪ B is chainable if and only if A ∪ B is atriodic and
A∩B is connected. In this section we show that a continuum is chainable
if it is the union of two chainable continua whose intersection is a terminal
continuum and a C-set in each of them. We begin with examples that
show that even if A and B are arcs, neither A ∩ B being terminal nor
A ∩B being a C-set alone is sufficient for the union to be atriodic.

Let T be the unit triod in the plane. Specifically, let A1 be the arc on
the x-axis in the plane having endpoints (0, 0) and (1, 0); let A2 be the arc
on the y-axis having endpoints (0, 0) and (0, 1); let A3 be the arc on the
x-axis having endpoints (0, 0) and (−1, 0); let T = A1∪A2∪A3. Although
T is a triod, the set {(0, 0)} is a C-set in A1 and in the arc A2∪A3; the arc
A1 is terminal in A1∪A2 and in A1∪A3. Thus, the union of two atriodic
continua can fail to be atriodic when their common part is either a C-set
in both or a terminal subcontinuum of both. However, when the common
part of two atriodic continua is a continuum that is both terminal and
a C-set in each, their union is atriodic. This is our first theorem of this
section.
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Theorem 3.1. If A and B are atriodic continua and A∩B is a continuum
that is terminal and a C-set in both A and B, then A ∪B is atriodic.

Proof. Suppose J1 ∪ J2 ∪ J3 is a triod with core K lying in A ∪ B. We
first show that K is not a subset of A − (A ∩ B). If K ⊆ A − (A ∩ B),
then letting Li denote the closure of the component of Ji ∩

(
A− (A∩B)

)
containing K for i = 1, 2, 3, we see that each Li contains a point not in
Lj for i ̸= j. Thus, L1 ∪L2 ∪L3 is a triod lying in A. Similarly, K is not
a subset of B − (A ∩B) so K ∩ (A ∩B) ̸= ∅.

Because J1∪J2∪J3 is not a subset of either A or B, it follows that one
of J1, J2, and J3 contains a point of A− (A∩B) or one of them contains
a point of B − (A ∩ B). Suppose J1 contains a point x of A − (A ∩ B).
Denote by L the component of J1 ∩

(
A− (A ∩B)

)
containing x. Then L

has a limit point in A ∩B [8, Theorem 276]. Because A ∩B is a C-set in
A, A ∩B ⊆ Cl(L). Thus, A ∩B ⊆ J1, so neither J2 nor J3 is a subset of
A∩B. It now follows in a similar manner that A∩B ⊆ J2 and A∩B ⊆ J3.
Therefore, A ∩B ⊆ K.

Let pi be a point of Ji −K for i = 1, 2, 3. If {p1, p2, p3} ⊆ A, then, by
letting Li denote the closure of the component of Ji ∩

(
A− (A∩B)

)
that

contains pi for i = 1, 2, 3, we have that L1, L2, L3 are three subcontinua of
A with a common point (A∩B is a subset of each Li) such that no one of
them is a subset of the union of the other two. By a theorem of Sorgenfrey
[11, Theorem 1.8], L1 ∪ L2 ∪ L3 contains a triod. However, this involves
a contradiction because L1 ∪ L2 ∪ L3 ⊆ A. Similarly, {p1, p2, p3} is not a
subset of B. Suppose p1 ∈ A and p2 ∈ B. If p3 ∈ A, then, because A∩B
is terminal in A, L1 ⊆ L3 or L3 ⊆ L1. If L1 ⊆ L3, then p1 ∈ J3 while
if L3 ⊆ L1, then p3 ∈ J1. Either possibility involves a contradiction. A
similar contradiction follows if p3 ∈ B. �

Theorem 3.2. If A and B are chainable continua and A ∩ B is a con-
tinuum that is terminal and a C-set in both A and B, then A ∪ B is
chainable. Moreover, A ∩B is a C-set in A ∪B.

Proof. By Theorem 3.1, A ∪ B is atriodic. By [1, Theorem 2, p. 196],
A ∪B is chainable.

Suppose H is a subcontinuum of A∪B that contains a point of A∩B
and a point not in A ∩ B. Assume H contains a point of A − (A ∩ B).
Then H ∩ A is a subcontinuum of A that contains a point of A ∩ B and
a point not in A ∩ B. It follows that H contains A ∩ B. If H contains a
point of B − (A ∩B), it follows similarly that H contains A ∩B. �

A C-set in a subcontinuum of a continuumM need not be a C-set inM .
For example, if one attaches an arc to the limit bar of a sin(1/x)-curve



332 W. T. INGRAM

such that the arc intersects the sin(1/x)-curve in only one point, then,
although the limit bar is a C-set in the sin(1/x)-curve, it is not a C-set in
the union. However, the following theorem gives a condition under which
a C-set in a subcontinuum is a C-set in the continuum.

Theorem 3.3. Suppose H is a subcontinuum of the continuum M and C
is a C-set in H. If there is an open subset U of M such that C ⊆ U ⊆ H,
then C is a C-set in M .

Proof. Suppose K is a subcontinuum of M that contains a point of C and
a point not in C. We may assume that K is not a subset of H. If L is
a component of K ∩ U that intersects C, then L has a limit point in the
boundary of U [8, Theorem 276]. Thus, J = Cl(L) is a subcontinuum of
H that contains a point of C and a point not in C. It follows that C ⊆ J ,
but J ⊆ K, so C ⊆ K. �

4. Properties of the Inverse Limit
Deriving from the Sets G′

n

Suppose X is a sequence of compacta and, for each positive integer
n, fn : Xn+1 → 2Xn is an upper semi-continuous function. Because the
inverse limit is an intersection of the nested sequence of approximations
Gn = {x ∈

∏
i>0Xi | xj ∈ fj(xj+1) for 1 ≤ j ≤ n}, many of its

properties derive from properties of these sets. For example, an inverse
limit on compacta is compact if and only if Gn is compact for each n ∈ N;
an inverse limit on continua is a continuum if and only ifGn is a continuum
for each n ∈ N [8]. Studies of these approximations can normally be
reduced to finite dimensional sets G′

n = πA(Gn) for A = {1, 2, . . . , n +
1}. These sets have also proved useful in proofs of other properties of
inverse limits, e.g., if dim (G′

n) ≤ m for each positive integer n, then
the dimension of the inverse limit cannot exceed m [8]. Here we show
that chainability (tree-likeness, respectively) of the inverse limit derives
from the chainability (tree-likeness, respectively) of each of the sets G′

n

(Corollary 4.3 (4.4, respectively) below). Lemmas 4.1 and 4.2 have these
consequences along with other ramifications. A problem with using these
lemmas and other theorems that rely on properties of either G′

n or of
Gn often lies in dealing with the dimension of the spaces in which these
sets reside. Even in the case that every factor space is the interval [0, 1],
G′

n is a subset of [0, 1]n+1 while Gn is an infinite dimensional subset of
the Hilbert cube. In the next section, we make use of the consequences
of these lemmas to obtain the chainability of certain inverse limits on
[0, 1] heretofore not shown to be chainable. However, we do not provide
conditions on the bonding functions that ensure chainability, as asked in
Problem 1.1.
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Because chainability and tree-likeness are defined in terms of covers
and can be characterized in terms of ε-maps, Corollary 4.3 and Corollary
4.4 follow directly from either Lemma 4.1 or Lemma 4.2 below.

Lemma 4.1. Suppose X is a sequence of compacta and fn : Xn+1 → 2Xn

is an upper semi-continuous function for each positive integer n. Then,
for A = {1, 2, . . . , n+ 1}, πA is a 1/2n+1-map of lim←−f into G′

n.

Lemma 4.2. Suppose X is a sequence of compacta and fn : Xn+1 → 2Xn

is an upper semi-continuous function for each positive integer n. Suppose
further that U is a collection of open sets in

∏n+1
i=1 Xi covering G′

n such
that if u ∈ U then diam(u) < 1/2n+1. Then there is a collection V of
open subsets of

∏
i>0Xi covering lim←−f and a 1-1 function σ : U →→ V

such that (1) if v ∈ V, then diam(v) < 1/2n and (2) for u1 and u2 in U ,
u1 ∩ u2 ̸= ∅ if and only if σ(u1) ∩ σ(u2) ̸= ∅.

Proof. For u ∈ U , define σ(u) to be u ×
(∏

i>n+1Xi

)
and let V = σ(U).

The two conclusions of the lemma follow almost immediately. �
Corollaries 4.3 and 4.4 are immediate consequences of either of these

two lemmas. Although we do not make use of Corollary 4.5 elsewhere in
this article, we believe it to be of interest. Its proof follows from Lemma
4.2 using techniques already in the literature [8, Section 2.12].

Corollary 4.3. Suppose X is a sequence of continua and fn : Xn+1 →
2Xn is an upper semi-continuous function for each positive integer n. If
G′

n is a chainable continuum for each positive integer n, then lim←−f is a
chainable continuum.

Corollary 4.4. Suppose X is a sequence of continua and fn : Xn+1 →
2Xn is an upper semi-continuous function for each positive integer n. If
G′

n is a tree-like continuum for each positive integer n, then lim←−f is a
tree-like continuum.

Corollary 4.5. Suppose X is a sequence of compacta and fn : Xn+1 →
2Xn is an upper semi-continuous function for each positive integer n. If
m ∈ N and dim(G′

n) ≤ m for each positive integer n, then dim(lim←−f) ≤
m.

In the case that the graph of an upper semi-continuous function f :
[0, 1]→ 2[0,1] contains the inverse of a mapping of [0, 1] into itself and each
G′

n is chainable (tree-like, respectively), a theorem of Marsh [9, Corollary
7] can be used to construct an “inverse limit” proof that lim←−f is chainable
(tree-like, respectively). In fact, our first proof that Example 5.1 and
Example 5.4 in the next section are chainable continua was accomplished
in this manner. We do not know of such a proof that Example 5.3 and
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Example 5.5 below are chainable. (In each of those examples the graph of
the bonding function does not contain the inverse of a mapping of [0, 1].)
Corollaries 4.3 and 4.4 do not impose restrictions on the nature of an
upper semi-continuous bonding function.

5. Examples

Our main results on inverse limits with set-valued functions in this
paper are in the form of examples. Example 5.1 and Example 5.4 be-
low have been shown to be indecomposable continua [4, Example 3.7 and
Example 3.9]. Moreover, both continua have recently been shown to be
tree-like [5]. Our contribution here is in showing that both inverse limits
are chainable continua. While discussing our results on these two exam-
ples with Van Nall, he asked whether the inverses of the functions in these
two examples also produce chainable continua. It so happens that both
do so. Our other two examples here involve the inverse limits with these
inverse functions. We appreciate his asking this question.

Example 5.1. Let f : [0, 1] → C([0, 1]) be the upper semi-continuous
function whose graph consists of three straight line intervals lying in [0, 1]2:
one from (0, 0) to (1/2, 1), one from (1/2, 1) to (1/2, 0), and one from
(1/2, 0) to (1, 1). Then lim←−f is an indecomposable chainable continuum
such that every nondegenerate proper subcontinuum is an arc (see the
graph on the left in Figure 1 for the graph of f).

(0,0)

(1,1)(1/2,1)

(1/2,0)

(1,1)

(1,1/2)

(0,1/2)

(0,0)

Figure 1. The graphs of the bonding functions in Ex-
ample 5.1 (left) and Example 5.3 (right)
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Proof. Let M = lim←−f . It is well known that an upper semi-continuous
function on [0, 1] having connected values produces a continuum in the
inverse limit. That M is indecomposable is shown in [4, Example 3.9]
(original source is [3]). In view of Corollary 4.3, to show that M is chain-
able it is sufficient to show that G′

n is chainable for each n ∈ N. In [4, Ex-
ample 3.6], it is shown that each G′

n is an arc. Briefly, this is accomplished
by letting g1, g2, and g3 be the three mappings of [0, 1] into [0, 1] whose
union is G(f−1), i.e., let g1(t) = t/2, g2(t) = 1/2, and g3(t) = (t + 1)/2
for t ∈ [0, 1]. Observe that G′

1 = G(f−1) is an arc. Proceeding by induc-
tion, suppose k is an integer such that G′

k is an arc. Let Aj = ψj(G
′
k)

for j ∈ {1, 2, 3} where ψj : G′
k → G′

k+1 is the homeomorphism given by
ψj(x) = (x1, . . . , xk, gj(xk)). Then A1, A2, and A3 are arcs whose union
is G′

k+1. Note that A1∩A2 = {(1, 1, . . . , 1, 1/2)} and (1, 1, . . . , 1, 1/2) is a
common endpoint of A1 and A2, while A2 ∩A3 = {(0, 0, . . . , 0, 1/2)} and
(0, 0, . . . , 0, 1/2) is a common endpoint of A2 and A3. Because A1∩A3 = ∅,
it follows that G′

k+1 is an arc.

Suppose H is a nondegenerate proper subcontinuum of M . To see that
H is an arc, we use the fact that if K is a proper subcontinuum of M ,
then there is a positive integer n such that if j ≥ n, then πj(K) ̸= [0, 1]
(i.e., M has the full projection property, established in both [3] and [4]).
If k ∈ N and πk(H) = {1/2}, then πj(H) is a singleton for each j ≥ k and
H is homeomorphic to G′

k−1 under the homeomorphisms φ : H → G′
k−1

given by φ(x) = (x1, x2, . . . , xk). Thus, in this case, H is an arc. Suppose
πi(H) ̸= {1/2} for each i ∈ N. Let n be a positive integer such that
if j ≥ n, then πj(H) ̸= [0, 1]. Suppose that 1/2 ∈ πi(H) for infinitely
many integers i ≥ n. Observe that if 0 ∈ πi(H) (1 ∈ πi(H), respectively)
for infinitely many integers i, then 0 ∈ πi(H) (1 ∈ πi(H), respectively)
for all i. Suppose k ≥ n + 1 and 1/2 ∈ πk(H). There is an integer
j > k such that 1/2 ∈ πj(H). Then, because πj(H) ̸= {1/2}, there is a
point s ∈ πj(H) such that s ̸= 1/2. If s < 1/2, then 1 ∈ πj−1(H), and
thus, [1/2, 1] ⊆ πk(H). It follows that πk−1(H) = [0, 1]; this involves a
contradiction. A similar contradiction occurs in the case that s > 1/2.
Therefore, 1/2 /∈ πk(H) for k ≥ n + 1 and we obtain that f |(πk(H))
is a homeomorphism for k > n + 1. Define h : H → G′

n+1 by h(x) =
(x1, x2, . . . , xn+2). Suppose x,y ∈ H and x ̸= y. There is a positive
integer j such that xj ̸= yj . If j ≤ n+ 1, then h(x) ̸= h(y). If j > n+ 1,
then xn+1 ̸= yn+1, and again h(x) ̸= h(y). Thus, h is a homeomorphism
of H onto a subcontinuum of G′

n+1, so H is an arc, being homeomorphic
to a subcontinuum of the arc G′

n+1. �

Remark 5.2. Because the continuum in Example 5.1 has two endpoints,
(0, 0, 0, . . . ) and (1, 1, 1, . . . ), and every proper subcontinuum is an arc,
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its properties are reminiscent of a two endpoint Knaster continuum, lim←− g
where g is the piecewise linear mapping whose graph passes through
(0, 0), (1/3, 1), (2/3, 0), and (1, 1). It would be interesting to know whether
the two continua are homeomorphic.

Our next example is the inverse limit with the inverse of the function
in the previous example. This proof is similar to the proof for Example
5.1 so we offer only an outline of the proof that highlights the differences
between the proofs.

Example 5.3. Let f be the inverse of the function in Example 5.1. Then
lim←−f is a chainable continuum (see the graph on the right in Figure 1 for
the graph of f).

Proof. Let M = lim←−f . That M is a continuum follows because f−1 :

[0, 1] → C([0, 1]) [4, Theorem 2.8]. (This is also a consequence of the
fact shown below that G′

n is an arc for each n ∈ N.) As in the previous
example, we show that G′

n is an arc for each n ∈ N and appeal to Corollary
4.3. Clearly, G′

1 is an arc. Inductively, suppose k is a positive integer
such that G′

k is an arc. Note that the three mappings g1, g2, and g3 from
the previous proof have the property that G(f) = g1 ∪ g2 ∪ g3. Define
Φi : G

′
k → G′

k+1 by Φ(x) = (gi(x1), x1, x2, . . . , xk+1) for i = 1, 2, 3. For
i = 1, 2, 3, Φi is a homeomorphism; let Li = Φi(G

′
k). Each Li is an

arc, L1 ∩ L3 = ∅, and L1 ∩ L2 = {(1/2, 1, 1, . . . , 1)}, while L2 ∩ L3 =
{(1/2, 0, 0, . . . , 0)}. It follows that G′

k+1 is an arc. �
Our next example was first studied by Scott Varagona [12] where he

showed that the inverse limit is an indecomposable continuum. It is also
included as Example 3.5 in [4]. We now show that it is a chainable
continuum. This proof motivated much of this paper.

Example 5.4. Let f : [0, 1]→ C([0, 1]) be the function whose graph is the
union of straight line intervals joining (1/2n, 0) and (1/2n−1, 1) for all odd
positive integers, straight line intervals joining (1/2n−1, 0) and (1/2n, 1)
for all even positive integers, and the straight line interval joining (0, 0)
and (0, 1) (a function whose graph is homeomorphic to a sin(1/x)-curve).
Then lim←−f is an indecomposable chainable continuum (see the graph on
the left in Figure 2 for the graph of f).

Proof. Let M = lim←−f . As we remarked earlier, it is known that M
is an indecomposable continuum. Here we show that it is a chainable
continuum.
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(1,1)

(1/2,0)(0,0)

(1/4,1)

(0,0)

(0,1/2)

(1,1)

(1,0)

(1,1/4)

Figure 2. The graphs of the bonding functions in Ex-
ample 5.4 (left) and Example 5.5 (right)

First, we introduce some notation. Let φ0 : [0, 1] → [0, 1] be the
mapping given by φ0(t) = 0 for each t ∈ [0, 1] and, for each i ∈ N,
let φi : [0, 1] → [1/2i, 1/2i−1] be the homeomorphism given by φi(t) =
(t + 1)/2i if i is odd and φi(t) = (2 − t)/2i if i is even. Note that
G(f−1) = φ0 ∪ φ1 ∪ φ2 ∪ · · · .

We now show that, for each positive integer n, G′
n is a chainable con-

tinuum such that {x ∈ G′
n | xn+1 = t} is a C-set in G′

n for each t ∈ [0, 1],
while {x ∈ G′

n | xn+1 = 0} and {x ∈ G′
n | xn+1 = 1} are terminal

subcontinua of G′
n. We proceed inductively.

The statement is clearly true for n = 1. Assume it holds for n = k.
For each nonnegative integer i, define Φi : G′

k → G′
k+1 by Φi(x) =

(x1, x2, . . . , xk+1, φi(xk+1)); let Li = Φi(G
′
k). Observe that Φi is a home-

omorphism for each i ≥ 0 so each Li is a chainable continuum. Moreover,
G′

k+1 =
∪

i≥0 Li. To complete the inductive step, we must show that

(1) {x ∈ G′
k+1 | xk+2 = t} is a C-set in G′

k+1 for each t ∈ [0, 1],
(2) {x ∈ G′

k+1 | xk+2 = 0} and {x ∈ G′
k+1 | xk+2 = 1} are terminal

in G′
k+1, and

(3) Gk+1 is chainable.

Let Ct = {x ∈ G′
k+1 | xk+2 = t}. We begin by showing (1) holds. We

consider cases t = 1, 0 < t < 1, and t = 0. For t = 1, Ct = {(1, 1, . . . , 1)},
a C-set in G′

k+1 because it is degenerate. Choose t, 0 < t < 1; let j be
a positive integer such that 1/2j ≤ t < 1/2j−1. Because j > 0, φj is a
homeomorphism; thus, φ−1

j (t) is a singleton. Observe that Ct = {x ∈
G′

k+1 | xk+1 = φ−1
j (t)} = Φj({x ∈ G′

k | xk+1 = φ−1
j (t)}). Because Φj
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is a homeomorphism and {x ∈ G′
k | xk+1 = φ−1

j (t)} is a C-set in G′
k, it

follows that Ct is a C-set in Lj . If t ̸= 1/2j , let J be the open interval
(1/2j , 1/2j−1). Then U = G′

k+1 ∩ p
−1
k+2(J) is an open subset of G′

k+1

containing Ct and lying in Lj , so Ct is a C-set in G′
k+1 by Theorem 3.3.

For t = 1/2j , φ−1
j (t) ∈ {0, 1}, so Ct is a terminal C-set in Lj and in Lj+1.

Because Ct = Lj ∩Lj+1, by Theorem 3.2, Lj ∪Lj+1 is chainable and Ct is
a C-set in Lj ∪Lj+1. Letting J denote the open interval (1/2j+1, 1/2j−1),
U = p−1

k+2(J) ∩ G′
k+1 is an open set in G′

k+1 containing Ct and lying in
Lj ∪ Lj+1 so Ct is a C-set in G′

k+1 by Theorem 3.3. For t = 0, consider
a subcontinuum H of G′

k+1 that contains a point of Ct and a point not
in Ct. There is a positive integer N such that if i ≥ N , then Li ⊆ H. It
follows that H contains Ct, so Ct is a C-set in G′

k+1.
To show that (2) holds, first consider the case t = 1. To see that

{(1, 1, . . . , 1)} is terminal in G′
k+1, suppose H and K are subcontinua of

G′
k+1 containing (1, 1, . . . , 1). There exist a, b ∈ [0, 1] such that pk+2(H) =

[a, 1] and pk+2(K) = [b, 1]. We may assume that a ≤ b and b < 1; let s be
a number such that b ≤ s < 1. Then H and K are subcontinua of G′

k+1

each containing a point of Cs = {x ∈ G′
k+1 | xk+2 = s} and a point not

in Cs. However, because Cs is a C-set in G′
k+1, it is a subset of H ∩K.

It follows that K ⊆ H. Thus, {(1, 1, . . . , 1)} is terminal in G′
k+1.

To complete showing that (2) holds, consider the case t = 0. Suppose
H and K are subcontinua of G′

k+1 and each contains a point of C0 =
{x ∈ G′

k+1 | xk+2 = 0} and a point not in C0. Because C0 is a C-set in
G′

k+1, C0 ⊆ H ∩ K. There exist a, b ∈ [0, 1] such that pk+2(H) = [0, a]
and pk+2(K) = [0, b]. We may assume that a ≤ b and 0 < a; let s be a
number such that 0 < s ≤ a. Then H and K are subcontinua of G′

k+1

each containing a point of Cs and a point not in Cs. However, because
Cs is a C-set in G′

k+1, it is a subset of H ∩ K. It follows that H ⊆ K.
Thus, C0 is terminal in G′

k+1.
To see that G′

k+1 is chainable, recall that we have already shown that
for each i ∈ N, Li ∪ Li+1 is chainable. Because Li ∩ Li+2 = ∅ for each
positive integer i, it follows that Yn = L1 ∪ L2 ∪ · · · ∪ Ln is chainable for
each positive integer n. Define ψn : G′

k+1 → Yn by ψn(x) = x if x ∈ Yn
and ψn(x) = (x1, x2, . . . , xk+1, φn(xk+1)) otherwise. Let gn : Yn+1 → Yn
be the restriction of ψn to Yn+1. Then the sequence ψ converges uniformly
to the identity on G′

k+1 and ψn = gn ◦ψn+1. Thus, by Theorem 2.1, G′
k+1

is homeomorphic to lim←− g, a chainable continuum being the inverse limit
of chainable continua [8, Theorem 174]. This completes the induction.

Because G′
n is chainable for each n ∈ N, it follows from Corollary 4.3

that lim←−f is chainable. �
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Example 5.5. Let f be the inverse of the function in Example 5.4. Then
lim←−f is a chainable continuum (see the graph on the right in Figure 2 for
the graph of f).

Proof. Let M = lim←−f . That M is a continuum is a consequence of the
fact that f−1 : [0, 1]→ C([0, 1]), [4, Theorem 2.8]. (This also follows from
the fact shown below that G′

n is a continuum for each n.) This proof is
similar to the proof for Example 5.4. We present an outline of the proof
featuring the differences and leave the details to the interested reader.
Note that the sequence φ0, φ1, φ2, . . . of mappings of [0, 1] into [0, 1] from
the previous proof has the property that G(f) = φ0∪φ1∪φ2∪ · · · . As in
the previous proof, it is sufficient to show that G′

n is chainable for each n
and appeal to Corollary 4.3.

Note that G′
1 is chainable, {x ∈ G′

1 | x1 = t} is a C-set in G′
1 for

each t ∈ [0, 1], and both {x ∈ G′
1 | x1 = 0} and {x ∈ G′

1 | x1 = 1} are
terminal in G′

1.

Suppose that k is a positive integer such that G′
k is chainable, {x ∈

G′
k | x1 = t} is a C-set in G′

k for each t ∈ [0, 1], and both {x ∈ G′
k |

x1 = 0} and {x ∈ G′
k | x1 = 1} are terminal in G′

k. For each nonnegative
integer i, let Φi : G

′
k → G′

k+1 be the homeomorphism given by Φi(x) =
(φi(x1), x1, x2, . . . , xk+1) and let Li = Φi(G

′
k). Each Li is chainable and

G′
k+1 =

∪
i≥0 Li. For each odd positive integer i, Li ∩ Li+1 = Φi({x ∈

G′
k | x1 = 0}); for each even positive integer i, Li ∩ Li+1 = Φi({x ∈

G′
k | x1 = 1}. Proofs that Ct = {x ∈ G′

k+1 | x1 = t} is a C-set for each
t ∈ [0, 1] and that C0 and C1 are also terminal are much like those in the
previous proof. Proof that L1∪L2∪· · ·∪Ln is chainable is also much like
that of the previous proof. This allows us to use Theorem 2.1 in much
the same way as before to obtain the chainability of G′

k+1. �
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