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ABSTRACT. As an alternative to the Khalimsky topology, the top-
ology w on the digital plane Z? was introduced by the author of this
note who also proved a Jordan curve theorem for it. In the present
paper, another Jordan curve theorem for the topology w is proved
determining a large variety of Jordan curves in the topological space
(72, w).

1. INTRODUCTION

Until late 1980’s, only the classical, graph-theoretic approach to dig-
ital topology was used utilizing 4-adjacency and 8-adjacency relations
for structuring the digital plane (see [9] and [10]). A disadvantage of
this approach is that neither 4-adjacency nor 8-adjacency itself allows for
an analogue of the Jordan curve theorem so that a combination of the
two binary relations has to be used. To overcome this disadvantage,
Khalimsky, Kopperman and Meyer proposed in their pioneering paper
[3] a new, purely topological approach to the problem of finding a struc-
ture for the digital plane Z? convenient for applications in digital image
processing. They showed that the Khalimsky topology introduced in [2]
provides such a convenient structure. At present, the Khalimsky topol-
ogy is one of the most important concepts of digital topology and it has
been studied and used by many authors, e.g., [4]-[7]. The possibility of
structuring Z2 by closure operators more general than the Kuratowski
ones is discussed in [11] and [12]. In [13], the author of this note intro-
duced and studied another convenient topology on Z? denoting it by w.
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He showed, by proving a Jordan curve theorem for the topology w, that
the topology has some advantages over the Khalimsky one. The topol-
ogy w was then further investigated in [14] where it was shown that its
quotient topologies include the Khalimsky and Marcus-Wyse (cf. [8])
topologies as well as some other interesting topologies and pretopologies
on Z2. In the present note, we continue the study of the topology w and
prove a new Jordan curve theorem for it. This Jordan curve theorem,
together with the one proved in [13], shows that the topology w possesses
a rich variety of Jordan curves and may, therefore, be used as a conve-
nient structure on the digital plane for solving problems of digital image
processing.

2. PRELIMINARIES

For the topological terminology used we refer to [1]. Throughout
the note, all topologies dealt with are thought of as being (given by)
Kuratowski closure operators. By a graph on a set V' we always mean an
undirected simple graph without loops whose vertex set is V. Recall that
a path in a graph is a finite (nonempty) sequence xg, 1, ..., &,, of pairwise
different vertices such that x;_y and z; are adjacent (i.e., joined by an
edge) whenever i € {1,2,...n}. By a cycle in a graph we understand any
finite set of at least three vertices which can be ordered into a path whose
first and last members are adjacent. The connectedness graph of a topol-
ogy p on X is the graph on X in which a pair of vertices xz,y is adjacent
if and only if z # y and {z,y} is a connected subset of (X,p). Let p be
an Alexandroff topology on a set X. Then a subset A C X is connected
in (X, p) if and only if each pair of (different) points of A may be joined
by a path in the connectedness graph of (X, p) contained in A. Clearly, p
is given by its connectedness graph provided that every edge of the graph
is adjacent to a point which is known to be closed or to a point which is
known to be open (in which case p is Tp). Indeed, the closure of a closed
point consists of just this point, the closure of an open point consists of
this point and all points adjacent to it and the closure of a mixed point
(i.e., a point that is neither closed nor open) consists of this point and
all closed points adjacent to it. In the sequel, only the connectedness
graphs of some connected Alexandroff topologies on Z? will be considered
in which the closed points will be ringed and the mixed ones boxed (so
that the points neither ringed nor boxed will be open - note that no point
of Z? may be both closed and open).

By a (discrete) closed curve in a topological space (X, p) we mean a
cycle in the connectedness graph of p. Thus, every closed curve is a
nonempty, finite and connected set. In accordance with [14], a closed
curve C' C X in (X, p) is said to be simple if, for each point 2 € C, there
are exactly two points of C' adjacent to x in the connectedness graph of p.
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A simple closed curve C in (X, p) is said to be a (discrete) Jordan curve
if it separates (X, p) into precisely two components (i.e., if the subspace
X — C of (X,p) consists of precisely two components).

Since quotient topologies of Alexandroff topologies will play an impor-
tant role in this note, we will start with presenting some general facts
concerning their behavior. It may easily be seen that, given an Alexan-
droff space (X,p), a topology ¢ on a set Y is the quotient topology of p
generated by a surjection e : X — Y if and only if ¢ is an Alexandroff
topology on Y with the property that, for every pair of points x,y € Y,
z € q{y} if and only if there are a € e !(z) and b € e *(y) such that
a € p{b}. Using this fact, we will easily prove the following

Lemma 2.1. Let (X,p) be an Alexandroff space, e : X — Y be a sur-
jection and let q be the quotient topology of p on'Y generated by e. Let e
have connected fibres (i.e., let e 1({y}) be connected in (X,p) for every
pointy €Y ) and let B CY be a subset. Then B is connected in (Y, q) if
and only if e=1(B) is connected in (X,p).
Proof. 1f e71(B) is connected, then so is B because B = e(e!(B)). Con-
versely, let B be connected and let x,y € e"!(B) be an arbitrary pair
of different points. Then there is a path e(x) = zg, 21, ..., 2n, = €(y) in
the connectedness graph of p contained in B. Consequently, we have
zi € ¢{zi—1} or zi—1 € q{z} for each ¢ € {1,2,...,n}. Thus, for each
i € {1,2,...,n}, there are points y; € e !(2;) and z;_1 € e 1(2,_1) such
that y; € p{z;—1} or z;—1 € p{y;}. It means that, for each i € {1,2,...,n},
there is a point in e~1(2;) adjacent to a point of e~!(z;_1) in the con-
nectedness graph of p. Since z € e"!(2¢), y € e !(z,)) and e~ !(z;) is
connected for each i € {1,2,...,n}, there is a path in the connectedness
graph of p contained in e~!(B) and connecting x and y. Thus, e~!(B) is
connected in (X, p). O
Let us note that, in general, for a topological space (X, p) and a quo-
tient topology of p, the statement of the previous Lemma need not be
true. It is true if, for example, B is closed or open in (Y q).
Proposition 2.2. Let (X,p) be an Alexandroff space and let q be the
quotient topology of p on a set Y generated by a surjection e : X — Y.
Let e have connected fibres and let C' C X be a simple closed curve in
(X,p). Then C is a Jordan curve in (X, p) if the following two conditions
are satisfied:

(1) e(C) is a Jordan curve in (Y,q), i.e., separates (Y, q) into exactly
two components Dy and Ds.

(2) For every component E of the subspace e~ 1(e(C)) — C of (X,p),
there are © € E and ip € {1,2} such that x is adjacent to a point
of e=Y(D;,) but no point of E is adjacent to a point of e=*(D3_; )
(in the connectedness graph of p).
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Proof. Let the conditions (1) and (2) of the statement be fulfilled and,
for every i € {1, 2}, put

Ci = e YD;) U U{E; E is a component of e~1(e(C)) — C with ip =i}.

Since e~1(D;) is connected for i € {1,2} by Lemma 2.1, C; and Cy are
connected. Clearly, C; NCy = () and C; UCy = X — C is not connected.
Therefore, C; and Cy are the only components of the subspace X — C of
(X,p). Thus, C is a Jordan curve in (X, p). O

Let z = (z,y) € Z? be a point. We put
Ha(z) = {(z + k,y); k€ {-1,1}},
Va(z) = {(my +1); L€ {~1,1}},
Ds(2) = Ha(2) U{(x + b,y — 1); k€ {~1,0,1}},
Us(z) = Ha(2) U{(x + b,y +1); k€ {~1,0,1}},
LB(Z ‘/Q(Z)U{(x_lvy—’_l)? 16{—1,0,1}},
Rs(z) =Va(z) U{(z+1,y+1); L € {-1,0,1}}.
Next, we put
Ay(z) = Hz(2) U Va(2),
Ag(2) = Ls(2) U Rs(2) (= Ds(2) U Us(2)), and
D4(Z) = Ag(z) — A4(Z)
Thus, the number of points of each of the nine sets introduced above equals
the index of the symbol denoting this set. In the literature, the points of
A4(z) and Ag(z) are said to be 4-adjacent and 8-adjacent to z, respectively.
It is natural to call the points of Ha(2), Va(2), Ds(2), Us(2), Ls(z), Rs(2)
and Dy(z) horizontally 2-adjacent, vertically 2-adjacent, down 5-adjacent,
up S-adjacent, left 5-adjacent, right 5-adjacent and diagonally 4-adjacent
to z, respectively. Clearly, each of these adjacencies implies 8-adjacency.
The union of each of the above nine sets Hy(z), Va(z)... with the
singleton {z} is denoted by the corresponding barred symbols, i.e., by
Hy(2), Va(2)....
Recall [2] that the Khalimsky topology on Z? is the Alexandroff topol-
ogy t given as follows:
For any z = (z,y) € Z?,

)=
)=

Ag(z) if x,y are even,

Hy(z) if x is even and y is odd,
Va(2) if 2 is odd and y is even,
{z} otherwise.

t{z} =

The Khalimsky topology is connected and Ty; a portion of its connect-
edness graph is shown in Figure 1. In the literature, the Khalimsky topol-
ogy on Z? is usually defined as the product topology obtained from two
copies of the topology on Z given by the subbase {{2n,2n+1,2n+2}; n €
Z}, which is also called Khalimsky (it is easy to see that this topology on
72 coincides with t). The topology  dual to t is called Khalimsky, too.
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FIGURE 1. A portion of the connectedness graph of the
Khalimsky topology.

The topological space (Z?2,t) is called the Khalimsky plane. The follow-
ing Jordan curve theorem in the Khalimsky plane was proved by Khalim-
sky, Kopperman and Meyer in [3]:

Proposition 2.3. In the Khalimsky plane, any simple closed curve having
at least four points is a Jordan curve.

3. TOPOLOGY w

We denote by w the Alexandroff topology on Z? given as follows:
For any point z = (x,y) € Z2,

Ag(z) if v = 4k, y=4l, k,l € Z,

Dy(z)if v =2+4k, y=2+4l, k1€ Z,

Ds(z)if v =2+4k, y=1+4l, k1 €Z,

Us(z)if v =2+ 4k, y=3+4l, k,l € Z,
w{z}=<{ L

)
s(z)ife=1+4k, y=2+4l, k,l€Z,
5(2) if v =3+ 4k, y=2+4l, k,l€Z,
1y(2) if z =2+ 4k, y =4, k,l € Z,
Va(z) if o =4k, y=2+4l, k1€ Z,
{z} otherwise.

m?’d‘

Clearly, w is connected and Ty. A portion of the connectedness graph
of w is shown in Figure 2. Observe that the connectedness graph of w
is a subgraph of the 8-adjacency graph. Evidently, such a property is
necessary for a topology on Z2 to be useful for applications in digital
topology.

We will need the following immediate consequence of [14], Theorem 10:



52 JOSEF SLAPAL

IS
Ivul
ha)
Ivul
ha)

vl
[na]

Y

[} [}

0 2 4 6 8
FIGURE 2. A portion of the connectedness graph of w.

Theorem 3.1. The Khalimsky topology is the quotient topology of w gen-
erated by the surjection f : 72 — 72 given as follows:
(2k,21) if (¢,y) = (4k,41), k.1 € Z,
Fany) = (2k,2l+1) if (z,y) € As(4k, 4l +2), k,l € Z,
TN (2k+1,20) if (z,y) € Ag(4k+2,41), k1€ Z,
(2k + 1,21 + 1) if (z,y) € Dy(4k + 2,41 +2), k,l € Z.

The surjection f is demonstrated in Figure 3 where the corresponding
decomposition of the topological space (Z?,w) is marked by the dashed
lines. All points of a class of the decomposition are mapped by f to the
center point of the class expressed in the bold coordinates.

The following Jordan curve theorem in (Z?,w) immediately follows
from [13], Theorem 11:

Theorem 3.2. Every cycle in the graph as partly shown by Figure 4 is a
Jordan curve in (Z2,w).

As the main result of this note, we will prove another Jordan curve
theorem in (Z2,w).
Consider the following two conditions for a cycle C' in the topological
space (Z2,w):
(1) Ha(z) € C whenever z = (4k + 2,21 + 1) for some k,l € Z and
Va(z) € C whenever z = (2k + 1,41 + 2) for some k,[ € Z.
(2) If z = (4k,4l) for some k,l € Z, then z ¢ C.

As the main result of this note, we get the following digital analogue
of the Jordan curve theorem:

Theorem 3.3. In the topological space (Z2,w), every simple closed curve
C' with at least eight points satisfying conditions (1) and (2) is a Jordan
curve.

Proof. Let C be a simple closed curve in (Z?,w) with at least eight points
satisfying conditions (1) and (2) and let f be the surjection from Theorem
3.1. Then it is easy to see, with the help of Figure 3, that f(C') is a simple
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FIGURE 3. Decomposition of (Z?,w) given by the sur-
jection f.

0 2 4 6 8
FIGURE 4. A portion of a subgraph of the connectedness
graph of w.

closed curve in the Khalimsky plane having at least four points. Thus, by
Theorem 2.3, f(C) is a Jordan curve.

Clearly, we have Z2 —{(4k,41); k,l € Z}={A4(2); 2= (4k,41+2) or z =
(4k+2,41), k,1 € ZYUU{D4(4k+2,41+2); k,l € Z}. Let z € Ay(4k,41+2)
or z € A4(4k+2 41) for some k,l € Z, i.e., let z € Ay(z,y) where (x,y) is
a mixed point in (Z2,w). Then f~ (f( )) Ay(z,y) and f71(f(2)) - C
consists of one or two components. In the case of two components, they
are singletons lying in different components of f~1(f(C))— C and each of
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them is adjacent, in the connectedness graph of w, to exactly one point of
72 — f~Y(f(2)), namely, a point (4m,4n), m,n € Z. On the other hand,
in the case of one component, there is exactly one point in this component
adjacent, in the connectedness graph of w, to a point of Z* — f~1(f(C)),
namely, a point (2m,2n), m,n € Z. Further, let z € Dy(4k + 2,41 + 2),
k,1 € Z. Then f~1(f(z)) — C consists of two singleton components. If
C does not turn at the point z, then the components are contained in
different components of f~1(f(C)) — C and each of them is adjacent to
exactly one point of Z2? — f~1(f(C)), namely, a point (4m,4n), m,n € Z.
If C turns at z, then both components of f~1(f(z)) — C are contained
in the same component of f~!(f(C)) — C and each of them is adjacent
to exactly two points - a point (4m,4n), m,n € Z, and the point lying
between these components (indeed, there is a point (z,y) € Z? such that
the two (singleton) components of f~1(f(z)) — C coincide with the two
points of Va(z,y) or Ha(x,y), respectively, and, therefore, each of them
is adjacent to (z,y)). It follows from (1) and (2) that all points adjacent
to any of the two components of f~1(f(z)) — C lie in exactly one of the
sets f~1(D1) and f~1(D3) where D; and D5 denote the two components
of the subspace Z? — f(C') of the Khalimsky plane.

Since f71(f(C)) = C = U.ec(f*(f(2)) — C), we have shown that, in
every component of f~1(f(C))—C of (Z?,w), there is a point adjacent to
a point of exactly one of the sets f~!(D;) and f~1(D2). By Proposition
2.2, C is a Jordan curve in (Z?,w). O

Example 3.4. By Theorem 3.3, in the following figure, the points de-
noted by bold dots constitute a Jordan curve in (Z?,w):

8 Py o Py Py o
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Remark 3.5. Clearly, the set of Jordan curves identified in Theorem 3.2
is disjoint from that one identified in Theorem 3.3 and the two Theorems
show that the topology w possesses a rich variety of Jordan curves and
may, therefore, be used for solving problems of digital image processing.
Of course, there are Jordan curves in (Z% w) that neither Theorem 3.2
nor Theorem 3.3 has identified. These are, for example, the simple closed
curves Ay (4k + 2,41), A4(4k, 41+ 2) and Ag(4dk + 2,41+ 2), k,l € Z.

We determined Jordan curves in the topological space (Z?2, w) by using
Jordan curves in a quotient space of (Z?,w), the Khalimsky plane. We
may also apply the converse procedure, namely, having determined Jordan
curves in the topological space (Z2,w), use them to determine Jordan
curves in quotient topologies of w on Z? (different from the Khalimsky
one). This was done in [15] and [16] where Theorem 3.2 was used to prove
Jordan curve theorems for certain quotient topologies and pretopologies of
w on the digital plane. Analogously, we may use Theorem 3.3 to determine
further Jordan curves for quotient topologies (and pretopologies) of w on
the digital plane.
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