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PROGRAMMING SEMANTICS TO TOPOLOGICAL
SYSTEMS TO LATTICE-VALUED TOPOLOGY

JEFFREY T. DENNISTON, AUSTIN MELTON,
AND STEPHEN E. RODABAUGH

Abstract. This paper examines the synergism emerging from
three historically distinctive traditions: theory of locales; program-
ming semantics and topological systems; and point-set lattice-theo-
retic (poslat) topology, both fixed-basis and variable-basis. Many
gaps are discovered and filled with new results; and open questions
are posed.

1. Introduction and plan of paper

This paper extends the presentation [67] made by the third author and
traces the emerging synergism of these three historically distinct develop-
ments:

(1) the study of locales, motivated in part by the Stone representation
theorems and the subsequent and underlying sobriety-spatiality
representation theorem based upon D. Papert and S. Papert [46]
and J. R. Isbell [28];

(2) the study of programming as a discipline begun in 1976 by
E. W. Dijkstra [14] and further developed in a topology related
direction by M. Smyth [70], culminating in the topological sys-
tems of S. J. Vickers [75]; and
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(3) the study of fuzzy sets as introduced by L. A. Zadeh [77], moti-
vated in part by control theory in engineering, followed by lattice-
valued topology in the sense of C. L. Chang, J. A. Goguen, and
R. Lowen [6, 18, 41], the openness predicate motivated lattice-
valued fuzzy topology in the sense of U. Höhle, T. Kubiak, and
A. P. Šostak [21, 34, 74], and culminating in the first variable-
basis categories for both lattice-valued topology and lattice-valued
fuzzy topology in S. E. Rodabaugh [62].

What is striking is that these three developments did not know of
each other initially. The programming development became aware of the
localic tradition fairly early in its history, at least by the 1980’s as judged
by [70, 75], while the “fuzzy” development took relatively longer in its
history to become aware of locales (and similar structures such as MV-
algebras, quantales, residuated lattices), doing so in the 1980’s [22, 53]
and culminating in [25, 32, 33, 48, 49, 50, 62] in the 1990’s and beyond.
What is most striking is that (2) and (3) above were apparently unaware
of each other until J. T. Denniston and Rodabaugh [7] in 2009 showed
how both fixed-basis and variable-basis topology are intimately connected
to topological systems, which seemed to spark developments in several
directions. These include: attachment relations in C. Guido [19, 20];
algebraic varieties and powerset theories in S. A. Solovjov [71, 72, 73];
and nondeterminism, formal concept analysis, and enriched categories in
Denniston, A. Melton, and Rodabaugh [9, 10, 11, 12]. Not only are (2) and
(3) invigorating each other, but this linkage is reshaping the relationship
between (1) and (3) as well.

It is the purpose of this paper to extend the presentation of [67], update
and broaden the linkage of (1), (2), (3) above given in [9], and generally
examine the growing synergism of (1), (2), (3). While many of the results
of this paper are known, our examination uncovers and fills many gaps
with new results. Known constructions and results are cited without
proof, while new constructions and results are given proofs. Several open
questions are posed.

Unless stated otherwise, categorical notions are from [1]. Also, a frame
L is consistent if it has at least two elements, in which case ⊥ ̸= ⊤;
otherwise, L is inconsistent. We find the following notation, commonly
attributed to P. Halmos, to be frequently convenient: if f : X → Y is a
function and P is a possible predicate of members of Y , then

[f has P ] := {x ∈ X : f (x) has P} .
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An outline of the rest of this paper is as follows:

Section 2: From programming to topological systems and TopSys
Section 3: Categorical behavior of TopSys
Section 4: Topological systems and fixed-basis lattice-valued

topology
Section 5: Topological systems and variable-basis lattice-valued

topology
Section 6: Generalizations and future directions
Section 7: Acknowledgements

2. From programming to topological systems and
TopSys

2.1. Dijkstra’s programming principles and adjointness of pro-
grams. In 1976 [14], E. W. Dijkstra laid down principles the goal of
which was to improve programming methodology. Two key ideas are the
following:

Out. Focus more on outputs than inputs.
Pred. Focus on predicates or properties of outputs (postcondition pred-

icates) and predicates or properties of inputs (precondition pred-
icates).

Letting X and Y be the sets, respectively, of inputs and outputs, the
above principles can be illustrated in the special case in which precon-
dition predicates comprise a family P of subsets of X and postcondition
predicates a family Q of subsets of Y . In this case, we say that input x
satisfies P ∈ P, output y satisfies Q ∈ Q if x ∈ P, y ∈ Q; so that inputs
and outputs are related to, and satisfy, predicates via the membership
relation.

These notions can be packaged as a “system”, which, in the case of
the input side, comprises an ordered triple (X,P,∈) , where X is a set
(perhaps of bitstrings), P⊂ ℘ (X) is a family of predicates, and ∈ ⊂ X×P
acts as a “satisfaction relation” indicating when a given string satisfies a
given predicate. Later we shall consider generalizations of the notions of
predicates and satisfaction, but for now we continue to work within the
special case of predicates as subsets and satisfaction as membership.

In addition to the above notions, one can distinguish deterministic from
nondeterminstic relationships between inputs of X and outputs of Y :

• In the deterministic case, the input-to-output correspondence is
a well-defined (partial) function f : X → Y .
• In the nondeterministic case, the input-to-output correspondence

is a relation R ⊂ X × Y.
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The nondeterministic case is carefully studied in [11]. Focusing now
on the deterministic case with a total function f and continuing to use
the special case of predicates and satisfaction as above, a deterministic
program (f, φ) : (X,P,∈)→ (Y,Q,∈) comprises:

• a “forward” map f : X → Y converting inputs to outputs, and
• a “backwards” map φop : Q → P converting postcondition predi-

cates to precondition predicates.
Additionally, Dijkstra goes on to describe an “optimal” deterministic

program (f, φ) by imposing the following axiom which some call adjoint-
ness:

∀Q ∈ Q, ∀x ∈ X, x ∈ φop (Q) ⇔ f (x) ∈ Q.
Each deterministic program in the sequel is assumed to have adjoint-
ness and may be said to be “adjoint”. It is instructive to motivate each
direction of the biconditional predicate of the adjointness axiom in our
special case, a biconditionality with far-reaching categorical consequences
(cf. Proposition 3.1.1 below):

(1) A desirable postcondition predicateQ for outputs is chosen. Next,
the map φop : Q → P is applied to pull Q back to a precondition
predicate φop (Q) for inputs. Then for each input x satisfying
this precondition predicate, it is mandated that the corresponding
output f (x) satisfies the originally chosen postpredicate Q. This
approach to improved program quality implements Dijkstra’s Out
and Pred conditions above and motivates the “only if” direction
of adjointness.

(2) To have the most applicable program possible, Dijkstra also wants
each φop (Q) to be the optimal pullback of Q, namely that it
should be the weakest or largest possible pullback to a precon-
dition predicate. This means that if an input x does not satisfy
the pullback φop (Q), then the program output f (x) does not sat-
isfy Q. This motivates (the contrapositive of) the “if” direction of
adjointness and further implements Dijkstra’s philosophy.

It is worthwhile to motivate the term “adjointness” describing Dijkstra’s
philosophy for high quality, optimal programs. It should be recalled [29]
that if f : L → M, g : L ← M are isotone maps of preordered sets, then
f ⊣ g whenever

∀b ∈M, ∀a ∈ L, a ≤ g (b) ⇔ f (a) ≤ b.

The relationship f ⊣ g is termed adjunction and the displayed condition
is dubbed adjointness, and its similarity to the adjointness condition for
deterministic programs should be apparent—see the first display above
and Definition 2.3.2(2) below.
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It is also worthwhile to note that the adjointness condition for
Dijkstra’s programs is the same condition required for Chu transforms
as morphisms between Chu spaces (or Chu systems) introduced by
M. Barr [2] in 1979.

Finally, we note that the special case we have been tracing above deter-
mines uniquely for each input-output function f a compatible φop predi-
cate map so that the program (f, φ) satisfies adjointness, as indicated in
the following proposition.

Proposition 2.1.1. Assume predicates are subsets and that inputs/out-
puts relate to predicates by membership. Then (f, φ) satisfies adjointness
if and only if

φop = (f ←) | Q ,

where f← : ℘ (Y )→ ℘ (X) is the usual preimage operator for the mapping
f : X → Y .

Throughout this paper we adopt—or modify as appropriate—T. S.
Blyth’s arrow notation [3] for the image and preimage operators of a
function.

2.2. Program semantics with open predicates. M. Smyth [70]
in 1983 advocated viewing predicates as open sets. Continuing with
predicates as subsets and satisfaction of predicates as membership, as
in the previous subsection, the application of finite observational logic,
described by S. J. Vickers [75] and J. T. Denniston, A. Melton, and
S. E. Rodabaugh [9], to this special case forces the precondition predicates
P and the postcondition predicates Q to respectively form topologies on
the input setX and the output set Y . Thus, finite observational logic gives
us what we heuristically call “topological” systems (X,P,∈) , (Y,Q,∈) ,
where (X,P) , (Y,Q) are topological spaces. We point out that “topolog-
ical system” will be formally defined later. The relationship of programs
to continuous maps is given by the following proposition:

Proposition 2.2.1. (f, φ) : (X,P,∈) → (Y,Q,∈) is a deterministic
program if and only if f : (X,P)→ (Y,Q) is continuous.

Up to this point, “topological” systems are simply a repackaging of
topological spaces—literally a rewriting of spaces with the membership re-
lation; and in that setting, Proposition 2.2.1 points out that deterministic
programs correspondingly become repackaged continuous maps. We now
construct some example classes which motivate consideration of “topo-
logical” systems which cannot be repackaged topological spaces. Such
example classes justify the formal and general definition of topological
systems and the category TopSys given in [75].
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Example 2.2.2 (restriction examples). Let (Z,T,∈) be a “topological”
system as considered above, but with T an infinite topology on Z—many
such systems exist. Now let X ⊂ Z be any finite subset of Z, and let
“satisfaction” relation � ⊂ X × T be the restriction ∈|X ×T of the mem-
bership relation ∈ ⊂ Z × T. From the standpoint of programming, the
system (X,T,�) makes good sense as either an input or output system:
this is true, in part, because there will in fact be a finite set of inputs
or outputs with a potentially unlimited family of predicates; this is con-
sistent with the “finite-unlimited” paradox existing in computer science.
Since the predicates of (X,T,�) are open sets (from the space (Z,T)), it
is reasonable to speak of (X,T,�) as a “topological” system in the sense
of [70]; however, (X,T,�) cannot be a repackaged topological space—a
finite set cannot have an infinite topology. Further, it is important to
note for such systems that the following “interchange” laws hold:

x �
∪
γ ∈Γ

Uγ ⇔ ∃β ∈ Γ, x � Uβ ; x �
∩
γ ∈Γ

Uγ ⇔ ∀γ ∈ Γ, x � Uγ (Γ finite)

Borrowing from the formalism to come later in this paper, (X,T,�) is
a “non-spatial” topological system, which is rather remarkable since its
family T of predicates is a spatial locale. Finally, a deterministic pro-
gram (f, φ) between such restricted “topological” systems cannot be the
repackaging of a continuous map between topological spaces; and these
programs are more general than those covered by Proposition 2.1.1—the
backwards map φop cannot be a restriction to the codomain topology of
the preimage operator f← of the forward map f of the deterministic pro-
gram between restricted systems. Thus the simple notion of restricted
systems generates a huge example class of systems we want to regard as
“topological”systems, but each of which is not the rewriting of a topolog-
ical space as a system.

A second, huge class of systems which should be regarded as “topo-
logical” systems, but each of which is not the rewriting of a topological
space as a system, can be constructed, analogously to the above class,
by beginning with a “topological” system (Z,T,∈) as above, but with T
having cardinality greater than the continuum, and then letting X be
any countable subset of Z. Both of these example classes are included by
assuming

|℘ (X)| < |T| .

Example 2.2.3 (prefix ordering examples). We give a subclass of the
example class of Example 2.2.2 above which is directly related to pro-
gramming. Let 2∗ be set of all finite (and empty) strings with values
from {0, 1}.
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(1) Put s ⊑ t in 2∗ if ∃r ∈ 2∗, s :: r = t, where s :: r is the concate-
nation s followed by r. Then (2∗,⊑) is a poset.

(2) For s ∈ 2∗ and U ⊂ 2∗, put

starts (s) = ↑(s) = {t ∈ 2∗ : s ⊑ t} ,

starts (U) =
∪
{starts (s) : s ∈ U} .

Then

A (2∗) := {U ⊂ 2∗ : U = starts (U)}

is an Alexandrov topology on 2∗ with basis {starts (s) : s ∈ U} .
(3) We now have a “topological” system (2∗,A (2∗) ,∈) in the sense

used just above 2.2.1.
(4) For s ∈ 2∗, ¬ s is defined to be the bitstring in 2∗ formed by

interchanging all 0’s and 1’s; and for U ⊂ 2∗,

¬U := {¬ s ∈ 2∗ : s ∈ U} .

Now consider

(f, φ) : (2∗,A (2∗) ,∈)→ (2∗,A (2∗) ,∈)

given by

f (s) = ¬ s, φop (U) = ¬U.

Then (f, φ) : (2∗,A (2∗) ,∈) → (2∗,A (2∗) ,∈) is a deterministic
program as defined in Subsection 2.1 above and can also be called
a complementation program or morphism.

(5) Continuing with the complementation morphism (f, φ) from (4)
above, let X be a finite subset of 2∗, let Y be the corresponding
finite subset f→ (X) of 2∗, and put

�1 = ∈|X ×A(2∗), �2 = ∈|Y ×A(2∗) .

Then each of (X,A (2∗) ,�1) and (Y,A (2∗) ,�2) are (restricted)
“topological” systems as in 2.2.2 above which cannot be repack-
aged topological spaces, and(

f |X , φ
)
: (X,A (2∗) ,�1)→ (Y,A (2∗) ,�2)

is a deterministic program which is not the repackaging of a
continuous map between topological spaces. This “morphism”(
f |X , φ

)
can also be called a complementation program or mor-

phism.
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2.3. Topological systems and TopSys. A few preliminary notions are
needed before topological systems are formally defined.

We first recall that a complete lattice is a poset closed under arbitrary∨
and

∧
, including those of the empty set, which means that each com-

plete lattice has a universal lower bound ⊥ and a universal upper bound
⊤. A frame or locale A is a complete lattice satisfying the first infinite
distributive law : ∀a ∈ A, ∀ {bγ}γ ∈Γ ⊂ A,

a ∧

 ∨
γ ∈Γ

bγ

 =
∨
γ ∈Γ

(a ∧ bγ) .

Frame morphisms are mappings between frames which preserve arbitrary∨
and finite ∧; and localic morphisms are morphisms between locales

which are in a bijection with, and in the opposite direction of, corre-
sponding frame morphisms between the same locales. This information
about frames and locales and their associated morphisms are respectively
packaged as the categories Frm and Loc ≡ Frmop. We point out that
frames and locales are appropriate for computer science because of the
role of finite observational logic [75, 9] referred to in Subsection 2.2.

Definition 2.3.1 (ground category Set× Loc). The category Set× Loc
is a product category and comprises the following data:

(1) Objects: (X,A) , where X is a set, A is a locale.
(2) Morphisms: (f, φ) : (X,A)→ (Y,B) , where f : X → Y is in Set

and φ : A→ B is in Loc, i.e., φop : B → A is in Frm.
(3) Composition, identities: component-wise from Set and Loc.

It can be shown that Set× Loc is both complete and cocomplete.

Definition 2.3.2 (category of topological systems). The category Top-
Sys of topological systems and continuous mappings has ground category
Set× Loc and comprises data subject to axioms as follows:

(1) Objects: (X,A,�) , where (X,A) ∈ |Set× Loc| and � ⊂ X × A
is a satisfaction relation possessing the arbitrary

∨
and finite ∧

interchange laws:

∀x ∈ X, ∀ {aγ}γ∈Γ ⊂ A, x �
∨
γ ∈Γ

aγ ⇔ ∃β ∈ Γ, x � aβ ;

∀x ∈ X, ∀ {aγ}γ∈Γ ⊂ A, x �
∧
γ ∈Γ

aγ ⇔ ∀γ ∈ Γ, x � aγ (Γ finite)

The set X in some examples could be interpreted as bitstrings; A
may be interpreted as a locale of (open) predicates; and if x � a,
then it may be said that (bitstring) x satisfies (predicate) a.
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(2) Morphisms: (f, φ) : (X,A,�1) → (Y,B,�2) , where (f, φ) :
(X,A)→ (Y,B) in Set× Loc and (f, φ) satisfies adjointness:

∀b ∈ B, ∀x ∈ X, x �1 φ
op (b) ⇔ f (x) �2 b.

(3) Composition, identities: from Set× Loc.

The reader can check that TopSys is indeed a category. The cate-
gorical isomorphisms of TopSys are called homeomorphisms. A ground
morphism (f, φ) is a homeomorphism if and only if f and φop are bijec-
tions, (f, φ) is continuous, and

(
f−1,

(
(φop)

−1
)op)

is continuous.
As discussed in the previous subsection, the objects of TopSys are

more general than topological spaces rewritten as “topological” systems
and include all the examples in Example 2.2.2 and Example 2.2.3; and
topological systems as defined in Definition 2.3.2 include much more than
all the systems considered in Subsection 2.2, as will be seen in the next
section. Similar comments may be made for morphisms: those defined
in 2.3.2 include all those considered in Subsection 2.2 and much more
besides.

Given topological systems (X,A,�1) , (Y,B,�2) respectively interpreted
as input and output systems, a TopSys morphism (f, φ) : (X,A,�1) →
(Y,B,�2) is then a deterministic program as discussed in Subsection 2.1.
Thus, TopSys may be viewed as the category of all systems having open
predicates in a generalized way (from locales and not just topologies)
and satisfaction relations generalizing (restricted) membership relations,
together with all deterministic programs between them.

This completes our trajectory from Dijkstra’s programming principles
[14] through Smyth’s topological point of view [70] to topological systems
in the sense of [75], aided by the example classes of [75, 9] and Examples
2.2.2–2.2.3 above.

3. Categorical behavior of TopSys

3.1. Basic categorical properties of TopSys. It is helpful to specify
the forgetful functor T : TopSys→ Set× Loc given by

T (X,A,�) = (X,A) , T (f, φ) = (f, φ) .

The categorical behavior of TopSys is tantamount in many cases to the
behavior of T .

Proposition 3.1.1 [7, 71]. TopSys is quasi-algebraic over Set× Loc
w.r.t. T , i.e., T reflects isomorphisms: thus, if (f, φ) is a TopSys mor-
phism, then (f, φ) is a Set× Loc isomorphism if and only if it is a
TopSys homeomorphism.
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The term “quasi-algebraic” stems from [12]. The proof of 3.1.1 [7,
71] hinges around the fact that, given ground isomorphism (f, φ) with
(f, φ) continuous, the biconditionality defining adjointness implies that(
f−1,

(
(φop)

−1
)op)

is also continuous, thus simplifying the definition of
homeomorphism given in Subsection 2.3 above. And there is more along
this line.

Lemma 3.1.2 [71]. T is transportable and (generating, mono-source)-
factorizable in the sense of [1].

Theorem 3.1.3 [71]. TopSys is essentially algebraic over Set× Loc
w.r.t. T.

Corollary 3.1.4. TopSys is complete and cocomplete.

When we investigate the topological behavior of TopSys, a very dif-
ferent story emerges.

Lemma 3.1.5 [7]. T -structured sources [sinks] need not have unique
initial [final] lifts; not even singleton T -structured sources need have lifts.

This lemma means that topological systems lack the initial and final
structures typical of classical topological spaces and catalogued in [5] and
[30]. In fact, we have the following theorem:

Theorem 3.1.6 [9]. TopSys is not topological over Set× Loc w.r.t. T .
Further, TopSys is neither mono-, nor epi-, nor (small) existentially,
nor (small) essentially topological over Set× Loc w.r.t. T .

The proof of Theorem 3.1.6 relies on Lemma 3.1.5; but we note that
the first statement of Theorem 3.1.6 follows independently from Example
23.6(4) of [1]: if TopSys were topological over Set× Loc w.r.t. T, then
T would be an isomorphism, which is manifestly not the case.

The rather surprising bottom line is that topological systems are al-
gebraic and not topological. On the other hand, topological systems are
intimately related to topology in various ways which will be seen below.

3.2. TopSys as supercategory of Top and Loc. The categorical re-
lationships presented below detail how topological systems are related to
topological spaces and locales, often in ways which illumine the insights
of Dijkstra and Smyth discussed in Section 1 above. We recall that Top
is the category of topological spaces and continuous maps. Results stated
without proof are a blend of [75, 7, 9, 72]; but new results are given proofs.
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Theorem 3.2.1. TopSys is a supercategory up to isomorphism of Top
via the full functorial embedding EV : Top � TopSys given by

EV (X,T) = (X,T,∈) ,

EV (f : (X,T)→ (Y,S)) =
(
f,
(
(f←) |S

)op)
: (X,T,∈)→ (Y,S,∈) .

This embedding is essentially Smyth’s insight in a systems setting.
Of course, as documented by the Examples 2.2.2, 2.2.3, there is much
more in TopSys than the image E→V (Top) as a subcategory of TopSys;
indeed, these examples are not even homeomorphic in TopSys to systems
in E→V (Top) . Thus the subcategory E→V (Top) of TopSys is distinctive
and, as it turns out, in a manner parallel to the distinctiveness of the
subcategory SpatLoc of Loc; and this leads to the next discussion and
definition used throughout the sequel.

We recall the first Stone comparison map associated with spectra of
locales—see [29] and below. Recording that

2 = {⊥,⊤} = {false, true}
is a frame, and given locale A, put

pt (A) = Frm (A,2) =
{
p : A→ 2 | p preserves arbitrary

∨
, finite ∧

}
,

Φ : A→ ℘ (pt (A)) by Φ(a) = {p ∈ pt (A) : p (a) = ⊤} .
Then Φ is a frame map, Φ→ (A) is a topology on pt (A) , and Pt (A) :=
(pt (A) ,Φ→ (A)) is a topological space which is the spectrum of A. A
locale A is spatial if Φ is injective, in which case A is order isomorphic
to the topology Φ→ (A) . It can be shown from the (co)universality of Φ
that A is spatial if and only if it is order-isomorphic to some topology.
This suggests the following definition for topological systems.

Definition 3.2.1.1 (spatial topological systems). A topological system is
spatial if it is homeomorphic (in TopSys) to some system in E→V (Top) .
Equivalently, a topological system (X,A,�) is spatial if and only if there
exists a topological space (Y,T) such that (X,A,�) is homeomorphic (in
TopSys) to (Y,T,∈) .
Proposition 3.2.1.2. Let (X,A,�) be a topological system.

(1) If (X,A,�) is spatial, then the locale A is spatial.
(2) The converse to (1) need not hold.

Proof. If (f, φ) : (X,A,�) → (Y,T,∈) is a TopSys homeomorphism for
some topological space (Y,T) , then φop : T→ A is a bijective frame map,
and hence a frame isomorphism. Hence A is a spatial locale, and (1) is
confirmed. Examples 2.2.2 and 2.2.3 verify (2). �
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There is more to the relationship between Top and TopSys than the
embedding EV , and, indeed, EV is part of a well-behaved, two way re-
lationship between topological spaces and topological systems using our
next functor Ext. The functor Ext is built using a variation of the (first)
Stone comparison map Φ recalled above.

Theorem 3.2.2. TopSys functorially maps to Top via Ext : TopSys→
Top constructed as follows:

(1) Given (X,A,�) ∈ |TopSys| , put ext : A→ ℘ (X) by

ext (a) = {x ∈ X : x � a} .

Then ext is a frame map and (X, ext→ (A)) ∈ |Top| .
(2) Ext : TopSys→ Top, defined by

Ext (X,A,�) = (X, ext→ (A)) , Ext (f, φ) = f,

is a functor.
Theorem 3.2.3. Ext is both the right adjoint and left inverse of EV ;
i.e.,

EV ⊣ Ext, Ext ◦ EV = IdTop.

The sense in which EV ◦ Ext is essentially the identity (i.e., up to
homeomorphism) characterizes spatiality of systems, as seen in the next
proposition.

Theorem 3.2.3.1. A topological system (X,A,�) is spatial if and only
if it is homeomorphic (in TopSys) to EV (Ext ((X,A,�))) via a homeo-
morphism of the form (idX , φ).

Proof. Sufficiency follows by the definition of spatial systems. For neces-
sity, suppose (g, ψ) : (X,A,�) → (Y,T,∈) is a TopSys homeomorphism
for some topological space (Y,T) . We are to find φop : ext→ (A)→ A so
that (idX , φ) : (X,A,�) → (X, ext→ (A) ,∈) is a homeomorphism. We
already have that ext | ext

→(A) : A → ext→ (A) is surjective, so we now
show that ext | ext

→(A) is injective. Let a ̸= b in A. Then by the bijectivity
of ψop, it follows that U ̸= V in T, where

U := (ψop)
−1

(a) , V := (ψop)
−1

(b) .

Now let x ∈ X. Then the adjointness of (g, ψ) implies

x � a ⇔ x � ψop (U) ⇔ g (x) ∈ U,

x � b ⇔ x � ψop (V ) ⇔ g (x) ∈ V.
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It follows from the bijectivity of g that

ext (a) = ext (b) ⇔ [∀x ∈ X, x � a ⇔ x � b]
⇔ [∀x ∈ X, g (x) ∈ U ⇔ g (x) ∈ V ]

⇔ U = V,

a contradiction. Hence ext (a) ̸= ext (b) . Hence ext | ext
→(A) is injec-

tive and hence an order-isomorphism, whose inverse we now denote as
φop : ext→ (A) → A. The proof is finished by checking the adjointness
of (idX , φ) : (X,A,�) → (X, ext→ (A) ,∈) ; and this is trivial since it
amounts to saying that for x ∈ X and ext (a) ∈ ext→ (A) , x � a iff
x ∈ ext (a) . �

The difference TopSys − E→V (Top) is much larger than documented
in Subsection 2.2, and this claim rests in part on the two-way relationship
now outlined between locales and topological systems. We begin by seeing
how TopSys is a supercategory up to isomorphism of Loc.

For a locale A, recall the carrier set pt (A) of its spectrum Pt (A) dis-
cussed above, and put

�A ⊂ pt (A)×A by p �A a ⇔ p (a) = true.

It can be shown that �A satisfies the arbitrary join and finite meet inter-
change laws, yielding a topological system (pt (A) , A,�A) similar to the
spectrum Pt (A) of A, a similarity which we later examine in more detail.

Theorem 3.2.4. TopSys is a supercategory up to isomorphism of Loc
via the full functorial embedding ELoc : Loc � TopSys given by

ELoc (A) = (pt (A) , A,�A) ,

ELoc (φ : A→ B) = (( ) ◦ φop, φ) : (pt (A) , A,�A)→ (pt (B) , B,�B) .

We now construct counterparts to Examples 2.2.2, 2.2.3 above, namely
an example class of topological systems which are not in E→Loc (Loc).

Example 3.2.4.1 (restriction examples). Let A be a locale and choose
X ⊂ pt (A) such that |X| < |pt (A)| . Take the restriction �X of the
satisfaction relation �A given by

�X = (�A) |X×A .

Then (X,A,�X) is a topological system which is not homeomorphic to any
system in E→Loc (Loc) . To see the latter part of this claim, suppose there
is a locale B such that (X,A,�X) is homeomorphic to (pt (B) , B,�B).
Then X is bijective with pt (B) and A is order-isomorphic to B; and this
order-isomorphism implies that pt (A) is bijective with pt (B) , making X
bijective with pt (A) , a contradiction to |X| < |pt (A)| . It remains to see
that the assumption X ⊂ pt (A) such that |X| < |pt (A)| is frequently
satisfied. We indicate two examples, which the reader can easily expand:
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(1) Let A be the four-element Boolean algebra {⊥, a, b,⊤} with ⊥
the universal lower bound, ⊤ the universal upper bound, and
a, b unrelated. Then it can be shown that pt (A) has precisely
two members, call them p, q, in which case, setting X = {p} or
X = {q} , (X,A,�X) is a topological system as claimed above.

(2) Let A = [0, 1] with the usual ordering. Then it can be shown that
pt (A) is bijective with [0, 1) and so is uncountable. In this case,
X can be chosen as any finite or countable subset of pt (A) , and
then (X,A,�X) is a topological system as claimed above.

Example 3.2.4.1 documents that there is much more in TopSys than
the image E→Loc (Loc) as a subcategory of TopSys; indeed, these exam-
ples are not homeomorphic in TopSys to systems in E→Loc (Loc) . Thus
the subcategory E→Loc (Loc) of TopSys is distinctive and, as it turns out,
in a manner parallel to the distinctiveness of the subcategory SobTop of
Top; and this leads to the next discussion and definition.

For a topological space (X,T) , we consider the second Stone compar-
ison map Ψ : X → pt (T) constructed as follows—see [29]:

x 7→ irreducible closed {x}
7→ prime open X − {x}

7→ prime principal ideal ↓
(
X − {x}

)
7→ frame map χ

T−↓(X−{x}) : T→ 2.

Then (X,T) is sober if Ψ : X → pt (T) is a bijection—injectivity is
equivalent to (X,T) being T0, and sobriety is unrelated to T1 and im-
plied by Hausdorff separation. Considered as a map between spaces,
Ψ : (X,T)→ Pt (T)—the latter space being the spectrum of the topology
of the first space—is continuous and relatively open; hence (X,T) is T0 if
and only if Ψ is a homeomorphic embedding, and sober if and only if Ψ
is a homeomorphism. Finally, it can be shown, using the universality of
Ψ, that a space (X,T) is sober if and only if it is homeomorphic to the
spectrum of some locale. This suggests the following definition [75] for
topological systems.

Definition 3.2.4.2 (sober topological systems). A topological system
is localic or sober if it is homeomorphic (in TopSys) to some system in
E→Loc (Loc) . Equivalently, a topological system (X,A,�) is sober if and
only if there exists a locale B such that (X,A,�) is homeomorphic (in
TopSys) to (pt (B) , B,�B) .

Proposition 3.2.4.3. A topological system (X,A,�) is sober if and only
if (X,A,�) is homeomorphic (in TopSys) to (pt (A) , A,�A) via some
(f, φ) with φop = idA.
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Proof. Sufficiency is immediate, and necessity is implicit in the first part
of Example 3.2.4.1. To make necessity explicit, suppose there is a locale B
such that (X,A,�X) is homeomorphic to (pt (B) , B,�B) via (g, ψ) . Then
g : X → pt (B) is a bijection and ψop : B → A is an order isomorphism.
Put f : X → pt (A) by

f (x) = g (x) ◦ (ψop)
−1

: A→ 2.

The claim is that (f, idopA ) : (X,A,�) → (pt (A) , A,�A) is the needed
TopSys homeomorphism. Now the bijectivity of f follows from that of
g and ψop. To check the adjointness of (f, idopA ) , let x ∈ X, a ∈ A. Then
∃ ! b ∈ B, ψop (b) = a. It follows that

x � a ⇔ x � ψop (b)

⇔ g (x) �B b

⇔ g (x) (b) = ⊤

⇔ g (x)
(
(ψop)

−1
(a)

)
= ⊤

⇔ f (x) (a) = ⊤
⇔ f (x) �A a.

�
We are now in a position to give further results and characterizations

of spatial and sober systems.

Lemma 3.2.4.4. Let (X,A,�) be a topological system.
(1) If (X,A,�) is sober, then the space Ext (X,A,�) is sober.
(2) The converse to (1) need not hold.

Proof. Ad(1). Applying Proposition 3.2.4.3, it may be assumed that
(f, idopA ) : (X,A,�)→ (pt (A) , A,�A) is a TopSys homeomorphism; and,
in particular, we have f is a bijection. We are to show (X, ext→ (A)) is
sober, i.e., that Ψ : X → pt (ext→ (A)) is bijective. It can be shown that
the action of Ψ : X → pt (ext→ (A)) may be summarized thusly:

Ψ(x) (ext (a)) = χext(a) (x) = ⊤ ⇔ x � a.
Now applying the adjointness of (f, idopA ) , we have, for x ∈ X, a ∈ A,
that

x � a ⇔ f (x) �A a ⇔ f (x) (a) = ⊤.
Hence, ∀x ∈ X, a ∈ A,

Ψ(x) (ext (a)) = f (x) (a) .

Now if x ̸= y, then the injectivity of f implies that ∃ a ∈ A, f (x) (a) ̸=
f (y) (a) , so that Ψ(x) (ext (a)) ̸= Ψ(y) (ext (a)) , so Ψ is injective.
To show Ψ is onto, let p ∈ pt (ext→ (A)) . Then p ◦ ext ∈ pt (A) .
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Invoking the surjectivity of f , there is x ∈ X, f (x) = p ◦ ext. Now let
ext (a) ∈ ext→ (A). Then

p (ext (a)) = ⊤ ⇔ f (x) (a) = ⊤ ⇔ Ψ(x) (ext (a)) = ⊤,
and so Ψ(x) = p.

Ad(2). The example of Example 3.2.4.1(1) suffices to confirm (2). In
that example, pt (A) = {p, q} , and, setting X = {p} , we have (X,A,�X)
is a topological system using the restricted satisfaction �X . But, as shown
in 3.2.4.1, this system is not sober. Now the action of p must be either

p (a) = p (⊤) = ⊤, p (b) = p (⊥) = ⊥
or

p (b) = p (⊤) = ⊤, p (a) = p (⊥) = ⊥.

W.L.O.G. assume the former. Then the restricted satisfaction �X is as
follows: p satisfies precisely a and ⊤. This implies that

ext (a) = ext (⊤) = {p} , ext (b) = ext (⊥) = ∅.
Hence

ext→ (A) = {∅, {p}} ,
so that

Ext (X,A,�X) = (X, {∅, {p}}) ,
which is a sober topological space. �
Theorem 3.2.4.5. The following hold:

(1) A locale A is spatial if and only if the system ELoc (A) is spatial.
(2) A space (X,T) is sober if and only if the system EV (X,T) is

sober.

Proof. Ad(1). Sufficiency follows from Proposition 3.2.1.2 above. As for
necessity, assume that A is spatial, which means that Φ |Φ

→(A) : A →
Φ→ (A) is an order-isomorphism. To finish the proof that(

idpt(A),

((
Φ |Φ

→(A)
)−1)op)

: (pt (A) , A,�A)→ (pt (A) ,Φ→ (A) ,∈)

is a TopSys morphism, we need only check adjointness. Given p ∈ pt (A)
and Φ(a) ∈ Φ→ (A) , it is trivially the case that

p �A a ⇔ p (a) = ⊤ ⇔ p ∈ Φ(a) .

Ad(2). Assume a space (X,T) is sober, i.e., Ψ : X → pt (T) is a
bijection. For (Ψ, idopT ) : (X,T,∈) → (pt (T) ,T,�T) to be a TopSys
homeomorphism, adjointness should be checked: given x ∈ X, U ∈ T,

x ∈ U ⇔ Ψ(x) (U) = ⊤ ⇔ Ψ(x) �T U,

finishing necessity. Sufficiency follows from Lemma 3.2.4.4(1) by applying
the identity Ext ◦ EV = IdTop from Theorem 3.2.3. �
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ELoc is part of a well-behaved, two way relationship between topolog-
ical spaces and topological systems, as seen in Theorem 3.2.6, using the
functor ΩV introduced in Theorem 3.2.5.

Theorem 3.2.5. TopSys functorially maps to Loc via ΩV : TopSys→
Loc by

ΩV (X,A,�) = A, ΩV (f, φ) = φ.

Theorem 3.2.6. ΩV is both a left adjoint and left inverse of ELoc; i.e.,

ΩV ⊣ ELoc, ΩV ◦ ELoc = IdLoc.

We have presented TopSys as a supercategory (up to categorical iso-
morphism) of both Top and Loc. But TopSys is much more than a
supercategory of these categories. In the following discussion, we give
a rather complete description of the internalization within TopSys of
fundamental representation theorems.

Discussion 3.2.7 (internalization of sobriety-spatiality representation).
To internalize representation within TopSys, we need two functors from
Stone representation theory:

Ω : Top→ Loc by Ω(X,T) = T,

Ω [f : (X,T)→ (Y,S)] =
[(

(f←) |S

)op

: T→ S
]
,

P t : Loc→ Top by Pt (A) = (pt (A) ,Φ→ (A)) ,
P t [φ : A→ B] = [( ) ◦ φop : Pt (A)→ Pt (B)] .

The most important functorial relationship in representations à la Stone is
the Dowker-Papert-Isbell adjunction Ω ⊣ Pt [46, 15, 28, 29], which when
restricted on both sides to the category SobTop of sober spaces and
continuous maps and the category SpatLoc of spatial locales and localic
morphisms, respectively, yields the foundational representation theorem

SobTop ∼ SpatLoc,

namely, that SobTop and SpatLoc are categorically equivalent and
hence behave similarly in categorical terms (but they are not isomor-
phic). When this categorical equivalence is suitably restricted, it eventu-
ally yields the Stone representation theorems for distributive lattices and
Boolean algebras [29]. The adjunction Ω ⊣ Pt is also important because
it converts a choice-free and point-free Čech-Stone compactification into
the point-set version (using AC) [29], as well as a choice-free and point-
free Hahn-Banach Theorem into its point-set analogue (again using AC)
[45]. Now Ω ⊣ Pt and SobTop ∼ SpatLoc are relationships between
categories, indeed between categories and their subcategories which can
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be embedded into TopSys. What is nice about TopSys is that these
relationships are internalized within TopSys as well. In particular, using
the functors of this subsection (cf. [75]), it can be shown that

[Ω ⊣ Pt] = [(ΩV ◦ EV ) ⊣ (Ext ◦ ELoc)] . �

4. Topological systems and fixed-basis
lattice-valued topology

Having motivated and positioned topological systems with respect to
programming semantics, traditional topological spaces, and locales, we
shift our attention to many-valued topologies and show that topological
systems are intimately connected to this part of topology as well. This
section looks at the relationship between topological systems and “fixed-
basis” lattice-valued topology, while the next section examines the rela-
tionship between topological systems and “variable-basis” lattice-valued
topology. The terms “basis” and “base” in these contexts refer to a lattice
of truth or membership values which occurs in the base of an expression
of the form LX . And in this and the next sections, lattices of truth values
are assumed to be frames; generalizations are briefly considered in the
last section.

4.1. Fixed-basis lattice-valued powerset monad. This subsection
comes from [77, 18, 60, 61, 65]. Fix a set X and a frame L. Then
the L-powerset of X, comprising all its L-subsets, is

LX = {a | a : X → L} ,

equipped with the order lifted pointwise from that of L, and hence equipped
also with all least upper bounds and greater lower bounds lifted pointwise
from L; and so LX is a frame. For a ∈ LX and x ∈ X, a (x) is interpreted
as the degree of membership of x in the L-subset a.

Let f : X → Y be a function. Then the (L-)image and (L-)preimage
and (L-)lower image operators of f are as follows:

f→L : LX → LY by f→L (a) (y) =
∨

f (x)= y

a (x) =
∨

x∈ f←{y}

a (x) ,

f←L : LX ← LY by f←L (b) = b ◦ f ,

fL→ : LX → LY by fL→ (a) =
∨

f←L (b)≤ a

b.

Theorem 4.1.1.
(
L( ), f , f→L ⊣ f←L ⊣ fL→

)
is the L-valued powerset

monad associated with f : X → Y. More precisely, the following hold:
(1) The adjunctions f→L ⊣ f←L ⊣ fL→ hold.
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(2) f→L preserves order and arbitrary
∨

and universal lower bounds;
f←L preserves order and arbitrary

∨
and arbitrary

∧
and universal

upper and lower bounds; and fL→ preserves order and arbitrary∧
and universal upper bounds.

(3)
(
L( ), f , f→L ⊣ f←L ⊣ fL→

)
lifts the traditional powerset monad

(℘ ( ) , f , f→ ⊣ f← ⊣ f→) . In particular:
(a) ∀A ∈ ℘ (X) ,

f→L (χA) = χf→(A); f→L ◦ � = � ◦ f→.
(b) ∀B ∈ ℘ (Y ) ,

f←L (χB) = χf←(B); f←L ◦ � = � ◦ f←.

4.2. L-Topological spaces and categories L-Top’s and their be-
havior. The main definition below is essentially from [6, 18], while the
notation and results are from [25, 62].

Definition 4.2.1. The category L-Top of (L-)topological spaces and
(L-)continuous mappings has ground category Set and comprises data
subject to axioms as follows:

(1) Objects: (X, τ) , where X is a set and τ is a subframe of LX , i.e.,
τ ⊂ LX is closed under arbitrary

∨
and finite ∧.

(2) Morphisms: f : (X, τ) → (Y, σ) , where f : X → Y be a function
and (f←L )

→
(σ) ⊂ τ, i.e.,

∀v ∈ σ, f←L (v) ∈ τ.
(3) Composition, Identities: from Set.

Let forgetful functor VL : L-Top→ Set be given by

VL (X, τ) = X, VL (f) = f.

Theorem 4.2.2. Each VL-structured source [sink] in Set has a unique
initial [final] lift to L-Top. So L-Top is topological over Set w.r.t. VL.

Corollary 4.2.3. For each L ∈ |Frm| , L-Top is complete and cocom-
plete.

4.3. Example classes of L-topological spaces.

Example 4.3.1 (first class of examples—characteristic functors). These
are functor-generated examples. For L consistent, Gχ : Top � L-Top,
defined by

Gχ (X,T) = (X, {χU : U ∈ T}) , Gχ ( f ) = f ,

is a concrete embedding; and it is an isomorphism when L = 2, i.e., Top ≈
2-Top. Hence for each consistent L, Gχ generated examples include all
traditional topological spaces and continuous mappings as a subcategory.
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This is part of a two-way relationship, the other direction being Mχ :
Top← L-Top [43], given by

Mχ (X, τ) = (X, {U ⊂ X : χU ∈ τ}) , Mχ ( f ) = f

which is a concrete functor. Further,

Mχ ⊣ Gχ,

and this adjunction is a monocoreflection, but not an equivalence. Gχ

will be referenced throughout the sequel.

Example 4.3.2 (second class of examples—lower semi-continuity). These
are functor-generated examples [41, 55, 36]. The correspondence ωL :
Top→ L-Top, defined by
ωL (X,T) := (X,ωL (T)) := (X, ⟨⟨{u : X → L | ∀α ∈ L, [u � α] ∈ T}⟩⟩) ,

ωL ( f ) = f,

is a concrete functor for which the L-topology of the image is generated by
the (L-valued) subbase written within the double brackets ⟨⟨ ⟩⟩ . It should
be noted that this subbasis comprises all continuous maps with respect to
the given topology T on X and the upper topology on L. Now ωL is part
of a two-way relationship, the other direction being ιL : L-Top → Top,
given by

ιL (X, τ) = (X, ⟨⟨{[u � α] : u ∈ τ, α ∈ L}⟩⟩) , ιL ( f ) = f,

which is also a concrete functor. It is the case that

ωL ⊣ ιL,
both functors reflect lifted morphisms [9], and ωL preserves products (un-
usual for a left-adjoint). Further, if L is completely distributive, then the
following improvements result [36]:

(1) The L-subbases of the ωL image objects given above are L-topolo-
gies.

(2) ωL : Top � L-Top is a categorical embedding.
(3) ωL ⊣ ιL is also an epicoreflection with ιL as left-inverse of ωL.
(4) The action of ωL is “stratification” in the following sense: for each

topological space (X,T) , the L-topology ωL (T) of ωL (X,T) is
given by

ωL (T) = Gχ (T) ∨ {α : X → L | α ∈ L, (∀x ∈ X, α (x) = α)} ,
where “∨” indicates the smallest L-topology containing both fam-
ilies of mappings. Restated,

ωL (T) = ⟨⟨{χU : U ∈ T} ∪ {α : X → L | α ∈ L}⟩⟩ .
Any L-topology τ on X which contains {α : X → L | α ∈ L} is
said to be stratified.
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It should be noted that the right hand side of the preceding display
defines an L-topology for any given L, in which case it is denoted Gω (T),
defining yet another concrete functor Gω : Top → L-Top which is a
categorical embedding and coincides with ωL when L is completely dis-
tributive [36]. It remains an open question, after more than 25 years [55],
whether in general ωL = Gω. The functor Gω plays its own critical role
in Subsection 5.4 below.

Example 4.3.3 (third class of examples—the L-spectrum). These exam-
ples include all L-spectra of locales and even complete lattices—a general-
ization of traditional spectra—and these are generated by the L-spectrum
functor [53, 22, 56, 32, 57, 58, 59, 63, 48, 33, 50]. Put
LΩ : L-Top→ Loc by LΩ(X, τ) = τ,

LΩ [f : (X, τ)→ (Y, σ)] =
[(

(f ←L )|σ

)op

: τ → σ
]
;

Lpt (A)= Frm (A,L)=
{
p : A→ L | p preserves arbitrary

∨
, finite ∧

}
;

ΦL : A→ LLpt(A) by ΦL (a) (p) = p (a) ;

LPt : L-Top← Loc by LPt (A) := (Lpt (A) , (ΦL)
→

(A)) ,

LP t [φ : A→ B] = [( ) ◦ φ op : LPt (A)→ LPt (B)] .

Then the following hold:
(1) LΩ and LPt are functors.
(2) LΩ ⊣ LPt, with counits

(
(ΦL)

| (ΦL)→(A)
)op

: (ΦL)
→

(A) → A in
Loc, and units ΨL : (X, τ)→ LPt (τ) defined by

ΨL : X → Lpt (τ) by ΨL (x) : τ → L by ΨL (x) (u) = u (x) .

(3) ΦL : A→ LLpt(A) is a frame map—so that (Lpt (A) , (ΦL)
→

(A))

is an L-topological space, and (ΦL)
| (ΦL)→(A)

: A→ (ΦL)
→

(A) is
injective if and only if it is an order-isomorphism—in which case
A is L-spatial.

(4) ΨL : (X, τ) → LPt (τ) is L-continuous and relatively L-open,
an L-homeomorphic embedding if and only if ΨL is injective—in
which case (X, τ) is L-T0, and an L-homeomorphism if and only
if ΨL is bijective—in which case (X, τ) is L-sober.

(5) The restriction of LΩ ⊣ LPt, respectively, to L-sober topologi-
cal spaces and L-spatial locales yields a categorical equivalence
between L-SobTop and L-SpatLoc, i.e.,

L-SobTop ∼ L-SpatLoc.

(6) There are schemata of “Stone” representation theorems and com-
pactifications based upon (5) indexed by categories for L.
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(7) The above functors give more relationships between Top and L-
Top: LPt ◦ Ω : Top → L-Top; Pt ◦ LΩ : L-Top→ Top; LPt ◦
Ω ⊣ Pt ◦ LΩ; and when restricted respectively to L-SobTop and
SobTop, LPt◦Ω ⊣ Pt◦LΩ restricts to a categorical equivalence,
in which case the reverse adjunction Pt◦LΩ ⊣ LPt◦Ω also holds.

An alternative approach to the L-spectrum is developed in [48, 49, 50].

Example 4.3.4 (fourth class of examples—fuzzy real lines from proba-
bility distributions). We now outline the fuzzy real lines and fuzzy unit
intervals from the standpoint of L-probability distributions [26, 17, 64].
Fix L a DeMorgan frame—a frame equipped with an order-reversing in-
volution ′. We begin with a series of notations and definitions, where R
denotes the traditional real line. Letting λ : R → L be an antitone map
and t ∈ R, we adopt this series of notations:

λ (t−) =
∧

s< t λ (s) , λ (t+) =
∨

s> t λ (s) , λ ((−∞)+) =∨
s∈R λ (s) , λ ((+∞)−) =

∧
s∈R λ (s) .

These notations allow us to state the following series of definitions:

Real (L) := {λ : R→ L | λ antitone, λ ((+∞)−) =⊥, λ ((−∞)+) =⊤} ,

λ ∼ µ ⇔ [∀t ∈ R, λ (t+) = µ (t+)] ⇔ [∀t ∈ R, λ (t−) = µ (t−)] ,
[λ] := {µ ∈ Real (L) : λ ∼ µ} ,

R (L) := Real (L) / ∼,
∀t ∈ R, Lt, Rt : R (L)→ L by Lt [λ] = (λ (t−))′ , Rt [λ] = λ (t+) ,

τ (L) := ⟨⟨{Lt, Rt : t ∈ R}⟩⟩ .
From all these notions come the following comments and results:

(1) (R (L) , τ (L)) is an L-topological space, called the L-(fuzzy) real
line and also denoted simply R (L) .

(2) (R (2) , τ (2)) is 2-homeomorphic to Gχ (R,T) , where R has the
usual topology T.

(3) For r ∈ R, define λr : R → L by λr (t) =

{
⊤, t < r
⊥, t > r

. Then

r 7→ [λr] is an L-embedding of Gχ (R,T) into (R (L) , τ (L)) if L is
consistent, in which case it also follows that R (2) = {[λr] : r ∈ R}
and that

Lt [λr] = χ(−∞, t) (r) , Rt [λr] = χ(t,+∞) (r) .

Thus, for L consistent, and identifying R (2) with R, Lt extends
the left-handed, subbasic open interval (−∞, t) and Rt extends
the right-handed, subbasic open interval (t,+∞): this justifies
the notation “Lt” and “Rt” for the subbasic L-open subsets of the
L-topology τ (L) on R (L) .
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(4) For L a complete DeMorgan chain, there are jointly L-continuous
addition ⊕ and multiplication ⊗ extending the usual addition
and multiplication. For example, (R (L) ,⊕, τ (L)) is an abelian,
cancellation, L-topological semigroup.

(5) R (L) is L-T0 (Example 3.3.3–3.3.4); R (L) is L-sober (3.3.3–3.3.4))
if and only if L is a complete Boolean algebra; and, for L com-
pletely distributive, R (L) is Hutton-uniformizable, metrizable via
d : LR(L) × LR(L) → [0,+∞) extending the Euclidean metric in
the sense that d

(
χ{[λr]}, χ{[λs]}

)
= |r − s| , and hence possesses

all Hutton-Reilly separation axioms [27, 52, 35, 59, 37, 63].
(6) The subspace of R (L) resulting from restricting Real (L) to

{λ ∈ Real (L) | λ (t) = ⊥ for t > 1, λ (t) = ⊤ for t < 0}

is called the L-(fuzzy) unit interval and denoted I (L) ; and ana-
logues of (1–3,5) above hold for I (L) .

The fuzzy real lines and fuzzy unit intervals are among the most im-
portant examples of many-valued topology and possess an extensive liter-
ature, a brief sample of which comprises [26, 17, 52, 44, 36, 64, 38]. With
these examples, lattice valued topology has Urysohn Lemmas, Tietze
Extension Theorems, Tihonov cubes, etc.

Example 4.3.5 (fifth class of examples—fuzzy real lines from L-spectra).
Fix L a frame. Given the usual real line (R,T) and unit interval (I,T (I)) ,
recall the functor LPt from Example 4.3.3 and put

R∗ (L) := LPt (T) = (Lpt (T) , (ΦL)
→

(T)) ,

I∗ (L) := LPt (T (I)) = (Lpt (T (I)) , (ΦL)
→

(T (I))) .
Then the following hold [63, 64]:

(1) For L = 2, R∗ (2) is homeomorphic to (R,T) and I∗ (2) is home-
omorphic to (I,T (I)) .

(2) Gχ (R,T) L-embeds into R∗ (L) ; Gχ (I,T (I)) L-embeds into
I∗ (L) .

(3) There are jointly L-continuous addition � and multiplication �
extending the usual addition and multiplication.

(4) Assume L a DeMorgan frame. Then the following are equivalent:
(a) R (L) and R∗ (L) are L-homeomorphic.
(b) I (L) and I∗ (L) are L-homeomorphic.
(c) L is a complete Boolean algebra.

(5) I∗ (L) is the L-Čech-Stone compactification of Gχ ([0, 1]) ; and for
L a complete Boolean algebra, I (L) is the L-Čech-Stone compact-
ification of Gχ ([0, 1]) .
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This class of examples gives the frame maps and prime principal ideal
approach to fuzzy numbers. The results of (4) seem rather astounding: for
L a complete Boolean algebra, the probability distribution approach to
fuzzy numbers is equivalent to the frame maps approach to fuzzy numbers.
And (5) is also surprising: the traditional unit interval is not as compact as
it could be if L is bigger than 2; and, for example, for the Boolean algebra
4, I (4) has extra points of “density” and “closure”, is more compact than
[0, 1] , and [0, 1] in fact 4-embeds into I (4) as a “4-dense” subset.

Example 4.3.6 (sixth class of examples—dual L-topologies on R). Fix
L a DeMorgan frame and recall the subbasis {Lt, Rt : t ∈ R} for the L-
topology τ (L) on R (L) from Example 4.3.4 above. Put [54, 55]

L[λ], R[λ] : R→ L by L[λ] (t) = Lt [λ] , R[λ] (t) = Rt [λ] ,

τ [L] =
⟨⟨{

L[λ], R[λ] : [λ] ∈ R (L)
}⟩⟩

,

RL := (R, τ [L]) .
The following hold:

(1) RL is an L-topological space, called the dual L-real line.
(2) RL is L-homeomorphic to Gχ (R,T) if L = 2.
(3) RL is L-homeomorphic to ωL (R,T) if L is completely distributive

(where ωL is given in Example 4.3.2).
(4) The usual addition and multiplication are both jointly L-continuous

in RL.
(5) RL is L-T0; and, for L completely distributive, RL is Hutton-

uniformizable, metrizable via d : LR × LR → [0,+∞) extending
the Euclidean metric in the sense that d

(
χ{r}, χ{s}

)
= |r − s| ,

and hence possesses all Hutton-Reilly separation axioms.
(6) IL, as the subspace of RL on [0, 1] , has analogues of (1–3,5).

4.4. Embeddings of L-Top’s into TopSys. This subsection begins the
process of connecting topological systems and L-topological spaces, a pro-
cess continuing into the next section—see Subsection 5.4 below, and con-
structs a class of embeddings of the schema {L-Top : L ∈ |Frm|} into
TopSys [7], embeddings which place all the example classes of Subsec-
tion 4.3 into TopSys.

Fix a frame L, and put

L• = L− {⊤} , Pr (L•) = {α ∈ L• : α prime} .
Lemma 4.4.1. For each α ∈ Pr (L•) , there is a functorial embedding
Fα : L-Top � TopSys constructed as follows:

Fα (X, τ) = (X, τ,�α) by x �α u ⇔ u(x) � α,

Fα [f : (X, τ)→ (Y, σ)] =
(
f,
(
(f←L )|σ

)op)
: (X, τ,�α)→ (Y, σ,�α) .
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This lemma gives many-valued extensions of the Vickers embedding
EV : Top � TopSys discussed in Section 2. Viewing satisfaction as a
kind of generalized membership relation and u (x) as a degree of mem-
bership, then the satisfaction relation constructed here is the restriction
that the degree of membership cannot be less than a prechosen prime α
in the frame of membership values.

The question arises: what if L has no primes? For examples: L could
be the family of all regular open subsets of R (with the usual topology)
ordered by inclusion; L could be the localic product of the subspace topol-
ogy of the rational numbers with itself; or L could be the family of all
Lebésgue measurable subsets of [0, 1] with the measure 0 subsets identi-
fied and the measure 1 subsets identified. For such “atomless” frames L,
how is L-Top to be embedded into TopSys?

We proceed as follows.
(1) For any given frame L, adjoin a new bottom ⊥∗ to L which is

required to be strictly below the bottom ⊥ of L. This yields a
new frame L⊥∗ having the property that

⊥∗ ∈ Pr (L•⊥∗) .

(2) By Lemma 4.4.1, there exists a functorial embedding F⊥∗ : L⊥∗-
Top � TopSys.

(3) Construct the concrete functorial embedding ↪→ : L-Top→ L⊥∗-
Top by

(X, τ) 7→ (X, τ⊥) with τ⊥ = τ ∪ {⊥∗} , f 7→ f,

where ⊥∗ : X → L is the constant subset given by ⊥∗ (x) = ⊥∗.

Theorem 4.4.2. For each frame L, there is a functorial embedding E⊥ :
L-Top � TopSys given by

E⊥ = F⊥∗ ◦ ↪→ .

Corollary 4.4.3. The embedding EV : Top � TopSys is recovered from
Lemma 4.4.1 by choosing L = 2 and noting that

EV = F⊥ ◦Gχ,

where Gχ is from Example 4.3.1.

Corollary 4.4.4. TopSys is a supercategory, up to categorical isomor-
phisms, of Top, Loc, and the schema {L-Top : L ∈ |Frm|} .

The Corollary assures us that the rich inventories of examples in Sub-
section 4.3 are included in TopSys.
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5. Topological systems and variable-basis
lattice-valued topology

Heuristically, “variable-basis” topology means spaces with different
lattice-theoretic bases are all accommodated within the same category;
morphisms change both underlying carrier sets and underlying lattices
(or bases) of truth/membership values. See a history of variable-basis
thinking in many-valued mathematics in Section 1 of [62], a history that
begins in a veiled form in 1967 [18] and becomes more explicit in 1981 and
1983 [51]; and a fairly recent update packaged in the language of power-
set theories and topological theories may be found in [65]. From a more
formal point of view, variable-basis topology is a schema of categories
C-Top, each with ground category Set×C, where Cop is a concrete cat-
egory of lattice-theoretic structures. By convention, this schema is of the
form

{C-Top : C ↪→ SQuantop} ,
where SQuant [65] is the category of semiquantales (complete lattices
with a binary operation ⊗) and semiquantale morphisms (mappings pre-
serving arbitrary

∨
and ⊗).

To both simplify this section and facilitate relationships with TopSys,
which has ground category Set× Loc, we choose C = Loc in the above
schema and focus on the category Loc-Top in the sequel; but we recognize
that most of what follows works with other, more general choices of C
[62, 65].

5.1. Motivations and powerset monad for Loc-Top.
Discussion 5.1.1. It would be desirable to have a topological category
satisfying the following conditions:

(1) it is a supercategory up to isomorphism of both Top and Loc;
(2) it is a supercategory of the fixed-basis schema {L-Top :L∈|Frm|} ,

thus allowing for “internalized” change of basis vis-a-vis the “ex-
ternalized” change of basis given in [25]—whereby conditions are
given under which there is a functor from L-Top to M -Top for
different L and M ; and

(3) it is a framework for asking and answering the following “compar-
ison” questions concerning several of the example classes given in
Subsection 4.3 above:
(a) how do R (L) and R (M) compare and when are they home-

omorphic;
(b) how do LPt (A) and Mpt (A) compare and when are they

homeomorphic;
(c) how do R∗ (L) and R∗ (M) compare and when are they home-

omorphic; and
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(d) how do ωL (X,T) and ωM (X,T) compare and when are they
homeomorphic?

We note that TopSys satisfies 5.1.1(1,2); however, TopSys is not a
topological category. Also, it is unexplored in what sense (3) could be
asked and answered in TopSys.

Definition 5.1.2 [53, 60, 61, 65]. The powerset monad for Loc-Top has
ground category Set× Loc. Let (f, φ) : (X,L)→ (Y,M) be in Set×Loc.

(1) Put (f, φ)
←

: LX ←MY by

(f, φ)
←

(b) = φop ◦ b ◦ f, i.e., φop ◦ f ←L (b) .

(2) Put (f, φ)
→

: LX →MY by

(f, φ)
→

(a) =
∧

a≤ (f,φ)←(b)

b.

In the language of [65], (f, φ)→ is the pseudo-left adjoint of (f, φ)← .
(3) Put (f, φ)→ : LX →MY by

(f, φ)→ (a) =
∨

(f,φ)←(b)≤ a

b.

For terminology, (f, φ)→ , (f, φ)
←
, (f, φ)→ are respectively called

the image, preimage, and lower image operators of ground mor-
phism (f, φ) .

Theorem 5.1.3. The following hold:
(1) (f, φ)

→ is isotone.
(2) (f, φ)

← is a frame map and (f, φ)
← ⊣ (f, φ)→ .

(3) (f, φ)
→ ⊣ (f, φ)

← ⊣ (f, φ)→ if φop preserves arbitrary
∧

(which
is the case if L,M are DeMorgan).

5.2. Loc-Top and its basic categorical properties.
Definition 5.2.1 (variable-basis topology). The category Loc-Top of
topological spaces and continuous morphisms/mappings has ground cate-
gory Set× Loc and comprises data subject to axioms as follows:

(1) Objects: (X,L, τ) , where (X, τ) ∈ |L-Top| , i.e., τ ⊂ LX is closed
under arbitrary

∨
and finite ∧. In this case, τ is a topology on the

ground object (X,L) .
(2) Morphisms: (f, φ) : (X,L, τ)→ (Y,M, σ) satisfies

[(f, φ)
←
]
→

(σ) ⊂ τ, i.e., ∀v ∈ σ, (f, φ)← (v) ∈ τ.

(3) Composition, identities: from Set× Loc.
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Homeomorphisms are the categorical isomorphisms of Loc-Top and
are ground morphisms (f, φ) such that each of f, φop is a bijection (and so
φop is an order isomorphism), (f, φ) is continuous, and

(
f−1,

(
(φop)

−1
)op)

is continuous.

Comparison Theorems 5.2.2. The following statements hold:

(1) Let L,M be DeMorgan frames. The following are equivalent:
(a) R (L) is homeomorphic in Loc-Top to R (M) .
(b) R∗ (L) is homeomorphic in Loc-Top to R∗ (M) .
(c) L is order isomorphic to M.

(2) Let L,M be frames. The following are equivalent:
(a) ∀ (X,T) ∈ |Top| , (X,L, ωL (T)) is homeomorphic in Loc-

Top to (X,M,ωM (T)) .
(b) ∀ (X,T) ∈ |Top| , (X,L,Gω (T)) is homeomorphic in Loc-

Top to (X,M,Gω (T)) .
(c) ∀A ∈ |Loc| , LP t (A) is homeomorphic to MPt (A) .
(d) L is order isomorphic to M.

Proof. The equivalence of (1)(c) with each of (1)(a) and (1)(b) follows
respectively from Corollary 7.1.7.1 and Corollary 7.3.7.1 of [62]; and the
equivalence of (2)(d) with (2)(c) follows from Corollary 7.4.6.1(2), of [62].
Further, it is immediate that each of (2)(a) and (2)(b) implies (2)(d) using
the definition of homeomorphism. We now show that (2)(d) implies each
of (2)(a) and (2)(b). To this end, assume that L is order isomorphic to
M via some φop : L ← M, and let (X,T) be a topological space. It
follows that LX is bijective with MX via the “left-hand” and “right-hand”
correspondences

a ∈ LX 7→ (φop)
−1 ◦ a ∈MX , b ∈MX 7→ φop ◦ b ∈ LX ,

and each of these correspondence is isotone; and hence LX and MX are
order-isomorphic.

To show (2)(a), it is claimed that

(idX , φ) : (X,L, ωL (T))→ (X,M,ωM (T))

is a homeomorphism. Recall that the subbases of the two topologies are
respectively as follows:

{u :X → L | ∀α ∈ L, [u � α] ∈ T} , {v :X →M | ∀β ∈M, [u � β] ∈ T}.
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Let u be a member of the left-hand subbasis, and let x ∈ [u � α] . Then
u (x) � α, and hence

(φop)
−1

(u (x)) � (φop)
−1

(α)

by the right-hand correspondence being order-preserving. It follows that
x ∈

[
(φop)

−1 ◦ u � (φop)
−1

(α)
]
, so that

[u � α] ⊂
[
(φop)

−1 ◦ u � (φop)
−1

(α)
]
.

A symmetric argument using the isotonicity of the left-hand correspon-
dence above establishes that

[u � α] ⊃
[
(φop)

−1 ◦ u � (φop)
−1

(α)
]
,

and hence that

[u � α] =
[
(φop)

−1 ◦ u � (φop)
−1

(α)
]
.

The right-hand set, by the left-hand correspondence, instantiates the
predicate of the right-hand subbasis, and this implies that u is a member
of the right-hand subbasis. Hence the left-hand subbasis is a subfamily
of the right-hand subbasis. There is again a symmetric argument estab-
lishing the reverse inclusion, so that

{u :X → L | ∀α ∈L, [u � α] ∈ T} = {v :X →M | ∀β ∈M, [u � β] ∈ T}.

It follows that
ωL (T) = ωM (T) .

Now the action of the preimage operator (idX , φ)
← on the right-hand

subbase is exactly that of the left-hand correspondence above, and so
(idX , φ) is subbasic continuous; and the action of the preimage opera-

tor
(
idX ,

(
(φop)

−1
)op)←

on the left-hand subbase is exactly that of the

right-hand correspondence above, and so
(
idX ,

(
(φop)

−1
)op)

is subbasic
continuous. But Theorem 3.2.6 of [62] now implies that each of (idX , φ)
and

(
idX ,

(
(φop)

−1
)op)

is continuous. Hence (idX , φ) is a homeomor-
phism and (2)(a) holds.

Now to show (2)(b), it is claimed that (idX , φ) : (X,L,Gω (T)) →
(X,M,Gω (T)) is a homeomorphism. Recall that the subbases of the two
topologies are respectively as follows:

{χU : U ∈ T} ∪ {α : α ∈ L} , {χU : U ∈ T} ∪
{
β : β ∈M

}
.
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It is straightforward to show that ∀U ∈ T, ∀α ∈ L, ∀β ∈M, the following
preimages are obtained:

(idX , φ)
←

(χU ) = χU =
(
idX ,

(
(φop)

−1
)op)←

(χU ) ,

(idX , φ)
← (

β
)
= φop (β) ∈ {α : α ∈ L} ,(

idX ,
(
(φop)

−1
)op)←

(α) = φop (α) ∈
{
β : β ∈M

}
.

All of this shows that each of (idX , φ) and
(
idX ,

(
(φop)

−1
)op)

is subbasic
continuous and hence continuous (Theorem 3.2.6 of [62]). It follows that
(idX , φ) is a homeomorphism and (2)(b) holds. �

It is striking that (2)(a) and (2)(b) above are equivalent, even without
the assumption of any lattices being completely distributive, though this
does not address the open question stated just above Example 4.3.3. Also,
given the fact that stratification is incompatible with L-sobriety for most
locales [57, 59, 63, 66], that both ωL and Gω produce only stratified
spaces—this follows from the definition of “stratified” in Example 4.3.2(4)
above, and that LPt produces only L-sober spaces [53, 57, 58, 59, 63],
it is even more striking that each of (2)(a) or (2)(b) is equivalent with
(2)(c).

Now Loc-Top contains many more morphisms “across” different
bases than just homeomorphisms. This richness of morphisms is detail-
ed at length in Section 7 of [62], including classes of non-homeomorph-
isms between objects in each of the example classes of Subsection 4.3
above having different bases; e.g., conditions are given under which Loc-
Top(R (L) ,R (M)) contains a class of non-homeomorphisms. It should be
pointed out that Loc-Top has far more morphisms than all the morphisms
of the schema {L-Top : L ∈ |Frm|} put together. Restated, “variable-
basis” is much richer with respect to morphisms than “external” change
of basis, even when the external changes are brought “inside”. For now
we content ourselves with the following general proposition:

Proposition 5.2.3. Fix frame L and a localic non-isomorphism φ ∈
Loc (L,L) , let (X,L, σ) be a topological space (in Loc-Top), and put

τ := {φop ◦ v : v ∈ σ} .

Then (idX , φ) : (X,L, τ) → (X,L, σ) is continuous, not a homeomor-
phism, and not in any M -Top.

The forgetful functor V : Loc-Top→ Set× Loc is given by

V (X,L, τ) = (X,L) , V (f, φ) = (f, φ) .
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Theorem 5.2.4. Each V -structured source [sink] in Set × Loc has a
unique initial [final] lift to Loc-Top. Hence, Loc-Top is topological over
Set× Loc w.r.t. V.

Corollary 5.2.5. Loc-Top is complete and cocomplete.

5.3. Loc-Top as supercategory of Top, Loc, L-Top’s. The embed-
dings of Top, Loc, and the schema {L-Top : L ∈ |Frm|} into Loc-Top
come from [53, 62] and are now described.

Fix L frame and put L-Top � Loc-Top by

(X, τ) 7→ (X,L, τ) ,

[f : (X, τ)→ (Y, σ)] 7→ [(f, (idL)
op
) : (X,L, τ)→ (Y, L, σ)] .

This reinforces the richness of morphisms in Loc-Top vis-a-vis those mor-
phisms occurring in the schema {L-Top : L ∈ |Frm|}: even for fixed basis
L, if |Frm (L,L)| > 1, i.e., L admits a frame endomorphism other than
idL, then Loc-Top will have continuous morphisms between spaces, both
having lattice-theoretic basis L, which cannot come from morphisms in
L-Top. Cf. Proposition 5.2.3 above.

It should also be noted that Top ≈ 2-Top � Loc-Top. Restated,
Top embeds into Loc-Top by Gχ of Example 4.3.1 followed by the em-
bedding above for L = 2.

We consider two functorial embeddings of Loc into Loc-Top:
(1) For the empty embedding, put Loc � Loc-Top by

A 7→
(
∅, A,A∅ ≡ 1

)
,

[φ : A→ B] 7→ [(id∅ ≡ ∅, φ) : (∅, A,A∅)→ (∅, B,B∅)] .

Since Loc-Top is variable-basis topology by Theorem 5.2.4 above,
this embedding justifies thinking of Loc as “point-free” or “point-
less” topology.

(2) For the singleton embedding, put Loc � Loc-Top by

A 7→
(
1, A,A1

)
,

[φ : A→ B] 7→
[
(id1, φ) :

(
1, A,A1

)
→

(
1, B,B1

)]
.

Again, given that Loc-Top is variable-basis topology by 5.2.4,
this justifies thinking of Loc as the “topology of singleton spaces”.

Taking the embeddings of Top and the schema {L-Top : L ∈ |Frm|}
into Loc-Top on one hand, and the embeddings of Loc into Loc-Top on
the other hand, it emerges that Top and the schema {L-Top : L ∈ |Frm|}
represent “variable carrier set and fixed lattice-theoretic basis” topology,
while Loc represents “fixed carrier set and variable lattice-theoretic basis”
topology; and hence, neither Top nor Loc is more general. All these
embeddings also justify speaking of Loc-Top (and the other C-Top’s
of [62]) as “point-set lattice-theoretic” or “poslat” topology—see [56].
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Finally, it is from the standpoint of Loc-Top that it may be fairly said
that Loc is part of “point-set” topology, namely as part of point-set lattice-
theoretic topology.

5.4. Loc-Top as supercategory of TopSys. This subsection constructs
two embeddings of TopSys into Loc-Top [7] and thereby continues the
theme, begun in Subsection 4.4 above, that topological systems and many-
valued topological spaces are intertwined, in multiple ways, and that this
intertwining is essential to understanding both spaces and systems. Em-
bedding variable-basis spaces into a systems context is more delicate,
needs more ideas, and is discussed later in this paper.

Developing relationships between TopSys and Loc-Top is mandated
by these considerations:

• TopSys and Loc-Top are both supercategories up to isomor-
phism of Top, Loc, and the schema {L-Top : L ∈ |Frm|} ;
• TopSys is essentially algebraic and Loc-Top is topological; and
• both TopSys and Loc-Top have the same ground category
Set× Loc.

It is helpful to note ab initio what relationships cannot exist between
TopSys and Loc-Top, as seen in our first result.

Theorem 5.4.1. There cannot exist a concrete isomorphism J:TopSys→
Loc-Top.

Proof. Recall the forgetful functors T : TopSys→ Set× Loc and
V : Loc-Top→ Set× Loc given earlier (above Proposition 3.1.1 and
Theorem 5.2.4, respectively). Now suppose a concrete isomorphism J :
TopSys→ Loc-Top exists. Then it is the case that

T = V ◦ J, V = T ◦ J−1.

Now let
(T (fγ , φγ) : (X,A)→ T (Xγ , Aγ ,�))γ∈Γ

be a T -structured source in Set× Loc. Then it follows

(V J (fγ , φγ) : (X,A)→ V J (Xγ , Aγ ,�))γ∈Γ
may be regarded as a V -structured source in Set× Loc. Now the topo-
logicity (Theorem 5.2.4) of Loc-Top implies that this second source in
Set× Loc has a unique, initial lift

(J (fγ , φγ) : (X,A, τ)→ J (Xγ , Aγ ,�))γ∈Γ ,
and it follows from J : TopSys→ Loc-Top being a concrete isomorphism
that (

(fγ , φγ) : J
−1 (X,A, τ)→ (Xγ , Aγ ,�)

)
γ∈Γ
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is a unique, initial lift of the first source in Set× Loc. This implies that
TopSys is topological over Set× Loc w.r.t. T, a contradiction (Theorem
3.1.6 above). �

Even though concrete isomorphisms between TopSys and Loc-Top
do not exist, other functorial relationships do in fact exist. Now con-
structing a space from a system or a system from a space over the same
ground object from Set× Loc requires a fundamental paradigm shift in
the interpretation of that ground object:

• Given (X,A,�) ∈ |TopSys| , the ground object (X,A) in some
examples may be interpreted as follows: X is a set of bitstrings
and A is a locale of predicates; and in this case � is a satisfaction
relation on ground object (X,A) ∈ |Set× Loc| .
• Given (X,L, τ) ∈ |Loc-Top| , the ground object (X,L) in some

examples may be interpreted as follows: X is a set of points and
L is a frame of membership or truth values; and in this case τ is
a topology on ground object (X,L) ∈ |Set× Loc| .

Theorem 5.4.2 (satisfaction embedding F�). Construct F� : TopSys �
Loc-Top by

F� (X,A,�) = (X,A, τ�) ,

where
τ� =

{
u ∈ AX : u = ⊥ or [∀x ∈ X, x � u (x)]

}
,

F� (f, φ) = (f, φ) .

Then F� concretely embeds TopSys into Loc-Top.

As shown above (5.4.1), F� cannot be an isomorphism. On the
other hand, being an embedding insures that F→� (TopSys) is a subcat-
egory of Loc-Top, albeit a proper subcategory. Given the reinterpreta-
tion issues noted above for making spaces from systems, the subcategory
F→� (TopSys) is of interest and it is important to better understand this
subcategory. The following characterization theorem resolves this issue.

Theorem 5.4.3 (F� characterization theorem). For (X,L, τ)∈|Loc-Top|,
let

τ∗ = {u ∈ τ : u ̸= ⊥} .
Assume X ̸= ∅ and L to be consistent. Then (X,L, τ) ∈ F →� (TopSys)
if and only if all of the following hold:

(1) τ∗ is a filter;
(2) ∀x ∈ X, ∀u ∈ τ∗, u (x) > ⊥;
(3) ∀x ∈ X, ∀u ∈ τ∗, ∀ {αγ : γ ∈ Γ}⊂ L with u (x)=

∨
γ ∈Γ αγ , ∃ γ0∈

Γ, ∃ v ∈ τ∗, v (x) = αγ0 ;
(4) ∀ {ux : x ∈ X} ⊂ τ∗, ∃u ∈ τ∗, ∀x ∈ X, u (x) = ux (x) .
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Since spaces can be easily constructed which do not satisfy all the
conditions of Theorem 5.4.2, it necessarily follows that F� cannot be an
isomorphism, confirming Theorem 5.4.1 above.

A second and strikingly different functor embeds TopSys into Loc-
Top, and this second functor is closely tied to the example classes cata-
logued in Subsection 4.3 above.

Theorem 5.4.4 (truncation embedding Fk). Construct Fk : TopSys �
Loc-Top by

Fk (X,A,�) = (X,A, τk) ,

where
τk =

⟨⟨{
a ∧ χext(a) : a ∈ A

}⟩⟩
and the notion of extent is from Theorem 3.2.2 above, and

Fk (f, φ) = (f, φ) .

Then Fk concretely embeds TopSys into Loc-Top.

For the same reasons given above for F�, F→k (TopSys) is a proper
subcategory of Loc-Top, and it is therefore important to better under-
stand this subcategory. The following characterization theorem resolves
this corresponding issue for Fk.

Theorem 5.4.5 (Fk characterization theorem). Let (X,L, τ)∈|Loc-Top|.
Then (X,L, τ)∈ F→k (TopSys) if and only if ∃ {Uα : α∈ L} ⊂ ℘ (X) sat-
isfying all of the following:

(1) ∀ {αγ : γ ∈ Γ} ⊂ L,
∪

γ ∈Γ Uαγ = U ∨
γ ∈Γ

αγ
;

(2) ∀ {αγ : γ ∈ Γ} ⊂ L (Γ finite),
∩

γ ∈Γ Uαγ = U ∧
γ ∈Γ

αγ
;

(3) τ = ⟨{α ∧ χUα : α ∈ L}⟩, where the single brackets indicate a
topology generated from a basis.

As with F�, Theorem 5.4.5 shows that Fk is not an isomorphism since
spaces can be constructed not satisfying all the conditions of 5.4.5, thus
confirming Theorem 5.4.1 above.

With respect to objects, the truncation functor Fk is essentially
built from the Ext functor of Theorem 3.2.2(2) followed by the schema
of the Gω functors introduced in the paragraph between Example 4.3.2
and Example 4.3.3. To see this more precisely, fix (X,A,�) in
TopSys. Applying Ext : TopSys→ Top yields the topological space
(X, ext→ (A)) . Now applying Gω : Top→ L-Top yields the L-topological
space (X,Gω (ext→ (A))) , where

Gω (ext→ (A)) =
⟨⟨
{a : a ∈ A} ∪

{
χext(b) : b ∈ A

}⟩⟩
.
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But the first infinite distributive law implies the subbasis {a : a ∈ A} ∪{
χext(b) : b ∈ A

}
generates a basis{

a ∧ χext(b) : (a, b) ∈ A×A
}

for the L-topology Gω (ext→ (A)). This basis is actually finer than what
is needed for the A-topology τk. To address this problem, put

⟨Gω ◦ ext→⟩ : A×A→ Gω (ext→ (A)) by ⟨Gω ◦ ext→⟩ (a, b) = a∧χext(b),

recall the inclusion map

↪→∆: ∆ (A×A)→ A×A,
of the diagonal ∆(A×A) into A×A, and note the usual bijection

j : A→ ∆(A×A) .
Then

(⟨Gω ◦ ext→⟩ ◦ ↪→∆ ◦j)→ (A) =
{
a ∧ χext(a) : a ∈ A

}
, (K)

which can be shown using the first infirnite distributive law to be a basis
for τk, actually improving the statement of Theorem 5.4.4 above which is
in terms of subbases. Now put

⌊⟨Gω ◦ ext→⟩ ◦ ↪→∆ ◦j⌋ (A) := (X, ⟨(⟨Gω ◦ ext→⟩ ◦ ↪→∆ ◦j)→ (A)⟩) ,
an A-topological space, where “⌊ ⌋” denotes that a space using X as
the underlying carrier set is being created. The last step in constructing
Fk (X,A,�) applies the embedding A-Top � Loc-Top recorded in Sub-
section 5.3 above. So the sequence of actions in forming Fk (X,A,�) may
be seen as

[( ) -Top � Loc-Top] ◦ ⌊⟨Gω ◦ ext→⟩ ◦ ↪→∆ ◦j⌋ .
It is remarkable that this composite action is injective on objects and is
compatible with the action Fk (f, φ) = (f, φ) on morphisms to produce
Fk as a concrete embedding. Line (K) above explains the “k” in Fk

as standing for “truncation” or “cuts”, since the basic open sets of the
topology τk are truncations or cuts of characteristics by constant maps.

We observe that the preceding paragraph adds to what is known in [7]
and proves the following new factorization of Fk w.r.t. objects:

Theorem 5.4.6 (factorization of Fk). As an object level mapping, Fk :
|TopSys| � |Loc-Top| factors as follows:

Fk = [( ) -Top � Loc-Top] ◦ ⌊⟨Gω ◦ ext→⟩ ◦ ↪→∆ ◦j⌋ .

We note in the above discussion and proposition that ωL may be sub-
stituted for Gω when the locale A of predicates is completely distributive
(Example 4.3.2), bringing us back almost full circle to the beginning of
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the many-valued topology literature. Finally, this discussion suggests
a possibly new construction of spaces from systems, namely—for fixed
(X,A,�)—that given by

[A-Top � Loc-Top] ◦ ⌊⟨ωA ◦ ext→⟩ ◦ ↪→∆ ◦j⌋ ,

and possibly a new bi-level mapping, say, Fω : TopSys � Loc-Top by

Fω (X,A,�) = (X,A, τω) ,

where
τω = ⟨(⟨ωL ◦ ext→⟩ ◦ ↪→∆ ◦j)→ (A)⟩

and the notion of extent is from Theorem 3.2.2 above, along with

Fω (f, φ) = (f, φ) .

If Fω is restricted to the full subcategory of TopSys in which all sets of
predicates are completely distributive, then Fω coincides with Fk given
above and is in that instance a concrete embedding.

Yet other ways exist to generate spaces from systems. There is the
concrete functor F k already given in [7], constructed using the (sub)basis{

a ∧ χext(b) : (a, b) ∈ A×A
}
,

and which can be factored at the object level as

F k = [( ) -Top � Loc-Top] ◦Gω ◦ Ext

Also one might define yet another concrete functor Fω by choosing

τω = ⟨⟨{u : X → A | ∀a ∈ A, [u � a] ∈ ext→ (A)}⟩⟩ ,

which can be factored at the object level as

Fω = [( ) -Top � Loc-Top] ◦ ω( ) ◦ Ext.

Then Fω coincides with F k when restricted to the full subcategory of
TopSys in which the sets of predicates are completely distributive. The
behaviors of Fω and Fω are open questions perhaps related to the open
question stated immediately above Example 4.3.3.

Discussion 5.4.7 (possible applications). There could be potential ap-
plicability of F�, Fk to topological systems. It is known that TopSys
lacks initial and final structures (Lemma 3.1.5, Theorem 3.1.6), and these
embeddings may help mitigate this lack, given that Loc-Top has all ini-
tial and final structures (Theorem 5.2.4). The case for initial structures is
now discussed; the final structures case is obverse and left to the reader.
Recall the forgetful functors T : TopSys→ Set× Loc and V : Loc-
Top→ Set× Loc, and take a T -structured source

((fγ , φγ) : (X,A)→ T (Xγ , Aγ ,�γ))γ∈Γ
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in Set× Loc lacking a unique initial lift in TopSys. Because both F�, Fk

are concrete—
T = F� ◦ V, T = Fk ◦ V,

then this T -structured source may be interpreted as both of these V -
structured sources:(

(fγ , φγ) : (X,A)→ V
(
Xγ , Aγ , τ�γ

))
γ∈Γ ,

((fγ , φγ) : (X,A)→ V (Xγ , Aγ , τk,γ))γ∈Γ .

In each case there is, respectively, a unique, initial lift in Loc-Top:(
(fγ , φγ) : (X,A, τs)→

(
Xγ , Aγ , τ�γ

))
γ∈Γ ,

((fγ , φγ) : (X,A, τt)→ (Xγ , Aγ , τk,γ))γ∈Γ .

It remains to be seen if programmers find these initial structures in Loc-
Top—and Loc-Top filling in these structural “gaps” of TopSys, to be
useful.

6. Generalizations and future directions

This section briefly outlines some generalizations of the ideas previously
considered in this paper as well as indicating new directions of current re-
search. These are considered in three subsections as separate themes for
the sake of clarity; but we emphasize that ideas from these three subsec-
tions can and should be combined, and to some degree that is currently
taking place.

6.1.Lattice-valued satisfaction relations, Loc-TopSys, Loc-F2Top.
For programming flexibility, it is appropriate to consider satisfaction re-
lations for which a given bitstring satisfies a given predicate to a certain
degree. Staying within the traditional finite observational logic of frames,
this means introducing an additional frame as the lattice of “satisfaction
degrees”. One question to be considered is whether this additional frame is
to be common to all the systems under consideration—essentially a fixed-
basis approach to degrees of satisfaction, or whether this additional frame
should vary from system to system—essentially a variable-basis approach
to degrees of satisfaction. In the interests of brevity, we take the second
approach and proceed straightaway to the variable-basis approach, an ap-
proach which has some advantages regarding the potential applications of
Discussion 5.4.7 above and blends results from [9, 71, 72, 73].

The variable-basis approach to degrees of satisfaction necessitates a
fundamental change in the ground category for systems as well as in the
overlying category for topological systems.
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Definition 6.1.1. The category Set× Loc2 comprises the following
data:

(1) Objects: (X,L,A) , where X is a set, L is a frame, A is a locale.
(2) Morphisms: (f, φ, ψ) : (X,L,A) → (Y,M,B) , where f : X → Y

is in Set and φ : L → M, ψ : A → B are in Loc, i.e., φop : L ←
M, ψop : A← B are in Frm.

(3) Composition, identities: component-wise from Set and Loc.
It can be shown that Set× Loc2 is both complete and cocomplete.

Definition 6.1.2 (variable-basis topological systems). The category Loc-
TopSys of topological systems and continuous mappings has ground cat-
egory Set× Loc2 and comprises data subject to axioms as follows:

(1) Objects: (X,L,A,�) , where (X,L,A) ∈
∣∣Set× Loc2

∣∣ and � :
X × A → L is an (L-valued) satisfaction relation possessing the
arbitrary

∨
and finite ∧ interchange laws:

∀x ∈ X, ∀ {aγ}γ∈Γ ⊂ A, �
(
x,
∨

γ ∈Γ

aγ

)
=
∨

γ ∈Γ

� (x, aγ) ;

∀x ∈ X, ∀ {aγ}γ∈Γ ⊂ A, �
(
x,
∧

γ ∈Γ

aγ

)
=
∧

γ ∈Γ

� (x, aγ) (Γ finite) .

The set X in some examples could be interpreted as bitstrings;
L may be interpreted as a frame of satisfaction values; A may be
interpreted as a locale of (open) predicates; and � (x, a) may be
said to be the degree to which (bitstring) x satisfies (predicate)
a.

(2) Morphisms: (f, φ, ψ) : (X,L,A,�1) → (Y,M,B,�2) , where
(f, φ, ψ) : (X,L,A) → (Y,M,B) in Set× Loc2 and (f, φ, ψ)
satisfies adjointness:

∀b ∈ B, ∀x ∈ X, �1 (x, ψop (b)) = φop [ �2 (f (x) , b) ] .

(3) Composition, identities: from Set× Loc2.

The adjointness condition in this new setting is saying that the degree
�1 (x, ψop (b)) to which an input satisfies the pullback of a postcondition
predicate is the same as the shift by φop of the degree �2 (f (x) , b) to
which the corresponding output satisfies the postcondition predicate. If
it were the case that L = M and φop = idL, then it would be the case
that adjointness would be insisting that the two degrees of satisfaction be
the same.

To describe the behavior of Loc-TopSys, the appropriate forgetful
functor needs to be recorded. Put W : Loc-TopSys→ Set× Loc2 by

W (X,L,A,�) = (X,L,A) , W (f, φ, ψ) = (f, φ, ψ) .
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6.1.3 Theorem (categorical properties of Loc-TopSys) [9].
(1) The functor W reflects isomorphisms and is transportable and

(generating, mono-source)-factorizable.
(2) Loc-TopSys is essentially algebraic over Set× Loc2 w.r.t. W.
(3) Loc-TopSys is complete and cocomplete.
(4) W -structured sources [sinks] need not have unique initial [final]

lifts, not even singleton W -structured sources.
(5) Loc-TopSys is not topological over Set× Loc2 w.r.t. W. In fact,

Loc-TopSys is neither mono-, nor epi-, nor (small) existentially,
nor (small) essentially topological over Set× Loc2 w.r.t. W.

So as with TopSys, Loc-TopSys is algebraic and non-topological in
nature. However, it is closely related to topology in various ways, as we
see in the sequel.

Theorem 6.1.4. Loc-TopSys is a supercategory up to isomorphism of
both TopSys and Loc-Top. More precisely, the following hold:

(1) ETopSys :TopSys→Loc-TopSys, defined by

ETopSys (X,A,�) = (X,2, A,�2) ,

where

�2 (x, a) =

{
⊤, x � a
⊥, x 2 a ,

and
ETopSys (f, φ) = (f, id2, φ) ,

is a functorial embedding.
(2) ELoc-Top :Loc-Top→Loc-TopSys, defined by

ELoc-Top (X,L, τ) = (X,L, τ,�) ,
where

� : X × τ → L by � (x, u) = u (x) ,

and

ELoc-Top ((f, φ) : (X,L, τ)→ (Y,M, σ)) =[(
f, φ,

(
(f, φ)

←
|σ

)op)
: (X,L, τ,�)→ (Y,M, σ,�)

]
,

where (f, φ)
← is given in Definition 5.1.2(1), is a functorial em-

bedding.
The first embedding interprets each traditional satisfaction relation as

a “crisp” relation; and the second embedding is exactly a many-valued
version of EV in which degrees of memberships in an open set are rein-
terpreted as degrees of satisfaction with respect to that open set viewed
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as a predicate. Both of these embeddings are part of adjoint relation-
ships which parallel and extend those discussed in Theorems 3.2.3 and
3.2.6 above; see [9] for more details—the adjoint of ELoc-Top involves a
lattice-valued version of extent parallel to that used in Discussion 6.2.6
below.

Discussion 6.1.5 (Discussion 5.4.7 revisited). The potential utility of
the embedding ELoc-Top involves giving a systems solution to the problem
posed in Discussion 5.4.7 above. Recall that T -structured sources [sinks]
in Set× Loc lacking unique initial [final] lifts in TopSys can be furnished
these lifts in Loc-Top as spaces via both F�, Fk. Note these lifts are space
solutions to a systems problem. Now these space solutions can be moved
into Loc-TopSys as systems via ELoc-Top. More precisely, these latter
systems are solutions of the original T -lifting problem with respect to the
functor P : Loc-TopSys→ Set× Loc, given by

P (X,L,A,�) = (X,L) , P (f, φ, ψ) = (f, φ) ,

and the following commutivities:

T = V ◦ F�, T = V ◦ Fk, P ◦ EL-T = V.

We now shift our attention to Kubiak-Šostak topologies [34, 39, 74]
and their variable-basis generalizations first given in [62], one such gen-
eralization being the category Loc-FTop. Our purpose here is to give a
category Loc-F2Top [9] which is a variation of Loc-FTop, but which is
more explicitly and conveniently tied to topological systems.

The category Loc-F2Top has ground category Set×Loc2; but in order
to motivate Loc-F2Top, each ground object (X,L,A) from Set× Loc2

needs reinterpretation:
• For systems, X in some examples may be interpreted as bitstrings,
L as satisfaction values, and A as (open) predicates.
• For spaces, X should be interpreted as points, L as degrees of

openness, A as degrees of membership—the latter two comprising
variable bases (hence the exponent “2” in Loc-F2Top).

Definition 6.1.6 (topologies as openness operators). The category Loc-
F2Top of fuzzy topological spaces and fuzzy continuous mappings has
ground category Set× Loc2 and comprises data subject to axioms as
follows:

(1) Objects: (X,L,A, T ) , where T : AX → L is an (A,L)-topology,
cf. [21, 39, 62]; i.e., T satisfies:
• ∀ {uγ}γ∈Γ ⊂ A

X , T
(∨

γ∈Γ uγ

)
≥

∧
γ∈Γ T (uγ) ;

• ∀u, v ∈ AX , T (u ∧ v) ≥ T (u) ∧ T (v) ; and
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• T (⊤) = ⊤.
It is a fact that T (⊥) = ⊤. T called an (A,L)-fuzzy topology
on (X,L,A) and an (A,L)-fuzzy topological space. T (u)
is the degree of openness of u in T ; and T is an openness
predicate/operator.

(2) Morphisms: (f, φ, ψ) : (X,L,A, T )→ (Y,M,B,S) satisfies

T ◦ (f, ψ)← ≥ φop ◦ S;
i.e., ∀v ∈ BY ,

T [(f, ψ)
←

(v)] ≥ φop (S (v)) ,
cf., [62, 9]. It is a fact that T

[
(f, ψ)

← (
⊤B

)]
=T

[
(f, ψ)

←(
⊥B

)]
=

⊤L

(3) Composition, identities: from Set× Loc2.

Note the following: openness of a union (or binary intersection) is no
less than that of the least open set; “whole carrier set” and “empty set”
are fully open; T ∈ L(A

X), consistent with the exponent in Loc-F2Top;
and the preimage of a subset from codomain is at least as open in domain
as the original subset was in codomain, modulo the shift by φop.

The forgetful functor F : Loc-F2Top→ Set× Loc2, given by

F (X,L,A, τ) = (X,L,A) , F (f, φ, ψ) = (f, φ, ψ) ,

is used to describe the categorical behavior of Loc-F2Top.

Theorem 6.1.7 (categorical properties of Loc-F2Top)[9].
(1) Each F -structured source [sink] in Set× Loc2 has a unique initial

[final] lift to Loc-F2Top.
(2) Loc-F2Top is topological over Set× Loc2 w.r.t. F.
(3) Loc-F2Top is complete and cocomplete.

We now come to the climax of this subsection: embedding Loc-TopSys
into Loc-F2Top; it will then follow that Loc-Top embeds into Loc-
F2Top.

Theorem 6.1.8. Loc-F2Top is a supercategory up to isomorphism of
Loc-TopSys. Specifically, F ∗� : Loc-TopSys→ Loc-F2Top, defined by

F ∗� (X,L,A,�) = (X,L,A, T�) ,
where T� : AX → L by

T� (u) =

{ ∧
x∈X � (x, u (x)) , u ̸= ⊥
⊤, u = ⊥ ,

and
F ∗� (f, φ, ψ) = (f, φ, ψ) ,

is a concrete functorial embedding.
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Note the degree of openness of u is the least degree to which every
point in X satisfies its degree of membership in u, showing that T� is an
extension of the τ� constructed by the embedding F� in Theorem 5.4.2
above, and therefore that F ∗� is an extension of F�, explaining the notation
“F ∗� ”. Thus we have in this situation a new satisfaction embedding. The
issue of F ∗� extending F� can be made more precise—namely it is the case,
using Theorems 6.1.4 and 6.1.8, that

F ∗� ◦ ETopSys = E∗Loc-Top ◦ F�,

where E∗Loc-Top : Loc-Top � Loc-TopSys by

(X,L, τ) 7→ (X,L, 2, χτ ) , (f, φ) 7→ (f, id2, φ) .

Is there a corresponding extension of the embedding Fk to a new em-
bedding of Loc-TopSys into Loc-F2Top? This is a question currently
under investigation by the authors.

Discussion 6.1.9 (cf. Discussion 5.4.7). Since Loc-TopSys and Loc-
F2Top share the same ground category Set× Loc2, and since F ∗� factors
forgetful functor W through forgetful functor F , so in the same manner
discussed in Discussion 5.4.7, the initial/final structures missing in Loc-
TopSys can be given in Loc-F2Top.

Discussion 6.1.10 (interweaving of algebra and topology). Hermann
Weyl is claimed to have said, “The house of mathematics is built upon the
twin pillars of algebra and topology.” Systems and spaces as considered
in this paper illustrate how these two pillars interweave and reinforce each
other. Categorically, we have from above:

Top, L-Top′s � TopSys � Loc-Top � Loc-TopSys � Loc-F2Top.

Using the categorical properties catalogued above, we metamathemati-
cally have

topology � algebra � topology � algebra � topology.

It is conjectured that this pattern continues indefinitely to the right.

6.2. Non-commutivity and generalized structures. In programming
applications, the conjunction of predicates is frequently not commutative.
This section briefly explores this issue. We begin with a motivating ex-
ample.

Example 6.2.1. Suppose there are two numerical variables x and y
in use. Traditional truth values are used, and the program in question
operates as follows:

• The variable y tells how many times a website has been looked
at, i.e., y holds a copy of the value in the website’s counter.
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• Whenever y is used in an expression, the website (which y counts)
is accessed or looked at before the value in y is used or read so
that y is always kept updated.
• Each time y is read, its value increases by one.
• The website is not accessed when conjunctions of predicates are

formed.
• Conjunctions of predicates are read in the order left-to-right; i.e.,

the conjunction P ∧Q is read in the order P , Q.

Now assume that the current value in x is 9 and in y is 8; i.e., x = 9, y = 8.
Now form the predicates P and Q as follows:

P : [x = y ] ; Q : [ y ≥ 10 ] .

(1) What is the truth value of P ∧Q? When P is read, the value of y
changes from 8 to 9; when Q is read, the value of y changes from
9 to 10; so that when P ∧Q is read, both P and Q are true, and
hence P ∧Q is true.

(2) Now what is the truth value of Q ∧ P, again assuming that x =
9, y = 8? When Q is read, the value of y changes from 8 to 9;
when P is read, the value of y changes from 9 to 10; so that when
Q ∧ P is read, Q (and P ) is false, so that Q ∧ P is false.

(3) So in this example, P ∧ Q and Q ∧ P are not equivalent—the
conjunction is sensitive to the order in which the predicates are
read.

In the preceding sections the “Lindenbaum algebra” of finite observa-
tional logic has been taken to be a frame; and in a frame, the conjunction
is modeled by the binary ∧, which is commutative. The above example
shows there is justification in having a structure in which the operation
modeling conjunction is not commutative; and hence, there is justification
in having a structure allowing for non-commutative cases.

There are several non-commutative approaches to systems: topologi-
cal systems as motivated by attachment relations and in which predicates
form residuated lattices [19, 20]; topological systems with predicates form-
ing algebraic varieties [71, 72, 73]; and Chu systems with predicates form-
ing “flat” sets [11].

The approach to topological systems outlined below is based on the
notion of a unital quantale [68, 24]; but it is only one of several gener-
alizations. Associated with such systems are “extent” topological spaces
with non-commutative topologies—topologies in which the intersection of
open sets need not be commutative. What recommends unital quantales
is that they need not have commutative tensor products to express con-
junctions, but they retain the infinite distributive laws which are part
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of finite observational logic, and hence are appropriate models of non-
commutative finite observational logic.

Definition 6.2.2 (unital quantales). A unital quantale (L,≤,⊗, e) com-
prises data subject to axioms as follows:

(1) (L,≤) is a complete lattice.
(2) ⊗ : L × L → L is an associative binary operation, called tensor

product, satisfying both left and right infinite distributive laws:
∀a ∈ L, ∀ {bγ}γ∈Γ ⊂ L,

a⊗

∨
γ∈Γ

bγ

 =
∨
γ∈Γ

(a⊗ bγ) ,

∨
γ∈Γ

bγ

⊗ a =
∨
γ∈Γ

(bγ ⊗ a) .

(3) e is a two-sided identity or unit for ⊗: ∀a ∈ L, a⊗ e = a = e⊗ a.
It should be noted that ⊥ is a two-sided annihilator or zero for ⊗:

∀a ∈ L, a⊗⊥ = ⊥ = ⊥⊗ a.

Definition 6.2.3 (category of unital quantales). The category UQuant
of unital quantales and unital quantalic mappings comprises data subject
to axioms as follows:

(1) Objects: Unital quantales as defined in 6.2.2 above.
(2) Morphisms: f : (L,≤,⊗1, e1) → (M,≤,⊗2, e2) , where f : L →

M is a mapping which preserves arbitrary
∨

and the tensors—
f ◦ ⊗1 = ⊗2 ◦ (f × f) and the units—f (e1) = e2.

(3) Composition, identities: from Set.
For convenience below, the opposite category UQuantop is denoted

LoUQuant, the prefix “Lo” motivated by Loc being the opposite cate-
gory of Frm.

Examples 6.2.4. Some example classes of unital quantales include the
following:

(1) L any frame with ⊗ the binary meet and e = ⊤. These are
commutative, unital quantales.

(2) L = [0, 1] with ⊗ any t-norm (e.g., ⊗ = ∧, multiplication, or
Łukasiewicz conjunction) and e = 1. These are also commutative,
unital quantales.

(3) Let L be any (join-)complete lattice, put

S (L) =
{
g : L→ L | g preserves arbitrary

∨}
,
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and equip S (L) with the point-wise order, with ⊗ as functional
composition ◦, and with e as idL. It should be noted that e is not
the top element 1 of S (L) defined as

1 (a) =

{
⊤, a > ⊥
⊥, a = ⊥ .

It can be shown that each (S (L) ,≤, ◦, idL) is a unital quantale,
which is usually non-commutative. It is also the case that L order-
embeds into S (L) via ηL : L→ S (L) defined by

ηL (a) (b) =

 a, |L| = 1{
a, b > ⊥
⊥, b = ⊥ , |L| ≥ 1

.

Detailed analysis of ηL and its role in relating UQuant to CS-
Lat(

∨
) are given in [65].

A category of topological systems based upon unital quantales can now
be given.

Definition 6.2.5 (quantale based topological systems). The category
LoUQuant-TopSys has ground category Set× LoUQuant2 and com-
prises data subject to axioms as follows:

(1) Objects: (X,L,A,�) , where (X,L,A) ∈
∣∣Set× LoUQuant2

∣∣ and
� : X × A → L is an (L-valued) satisfaction relation possessing
the arbitrary

∨
and ⊗ and unitary interchange laws:

∀x ∈ X, ∀ {aγ}γ∈Γ ⊂ A, �

x, ∨
γ ∈Γ

aγ

 =
∨
γ ∈Γ

� (x, aγ) ;

∀x ∈ X, ∀a, b ∈ A, � (x, a⊗ b) = � (x, a) ⊗ � (x, b) ,

∀x ∈ X, � (x, eA) = ⊤,
where ⊗ stands for the tensors on A and L, and eA is the unit for
the tensor on A.

(2) Morphisms: (f, φ, ψ) : (X,L,A,�1) → (Y,M,B,�2) , where
(f, φ, ψ) : (X,L,A) → (Y,M,B) in Set× LoUQuant2 and
(f, φ, ψ) satisfies adjointness:

∀b ∈ B, ∀x ∈ X, �1 (x, ψop (b)) = φop [ �2 (f (x) , b) ] .

(3) Composition, identities: from Set× LoUQuant2.

Discussion 6.2.6. The type of topology associated with topological
systems based on unital quantales can be explored by constructing the
appropriate notion of “extent” to mimic the relationship between Top-
Sys and Top. Such a notion of extent for systems from Loc-TopSys is
already available [9] which constructs the (adjoint) relationship between
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Loc-TopSys and Loc-Top. Let (X,L,A,�) ∈ |LoUQuant-TopSys| ,
and put

ext : A→ LX by ext (a) : X → L by ext (a) (x) = � (x, a) .

Then it can be shown that ext→ (A) is a subset of LX closed under arbi-
trary

∨
—a “union” condition and closed under tensor products (as lifted

to LX from L)—an “intersection condition”; it is also the case that eL
∈ ext→ (A), where

eL : X → L by eL (x) = eL.

It is also a consequence of the union condition that ⊥ ∈ ext→ (A) . To
summarize, ext→ (A) may be viewed as closed under arbitrary “unions”
and binary “intersections” and containing the “whole space” and “empty
set”, and hence it should viewed as a kind of topology and (X,L, ext→ (A))
as a kind of topological space. But these are topologies and spaces in
which the intersection need not be commutative. Such spaces have been
seen before, e.g., in [25, 62], in which are found spaces over complete quasi-
monoidal lattices, structures which need not have commutative tensor
products; but such structures need not be residuated and hence lack the
structure appropriate for topological systems.

Definition 6.2.7 (quantale based topologies). The category LoUQuant-
Top has ground category Set× LoUQuant and comprises data subject
to axioms as follows:

(1) Objects: (X,L, τ) , where (X,L) ∈ |Set× LoUQuant| and τ ⊂
LX is closed under arbitrary

∨
and tensor products and contains

eL.
(2) Morphisms: (f, φ) : (X,L, τ)→ (Y,M, σ) , where (f, φ) : (X,L)→

(Y,M) in Set× LoUQuant and ((f, φ)
←
)
→

(σ) ⊂ τ, i.e.,

∀v ∈ σ, (f, φ)← (v) ∈ τ.

(3) Composition, identities: from Set× LoUQuant.

The proofs of [62] can be adapted to show that LoUQuant-Top is
topological over Set× LoUQuant w.r.t. the expected forgetful functor.
Next, LoUQuant-Top embeds into LoUQuant-TopSys by a functor
analogous to ELoc-Top given in Theorem 6.1.4(2) above; and an adjoint
functor can be given which is based on the extent topologies and spaces
of Discussion 6.2.6 above. Finally, it is possible to again follow the pat-
tern begun in [62] of building variable-basis frameworks for Kubiak-Šostak
topologies and define a category LoUQuant-F2Top, analogous to Loc-
F2Top in Definition 6.1.6 above, into which LoUQuant-TopSys con-
cretely embeds.
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This subsection has focused on unital quantales; but much work re-
mains to be done to pin down the generalizations with greatest potential
for applications of topological systems.

6.3. Lattice-valued preorders and enriched/preordered topolog-
ical systems and topological spaces. A question from programming
arises: if bitstring x compares with bitstring y to some degree α, and if
bitstring y satisfies predicate a to some degree β, then how should the
possibility be mathematically modeled that bitstring x satisfies predicate
a to at least some degree related to both α and β? Many applications of
(partial) responses to this question might exist in data-mining, a field in
which pattern-matching is an important and commonly used method.

As discussed in [8, 12, 13], ideas from enriched categories over monoidal
categories address this question and enable pattern-matching techniques
to be extended to many-valued contexts. In particular, notions of en-
riched category theory naturally lead to the notion of L-valued preorders,
and then to topological systems enriched with frame-valued preorders and
associated extent spaces as enriched (or preordered) many-valued topolog-
ical spaces—the compatibility axioms for such systems and spaces allow
us to answer the programming question posed above. We summarize
these notions below and give an extensive inventory of example classes,
including programming examples, and an extensive discussion of examples
based on the L-spectrum of a locale outlined in Example 4.3.3 above.

A partially ordered set in which each finite subset has a greatest lower
bound, or meet, is a meet semilattice—it follows that such a poset has a
greatest or top element ⊤.

Definition 6.3.1. Let L be a meet semilattice. Then a set X has an
L-enrichment relation or L-(valued) preorder P on X if P satisfies:

P1. P : X ×X → L is a mapping (degrees of comparison).
P2. ∀x ∈ X, P (x, x) = ⊤ (total existence or reflexivity).
P3. ∀x, y, z ∈ X, P (x, y) ∧ P (y, z) ≤ P (x, z) (transitivity).

We may speak of (X,P ) as an L-enriched set—since it is an enriched
category over the moniodal category L—or more often as an L-preordered
set ; and (X,L, P ) is an enriched or preordered set, setting the stage for
subsequent variable-basis settings in which the base L may change from
set to set.

Definition 6.3.2 (category of frame-valued preordered sets). The cat-
egory Loc-PreSet has Set× Loc as a ground category and comprises
data subject to axioms as follows:

(1) Objects: (X,L, P ) , where L is a frame and (X,L, P ) is a pre-
ordered set.
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(2) Morphisms: (f, φ) : (X,L, P ) → (Y,M,Q) , where f : X → Y is
a mapping, φop : L←M is a frame morphism, and ∀x, y ∈ X,

P (x, y) ≤ φop [Q (f (x) , f (y))] .

Such morphisms are said to be enriched or order-preserving or
isotone.

(3) Compositions, identities: from Set× Loc.

Denote by Set× Loc (
∧
) the subcategory of Set× Loc in which, for

each morphism (f, φ) , φop preserves arbitrary
∧

as well as arbitrary
∨
,

and denote by Loc (
∧
)-PreSet the subcategory of Loc-PreSet having

ground category Set× Loc (
∧
) and in which, for each morphism (f, φ) ,

φop preserves arbitrary
∧

as well as arbitrary
∨
. It is shown in [12]

that Loc (
∧
)-PreSet is topological over Set× Loc (

∧
) with respect to

the expected forgetful functor, a result implying that Set× Loc (
∧
) has

no known degree of algebraicity over Set× Loc as well as generalizing
the fact [1] that the traditional category PreSet for preordered sets is
topological over Set with respect to the expected forgetful functor.

The next definition combines the notion of frame-valued preorders with
the variable-basis notion of topological systems embodied in Loc-TopSys
discussed in Subsection 6.1 above.

Definition 6.3.3 (enriched/preordered topological systems). PreTopSys
has ground category Loc-PreSet×Loc and comprises the following data
and axioms:

(1) Objects: ((X,L, P ) , A,�), or (X,L, P,A,�) , called enriched or
preordered topological systems, where:
(a) (X,L, P ) is a preordered set, A is a locale (ground condition);
(b) (X,L,A,�) is a topological system in Loc-TopSys, i.e., �

is an L-satisfaction relation on (X,A) satisfying both ar-
bitrary

∨
and finite ∧ interchange laws (topological system

condition);
(c) P and � are compatible, i.e., ∀x, y ∈ X, ∀a ∈ A,

P (x, y) ∧ � (y, a) ≤ � (x, a)

(compatibility condition).
(2) Morphisms: (f, φ, ψ) : ((X,L, P ) , A,�) → ((Y,M,Q) , B,�) ,

called isotone continuous functions, where:
(a) (f, φ) : (X,L, P ) → (Y,M,Q) is an isotone mapping, ψ :

A→ B is a localic morphism (ground condition);
(b) (f, φ, ψ) : (X,L,A,�)→ (Y,M,B,�) is a Loc-TopSys mor-

phism (continuity condition).
(3) Composition, identities: from Loc-PreSet× Loc.
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It is the compatibility condition in the above definition which addresses
the programming question posed at the beginning of this subsection.

Now let U : PreTopSys→ Loc-PreSet×Loc be the forgetful functor
given by

U (X,L, P,A,�) = (X,L, P,A) ,

U [(f, φ, ψ) : (X,L, P,A,�) → (Y,M,Q,B,�)] =

(f, φ, ψ) : (X,L, P,A) → (Y,M,Q,B) .

Theorem 6.3.4. PreTopSys is neither quasi-algebraic [12] nor essen-
tially topological nor existentially topological in the sense of [9] over Loc-
PreSet × Loc w.r.t. U ; and hence PreTopSys is neither essentially
algebraic nor topological over Loc-PreSet× Loc w.r.t. U.

This theorem suggests a comparison of PreTopSys with TopGrp,
which is neither algebraic nor topological over Set; but it is known that
TopGrp is essentially algebraic over Top and topological over Grp.
It is ongoing work of the authors to resolve the question of whether
PreTopSys can have a degree of algebraicity over one ground and a
degree of topologicity over another ground and identifying pairs of such
grounds; e.g., the authors are studying the behavior of PreTopSys over
Loc-PreSet and over Loc-TopSys. With regard to the latter category,
PreTopSys has an adjoint relationship given by the expected concrete
forgetful functor G : PreTopSys→ Loc-TopSys and its left adjoint and
embedding H : Loc-TopSys � PreTopSys constructed using the crisp
equality relation

E (x, y) =

{
⊤, x = y
⊥, x ̸= y

as the needed lattice-valued preorders; and H ⊣ G is an isoreflection.

Discussion 6.3.5 (motivation of lattice-valued preordered topologies).
As seen in Theorem 3.2.2 and Discussion 6.2.6, a type of topological sys-
tem is generally matched with a corresponding type of topological space
via the notion of extent. Recalling the notion of extent used in 6.2.6 for
unital quantales, we use this notion instantiated for frames and ⊗ = ∧,
the binary meet, to discover the kind of topological spaces associated
with preordered topological systems. Let (X,L, P,A,�) be a preordered
topological system, and recall ext : A→ LX given by

ext (a) : X → L by ext (a) (x) = � (x, a) .

Now let x, y ∈ X. Then the compatibility axiom for (X,L, P,A,�) states
that

P (x, y) ∧ � (y, a) ≤ � (x, a) ,
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and hence
P (x, y) ∧ ext (a) (y) ≤ ext (a) (x) .

Finally, it is noted that ext→ (A) is an L-topology on X and that its
images ext (a) are open sets. This leads to the next definition.

Definition 6.3.6 (category of preordered topological spaces). The cat-
egory PreTop of preordered topological spaces and isotone continuous
mappings has ground category Loc-PreSet and comprises the following
data and axioms:

(1) Objects: (X,L, P, τ) , where (X,L, P ) is a preordered set, (X,L, τ)
is a topological space in Loc-Top (5.2.1), and τ satisfies the com-
patibility axiom:

∀x, y ∈ X, ∀u ∈ τ, P (x, y) ∧ u (y) ≤ u (x) .

(2) Morphisms: (f, φ) : (X,L, P, τ) → (Y,M,Q, σ) , where (f, φ) :
(X,L, P ) → (Y,M,Q) is a Loc-PreSet morphism and (f, φ) :
(X,L, τ)→ (Y,M, σ) is a Loc-Top morphism.

(3) Composition, identities: from Loc-PreSet.

Theorem 6.3.7 [12]. PreTop is a topological category over Loc-PreSet
w.r.t. the expected forgetful functor.

In [12], many-valued specializations are considered in the context of
preordered topological spaces and it is shown that these preorders satisfy
a certain antisymmetry axiom if and only if the space is L-T0, a separation
axiom intrinsic to L-sobriety and the study of L-spectra (4.3.3 above) and
is the many-valued generalization of the traditional T0 axiom.

An inventory of example classes of preordered topological systems and
topological spaces closes out this subsection, preceded by an inventory of
enriched or preordered sets.

Example 6.3.8 (classes of many-valued preordered sets).
(1) Indiscrete Preordered Sets. Let X be a set and L be a meet

semilattice. Put P : X×X → L by P (x, y) = ⊤. Then (X,L, P )
is a preordered set which we call an indiscrete preordered set.

(2) Discrete Preordered Sets. Let X be a set and L be a meet semi-
lattice with |L| ≥ 2. Choose α ∈ L−{⊤} and put P : X×X → L
by

P (x, y) =

{
α, x ̸= y
⊤, x = y

.

Then (X,L, P ) is a preordered set which we call the α-discrete
preordered set.
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(3) Ultrametric Spaces. Let (X, d) be an ultrametric space (with
strengthened triangle inequality d(x, z) ≤ d(x, y)∨d(y, z)) bounded
by 1, and put P : X ×X → [0, 1] by

P (x, y) = 1− d (x, y) .

Then (X,L, P ) is a preordered set.
(4) Bitstring Based Examples. Consider two (countably) infinite bi-

nary bitstrings σ1, σ2 (of 0’s, 1’s), where, for n ∈ N,

σi (n) = bit in nth place,

and define a comparison bitstring P (σ1, σ2) as follows:

P (σ1, σ2) (n) =

{
1, σ1 (n) = σ2 (n)
0, σ1 (n) ̸= σ2 (n)

.

Let X = B = 2ω = {σ : σ is a countably infinite bitstring} equip-
ped with the pointwise ordering. Then B is a complete Boolean
algebra, and P : X × X → B as constructed above is a well-
defined mapping. Also, noting that ⊤ in B is the bitstring with
all 1’s, reflexivity follows since

∀σ ∈ X, P (σ, σ) = ⊤.

Further, letting σ1, σ2, σ3 ∈ X and n ∈ N, assume

P (σ1, σ2) (n) ∧ P (σ2, σ3) (n) = 1.

Then

σ1 (n) = σ2 (n) = σ3 (n) .

Hence

P (σ1, σ3) (n) = 1.
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Therefore transitivity follows since

P (σ1, σ2) ∧ P (σ2, σ3) ≤ P (σ1, σ3) .

And so (X,B, P ) is a preordered set.
(a) There are a number of variations on the construction of the

preceding class which each yield preordered sets. Keeping B
as before, X could be the set 2k of all finite length strings
of some specified length k, or the set 2∗ of all finite length
strings, or the set 2∗ω of all strings which are countable (finite
or infinite). To illustrate, suppose X is the set of all k-length
bitstrings, for some fixed k ∈ N; and put P : X ×X → B by

P (σ1, σ2) (n) =

 1, σ1 (n) = σ2 (n) and n ≤ k
0, σ1 (n) ̸= σ2 (n) and n ≤ k

1, n > k
.

Then (X,B, P ) is a preordered set.
(b) The previous two classes can be generalized to non-binary

string induced examples. Let Σ be an alphabet with |Σ| ≥ 2,
and let Σ∗ω be the set of all countable strings (both finite
and infinite) on Σ. Now let B be appropriately generalized
from above and put P : Σ∗ω × Σ∗ω → B as above. Then
(Σ∗ω,B, P ) is a preordered set.

(5) Locale Based Examples. Let L be a frame. For each locale A, put

PA : Lpt (A)× Lpt (A)→ L byPA (p, q) =
∧
a∈A

(q (a)→ p (a)) ,

where we recall the definition of the carrier set of the L-spectrum
from Example 4.3.3 above, namely, that

Lpt (A) =
{
p : A→ L | p preserves arbitrary

∨
and finite ∧

}
,

and where→ refers to Heyting residuation (α→ β ≥ γ ⇔ α∧γ ≤
β).
(a) (Lpt (A) , L, P ) is a preordered set. Reflexivity follows since

PA (p, p) =
∧
a∈A

(p (a)→ p (a)) =
∧
a∈A

⊤ = ⊤
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and transitivity follows since

PA (p, q) ∧ PA (q, r) =∧
a∈A

(q (a)→ p (a)) ∧
∧
b∈A

(r (b)→ q (b)) =∧
(a,b)∈A×A

[(q (a)→ p (a)) ∧ (r (b)→ q (b))] ≤

∧
a∈A

[(q (a)→ p (a)) ∧ (r (a)→ q (a))] =∧
a∈A

[(r (a)→ q (a)) ∧ (q (a)→ p (a))] ≤∧
a∈A

(r (a)→ p (a)) = PA (p, r) ,

where the transitivity of → is used in the next to last line.
(b) The question arises as to why the order of implication q (a)→

p (a) was chosen in the definition of PA and not p (a)→ q (a).
The chosen order is forced by the “compatibility condition”
imposed in subsequent sections on preordered topological
systems and preordered topological spaces, a condition which
specifically answers the programming question stated at the
beginning of this subsection.

(c) This example is of particular interest since it is fundamen-
tally related to specialization orders related to L-spectra of
locales.

(d) This example is also of particular interest when L is spa-
tial and A is non-spatial, since it is an L-preordered set not
generated from (preordered) topological spaces.

Example 6.3.9 (preordered topological systems and topological spaces).
(1) Fibres of Preordered Topologies. Let (X,L, P ) be a preordered

set with L a frame and consider the fibre T of all preordered
topologies on (X,L, P ) ordred by inclusion. Further, consider the
following families of L-valued subsets of X:

τmax =
{
u ∈ LX : ∀x, y ∈ X, P (x, y) ∧ u (y) ≤ u (x)

}
,

τl =
{
u ∈ LX : ∀x, y ∈ X, P (x, y) ∧ u (y) = P (x, y) ∧ u (x)

}
,

τr =
{
u ∈ LX : ∀x, y ∈ X, P (x, y) ∧ u (y) = P (y, x) ∧ u (x)

}
,

τconst =
{
u ∈ LX : ∀x, y ∈ X, P (x, y) ∧ u (y) = u (x)

}
,

τmin = {⊥,⊤} .
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Then the following hold:
(a) T is a complete lattice ordered by inclusion.
(b) τmax is the largest member of T and τmin is the smallest

member of T.
(c) ∀y ∈ X, put Py : X → L by Py (x) = P (x, y). Then
⟨⟨{Py : y ∈ X}⟩⟩ ⊂ τmax.

(d) τconst = {α : α ∈ L} ; τconst, τl, τr ∈ T; τconst ⊂ τl, τconst ⊂
τr, so that each of τconst, τl, τr, τmax is a stratified L-topology.

(e) Put τ =
{
u ∈ LX : ∀x, y ∈ X, P (u, x, y,R)

}
, where

P (u, x, y,R) is of the form
P (x, y) ∧ u (y) R rhs,

where the binary relationR on L is either = or≤, and rhs is a
string comprising any combination of u (x) , P (x, y) , P (y, x) ,
∧. Then τ is one of τconst, τl, τr, τmax.

(2) Preordered Spaces to Preordered Systems. Let (X,L, P, τ) be a
preordered topological space. Then (X,L, P, τ,�τ ) is a preordered
topological system, where

�τ (x, u) = u (x) .

(3) Preordered Systems from L-Spectra—see Example 6.3.8(5) above.
Let L be a frame and A be a locale. Then

(Lpt (A) , L, PA, A,�A)

is a preordered topological system, where Lpt (A) = Frm (A,L) ,

PA : Lpt (A)×Lpt (A)→ L by PA (p, q) =
∧

a∈A (q (a)→ p (a)) ,

and �A: Lpt (A)×A→ L is defined by

�A (p, a) = p (a) .

(4) Bitstring Based Preordered Topologies and Topological Systems
Not in (1) and (2) Above. It is possible for preordered sets
(Σ∗ω, P,B) in Example 6.3.8(4) to construct preordered topolo-
gies not listed in (1) above. For α ∈ Σ, put pα : Σ∗ω → B by

pα (σ) (n) =

{
1, σ (n) = α
0, σ (n) ̸= α

.

Let Q ⊂ BΣ∗ω by

Q =
{
pα1 ∧ ... ∧ pαk : k ∈ N, {αi}ki=1 ⊂ Σ

}
,

let
Q =

{∨
Q̂ : Q̂ ⊂ Q

}
.
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Then Q is a subframe of BΣ∗ω , i.e., Q is a B-topology on Σ∗ω;
in fact,

Q =
⟨⟨{

pα1 , ..., pαk : k ∈ N, {αi}ki=1 ⊂ Σ
}⟩⟩

.

Finally, put �Q: Σ∗ω ×Q→ B by

�Q (σ, q) = q (σ) .

It follows that (Σ∗ω, P,B,Q,�) is a preordered topological system
by Theorem 7.4 of [12].

7. Acknowledgements

Appreciation is expressed to the organizers of the 27th Summer Confer-
ence on General Topology and Its Applications (25–28 July 2012) held
on the campus of Minnesota State University (Mankato), especially to
Profs. L. M. Brown and S. Matthews and the asymmetric topology group
for their generous invitation to the third author of this paper to give the
plenary lecture listed in [67] to which this paper is related. Thanks are
extended to Prof. Brian Martensen, the Department of Mathematics at
MSU, and his team for accommodations and generous hospitality. Finally,
we thank the National Science Foundation, Topology Proceedings, and the
latter’s editor, Prof. M. Tuncali, for their help and support, as well as
the referee for his/her comments which improved the paper.

References

[1] J. Adámek, H. Herrlich, G. E. Strecker, Abstract and Concrete Categories, second
edition, Dover Publications (New York, 2009).

[2] M. Barr, ∗-Autonomous Categories, Lecture Notes in Mathematics 752 (1979),
Springer-Verlag (Berlin/Heidelberg/New York).

[3] T. S. Blyth, Sur certaines images homomorphes des demi-groupes ordonnés, Bull.
Soc. Math. France 94 (1970), 101–111.

[4] F. Bayoumi, S. E. Rodabaugh, Overview and comparison of localic and fixed-basis
topological products, Fuzzy Sets and Systems 161 (2010), 2397–2439 (Elsevier
B.V., doi:10.1016/j.fss.2010.05.013).

[5] N. Bourbaki, Topologie Générale, Actualités Sci. Ind. 1084 (Paris, 1949) / Her-
mann Press (Paris, 1965).

[6] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182–190.
[7] J. T. Denniston, S. E. Rodabaugh, Functorial relationships between lattice-valued

topology and topological systems, Quaestiones Mathematicae 32:2 (2009), 139–
186.

[8] J. T. Denniston, A. Melton, S. E. Rodabaugh, Enriched topological systems and
variable-basis enriched functors, in U. Höhle, L. N. Stout, E. P. Klement, Enriched
Category Theory and Related Topics: Abstracts of 33rd Linz Seminar (14–18 Feb-
ruary 2012), Universitätsdirecktion Johannes Kepler Universität (Linz, Austria),
16–20.



154 J. T. DENNISON, A. MELTON, AND S. E. RODABAUGH

[9] , Interweaving algebra and topology: Lattice-valued topological systems,
Fuzzy Sets and Systems 192 (2012), 58–103.

[10] , Formal concept analysis and lattice-valued Chu systems, Fuzzy Sets and
Systems, 216 (2013), 52–90.

[11] , Lattice-valued predicate transformers, Chu games, and lattice-valued
transformer systems, in submission.

[12] , Enriched topological systems, enriched topologies, and variable-basis en-
riched functors, in submission.

[13] J. T. Denniston, A. Melton, S. E. Rodabaugh, S. A. Solovjovs, Lattice-valued
preordered sets as lattice-valued topological systems, in Radko Mesiar, Endre Pap,
E. P. Klement, Non-Classical Measures and Integrals, Abstracts of 34rd Linz
Seminar (26 February – 2 March 2013), Universitätsdirecktion Johannes Kepler
Universität (Linz, Austria), 28–34.

[14] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall: Engelwood (Cliffs,
New Jersey, 1976).

[15] C. H. Dowker, D. Papert, On Urysohn’s lemma, General Topology and Its Relation
to Modern Analysis and Algebra II (1967), 111–114, Academia (Prague).

[16] M. Fourman, D. S. Scott, Sheaves and logic, Applications of Sheaves: Lecture
Notes in Mathematics 753 (1979), 302–401, Springer-Verlag (Berlin, Heidelberg,
New York).

[17] T. E. Gantner, R. C. Steinlage, and R. H. Warren, Compactness in fuzzy topolog-
ical spaces, J. Math. Anal. Appl. 62 (1978), 547–562.

[18] J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967), 145–167.
[19] C. Guido, Attachment between fuzzy points and fuzzy sets, in U. Bodenhofer, B. De

Baets, E. P. Klement, Abstracts of the 30th Linz Seminar, Universitätsdirektion
Johannes Kepler Universität, Linz, Austria, 3–7 February 2009, pp. 52–54.

[20] , Fuzzy points and attachment, Fuzzy Sets and Systems 161:16 (2010),
2150–2165.

[21] U. Höhle, Uppersemicontinuous fuzzy sets and applications, J. Math. Anal. Appl.
78 (1980), 659–673.

[22] , Fuzzy topologies and topological space objects in a topos, Fuzzy Sets and
Systems 19 (1986), 299–304.

[23] , Presheaves over GL-monoids, in U. Höhle, E. P. Klement, Non-Classical
Logics and their Applications to Fuzzy Subsets: Theory and Decision Library:
Series B: Mathematical and Statistical Methods 32 (1995), Kluwer Academic
Publishers (Boston, Dordrecht, London), pp. 127–158.

[24] U. Höhle, T. Kubiak, A non-commutative and non-idempotent theory of quantale
sets, Fuzzy Sets and Systems 166 (2011), 1–43.

[25] U. Höhle and A. Šostak, Axiomatic foundations of fixed-basis fuzzy topology, in:
U. Höhle, S. E. Rodabaugh, Mathematics Of Fuzzy Sets: Logic, Topology, And
Measure Theory, The Handbooks of Fuzzy Sets Series 3(1999), 123–272 (Chapter
3), Springer Verlag / Kluwer Academic Publishers.

[26] B. Hutton, Normality in fuzzy topological spaces, J. Math. Anal. Appl. 50 (1975),
74–79.

[27] B. Hutton and I. Reilly, Separation axioms in fuzzy topological spaces, Fuzzy Sets
and Systems 3 (1980), 93–104.

[28] J. R. Isbell, Atomless parts of spaces, Math. Scand.31 (1972), 5–32.
[29] P. T. Johnstone, Stone Spaces, Cambridge University Press (Cambridge, 1982).
[30] J. L. Kelley, General Topology, Van Nostrand (New York, 1955).



SEMANTICS TO SYSTEMS TO LATTICE-VALUED TOPOLOGY 155

[31] G. M. Kelly, Basic Concepts of Enriched Category Theory, Reprints in Theory
and Applications of Categories 10 (2005).

[32] W. Kotzé, Lattice morphisms, sobriety, and Urysohn Lemmas, in: S. E. Rod-
abaugh, E. P. Klement, and U. Höhle, Applications of Category Theory to Fuzzy
Subsets: Series B: Mathematical and Statistical Methods 14 (1992), 257–274
(Chapter 10), Kluwer Academic Publishers (Boston/Dordrecht/London).

[33] , Lifting of sobriety concepts with particular reference to (L,M)-
topological spaces, in: S. E. Rodabaugh, E. P. Klement, Topological And Al-
gebraic Structures in Fuzzy Sets: A Handbook of Recent Developments in the
Mathematics of Fuzzy Sets, Trends in Logic 20 (2003), 415–426 (Chapter 16),
Kluwer Academic Publishers (Boston, Dordrecht, London).

[34] T. Kubiak, On Fuzzy Topologies, Ph.D. dissertation, Adam Mickiewicz University,
Poznan (Poland), 1985.

[35] , L-fuzzy normal spaces and Tiezte extension theorem, J. Math. Anal.
Appl. 125 (1987), 141–153.

[36] , The topological modification of the L-fuzzy unit interval, in: S. E. Rod-
abaugh, E. P. Klement, and U. Höhle, Applications of Category Theory to Fuzzy
Subsets: Series B: Mathematical and Statistical Methods 14 (1992), 275–305
(Chapter 11), Kluwer Academic Publishers (Boston/Dordrecht/London).

[37] , Separation axioms: extension of mappings and embedding of spaces, in:
U. Höhle, S. E. Rodabaugh, Mathematics Of Fuzzy Sets: Logic, Topology, And
Measure Theory: The Handbooks of Fuzzy Sets Series 3 (1999), 433–480 (Chapter
6), Springer Verlag / Kluwer Academic Publishers.

[38] , Fuzzy reals: topological results surveyed, Brouwer fixed point theorem,
open questions, in: S. E. Rodabaugh, E. P. Klement, Topological And Algebraic
Structures in Fuzzy Sets: A Handbook of Recent Developments in the Mathe-
matics of Fuzzy Sets, Trends in Logic 20 (2003), 137–151 (Chapter 5), Kluwer
Academic Publishers (Boston, Dordrecht, London).

[39] T. Kubiak, A. Šostak, Lower set-valued fuzzy topologies, Quaestiones Mathemat-
icae 20:3 (1997), 423–429.

[40] H. Lai, D. Zhang, Fuzzy preorder and fuzzy topology, Fuzzy Sets and Systems 157
(2006), 1865–1885.

[41] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl.
56 (1976), 621–633.

[42] S. Mac Lane, Categories for the Working Mathematician, second edition, Grad-
uate Texts in Mathematics 5 (1998), Springer Verlag (Berlin, Heidelberg, New
York).

[43] H. W. Martin, Weakly induced fuzzy topological spaces, J. Math. Anal. Appl. 78
(1980), 634–639.

[44] G. H. J. Meßner, Sobriety of R (L) , chapter in draft of Ph.D. thesis, 1987, Jo-
hannes Kepler Universität (Linz, Austria).

[45] C. J. Mulvey, On the geometry of choice, in: S. E. Rodabaugh, E. P. Klement,
Topological And Algebraic Structures in Fuzzy Sets: A Handbook of Recent De-
velopments in the Mathematics of Fuzzy Sets, Trends in Logic 20 (2003), 309–336
(Chapter 11), Kluwer Academic Publishers (Boston, Dordrecht, London).

[46] D. Papert and S. Papert, Sur les treillis des ouverts et les paratopologiqies, Sémi-
naire Ehresmann (topologie et géometrie differentielle), Ire anneé (1957–1958),
exposé 1.

[47] Q. Pu, D. Zhang, Preordered sets valued in a GL-monoid, Fuzzy Sets and Systems
187 (2012), 1–32.



156 J. T. DENNISON, A. MELTON, AND S. E. RODABAUGH

[48] A. Pultr, S. E. Rodabaugh, Lattice-valued frames, functor categories, and classes
of sober spaces, in: S. E. Rodabaugh, E. P. Klement, Topological And Algebraic
Structures in Fuzzy Sets: A Handbook of Recent Developments in the Mathe-
matics of Fuzzy Sets, Trends in Logic 20 (2003), 153–187 (Chapter 6), Kluwer
Academic Publishers (Boston, Dordrecht, London).

[49] , Examples for different sobrieties in fixed-basis topology, in: S. E. Rod-
abaugh, E. P. Klement, Topological And Algebraic Structures in Fuzzy Sets: A
Handbook of Recent Developments in the Mathematics of Fuzzy Sets, Trends in
Logic 20 (2003), 427–440 (Chapter 17), Kluwer Academic Publishers (Boston,
Dordrecht, London).

[50] , Category theoretic aspects of chain-valued frames: Part I: Categorical
and presheaf theoretic foundations / Part II: Applications to lattice-valued topol-
ogy, Fuzzy Sets and Systems 159:5 (2008), 501–528 / 529–558.

[51] S. E. Rodabaugh, A categorical accommodation of various notions of fuzzy topol-
ogy, Fuzzy Sets and Systems 9 (1983), 241–265. Preliminary report, in: E. P.
Klement, Proceedings of the Third International Seminar on Fuzzy Set Theory 3
(1981), 119–152, Johannes Kepler Universitätsdirektion (Linz, Austria).

[52] , Separation axioms and the L-fuzzy real lines, Fuzzy Sets and Systems
11 (1983), 163–183.

[53] , A point-set lattice-theoretic framework T for topology which contains Loc
as a subcategory of singleton subspaces and in which there are general classes of
Stone Representation and Compactification Theorems, First printing February
1986, Second printing April 1987, Youngstown State University Printing Office
(Youngstown, Ohio(USA)).

[54] , Dynamic topologies and their applications to crisp topologies, fuzzifica-
tion of crisp topologies, and fuzzy topologies on the crisp real line, J. Math. Anal.
Appl. 131 (1988), 25–66.

[55] , Lowen, para-Lowen, and α-level functors and fuzzy topologies on the
crisp real line, J. Math. Anal. Appl. 131 (1988), 157–169.

[56] , Point-set lattice-theoretic topology, Fuzzy Sets and Systems 40 (1991),
297–345.

[57] , Necessity of Chang-Goguen topologies, Rend. Circolo Mat. Palermo
(Suppl: Ser. II) 29 (1992), 299–314.

[58] , Categorical frameworks for Stone representation theories, in: S. E. Rod-
abaugh, E. P. Klement, and U. Höhle, Applications of Category Theory to Fuzzy
Subsets: Series B: Mathematical and Statistical Methods 14 (1992), 177–231
(Chapter 7), Kluwer Academic Publishers (Boston/Dordrecht/London).

[59] , Applications of localic separation axioms, compactness axioms, represen-
tations, and compactifications to poslat topological spaces, Fuzzy Sets and Systems
73 (1995), 55–87.

[60] , Powerset operator based foundation for point-set lattice-theoretic (poslat)
fuzzy set theories and topologies, Quaestiones Mathematicae 20:3 (1997), 463–530.

[61] , Powerset operator foundations for poslat fuzzy set theories and topologies,
in: U. Höhle, S. E. Rodabaugh, Mathematics Of Fuzzy Sets: Logic, Topology, And
Measure Theory, The Handbooks of Fuzzy Sets Series 3 (1999), 91–116 (Chapter
2), Springer Verlag / Kluwer Academic Publishers.

[62] , Categorical foundations of variable-basis fuzzy topology, in: U. Höhle,
S. E. Rodabaugh, Mathematics Of Fuzzy Sets: Logic, Topology, And Measure
Theory: The Handbooks of Fuzzy Sets Series 3 (1999), 273–388 (Chapter 4),
Springer Verlag / Kluwer Academic Publishers.



SEMANTICS TO SYSTEMS TO LATTICE-VALUED TOPOLOGY 157

[63] , Separation axioms: representation theorems, compactness, compactifica-
tions in: U. Höhle, S. E. Rodabaugh, Mathematics Of Fuzzy Sets: Logic, Topol-
ogy, And Measure Theory: The Handbooks of Fuzzy Sets Series 3 (1999), 481–552
(Chapter 7), Springer Verlag / Kluwer Academic Publishers.

[64] , Fuzzy real lines and dual real lines as poslat topological, uniform, and
metric ordered semirings with unity, in: U. Höhle, S. E. Rodabaugh, Mathematics
Of Fuzzy Sets: Logic, Topology, And Measure Theory: The Handbooks of Fuzzy
Sets Series 3 (1999), 607–632 (Chapter 10), Springer Verlag / Kluwer Academic
Publishers.

[65] , Relationship of algebraic theories to powerset theories and fuzzy topo-
logical theories for lattice-valued mathematics, International Journal of Math-
ematics and Mathematical Sciences 2007:3, Article ID 43645, 71 pp., doi:
10.1155/2007/43645, ⟨http://www.hindwai.com/gearticle.aspx?⟩.

[66] , Necessity of non-stratified and anti-stratified spaces in lattice-valued
topology, Fuzzy Sets and Systems 161 (2010), 1253–1269.

[67] , Programming semantics, topological systems, and lattice-valued topology,
27th Summer Conference on General Topology and Its Applications, 25–28 July
2012, Minnesota State University (Mankato, Minnesota).

[68] K. I. Rosenthal, Quantales and Their Applications, Pitman Research Notes in
Mathematics 234 (1990), Pitman (Longman/Burnt Mill/Harlow).

[69] S. Shenoi, A. Melton, Proximity relations in the fuzzy relational database model,
Fuzzy Sets and Systems 31 (1989), 285–296.

[70] M. Smyth, Powerdomains and predicate transformers: a topological view, Au-
tomata, Languages, and Programming, Lecture Notes in Computer Science, 154
(1983) 662–675, Springer-Verlag (Berlin/Heidelberg/New York).

[71] S. A. Solovjovs, Embedding topology into algebra, in U. Bodenhofer, B, De Baets,
E. P. Klement, Abstracts of the 30th Linz Seminar (37 February 2009), Univer-
sitätsdirecktion Johannes Kepler Universität (Linz, Austria), 106–110.

[72] , Variable-basis topological systems versus variable-basis topological spaces,
Soft Computing 14:10 (2010), 1059–1068.

[73] , Categorical foundations of variety-based topology and topological systems,
Fuzzy Sets and Systems, to appear.

[74] A. P. Šostak, On a fuzzy topological structure, Rendiconti Circolo Matematico
Palermo (Suppl: Serie II) 11 (1985) 89–103.

[75] S. J. Vickers, Topology Via Logic, Cambridge University Press (Cambridge, 1989).
[76] W. Yao, F.-G. Shi, A note on specialization L-preorder of L-topological spaces,

L-fuzzifying topological spaces, and L-fuzzy topological spaces, Fuzzy Sets and
Systems 159 (2008), 2586–2595.

[77] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.

(Denniston) Department of Mathematical Sciences,
(Melton) Departments of Computer Science and Mathematical Sciences,
Kent State University, Kent, Ohio, USA 44242
E-mail address: jdennist@kent.edu

E-mail address: amelton@kent.edu

(Rodabaugh) College of Science, Technology, Engineering, Mathemat-
ics (STEM), Youngstown State University, Youngstown, OH, USA,
44555-3347
E-mail address: serodabaugh@ysu.edu


