

http://topology.auburn.edu/tp/

Function spaces and D-property

by

R. Rojas-Hernández

Electronically published on September 19, 2013

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

FUNCTION SPACES AND D-PROPERTY

R. ROJAS-HERNÁNDEZ

ABSTRACT. In this article we introduce the notion of monotonically retractable space and we show that: (1) $C_p(X)$ is Lindelöf and a *D*-space whenever *X* is monotonically retractable. (2) If *X* is monotonically retractable then $C_{p,2n}(X)$ is monotonically retractable for any $n \in \omega$. (3) Any first countable countably compact subspace of an ordinal is monotonically retractable. (4) Every closed subspace of a Σ -product of cosmic spaces is monotonically retractable.

As a consequence of these results we conclude that $C_{p,2n+1}(X)$ is Lindelöf and has the *D*-property for any $n \in \omega$, whenever X is a first countable countably compact subspace of an ordinal; this answers a question posed by Tkachuk in [15].

1. INTRODUCTION

The notion of *D*-space is due to van Douwen, first studied with Pfeffer in [3]. The question whether every regular Lindelöf space is *D* has been attributed to van Douwen [6]. There are no consistency results in either direction even for hereditarily Lindelöf spaces. In [12], assuming \diamond , an example of a hereditarily Lindelöf T_2 -space that is not a *D*-space was constructed. The example also has the property that any of its finite powers is Lindelöf, but is not known if it can be made regular. The concept of a *D*-space was studied a great deal ever since in almost every context and C_p -theory was not an exception. However, the C_p -version of the question of van Douwen and Pfeffer remains open. Indeed, it is not known if $C_p(X)$ is a *D*-space whenever it is Lindelöf [4].

^{©2013} Topology Proceedings.

²⁰¹⁰ Mathematics Subject Classification. Primary 54C35, 54D20; Secondary 54C15.

Key words and phrases. D-space, Lindelöf space, monotonically retractable space, Sokolov space, Σ -product, function space.

Research supported by PAPIIT grant No. IN-115312 and CONACyT scholarship for Doctoral Students.

It is easy to see that the ordinal space ω_1 embeds in a Σ -product of real lines as a closed subspace, so the results in [7] are applicable to prove that $C_p(\omega_1)$ is Lindelöf. Buzyakova generalized this result in [2] establishing that, for any first countable countably compact subspace X of an ordinal, the space $C_p(X)$ is Lindelöf. In the same paper Buzyakova asked whether $C_p(X)$ has to be a D-space if X is a countably compact first countable subspace of an ordinal. Peng showed in [8] that the answer to Buzyakova's question is positive. On the other hand, it was established by Tkachuk in [15] that if X is a first countable countably compact subspace of an ordinal then X is a Sokolov space. It follows from general properties of Sokolov spaces that for any first countable countably compact subspace X of an ordinal, the spaces $(C_p(X))^{\omega}$ and $C_p(X^{\omega})$ are Lindelöf and the iterated function space $C_{p,2n+1}(X)$ is Lindelöf for any $n \in \omega$. Also, using the same technique, Tkachuk gave a new method of proof of Peng's result which answered the question of Buzyakova.

It follows from the above results that: if X is a first countable countably compact subspace of an ordinal, then $C_p(X)$ is a D-space and $Y = C_p(C_p(C_p(X)))$ is a Lindelöf space and a Sokolov space. Tkachuk asked in [15] whether Y is a D-space.

In this paper we introduce the notion of monotone retractability and it is proved that this property is preserved under retracts, countable free topological sums, σ -products, Σ -products, and Σ_s -products. Our main results are the following: $C_p(X)$ is Lindelöf and has the *D*-property whenever X is monotonically retractable, and if X is monotonically retractable then $C_p(C_p(X))$ is monotonically retractable. We also prove that any first countable countably compact subspace of an ordinal is monotonically retractable. As a consequence, if X is a first countable countably compact subspace of an ordinal, then the spaces $(C_p(X))^{\omega}$ and $C_p(X^{\omega})$ are Lindelöf and D-spaces and the iterated function space $C_{p,2n+1}(X)$ is Lindelöf and has the *D*-property for any $n \in \omega$. This answers the above question of Tkachuk in the affirmative. Furthermore, we prove that any closed subspace of a Σ -product of cosmic spaces is monotonically retractable. In particular, any Corson compact space is monotonically retractable. Finally, we will deal with the class of Sokolov spaces. The Sokolov spaces constitute a wide class systematically studied in [13]. It is known that: if X is a Sokolov space with $t^*(X) \leq \omega$ then $C_{p,2n+1}(X)$ is Lindelöf for any $n \in \omega$, if X is a first countable countably compact subspace of an ordinal then X is a Sokolov space, and any closed subspace of a Σ -product of cosmic spaces is Sokolov. So, it will be interesting to clarify the relationship between monotonically retractable spaces and Sokolov spaces. We give an example of a compact scattered Sokolov space of countable tightness which is not monotonically retractable.

2. NOTATION AND TERMINOLOGY

The letters α , β and γ represent ordinal numbers and the letters κ and λ represent infinite cardinal numbers; ω is the first infinite cardinal. All spaces are assumed to be Tychonoff. Given a space X, the family $\tau(X)$ is its topology; if $x \in X$, then $\tau(x, X) = \{U \in \tau(X) : x \in U\}$; besides, for any set $A \subset X$, we will need the family $\tau(A, X) = \{U \in \tau(X) : A \subset U\}$. We denote by \mathbb{R} the real line with its natural topology. From now on we will fix a countable base $\mathcal{B}(\mathbb{R})$ for the usual topology in the set of real numbers \mathbb{R} .

For a subset A of a topological space X, $cl_X(A)$ is the closure of A in X. If there is no possibility of confusion, we will simply write cl(A)instead of $cl_X(A)$.

The *network weight* nw(X) of a space X is the minimal cardinality of a network in X. A space that has a countable network is called *cosmic*.

For any spaces X and Y the set C(X, Y) consists of continuous functions from X to Y; if it has the topology induced from Y^X then the corresponding space is denoted by $C_p(X, Y)$. We write C(X) instead of $C(X, \mathbb{R})$ and $C_p(X)$ instead of $C_p(X, \mathbb{R})$. Given a space X let $C_{p,0}(X) =$ X and $C_{p,n+1}(X) = C_p(C_{p,n}(X))$ for all $n \in \omega$, i.e., $C_{p,n}(X)$ is the *n*-th iterated function space of X.

Let $f: X \to Y$ be a continuous function between the spaces X and Y. The *dual function* $f^*: C_p(Y) \to C_p(X)$ is defined as follows: if $g \in C_p(Y)$, then $f^*(g) = g \circ f$.

Let Y be a subspace of X. By π_Y we denote the function from $C_p(X)$ to $C_p(Y)$ which restricts each element in $C_p(X)$ to Y; that is, $\pi_Y(f) = f \upharpoonright Y$.

If $X = \prod \{X_t : t \in T\}$ is a topological product, we denote by X_E the product $\prod \{X_t : t \in E\}$ for each $E \subset T$. Moreover, if $t \in T$ and $E \subset T$, then p_t and p_E denote the natural projections onto X_t and X_E , respectively.

A continuous map $f: X \to Y$ is called \mathbb{R} -quotient if, for any $g: Y \to \mathbb{R}$, the continuity of $g \circ f$ implies continuity of g.

Say that X is a Sokolov space if for any sequence $\{F_n : n \in \mathbb{N}\}\$ where F_n is a closed subset of X^n for each $n \in \mathbb{N}$, there exists a continuous map $\varphi : X \to X$ such that $\varphi(X)$ is cosmic and $\varphi^n(F_n) \subset F_n$ for all $n \in \mathbb{N}$, the map $\varphi^n : X^n \to X^n$ is the *n*-th power of φ .

A function ϕ defined on a space X is a *neighborhood assignment* on X if, for any $x \in X$, the set $\phi(x)$ is an open neighborhood of the point x; let $\phi(A) = \bigcup \{\phi(x) : x \in A\}$ for every $A \subset X$. Call X a *D*-space if, for any neighborhood assignment ϕ on the space X, there exists a closed discrete subspace $D \subset X$ such that $\phi(D) = X$. Let a^* be a point in $X = \prod \{X_t : t \in T\}$. For $x \in X$ let us set $\operatorname{supp}(x) = \{t \in T : x(t) \neq a^*(t)\}$. The subspace $\{x \in X : |\operatorname{supp}(x)| \leq \omega\}$ of X is called the Σ -product of the family $\{X_t : t \in T\}$ centered at the point a^* .

For those concepts and notations which appear in this article without a definition, consult [14] and [5].

3. MONOTONICALLY RETRACTABLE SPACES

Given a set A in a space X say that a family \mathcal{N} of subsets of X is an *external network* of A in X if for any $x \in A$ and $U \in \tau(x, X)$ there exists $N \in \mathcal{N}$ such that $x \in N \subset U$.

Let \mathcal{N} be a family of subsets of X and let f be a function from X onto Y. We say that \mathcal{N} is a *network for* Y *modulo* f if for every $x \in X$ and each $U \in \tau(f(x), Y)$ there is $N \in \mathcal{N}$ such that $x \in N$ and $f(N) \subset U$.

Remark 3.1. Let f be a function from X onto Y and let \mathcal{N} be a family of subsets of X which is a network for Y modulo f. Then:

- (1) $f(\mathcal{N})$ is a network for Y.
- (2) If g is a continuous function from Y onto Z, then \mathcal{N} is a network for Z modulo $g \circ f$.
- (3) If D is a subset of X with $D \cap N \neq \emptyset$ for any $N \in \mathcal{N}$, then f(D) is a dense subset of Y.
- (4) If $Z \subset X$ then $\{N \cap Z : N \in \mathcal{N}\}$ is a network for f(Z) modulo $f \upharpoonright Z$.

Given a family \mathcal{A} of subsets of X, a family \mathcal{B} of subsets of Y and $\psi : \mathcal{A} \to \mathcal{B}$; we say that ψ is ω -monotone if:

- (1) $\psi(A)$ is countable whenever A is countable;
- (2) if $A, B \in \mathcal{A}$ and $A \subset B$ then $\psi(A) \subset \psi(B)$;
- (3) if $\{A_n : n \in \omega\} \subset \mathcal{A}$ and $A_n \subset A_{n+1}$ for any $n \in \omega$ then $\psi(\bigcup\{A_n : n \in \omega\}) = \bigcup\{\psi(A_n) : n \in \omega\}.$

Remark 3.2. Let \mathcal{A} , \mathcal{B} and \mathcal{C} be families of subsets of X, Y and Z, respectively.

- (1) If $\psi : \mathcal{A} \to \mathcal{B}$ and $\varphi : \mathcal{B} \to \mathcal{C}$ are ω -monotone, then $\varphi \circ \psi$ is ω -monotone.
- (2) Suppose that \mathcal{A} is closed under countable unions and that the assignment $\psi : \mathcal{A} \to \mathcal{A}$ is ω -monotone. If for each $A \in \mathcal{A}$ we choose $\varphi(A) = \bigcup \{ \psi_n(A) : n \in \omega \}$, where $\psi_0(A) = A$ and $\psi_{n+1}(A) = \psi_n(A) \cup \psi(\psi_n(A))$ for each $n \in \omega$, then the assignment φ is ω -monotone.

For subsets E_1, \ldots, E_n of a space X and subsets U_1, \ldots, U_n of \mathbb{R} , we will use the symbol $[E_1, \ldots, E_n; U_1, \ldots, U_n]$ to denote the set $\{f \in C_p(X) : f(E_i) \subset U_i \text{ for } i = 1, \ldots, n\}$. If \mathcal{E} is a family of subsets of X, then $\mathcal{W}(\mathcal{E})$ will be the family of all the sets of the form $[E_1, \ldots, E_n; B_1, \ldots, B_n]$ where $E_1, \ldots, E_n \in \mathcal{E}, B_1, \ldots, B_n \in \mathcal{B}(\mathbb{R})$ and $n \in \omega$.

Remark 3.3. The assignment $\mathcal{E} \to \mathcal{W}(\mathcal{E})$ is ω -monotone.

Definition 3.4. Say that a space X is monotonically retractable if for any countable set $A \subset X$ we can assign K(A), r(A) and $\mathcal{N}(A)$ in such a form that: $A \subset K(A) \subset X$, $r(A) : X \to K(A)$ is a continuous retraction, $\mathcal{N}(A)$ is a family of subsets of X which is a network for K(A) modulo r(A), and the assignment \mathcal{N} is ω -monotone.

Remark 3.5. By Remark 3.1 (1), the space K(A) in the above definition has countable network weight; indeed $\{r(A)(N) : N \in \mathcal{N}(A)\}$ is a network for K(A).

Proposition 3.6. A space X is monotonically retractable if and only if for any countable set $A \subset X$ we can assign L(A), s(A) and $\mathcal{O}(A)$ in such a form that: $A \subset L(A) \subset X$, $s(A) : X \to L(A)$ is a continuous and onto function such that s(A)(x) = x for any $x \in A$, $\mathcal{O}(A)$ is a family of subsets of X which is a network for L(A) modulo s(A), and the assignment \mathcal{O} is ω -monotone.

Proof. Clearly, a monotonically retractable space satisfies the conditions in the proposition. Suppose that for any countable set $A \subset X$ it is possible to assign L(A), s(A), and $\mathcal{O}(A)$ as in the proposition, we shall prove that X is monotonically retractable. Let $\mathcal{O}(X) = \bigcup \{\mathcal{O}(A) :$ A is a countable subset of X}. We can suppose that all the elements of $\mathcal{O}(X)$ are non-empty. For any set $N \in \mathcal{O}(X)$ fix a point $x_N \in N$. If A is a countable subset of X let $\mathcal{E}(A) = \{x_N : N \in \mathcal{O}(A)\}$. Let us observe that the assignment \mathcal{E} is ω -monotone.

Let A be a countable subset of X. Choose $D_0(A) = A$. If for some $n \in \omega$ we have defined $D_0(A), \ldots, D_n(A)$, let $D_{n+1}(A) = D_n(A) \cup \mathcal{E}(D_n(A))$. Let $\mathcal{D}(A) = \bigcup \{D_n(A) : n \in \omega\}$, $r(A) = s(\mathcal{D}(A))$, $K(A) = r(A)(X) = L(\mathcal{D}(A))$, and $\mathcal{N}(A) = \mathcal{O}(\mathcal{D}(A))$. First, let us observe that $A = r(A)(A) \subset K(A) \subset X$ and $\mathcal{N}(A)$ is a network for K(A) modulo r(A). Notice that $\mathcal{E}(\mathcal{D}(A)) = \mathcal{E}(\bigcup \{D_n(A) : n \in \omega\}) = \bigcup \{\mathcal{E}(D_n(A)) : n \in \omega\} \subset \bigcup \{D_{n+1}(A) : n \in \omega\} \subset \mathcal{D}(A)$. Since $\mathcal{E}(\mathcal{D}(A)) = \{x_N : N \in \mathcal{O}(\mathcal{D}(A))\} = \{x_N : N \in \mathcal{N}(A)\}$, we conclude that $\mathcal{D}(A) \cap N \neq \emptyset$ for any $N \in \mathcal{N}(A)$. It follows from Remark 3.1 (3) that $r(A)(\mathcal{D}(A))$ is dense in K(A). Using this fact and the fact that $r(A)(x) = s(\mathcal{D}(A))(x) = x$ for any $x \in \mathcal{D}(A)$, we conclude that r(A) is a continuous retraction.

It follows from Remark 3.2 (2) and the fact that the assignment \mathcal{E} is ω -monotone, that the assignment \mathcal{D} is ω -monotone. Since the assignment \mathcal{O} is also ω -monotone, it follows from Remark 3.2 (1) that the assignment \mathcal{N} is ω -monotone. This finishes the proof.

Proposition 3.7. If X is monotonically retractable, $Y \subset X$ and $t : X \to Y$ is a continuous retraction, then Y is monotonically retractable.

Proof. Suppose that for any countable set $A \subset X$ we have assigned K(A), r(A) and $\mathcal{N}(A)$ as in Definition 3.4. By Proposition 3.6, it is enough to show that for any countable set $A \subset Y$ we can assign L(A), s(A) and $\mathcal{O}(A)$ in such a form that: $A \subset L(A) \subset Y$, $s(A) : Y \to L(A)$ is a continuous and onto function such that s(A)(x) = x for any $x \in A$, $\mathcal{O}(A)$ is a family of subsets of Y which is a network for L(A) modulo s(A), and the assignment \mathcal{O} is ω -monotone.

For each countable subset A of Y let $s(A) = t \circ r(A) \upharpoonright Y$, L(A) = s(A)(Y) and $\mathcal{O}(A) = \{N \cap Y : N \in \mathcal{N}(A)\}$. Let us observe that the assignment \mathcal{O} is ω -monotone. Clearly, $s(A) : Y \to L(A)$ is a continuous and onto function. Moreover, if $x \in A$, then $x = t(x) = t(r(A)(x)) = s(A)(x) \in L(A)$. So, s(A)(x) = x and $A \subset L(A)$. Also, since t is a continuous retraction onto Y, if $y \in Y$ then $s(A)(y) = t(r(A)(y)) \in Y$. Thus, $L(A) \subset Y$. Now, since $\mathcal{N}(A)$ is a network for K(A) = r(A)(X) modulo r(A), it follows from Remark 3.1 (4) that $\mathcal{O}(A)$ is a network for r(A)(Y) modulo $r(A) \upharpoonright Y$. Because of Remark 3.1 (2) and the continuity of t, we can see that $\mathcal{O}(A)$ is a network for $L(A) = s(A)(Y) = t \circ r(A)(Y)$ modulo $s(A) = t \circ r(A) \upharpoonright Y$.

Proposition 3.8. Let $\{X_n : n \in \omega\}$ be a family of monotonically retractable spaces, then $X = \bigoplus\{X_n : n \in \omega\}$ also is monotonically retractable.

Proof. Let $n \in \omega$, since X_n is monotonically retractable, for any countable set $A_n \subset X_n$ we can assign $K_n(A_n)$, $r_n(A_n)$ and $\mathcal{N}_n(A_n)$ as in Definition 3.4. For any countable set $A \subset X$, let $A_n = A \cap X_n$ for each $n \in \omega$. Let $K(A) = \bigcup \{K_n(A_n) : n \in \omega\}, r(A) = \bigoplus \{r_n(A_n) : n \in \omega\}$, and $\mathcal{N}(A) = \bigcup \{\mathcal{N}_n(A_n) : n \in \omega\}$. It is easy to verify that K(A), r(A) and $\mathcal{N}(A)$ satisfy the conditions in Definition 3.4; therefore, X is monotonically retractable.

We will need the following notation.

Let $X = \prod \{X_t : t \in T\}$ be a product of monotonically retractable spaces and let Z be a Σ -product in X centered at some point $a^* \in X$.

Given a countable set $A \subset Z$ let $A^* = A \cup \{a^*\}$. For any $t \in T$ and any countable set $A_t \subset X_t$ choose $r_t(A_t)$, $K_t(A_t)$ and $\mathcal{N}_t(A_t)$ as in Definition 3.4. Given a countable set $A \subset Z$ and a countable set $E \subset T$, the retraction $r(A, E) : Z \to Z$ is given by:

$$r(A, E)(x)(t) = \begin{cases} r_t(p_t(A^*))(x(t)) & \text{if } t \in E; \\ a^*(t), & \text{if } t \in T \setminus E \end{cases}$$

A subspace Y of Z is said to be *monotonically invariant* if for each countable subset A of Y we can assign a subset $\mathcal{E}(A)$ of T in such a way that; $\bigcup \{ \text{supp}(x) : x \in A \} \subset \mathcal{E}(A), r(A, \mathcal{E}(A))(Y) \subset Y \}$, and the assignment \mathcal{E} is ω -monotone.

Remark 3.9. If Y is a monotonically invariant subspace of a Σ -product of monotonically retractable spaces and A is a countable subset of Y, then $r(A, \mathcal{E}(A)) \upharpoonright Y : Y \to Y$ is a continuous retraction onto its image and $r(A, \mathcal{E}(A))(x) = x$ for any $x \in A$.

Remark 3.10. Let X be a product of monotonically retractable spaces and let Z be a Σ -product in X centered at some point $a^* \in X$. If we choose $\mathcal{E}(A) = \bigcup \{ \operatorname{supp}(x) : x \in A \}$ for any countable subset A of Z, then we can verify that the respective σ -product (Σ_s -product or Σ -product) in X centered at a^* is a monotonically invariant subspace of Z.

Theorem 3.11. If Z is a Σ -product of monotonically retractable spaces and Y is a monotonically invariant subspace of Z, then Y is monotonically retractable.

Proof. Let $\{X_t : t \in T\}$ be a family of monotonically retractable spaces. Suppose that for any $t \in T$ and any countable set $A_t \subset X_t$ we can assign $r_t(A_t)$, $K_t(A_t)$ and $\mathcal{N}_t(A_t)$ as in Definition 3.4. Let $X = \prod \{X_t : t \in T\}$ and let Z be a Σ -product in X centered at some point $a^* \in X$. Take a monotonically invariant subspace Y of Z. For each countable subset A of Y choose a subset $\mathcal{E}(A)$ of T in such a way that: $\bigcup \{\operatorname{supp}(x) : x \in A\} \subset \mathcal{E}(A), r(A, \mathcal{E}(A))(Y) \subset Y$, and the assignment \mathcal{E} is ω -monotone. For each countable set $A \subset Y$ we shall construct r(A), K(A) and $\mathcal{N}(A)$ which witness that Y is monotonically retractable.

Given a set $A \subset Y$, let $r(A) = r(A, \mathcal{E}(A)) \upharpoonright Y$ and let K(A) = r(A)(Y). Moreover, let $\mathcal{N}(A)$ be the collection of all sets of the form $Y \cap \prod \{N_t : t \in T\}$, where $N_t \in \mathcal{N}_t(p_t(A^*))$ for any $t \in F$, $N_t = X_t$ for $t \in T \setminus F$, and F is a finite subset of $\mathcal{E}(A)$. Because of Remark 3.9, the map $r(A) : Y \to K(A)$ is a continuous retraction and $A \subset K(A) \subset Y$.

Claim 1. $\mathcal{N}(A)$ is a network for K(A) modulo r(A).

Proof of Claim 1. Let $y \in Y$ and $U \in \tau(r(A)(y), K(A))$. We can find a finite set $H \subset T$ and an open set $B = \prod \{B_t : t \in T\}$ with B_t open in X_t for $t \in H$ and $B_t = X_t$ for $t \in T \setminus H$, such that $r(A)(y) \in B \cap K(A) \subset U$.

Then $r_t(p_t(A^*))(y(t)) = r(A)(y)(t) \in B_t \cap K_t(p_t(A^*))$ for any $t \in \mathcal{E}(A)$. Let $F = H \cap \mathcal{E}(A)$. Since $\mathcal{N}_t(p_t(A^*))$ is a network for $K_t(p_t(A^*))$ modulo $r_t(p_t(A^*))$, for any $t \in F$ we can choose $N_t \in \mathcal{N}_t(p_t(A^*))$ such that $y(t) \in N_t$ and $r_t(p_t(A^*))(N_t) \subset B_t \cap K_t(p_t(A^*))$. For $t \in T \setminus F$ let $N_t = X_t$. Then we can see that $N = Y \cap \prod \{N_t : t \in T\} \in \mathcal{N}(A)$ and $y \in N$. We shall prove that $r(A)(N) \subset U$. Take $x \in N$. If $t \in F$ then $r(A)(x)(t) = r_t(p_t(A^*))(x(t)) \subset r_t(p_t(A^*))(N_t) \subset B_t$. If $t \in H \setminus F$ then $r(A)(x)(t) = a^*(t) = r(A)(y)(t) \in B_t$. Hence, $r(A)(x) \in B \cap K(A) \subset U$. Thus, $r(A)(N) \subset U$.

Claim 2. The assignment \mathcal{N} is ω -monotone.

Proof of Claim 2. (1) Given a countable subset A of Y, since $\mathcal{E}(A)$ is countable and $\mathcal{N}_t(p_t(A^*))$ is countable for each $t \in T$, it is easy to see that $\mathcal{N}(A)$ is countable. (2) Suppose that $A \subset B \subset Y$, where B is a countable set. Let us observe that $\mathcal{E}(A) \subset \mathcal{E}(B)$. Moreover, $p_t(A^*) \subset p_t(B^*)$ and $\mathcal{N}_t(p_t(A^*)) \subset \mathcal{N}_t(p_t(B^*))$ for each $t \in T$. It follows from these facts that $\mathcal{N}(A) \subset \mathcal{N}(B)$. (3) Let $\{A_n : n \in \omega\}$ be a family of countable subsets of Y with $A_n \subset A_{n+1}$ for any $n \in \omega$, and let $A = \bigcup \{A_n : n \in \omega\}$. It follows from (2) that $\bigcup \{ \mathcal{N}(A_n) : n \in \omega \} \subset \mathcal{N}(A)$. We shall prove the other contention. We know that $\mathcal{E}(A) = \bigcup \{ \mathcal{E}(A_n) : n \in \omega \}$. Also, $\mathcal{N}_t(p_t(A^*)) = \mathcal{N}_t(p_t(\bigcup\{A_n^*: n \in \omega\})) = \bigcup\{\mathcal{N}_t(p_t(A_n^*)): n \in \omega\} \text{ for each }$ $t \in T$. Let $N \in \mathcal{N}(A)$, then there exists a finite set $F \subset \mathcal{E}(A)$ such that $N = Y \cap \prod \{N_t : t \in T\}$, where $N_t \in \mathcal{N}_t(p_t(A^*))$ for any $t \in F$ and $N_t = X_t$ for $t \in T \setminus F$. We can choose $n \in \omega$ such that $F \subset \mathcal{E}(A_n)$ and $N_t \in \mathcal{N}_t(p_t(A_n^*))$ for any $t \in F$. Then $N \in \mathcal{N}(A_n)$. Therefore $\mathcal{N}(A) \subset \bigcup \{\mathcal{N}(A_n) : n \in \omega\}.$ \square

Corollary 3.12. If Y is a σ -product of monotonically retractable spaces, then Y is monotonically retractable.

Corollary 3.13. If Y is a Σ_s -product of monotonically retractable spaces, then Y is monotonically retractable.

Corollary 3.14. If Y is a Σ -product of monotonically retractable spaces, then Y is monotonically retractable.

Corollary 3.15. Let $\{X_n : n \in \omega\}$ be a family of monotonically retractable spaces, then $X = \prod \{X_n : n \in \omega\}$ also is monotonically retractable.

Proposition 3.16. [9] Let $f: X \to Y$ be an onto and continuous function and \mathcal{N} be a family of subsets of X which is a network for Y modulo f. Then $\mathcal{W}(\mathcal{N})$ is an external network of $f^*(C_p(Y))$ in $C_p(X)$.

Proposition 3.17. [9] Let $Y \subset X$. If \mathcal{N} is an external network of Y in X, then the family $\mathcal{W}(\mathcal{N})$ of subsets of $C_p(X)$ is a network for $\pi_Y(C_p(X))$ modulo π_Y .

Theorem 3.18. Let X be a monotonically retractable space. Then $C_p(X)$ has the D-property and is a Lindelöf space.

Proof. Since X is monotonically retractable, for any countable set $A \subset X$ we can assign K(A), r(A) and $\mathcal{N}(A)$ in such a form that: $A \subset K(A) \subset X$, $r(A) : X \to K(A)$ is a continuous retraction, $\mathcal{N}(A)$ is a family of subsets of X which is a network for K(A) modulo r(A), and the assignment \mathcal{N} is ω -monotone. Let $\mathcal{O}(A) = \mathcal{W}(\mathcal{N}(A))$ for any countable subset A of X. It follows from Proposition 3.16 that $\mathcal{O}(A)$ is a family of subsets of $C_p(X)$ which is an external network for $r(A)^*(C_p(K(A)))$ in $C_p(X)$. Moreover, the assignment \mathcal{O} is ω -monotone because of Remark 3.2 (1) and the fact that the assignments \mathcal{W} and \mathcal{N} are ω -monotone.

Let ϕ be a neighborhood assignment on $C_p(X)$. There is no loss of generality to assume that $\phi(f)$ is a standard open set in $C_p(X)$ for any $f \in C_p(X)$. Then for each $f \in C_p(X)$ we can choose a finite set $S(\phi(f)) \subset X$ such that $\phi(f) = \pi_{S(\phi(f))}^{-1}(\pi_{S(\phi(f))}(\phi(f)))$. We will construct in a recursive process a countable closed and discrete set $D \subset C_p(X)$ such that $\bigcup \{\phi(f) : f \in D\} = C_p(X)$. For any set $N \subset C_p(X)$ say that $f \in N$ is a *central point* of N if $N \subset \phi(f)$; denote by Z(N) the set of all central points of N. It is easy to find a partition $\{\Omega_n : n \in \omega\}$ of ω in infinite subsets such that $\{0, \ldots, n\} \subset \Omega_1 \cup, \ldots, \cup \Omega_n$.

Step 0. Pick a function $f_0 \in C_p(X)$ arbitrarily. Let $A_0 = S(\phi(f_0))$ and let $\{N_k : k \in \Omega_0\}$ be an enumeration for the family $\mathcal{O}(A_0)$.

Proceeding inductively, assume that for $n \in \omega$ we have constructed countable sets $A_0, \ldots, A_n \subset X$ and functions $f_0, \ldots, f_n \in C_p(X)$ such that:

 $a(n) A_i \subset A_{i+1}$ for i < n;

 $b(n) \ S(\phi(f_i)) \subset A_i \text{ for } i \leq n;$

 $c(n) \bigcup \{Z(N_j) : j < i\} \subset \bigcup \{\phi(f_j) : j \le i\} \text{ for } i \le n;$

 $d(n) f_{i+1} \in C_p(X) \setminus \bigcup \{\phi(f_j) : j \leq i\}$ or $f_{i+1} = f_i$, for i < n;

 $e(n) \{N_k : k \in \Omega_i\}$ is an enumeration for the family $\mathcal{O}(A_i)$ for every $i \leq n$.

Step n + 1. Let $U_n = \bigcup \{ \phi(f_i) : i \leq n \}$. If for any $k \in \bigcup \{ \Omega_i : i \leq n \}$ we have $Z(N_k) \subset U_n$ then let $f_{n+1} = f_n$. In the other case, let l(n)be the least element of $\bigcup \{ \Omega_i : i \leq n \}$ such that $Z(N_{l(n)}) \setminus U_n \neq \emptyset$ and choose $f_{n+1} \in Z(N_{l(n)}) \setminus U_n$. Let $A_{n+1} = A_n \cup S(\phi(f_{n+1}))$ and let $\{N_k : k \in \Omega_{n+1}\}$ be an enumeration of $\mathcal{O}(A_{n+1})$. This completes the inductive step in such a way that properties $a(n+1) \cdot e(n+1)$ hold.

Therefore, we can construct the family $\mathcal{A} = \{A_i : i \in \omega\}$ of subsets of X together with a set $D = \{f_i : i \in \omega\} \subset C_p(X)$ such that the conditions a(n)-e(n) are satisfied for all $n \in \omega$. Take $A = \bigcup \{A_i : i \in \omega\}$.

To show that $\bigcup \{\phi(f_i) : i \in \omega\} = C_p(X)$, fix an arbitrary point $f \in C_p(X)$. Let $g = (f \upharpoonright K(A)) \circ r(A) \in r(A)^*(C_p(K(A)))$. Since $\mathcal{O}(A)$ is an external network of $r(A)^*(C_p(K(A)))$ in $C_p(X)$, we can find a set $N \in \mathcal{O}(A)$ such that $g \in N \subset \phi(g)$, that is, $g \in Z(N)$. Since \mathcal{O} is ω -monotone, we have $N \in \mathcal{O}(A) = \bigcup \{\mathcal{O}(A_i) : i \in \omega\}$. So, there exists $n \in \omega$ such that $N \in \mathcal{O}(A_n)$. By e(n) we have $N = N_k$ for some $k \in \Omega_n \subset \omega$. By c(k+1) we know that $g \in Z(N_k) \subset \bigcup \{\phi(f_i) : i \in \omega\}$. Choose $m \in \omega$ such that $g \in \phi(f_m)$. By b(m) we know that $S(\phi(f_m)) \subset A_m \subset A \subset K(A)$. Since r(A)(x) = x for any $x \in A$, we have $f \upharpoonright A = g \upharpoonright A$. In particular, $f \upharpoonright S(\phi(f_m)) = g \upharpoonright S(\phi(f_m))$. Thus, we conclude that $f \in \phi(f_m)$. The point $f \in C_p(X)$ was chosen arbitrarily, so $\{\phi(f_i) : i \in \omega\}$ is a cover of $C_p(X)$.

It follows from d(n) for $n \in \omega$ and the fact that $\{\phi(f_i) : i \in \omega\}$ is a cover of $C_p(X)$ that D is closed and discrete in $C_p(X)$. Thus, $C_p(X)$ is a D-space.

Finally, to see that $C_p(X)$ is a Lindelöf space, let \mathcal{U} be an open cover of $C_p(X)$. For any $f \in C_p(X)$ we can choose $\phi(f) \in \mathcal{U}$ such that $f \in \phi(f)$. Since ϕ is a neighborhood assignment, we can find a countable closed and discrete set $D \subset C_p(X)$ such that $C_p(X) = \bigcup \{\phi(f) : f \in D\}$. As a consequence, $\{\phi(f) : f \in D\}$ is a countable subcover of \mathcal{U} . \Box

Corollary 3.19. Let X be a monotonically retractable space. Then the spaces $C_p(X)^{\omega}$ and $C_p(X^{\omega})$ have the D-property and are Lindelöf spaces.

Corollary 3.20. For any monotonically retractable space X we have $t(X^{\omega}) = \omega$.

Corollary 3.21. Let X be a monotonically retractable space and suppose that $f: X \to Y$ is an \mathbb{R} -quotient map. Then $C_p(Y)^{\omega}$ has the D-property and is a Lindelöf space.

Remark 3.22. Given a space X, let us note that if $K \subset X$, $f \in C_p(X)$ and $r: X \to K$ is a continuous retraction, then $f \upharpoonright K = ((f \upharpoonright K) \circ r) \upharpoonright K$.

Lemma 3.23. If $K \subset X$ and $r : X \to K$ is a continuous retraction, then $r^* \circ \pi_K$ is a continuous retraction onto its image.

Proof. Clearly $r^* \circ \pi_K$ is continuous. Let $g \in r^* \circ \pi_K(C_p(X))$, then $g = (f \upharpoonright K) \circ r$ for some $f \in C_p(X)$. Since r is a continuous retraction, by Remark 3.22, $r^* \circ \pi_K(g) = (g \upharpoonright K) \circ r = (((f \upharpoonright K) \circ r) \upharpoonright K) \circ r = (f \upharpoonright K) \circ r = g$. This shows that $r^* \circ \pi_K$ is a retraction onto its image. \Box

Lemma 3.24. [1] Let Y be a dense subspace of the product $X = \prod \{X_t : t \in T\}$, where each space X_t is cosmic. Then, for every continuous real-valued function f on Y, there exists a countable set $A \subset T$ and a continuous real-valued function g on $p_A(Y)$ such that $f = g \circ p_A \upharpoonright Y$.

Theorem 3.25. Let X be a monotonically retractable space. Then the space $C_pC_p(X)$ is also monotonically retractable.

Proof. Suppose that for any countable set $A \subset X$ there exists a set $K(A) \subset X$, a continuous retraction $r(A) : X \to K(A)$, and a countable family $\mathcal{N}(A)$ of subsets of X as in Definition 3.4. For any countable set $E \subset C_p C_p(X)$ we shall construct a set $L(E) \subset C_p C_p(X)$, a retraction $s(E) : C_p C_p(X) \to L(E)$, and a countable family $\mathcal{O}(E)$ of subsets of $C_p C_p(X)$, which satisfy conditions in Definition 3.4. Take $A \subset X$ countable. Let r(A, 0) = r(A) and K(A, 0) = K(A). For each $n \in \omega$, let $r(A, n+1) = r(A, n)^* \circ \pi_{K(A,n)}$ and $K(A, n+1) = r(A, n+1)(C_{p,n+1}(X))$. Because of Lemma 3.23, $r(A, n) : C_{p,n}(X) \to K(A, n)$ is a retraction for any $n \in \omega$. Notice that if $f \in C_{p,n+1}(X)$ then $r(A, n+1)(f) = (f \upharpoonright K(A, n)) \circ r(A, n)$.

Let $E \subset C_p C_p(X)$ be countable. By Lemma 3.24, for any $f \in C_p C_p(X)$ we can choose a countable set $A(f) \subset X$ and a continuous function g(f): $\pi_{A(f)}(C_p(X)) \to \mathbb{R}$ such that $f = g(f) \circ \pi_{A(f)}$. Consider the countable set $\mathcal{A}(E) = \bigcup \{A(f) : f \in E\} \subset X$. Finally, let $s(E) = r(\mathcal{A}(E), 2)$, $L(E) = K(\mathcal{A}(E), 2) = s(E)(C_p C_p(X))$, and $\mathcal{O}(E) = \mathcal{W}(\mathcal{W}(\mathcal{N}(\mathcal{A}(E))))$. We shall prove that s(E), L(E), and $\mathcal{O}(E)$ satisfy conditions in Definition 3.4.

It is clear that $L(E) \subset C_p C_p(X)$, $s(E) : C_p C_p(X) \to L(E)$ is a continuous retraction, and $\mathcal{O}(E)$ is a countable family of subsets of $C_p C_p(X)$. It is easy to see that \mathcal{A} is ω -monotone. Since \mathcal{W} and \mathcal{N} are also ω -monotone, by Remark 3.2 (1) the operator $\mathcal{O} = \mathcal{W} \circ \mathcal{W} \circ \mathcal{N} \circ \mathcal{A}$ is ω -monotone.

Claim 1. $E \subset L(E)$.

Proof of Claim 1. Take an arbitrary function $f \in E \subset C_p C_p(X)$. By construction we have $A(f) \subset \mathcal{A}(E) \subset K(\mathcal{A}(E))$, so there exists a continuous function $h(f) : \pi_{K(\mathcal{A}(E))}(C_p(X)) \to \mathbb{R}$ such that $f = h(f) \circ \pi_{K(\mathcal{A}(E))}$. For any $k \in C_p(X)$ since $r(\mathcal{A}(E))$ is a retraction onto $K(\mathcal{A}(E))$, by Remark 3.22 we have $\pi_{K(\mathcal{A}(E))}[(k \upharpoonright K(\mathcal{A}(E))) \circ r(\mathcal{A}(E))] = [(k \upharpoonright K(\mathcal{A}(E))) \circ r(\mathcal{A}(E))] \upharpoonright K(\mathcal{A}(E)) = k \upharpoonright K(\mathcal{A}(E)) = \pi_{K(\mathcal{A}(E))}(k)$. As a consequence $f(k) = h(f) \circ \pi_{K(\mathcal{A}(E))}(k) = h(f) \circ \pi_{K(\mathcal{A}(E))}[(k \upharpoonright K(\mathcal{A}(E))) \circ r(\mathcal{A}(E))] = h(f) \circ \pi_{K(\mathcal{A}(E))}(r(\mathcal{A}(E), 1)(k)) = f(r(\mathcal{A}(E), 1)(k))$ for any $k \in C_p(X)$. Thus $f = (f \upharpoonright K(\mathcal{A}(E), 1)) \circ r(\mathcal{A}(E), 1) = r(\mathcal{A}(E), 2)(f) = s(E)(f) \in L(E)$. Therefore $E \subset L(E)$.

Claim 2. $\mathcal{O}(E)$ is a network for L(E) modulo s(E).

Proof of Claim 2. It follows from the election of \mathcal{N} that the family $\mathcal{N}(\mathcal{A}(E))$ is a network for $K(\mathcal{A}(E))$ modulo $r(\mathcal{A}(E))$. We can apply Proposition 3.16 to see that the family $\mathcal{W}(\mathcal{N}(\mathcal{A}(E)))$ is an external network for $r(\mathcal{A}(E))^*(C_p(K(\mathcal{A}(E))))$. In particular, $\mathcal{W}(\mathcal{N}(\mathcal{A}(E)))$ is an external network for $r(\mathcal{A}(E))^*(\pi_{K(\mathcal{A}(E))}(C_p(X))) = r(\mathcal{A}(E), 1)(C_p(X)) =$ $K(\mathcal{A}(E), 1)$. Now, we can apply Proposition 3.17 to see that the family $\mathcal{O}(E) = \mathcal{W}(\mathcal{W}(\mathcal{N}(\mathcal{A}(E))))$ is a network for $\pi_{K(\mathcal{A}(E),1)}(C_pC_p(X))$ modulo $\pi_{K(\mathcal{A}(E),1)}$. Since $r(\mathcal{A}(E),1)^*$ is an homeomorphism onto its image, by Remark 3.1 (2), we conclude that the family $\mathcal{O}(E)$ is a network for $r(\mathcal{A}(E),1)^*(\pi_{K(\mathcal{A}(E),1)}(C_pC_p(X)))$ modulo $r(\mathcal{A}(E),1)^* \circ \pi_{K(\mathcal{A}(E),1)}$. Finally, since $s(E) = r(\mathcal{A}(E),2) = r(\mathcal{A}(E),1)^* \circ \pi_{K(\mathcal{A}(E),1)}$ and L(E) = $s(C_pC_p(X)) = r(\mathcal{A}(E),1)^*(\pi_{K(\mathcal{A}(E),1)}(C_pC_p(X)))$, we conclude that the family $\mathcal{O}(E)$ is a network for L(E) modulo s(E).

Corollary 3.26. Let X be a monotonically retractable space. Then, $C_{p,2n}(X)$ is monotonically retractable for every $n \in \omega$.

Corollary 3.27. Let X be a monotonically retractable space. Then, $C_{p,2n+1}(X)$ is Lindelöf and a D-space for every $n \in \omega$.

Theorem 3.28. Suppose that X is a first countable countably compact subspace of an ordinal, then X is monotonically retractable.

Proof. We can suppose that $X = \{\alpha \in \mu : cf(\alpha) \leq \omega\}$ for some ordinal μ . There is no loss of generality to assume that X is infinite. Any interval is considered only for the points of X; in particular $[\alpha, \rightarrow) = \{\beta \in X : \alpha \leq \beta\}$ for each $\alpha \in X$ and $[\alpha, \beta) = \{z \in X : \alpha \leq z < \beta\}$ whenever $\alpha, \beta \in X$ and $\alpha < \beta$. For any $A \subset X$ let $\mathcal{I}(A) = \{\{\alpha\} : \alpha \in A\} \cup \{[\alpha, \beta) : \alpha, \beta \in A \text{ and } \alpha < \beta\}$. Let us observe that the assignment $A \rightarrow \mathcal{I}(A)$ is ω -monotone. Say that a set $A \subset X$ is saturated if $0 \in A$ and every isolated point of A is also isolated in X. For each $\alpha \in \mu$ non-isolated in μ , fix a countable strictly increasing sequence X_{α} of isolated ordinals converging to α .

Take a countable set $A \subset X$. Let us consider the set $S(A) = A \cup \{0\} \cup \{X_{\alpha} : \alpha \in A \text{ and } \alpha \text{ is non-isolated in } \mu\}$. The set S(A) is countable as a countable union of countable sets. Notice that S(A) and also $K(A) = \operatorname{cl}_X(S(A))$ are saturated sets. Since S(A) is countable, it is standard to prove that K(A) is compact and countable. Define a map $r(A) : X \to K(A)$ by the formula $r(A)(\alpha) = \max\{\beta \in K(A) : \beta \leq \alpha\}$ for each $\alpha \in X$. Finally, let $\mathcal{N}(A) = \mathcal{I}(S(A))$. It is clear that $\mathcal{N}(A)$ is countable. We shall prove that r(A), K(A) and $\mathcal{N}(A)$ satisfy conditions in Definition 3.4. Clearly $A \subset K(A) \subset X$. Since K(A) is compact and saturated, by Lemma 2.4 in [15], the map $r(A) : X \to K(A)$ is a continuous retraction. Let us observe that the assignment $A \to S(A)$ is ω -monotone.

Since \mathcal{I} is also ω -monotone, then \mathcal{N} is ω -monotone. So, we only need to prove that $\mathcal{N}(A)$ is a network for K(A) modulo r(A).

Let $\xi \in X$ and $U \in \tau(r(A)(\xi), K(A))$. If $\xi \in S(A)$, then $\xi \in N$ and $r(A)(N) \subset U$ for $N = \{\xi\} \in \mathcal{N}(A)$. Otherwise, it follows from $r(A)(\xi) \in K(A) = \operatorname{cl}_X(S(A))$ that there exists $\alpha \in S(A)$ with $\alpha \leq r(A)(\xi)$ and $[\alpha, r(A)(\xi)] \cap K(A) \subset U$. We have two cases to consider. (1) $\alpha < \xi$ for any $\alpha \in S(A)$. In this case $\xi \in N$ and $r(A)(N) \subset U$ for $N = [\alpha, \rightarrow) \in \mathcal{N}(A)$. (2) There exists $\gamma \in S(A)$ with $\xi < \gamma$. Let $\beta = \min\{\gamma \in S(A) : \xi < \gamma\}$. In this case $\xi \in N$ and $r(A)(N) \subset U$ for $N = [\alpha, \beta) \in \mathcal{N}(A)$. Thus, $\mathcal{N}(A)$ is a network for K(A) modulo r(A).

Corollary 3.29. Suppose that X is a first countable countably compact subspace of an ordinal. Then $C_{p,2n+1}(X)$ is Lindelöf and a D-space for every $n \in \omega$.

Corollary 3.30. Let κ be a cardinal number and let X be a Σ -product in $[0, \omega_1)^{\kappa}$, then $C_{p,2n+1}(X)$ is Lindelöf and a D-space for every $n \in \omega$.

Theorem 3.31. If Y is a closed subspace of a Σ -product of cosmic spaces, then Y is monotonically retractable.

Proof. Let $\{X_t : t \in T\}$ be a family of cosmic spaces, and let \mathcal{P}_t be a countable network for X_t for every $t \in T$. Let $X = \prod\{X_t : t \in T\}$, let Z be a Σ -product in X centered at some point $a^* \in X$, and let Y be a closed subspace of Z. For each countable set $A \subset Y$ we shall construct r(A), K(A) and $\mathcal{N}(A)$ which witness that Y is monotonically retractable.

For each set $D \subset Z$ let $\mathcal{S}(D) = \bigcup \{ \operatorname{supp}(y) : y \in D \}$. Let us observe that \mathcal{S} is ω -monotone. For each finite subset F of T we denote by $\mathcal{P}_F(Y)$ the collection of all non-empty sets of the form $Y \cap \prod \{P_t : t \in T\}$, where $P_t \in \mathcal{P}_t$ for any $t \in F$ and $P_t = X_t$ for $t \in T \setminus F$. Given a finite subset F of X and a set $N \in \mathcal{P}_F$, we fix a point $y_N \in N \cap Y$. Given a set $E \subset T$, let $\mathcal{P}(E) = \bigcup \{\mathcal{P}_F : F \in [E]^{<\omega}\}$ and $\mathcal{D}(E) = \{y_N : N \in \mathcal{P}(E)\}$. Let us observe that the assignments $E \to \mathcal{P}(E)$ and $E \to \mathcal{D}(E)$ are ω monotone. Finally, for any set $E \subset T$ let $e_E : X_E \to X$ be the map given by $e_E(x)(t) = x(t)$ for $t \in E$ and $e_E(x)(t) = a^*(t)$ for $t \in T \setminus E$. It is easy to see that e_E is an embedding.

Take a countable set $A \subset Y$. Let $S_0(A) = S(A)$, and $S_{n+1}(A) = S_n(A) \cup S(\mathcal{D}(S_n(A)))$ for any $n \in \omega$. Take $\mathcal{E}(A) = \bigcup \{S_n(A) : n \in \omega\} \subset T$. By Remark 3.2 (2), the assignment $S(A) \to \mathcal{E}(A)$ is ω -monotone. Hence, the assignment $A \to \mathcal{E}(A)$ is ω -monotone. Finally, let $r(A) = e_{\mathcal{E}(A)} \circ p_{\mathcal{E}(A)} \upharpoonright Y$, K(A) = r(A)(Y), and $\mathcal{N}(A) = \mathcal{P}(\mathcal{E}(A))$. We shall prove that r(A), K(A) and $\mathcal{N}(A)$ satisfy the conditions in Definition 3.4. Since \mathcal{E} and \mathcal{P} are ω -monotone, by Remark 3.2 (1), the assignment \mathcal{N} is ω -monotone. Claim 1. $\mathcal{N}(A)$ is a network for K(A) modulo r(A).

Proof of Claim 1. Let $y \in Y$ and $U \in \tau(r(A)(y), K(A))$. We can find a finite set $H \subset T$ and a collection $\{B_t : t \in T\}$ with B_t open in X_t for each $t \in H$ and $B_t = X_t$ for $t \in T \setminus H$ such that, if $B = \prod\{B_t : t \in T\}$ then $r(A)(y) \in B \cap K(A) \subset U$. Let $F = H \cap \mathcal{E}(A)$. For any $t \in F$ we can find $P_t \in \mathcal{P}_t$ such that $y(t) = r(A)(y)(t) \in P_t \subset B_t$. For $t \in T \setminus F$ let $P_t = X_t$. Take $N = Y \cap \prod\{P_t : t \in T\}$, then $y \in N$ and $N \in \mathcal{P}_F \subset$ $\mathcal{P}(\mathcal{E}(A)) = \mathcal{N}(A)$. We shall prove that $r(A)(N) \subset U$. Let $x \in N$. If $t \in F$ then $r(A)(x)(t) = x(t) \in P_t \subset B_t$. For $t \in H \setminus F \subset T \setminus \mathcal{E}(A)$, we have $r(A)(x)(t) = a^*(t) = r(A)(y)(t) \in B_t$. Thus, $r(A)(x) \in B$ for any $x \in N$ and so $r(A)(N) \subset B \cap K(A) \subset U$.

Claim 2. $A \subset K(A) \subset Y$ and $r(A) : Y \to K(A)$ is a continuous retraction.

Proof of Claim 2. Let us observe that if $y \in Y$ then r(A)(y) = y if and only if $\operatorname{supp}(y) \subset \mathcal{E}(A)$. If $y \in A$ then $\operatorname{supp}(y) \subset \mathcal{S}_0(A) \subset \mathcal{E}(A)$, and so $y = r(A)(y) \in K(A)$. Hence, $A \subset K(A)$. If $y \in Y$ then $\operatorname{supp}(r(A)(y)) \subset \mathcal{E}(A)$ and so r(A)(r(A)(y)) = r(A)(y). Thus, r(A) is a continuous retraction. We only need to show that $K(A) \subset Y$.

Notice that, since $\mathcal{D}(\mathcal{E}(A)) = \{y_N : N \in \mathcal{P}(\mathcal{E}(A))\} = \{y_N : N \in \mathcal{N}(A)\},\$ we can conclude that $\mathcal{D}(\mathcal{E}(A)) \cap N \neq \emptyset$ for each $N \in \mathcal{N}(A)$. Moreover, if $y \in \mathcal{D}(\mathcal{E}(A)) = \mathcal{D}(\bigcup \{\mathcal{S}_n(A) : n \in \omega\}) = \bigcup \{\mathcal{D}(\mathcal{S}_n(A)) : n \in \omega\},\$ then $y \in \mathcal{D}(\mathcal{S}_n(A))$ for some $n \in \omega$, and so $\operatorname{supp}(y) \in \mathcal{S}(\mathcal{D}(\mathcal{S}_n(A))) =$ $\mathcal{S}_{n+1}(A) \subset \mathcal{E}(A)$; that is, y = r(A)(y). Therefore, because of Claim 1 and Remark 3.1 (3), $\mathcal{D}(\mathcal{E}(A)) = r(A)(\mathcal{D}(\mathcal{E}(A)))$ is dense in K(A). Now, since $\mathcal{E}(A)$ is countable, it is clear that $e_{\mathcal{E}(A)} \circ p_{\mathcal{E}(A)}(X) \subset Z$. Since Y is closed in Z and by the continuity of $e_{\mathcal{E}(A)} \circ p_{\mathcal{E}(A)}$, we have $e_{\mathcal{E}(A)} \circ p_{\mathcal{E}(A)}(cl_X(Y)) \subset$ $cl_Z(e_{\mathcal{E}(A)} \circ p_{\mathcal{E}(A)}(Y)) = cl_Z(r(A)(Y)) = cl_Z(K(A)) = cl_Z(\mathcal{D}(\mathcal{E}(A))) \subset$ $cl_Z(Y) = Y$. In particular, $K(A) = r(A)(Y) = e_{\mathcal{E}(A)} \circ p_{\mathcal{E}(A)}(Y) \subset Y$. \Box

Corollary 3.32. Any Corson compact space is monotonically retractable.

Corollary 3.33. If Y is a Σ -product of a family of Corson compact spaces, then $C_p(Y)$ is Lindelöf and has the D-property.

Corollary 3.34. If Y is a closed subspace of a Σ -product of cosmic spaces, then $C_{p,2n+1}(Y)$ is a D-space for every $n \in \omega$.

Example 3.35. There exists a compact scattered Sokolov space which is not monotonically retractable.

Proof. Given a countable limit ordinal α , a *ladder* on α is a set $S_{\alpha} = \{\alpha(n) : n \in \omega\}$ of isolated ordinals in α such that $\alpha(n) < \alpha(m)$ whenever n < m and $\alpha = \sup\{\alpha(n) : n \in \omega\}$. Let L be a set of countable limit ordinals of ω_1 such that L and $\omega_1 \setminus L$ are stationary sets in ω_1 and

fix a ladder S_{α} on α , for any $\alpha \in L$. We associate a compact space X_L in the following standard way. Let $Q = \omega_1$ and declare all points of $\omega_1 \setminus L$ to be isolated in Q. If $\alpha \in L$ then the local base of α in Q is the family $\{\{\alpha\} \cup (S_{\alpha} \setminus F) : F \text{ is a finite subset of } S_{\alpha}\}$. Finally, consider the onepoint compactification X_L of the locally compact space Q with ω_1 being the point at infinity. It is easy to see that X_L is scattered. Since $\omega_1 \setminus L$ is a stationary set in ω_1 , it follows from Proposition 4.2 in [10] that X_L is a Sokolov space and hence has countable tightness.

We will prove that X_L is not monotonically retractable. Suppose that for any countable set $A \subset X_L$, we have assigned K(A), r(A), and $\mathcal{N}(A)$ as in Definition 3.4. Let $T_{\alpha} = S_{\alpha} \cup \{\omega_1\}$ and $T_{\alpha}^n = \{\alpha(0), \ldots, \alpha(n)\} \cup \{\omega_1\}$, for any $\alpha \in L$ and $n \in \omega$. It follows from $T_{\alpha} = \bigcup \{T_{\alpha}^n : n \in \omega\}$ that $\mathcal{N}(T_{\alpha}) = \bigcup \{\mathcal{N}(T_{\alpha}^n) : n \in \omega\}$. It follows from $r(T_{\alpha})(\alpha(n)) = \alpha(n)$ for each $n \in \omega$ and the continuity of $r(T_{\alpha})$ that $r(T_{\alpha})(\alpha) = \alpha$. Since $\mathcal{N}(T_{\alpha})$ is a network for $K(T_{\alpha})$ modulo $r(T_{\alpha})$, the family $\mathcal{N}(T_{\alpha})$ contains an element N_{α} such that $\alpha \in N_{\alpha}$ and $\alpha \in r(T_{\alpha})(N_{\alpha}) \subset \{\alpha\} \cup S_{\alpha}$. Also, there exists a natural number $n_{\alpha} \in \omega$ such that $N_{\alpha} \in \mathcal{N}(T_{\alpha}^{n\alpha})$.

Since L is stationary, there exists a stationary set $L' \subset L$ such that, for some $m \in \omega$ we have $n_{\alpha} = m$ for every $\alpha \in L'$. The function $\alpha \to \alpha(0)$ is a regressive map on L'; so, there exists an ordinal $\mu(0) \in \omega \setminus L$ and a stationary set $L_0 \subset L'$ such that $\alpha(0) = \mu(0)$ for any $\alpha \in L_0$. The function $\alpha \to \alpha(1)$ is a regressive map on L_0 ; so, there exists an ordinal $\mu(1) \in \omega \setminus L$ and a stationary set $L_1 \subset L_0$ such that $\alpha(1) = \mu(1)$ for any $\alpha \in L_1$. Repeating this procedure m+1 times we will obtain a stationary set $L_m \subset L'$ and ordinals $\mu(0), \ldots, \mu(m)$ such that $\alpha(i) = \mu(i)$ for any $\alpha \in L_m$ and $i \leq m$. Consequently $T^m_\alpha = M = \{\mu(0), \ldots, \mu(m)\} \cup \{\omega_1\}$ for all $\alpha \in L_m$. Hence, $N_\alpha \in \mathcal{N}(T_\alpha^{n_\alpha}) = \mathcal{N}(T_\alpha^m) = \mathcal{N}(M)$ for any $\alpha \in L_m$. Since $\mathcal{N}(M)$ is countable, there exist $N \in \mathcal{N}(M)$ and a stationary set $L_N \subset L_m$ such that $N_\alpha = N$ for each $\alpha \in L_N$. Then $\alpha \in N_\alpha = N$ for each $\alpha \in L_N$, that is $L_N \subset N$. Finally, if we take any $\alpha \in L_N$ then $r(T_{\alpha})(L_N) \subset r(T_{\alpha})(N_{\alpha}) \subset \{\alpha\} \cup S_{\alpha}$. Being L_N uncountable and by the continuity of $r(T_{\alpha})$ we have $r(T_{\alpha})(\omega_1) \in \{\alpha\} \cup S_{\alpha}$. This is a contradiction because $r(T_{\alpha})(\omega_1) = \omega_1$.

Theorem 3.36. Let C be the class of all spaces which are homeomorphic to a closed subspace in a Σ -product of cosmic spaces. Then C is closed under closed subspaces of Σ -products.

Proof. Let $\{Y_{\alpha} : \alpha < \kappa\}$ be a family of spaces in \mathcal{C} , let Z' be a Σ -product in $X' = \prod \{Y_{\alpha} : \alpha < \kappa\}$ centered at some point $a^* \in X'$ and let Y be a closed subspace of Z'. We shall prove that Y is homeomorphic to a closed subspace of a Σ -product of cosmic spaces.

There is no loss of generality to assume that for each $\alpha < \kappa$ there exists a family of cosmic spaces $\{X_t : t \in T_\alpha\}$ such that Y_α is a closed subspace of the Σ -product Z_α in $X_\alpha = \prod\{X_t : t \in T_\alpha\}$ centered at some point $a^*_\alpha \in X_\alpha$. We can suppose that the family $\{T_\alpha : \alpha < \kappa\}$ is pairwise disjoint. Let $T = \bigcup\{T_\alpha : \alpha < \kappa\}$ and $X = \prod\{X_t : t \in T\}$. We canonically identify X with $\prod\{X_\alpha : \alpha < \kappa\}$. Since $a^*(\alpha) \in Y_\alpha \subset Z_\alpha$, then Z_α coincides with the Σ -product in X_α centered at $a^*(\alpha)$, so we can suppose that $a^*(\alpha) = a^*_\alpha$. Let Z be the Σ -product in X centered at a^* . Let us observe that Z and the Σ -product of $\{Z_\alpha : \alpha < \kappa\}$ centered at a^* are canonically identified. Also, observe that $Y \subset Z' \subset Z \subset X$, so in order to finish the proof it is enough to show that Z' is closed in Z.

We will show that $Z \setminus Z'$ is open in Z. Let $x \in Z \setminus Z'$. Notice that since $a^*(\alpha) = a^*_{\alpha}$ we have $x(\alpha) \in Z_{\alpha}$ for each $\alpha < \kappa$. Also, there exists a countable set $A \subset \kappa$ such that $x(\alpha) = a^*(\alpha) \in Y_{\alpha}$ for any $\alpha \in \kappa \setminus A$. Because of $x \notin Z'$, there exists $\xi \in A$ such that $x(\xi) \in Z_{\xi} \setminus Y_{\xi}$. Since Y_{ξ} is closed in Z_{ξ} we conclude that $U_{\xi} = Z_{\xi} \setminus Y_{\xi}$ is open in Z_{ξ} . For $\alpha \in \kappa \setminus \{\xi\}$ let $U_{\alpha} = Z_{\alpha}$. Then for the canonical open set $U = \prod\{U_{\alpha} : \alpha < \kappa\}$ in $\prod\{Z_{\alpha} : \alpha < \kappa\}$ we have $x \in U \cap Z \subset Z \setminus Z'$. This shows that $Z \setminus Z'$ is open in Z.

Corollary 3.37. Let κ be a cardinal number and let X be a closed subspace of a Σ -product in $[0, \omega_1)^{\kappa}$, then X is monotonically retractable.

4. Open Questions

The following list of questions contains some interesting problems that the author could not solve while working on this paper.

Question 4.1. Suppose that a compact space X is monotonically retractable. Must X be Corson compact?

Question 4.2. Suppose that a scattered compact space X is monotonically retractable. Must X be Corson compact?

Question 4.3. Suppose that X is a monotonically retractable compact space and $p(C_p(X)) = \omega$. Must X be metrizable?

Question 4.4. Suppose that X is a monotonically retractable realcompact space. Must X be Lindelöf?

Question 4.5. Suppose that a space X is monotonically retractable and ω_1 is a caliber of X. Must X have a countable network?

Question 4.6. Suppose that a space X is monotonically retractable and X has a small diagonal. Must X have a countable network?

Question 4.7. Suppose that X is a space such that $(X \times X) \setminus \Delta$ is monotonically retractable. Must X have a countable network? Here $\Delta = \{(x, x) : x \in X\}$ is the diagonal of the space X.

Question 4.8. Suppose that X is hereditarily monotonically retractable. Must X have a countable network?

Question 4.9. Suppose that X is a Lindelöf P-space. Must $C_p(X)$ be monotonically retractable?

References

- A. V. Arhangel'skii and M. Tkachenko, *Topological groups and related structures*, Atlantis Press-World Scientific., 2008.
- [2] R. Buzyakova, In search for Lindelöf C_p 's, Comment. Math. Univ. Carolin. 45 (1) (2004), 145–151.
- [3] E. K. van Douwen and W. F. Pfeffer, Some properties of the Sorgenfrey line and related spaces, Pacific J. Math. 81 (1979), 371–377.
- [4] T. Eisworth, On D-spaces, in: Open Problems in Topology II, E. Pearl, ed., Elsevier, Amsterdam, 2007, 129–134.
- [5] R. Engelking, General Topology, second edition, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989.
- [6] G. Gruenhage, A survey of D-spaces, Contemporary Math. 553 (2011), 13-28.
- [7] S. P. Gul'ko, On the structure of spaces of continuous functions and their complete paracompactness, Russian Math. Surveys 34:6 (1979), 36–44.
- [8] L.-Xue Peng, The D-property of some Lindelöf spaces and related conclusions, Topology Appl. 154 (2007), 469–475.
- R. Rojas-Hernández, Á. Tamariz-Mascarúa, D-property, monotone monolithicity and function spaces, Topology Appl. 159 (2012), 3379–3391.
- [10] G. A. Sokolov, Lindelöf property and the iterated continuous function spaces, Fund. Math. 143 (1993), 87–95.
- [11] _____, On some class of compact spaces lying in Σ -products, Comment. Math. Univ. Carolin. **25:2** (1984), 219–231.
- [12] D. T. Soukup, P. J. Szeptycki, A counterexample in the theory of D-spaces, Topology Appl. 159 (2012), 2669–2678.
- [13] V. V. Tkachuk, A nice class extracted from C_p -theory, Comment. Math. Univ. Carolin. **46:3** (2005), 503–5013.
- [14] _____, A C_p-theory Problem Book. Topological and Function Spaces, Springer, New York, 2011.
- [15] _____, Countably compact first countable subspaces of ordinals have the Sokolov property, Quaestiones Mathematicae 34 (2011), 225–234.

Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, D.F., 04510, México

E-mail address: satzchen@yahoo.com.mx