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FUNCTION SPACES AND D-PROPERTY

R. ROJAS-HERNANDEZ

ABSTRACT. In this article we introduce the notion of monotoni-
cally retractable space and we show that: (1) Cp(X) is Lindelsf
and a D-space whenever X is monotonically retractable. (2) If
X is monotonically retractable then Cj 2, (X) is monotonically re-
tractable for any n € w. (3) Any first countable countably com-
pact subspace of an ordinal is monotonically retractable. (4) Every
closed subspace of a ¥-product of cosmic spaces is monotonically
retractable.

As a consequence of these results we conclude that Cp 2n+1(X)
is Lindel6f and has the D-property for any n € w, whenever X is
a first countable countably compact subspace of an ordinal; this
answers a question posed by Tkachuk in [15].

1. INTRODUCTION

The notion of D-space is due to van Douwen, first studied with Pfeffer
in [3]. The question whether every regular Lindeldf space is D has been
attributed to van Douwen [6]. There are no consistency results in either
direction even for hereditarily Lindelof spaces. In [12], assuming <, an
example of a hereditarily Lindel6f Th-space that is not a D-space was
constructed. The example also has the property that any of its finite
powers is Lindel6f, but is not known if it can be made regular. The
concept of a D-space was studied a great deal ever since in almost every
context and Cp-theory was not an exception. However, the Cp,-version of
the question of van Douwen and Pfeffer remains open. Indeed, it is not
known if C,(X) is a D-space whenever it is Lindelof [4].
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It is easy to see that the ordinal space w1 embeds in a X-product of real
lines as a closed subspace, so the results in [7] are applicable to prove that
Cp(wr) is Lindeldf. Buzyakova generalized this result in [2] establishing
that, for any first countable countably compact subspace X of an ordinal,
the space C},(X) is Lindel6f. In the same paper Buzyakova asked whether
Cp(X) has to be a D-space if X is a countably compact first countable
subspace of an ordinal. Peng showed in [8] that the answer to Buzyakova’s
question is positive. On the other hand, it was established by Tkachuk
in [15] that if X is a first countable countably compact subspace of an
ordinal then X is a Sokolov space. It follows from general properties of
Sokolov spaces that for any first countable countably compact subspace
X of an ordinal, the spaces (Cp(X))¥ and C,(X*) are Lindel6f and the
iterated function space Cp an41(X) is Lindeldf for any n € w. Also, using
the same technique, Tkachuk gave a new method of proof of Peng’s result
which answered the question of Buzyakova.

It follows from the above results that: if X is a first countable count-
ably compact subspace of an ordinal, then Cp(X) is a D-space and ¥ =
Cp(Cp(Cp(X))) is a Lindeldf space and a Sokolov space. Tkachuk asked
in [15] whether Y is a D-space.

In this paper we introduce the notion of monotone retractability and
it is proved that this property is preserved under retracts, countable free
topological sums, o-products, -products, and ¢-products. Our main
results are the following: C,(X) is Lindelof and has the D-property when-
ever X is monotonically retractable, and if X is monotonically retractable
then Cp,(Cp (X)) is monotonically retractable. We also prove that any first
countable countably compact subspace of an ordinal is monotonically re-
tractable. As a consequence, if X is a first countable countably compact
subspace of an ordinal, then the spaces (Cp(X))* and C,(X¥) are Lin-
delof and D-spaces and the iterated function space Cp 2,41(X) is Lindelof
and has the D-property for any n € w. This answers the above question
of Tkachuk in the affirmative. Furthermore, we prove that any closed
subspace of a X-product of cosmic spaces is monotonically retractable. In
particular, any Corson compact space is monotonically retractable. Fi-
nally, we will deal with the class of Sokolov spaces. The Sokolov spaces
constitute a wide class systematically studied in [13]. It is known that: if
X is a Sokolov space with t*(X) < w then C), 2,,41(X) is Lindeldf for any
n € w, if X is a first countable countably compact subspace of an ordinal
then X is a Sokolov space, and any closed subspace of a ¥-product of cos-
mic spaces is Sokolov. So, it will be interesting to clarify the relationship
between monotonically retractable spaces and Sokolov spaces. We give
an example of a compact scattered Sokolov space of countable tightness
which is not monotonically retractable.
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2. NOTATION AND TERMINOLOGY

The letters a;, 8 and  represent ordinal numbers and the letters x and
A represent infinite cardinal numbers; w is the first infinite cardinal. All
spaces are assumed to be Tychonoff. Given a space X, the family 7(X)
is its topology; if z € X, then 7(x, X) = {U € 7(X) : x € U}; besides, for
any set A C X, we will need the family 7(A, X)={U e 7(X) : AC U}.
We denote by R the real line with its natural topology. From now on we
will fix a countable base B(R) for the usual topology in the set of real
numbers R.

For a subset A of a topological space X, clx(A) is the closure of A
in X. If there is no possibility of confusion, we will simply write cl(A)
instead of clx (A).

The network weight nw(X) of a space X is the minimal cardinality of
a network in X. A space that has a countable network is called cosmic.

For any spaces X and Y the set C(X,Y") consists of continuous func-
tions from X to Y7 if it has the topology induced from YX then the
corresponding space is denoted by C,(X,Y). We write C'(X) instead of
C(X,R) and C,(X) instead of C,(X,R). Given a space X let Cp o(X) =
X and Cp 41(X) = Cp(Cp (X)) for all n € w, ie., Cp ,(X) is the n-th
iterated function space of X.

Let f: X — Y be a continuous function between the spaces X and Y.
The dual function f* : Cp(Y) — Cp(X) is defined as follows: if g € Cp(Y),
then f*(g) = go /.

Let Y be a subspace of X. By my we denote the function from C,(X) to
C,(Y') which restricts each element in C,,(X) to Y; that is, 7y (f) = f | Y.

If X =][{X::t € T} is a topological product, we denote by Xg
the product [[{X; : t € E} for each E C T. Moreover, if ¢ € T and
E C T, then p; and pg denote the natural projections onto X; and Xg,
respectively.

A continuous map f : X — Y is called R-quotient if, for any g : Y — R,
the continuity of g o f implies continuity of g.

Say that X is a Sokolov space if for any sequence {F,, : n € N} where
F,, is a closed subset of X™ for each n € N, there exists a continuous map
¢ : X — X such that ¢(X) is cosmic and ¢™(F,,) C F,, for all n € N, the
map " : X™ — X" is the n-th power of ¢.

A function ¢ defined on a space X is a neighborhood assignment on X
if, for any x € X, the set ¢(x) is an open neighborhood of the point z; let
P(A) = U{é(x) : x € A} for every A C X. Call X a D-space if, for any
neighborhood assignment ¢ on the space X, there exists a closed discrete
subspace D C X such that ¢(D) = X.
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Let a* be a point in X = [[{X; : t € T}. For z € X let us set
supp(x) = {t € T : z(t) # a*(t)}. The subspace {x € X : |supp(z)| < w}
of X is called the 3-product of the family {X; : t € T} centered at the
point a*.

For those concepts and notations which appear in this article without
a definition, consult [14] and [5].

3. MONOTONICALLY RETRACTABLE SPACES

Given a set A in a space X say that a family A/ of subsets of X is an
external network of A in X if for any x € A and U € 7(x, X) there exists
N € N such that z € N C U.

Let NV be a family of subsets of X and let f be a function from X onto
Y. We say that N is a network for Y modulo f if for every x € X and
each U € 7(f(z),Y) there is N € N such that z € N and f(N) C U.

Remark 3.1. Let f be a function from X onto Y and let A/ be a family
of subsets of X which is a network for Y modulo f. Then:

(1) f(N) is a network for Y.

(2) If g is a continuous function from Y onto Z, then A/ is a network
for Z modulo go f.

(3) If D is a subset of X with DN N # ) for any N € N/, then f(D)
is a dense subset of Y.

(4) If Z C X then {NNZ: N € N} is a network for f(Z) modulo

frz.

Given a family A of subsets of X, a family B of subsets of ¥ and
¥ : A — B; we say that v is w-monotone if:

(1) ¥(A) is countable whenever A is countable;

(2) if A,B € Aand A C B then ¢(A) C ¥(B);

3)if {4, : n € wy C A and A, C A,y for any n € w then
B(UL A 0 € w}) = Uf(An) 1 m € w}.

Remark 3.2. Let A, B and C be families of subsets of X, Y and Z,
respectively.

(1) f¢ : A - Band ¢ : B — C are w-monotone, then ¢ o ¢ is
w-monotone.

(2) Suppose that A is closed under countable unions and that the
assignment ¢ : A — A is w-monotone. If for each A € A
we choose p(A) = J{¢n(A) : n € w}, where ¥y(A) = A and
Unt1(A) = ¥ (A) U (¥, (A)) for each n € w, then the assign-

ment ¢ is w-monotone.
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For subsets F1, ..., E, of aspace X and subsets Uy, ..., U, of R, we will
use the symbol [E,...,En;Us,...,Uy] to denote the set {f € Cp(X) :
f(E;) CU;fori=1,...,n}. If £ is a family of subsets of X, then W(E)
will be the family of all the sets of the form [E1, ..., E,; By,..., B,] where
E\,...,E, €& By,...,B, € B(R) and n € w.

Remark 3.3. The assignment & — W(E) is w-monotone.

Definition 3.4. Say that a space X is monotonically retractable if for
any countable set A C X we can assign K(A), r(4) and N (A) in such a
form that: A C K(A) C X, r(A): X — K(A) is a continuous retraction,
N(A) is a family of subsets of X which is a network for K(A) modulo
r(A), and the assignment N is w-monotone.

Remark 3.5. By Remark 3.1 (1), the space K(A) in the above definition
has countable network weight; indeed {r(A)(N) : N € N(A)} is a network
for K(A).

Proposition 3.6. A space X is monotonically retractable if and only if
for any countable set A C X we can assign L(A), s(A) and O(A) in such
a form that: A C L(A) C X, s(4) : X — L(A) is a continuous and onto
function such that s(A)(x) = x for any x € A, O(A) is a family of subsets
of X which is a network for L(A) modulo s(A), and the assignment O is
w-monotone.

Proof. Clearly, a monotonically retractable space satisfies the conditions
in the proposition. Suppose that for any countable set A C X it is
possible to assign L(A), s(A), and O(A) as in the proposition, we shall
prove that X is monotonically retractable. Let O(X) = U{O(4) :
A is a countable subset of X}. We can suppose that all the elements of
O(X) are non-empty. For any set N € O(X) fix a point xy € N. If A
is a countable subset of X let £(A) = {an : N € O(A)}. Let us observe
that the assignment £ is w-monotone.

Let A be a countable subset of X. Choose Dy(A) = A. If for some
n € w we have defined Dg(A),...,Dn(A4), let Dpi1(A) = Dp(A) U
E(Dy(A)). Let D(A) = U{Dn(A) : n € w}, r(A) = s(D(4)), K(A) =
r(A)(X) = L(D(A)), and N(A) = O(D(A)). First, let us observe that
A = r(A)(A) € K(A) c X and N(A) is a network for K(A)
modulo r(A). Notice that £(D(A)) = E(U{Dn(4) : n € w}) =
U{E(Dn(A)) :n € w} CU{Dn+1(A) : n € w} C D(A). Since E(D(A)) =
{xn : N € O(D(A))} ={xn : N € N(A)}, we conclude that D(A)NN #
() for any N € N(A). It follows from Remark 3.1 (3) that r(A)(D(A4)) is
dense in K (A). Using this fact and the fact that r(A)(z) = s(D(A4))(z) =
x for any = € D(A), we conclude that 7(A) is a continuous retraction.
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It follows from Remark 3.2 (2) and the fact that the assignment £ is w-
monotone, that the assignment D is w-monotone. Since the assignment
O is also w-monotone, it follows from Remark 3.2 (1) that the assignment
N is w-monotone. This finishes the proof. O

Proposition 3.7. If X is monotonically retractable, Y C X andt: X —
Y is a continuous retraction, then Y is monotonically retractable.

Proof. Suppose that for any countable set A C X we have assigned K (A),
r(A) and N(A) as in Definition 3.4. By Proposition 3.6, it is enough to
show that for any countable set A C Y we can assign L(A), s(A) and
O(A) in such a form that: A C L(A) C Y, s(4) : Y — L(A) is a
continuous and onto function such that s(A)(x) = x for any z € A, O(A)
is a family of subsets of Y which is a network for L(A) modulo s(A4), and
the assignment O is w-monotone.

For each countable subset A of Y let s(A) = tor(A) [ Y, L(A) =
s(A)(Y) and O(A) = {NNY : N € N(A)}. Let us observe that the
assignment O is w-monotone. Clearly, s(A) : Y — L(A) is a continuous
and onto function. Moreover, if © € A, then z = t(x) = t(r(A)(z)) =
s(A)(z) € L(A). So, s(A)(x) = x and A C L(A). Also, since t is a
continuous retraction onto Y, if y € Y then s(A)(y) = ¢(r(A)(y)) € Y.
Thus, L(A) C Y. Now, since N(4) is a network for K(A4) = r(A)(X)
modulo r(A), it follows from Remark 3.1 (4) that O(A) is a network for
r(A)(Y) modulo r(A) [ Y. Because of Remark 3.1 (2) and the continuity
of ¢, we can see that O(A) is a network for L(A) = s(A4)(Y) =tor(A)(Y)
modulo s(A) =tor(A4) | Y. O

Proposition 3.8. Let {X,, : n € w} be a family of monotonically re-
tractable spaces, then X = @{X, : n € w} also is monotonically re-
tractable.

Proof. Let n € w, since X, is monotonically retractable, for any countable
set A, C X,, we can assign K, (A,), r.(4,) and NV,,(A,,) as in Definition
3.4. For any countable set A C X, let A, = AN X, for each n € w. Let
K(A) = U{Kn(4y) :n e w}, r(A) = P{rn(4,) : n € w}, and N(A) =
AN (An) : n € w}. Tt is easy to verify that K(A), r(A) and N(A)
satisfy the conditions in Definition 3.4; therefore, X is monotonically
retractable. O

We will need the following notation.
Let X = [[{X: : t € T} be a product of monotonically retractable
spaces and let Z be a ¥-product in X centered at some point a* € X.
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Given a countable set A C Z let A* = AU {a*}. For any ¢t € T and any
countable set A; C Xy choose ry(A;), K¢(A;) and N;(Ay) as in Definition
3.4. Given a countable set A C Z and a countable set £ C T, the
retraction r(A, E) : Z — Z is given by:

[ np(A)(at) it e B
ra B0 = { 0 fieT\B
A subspace Y of Z is said to be monotonically invariant if for each count-
able subset A of Y we can assign a subset £(A) of T in such a way that;
U{supp(z) : z € A} C £(A), r(A,E(A))(Y) C Y, and the assignment &
is w-monotone.

Remark 3.9. If Y is a monotonically invariant subspace of a »-product
of monotonically retractable spaces and A is a countable subset of Y, then
r(A,€(A)) 1Y : Y — Y is a continuous retraction onto its image and
r(A,E(A))(z) = z for any = € A.

Remark 3.10. Let X be a product of monotonically retractable spaces
and let Z be a Y-product in X centered at some point a* € X. If we
choose £(A) = J{supp(z) : © € A} for any countable subset A of Z, then
we can verify that the respective o-product (Xs-product or ¥-product) in
X centered at a* is a monotonically invariant subspace of Z.

Theorem 3.11. If Z is a X-product of monotonically retractable spaces
andY is a monotonically invariant subspace of Z, then'Y is monotonically
retractable.

Proof. Let {X; : t € T} be a family of monotonically retractable spaces.
Suppose that for any ¢t € T' and any countable set A; C X; we can assign
ri(Ay), Ki(Ar) and NMi(A:) as in Definition 3.4. Let X = [[{X; : t € T}
and let Z be a Y-product in X centered at some point a* € X. Take a
monotonically invariant subspace Y of Z. For each countable subset A
of Y choose a subset £(A) of T in such a way that: (J{supp(z) : = €
A} C E(A), r(A,E(A)(Y) C Y, and the assignment £ is w-monotone.
For each countable set A C Y we shall construct 7(A), K(A) and N (A)
which witness that Y is monotonically retractable.

Givenaset A CY,let r(A) =r(A,E(A)) [ Y and let K(A) =r(A)(Y).
Moreover, let A'(A) be the collection of all sets of the form Y N][{N; : ¢ €
T}, where Ny € Ny(pi(A*)) forany t € F, N, = X, fort € T\ F, and F is
a finite subset of £(A). Because of Remark 3.9, the map 7(4) : Y — K(A)
is a continuous retraction and A C K(A4) C Y.

Claim 1. N(A) is a network for K(A) modulo r(A4).

Proof of Claim 1. Let y € Y and U € 7(r(A4)(y), K(A)). We can find a
finite set H C T and an open set B = [[{B; : t € T} with B, open in X,
fort € H and B; = X; for t € T\ H, such that r(A)(y) € BNK(A) CU.
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Then ro(po(A%))(3(1)) = r(A)H)(E) € By 0 Kolpe(A*)) for any ¢ € E(4).
Let F = HNE(A). Since N;(pi(A*)) is a network for K;(p,(A*)) modulo
r¢(pi(A*)), for any ¢ € F we can choose Ny € N;(pi(A*)) such that
y(t) € Ny and r:(p(A*))(Ny) C By N Ki(p:(A*)). For t € T\ F let
N; = X;. Then we can see that N = Y N[[{N; : t € T} € N(A) and
y € N. We shall prove that r(A)(N) C U. Take z € N. If t € F then
r(A)(x)(t) = re(pe(A%))(x(t)) C re(pe(A*))(Ny) C By. If t € H\ F then
r(A)(z)(t) = a*(t) = r(A)(y)(t) € B;. Hence, r(A)(z) e BNK(A) CU.
Thus, r(4)(N) C U.

Claim 2. The assignment A is w-monotone.

Proof of Claim 2. (1) Given a countable subset A of Y, since £(A) is
countable and NV (ps(A*)) is countable for each t € T, it is easy to see that
N (A) is countable. (2) Suppose that A C B C Y, where B is a countable
set. Let us observe that £(A) C £(B). Moreover, p;(A*) C p:(B*) and
Ni(p:(A*)) C Ni(pe(B*)) for each ¢ € T. It follows from these facts that
N(A) c N(B). (3) Let {A, : n € w} be a family of countable subsets
of Y with A, C A,41 for any n € w, and let A = |J{4, : n € w}.
It follows from (2) that (J{IN(4,) : n € w} C N(A). We shall prove
the other contention. We know that £(A) = J{€(A,) : n € w}. Also,
Ni(pi(A7)) = Ni(pi(UfA7, : n€ wh)) = UiV (pi(47)) < n € w} for each
t € T. Let N € N(A), then there exists a finite set F© C £(A) such that
N =Y N[[{N: : t € T}, where Ny € Ny(pi(A*)) for any ¢t € F and
Ny = X, for t € T\ F. We can choose n € w such that F' C £(A,)
and N; € Ny(pi(AL)) for any t € F. Then N € N(A,). Therefore
N(A) Cc U{N(4,) :n € w}. O

Corollary 3.12. IfY is a o-product of monotonically retractable spaces,
then'Y is monotonically retractable.

Corollary 3.13. IfY is a 3s-product of monotonically retractable spaces,
then 'Y is monotonically retractable.

Corollary 3.14. IfY is a X-product of monotonically retractable spaces,
then Y is monotonically retractable.

Corollary 3.15. Let {X, : n € w} be a family of monotonically re-
tractable spaces, then X = [[{X, : n € w} also is monotonically re-
tractable.

Proposition 3.16. [9] Let f : X — Y be an onto and continuous function
and N be a family of subsets of X which is a network for Y modulo f.
Then W(N) is an external network of f*(Cp(Y)) in Cp(X).

Proposition 3.17. [9] Let Y C X. If N is an external network of Y in
X, then the family W(N') of subsets of Cp,(X) is a network for my (Cp(X))
modulo Ty .
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Theorem 3.18. Let X be a monotonically retractable space. Then Cp(X)
has the D-property and is a Lindeldf space.

Proof. Since X is monotonically retractable, for any countable set A C X
we can assign K (A), r(A) and N (A) in such a form that: A C K(A4) C X,
r(A): X — K(A) is a continuous retraction, N'(A) is a family of subsets
of X which is a network for K(A) modulo 7(A), and the assignment N is
w-monotone. Let O(A) = W(N(A)) for any countable subset A of X. It
follows from Proposition 3.16 that O(A) is a family of subsets of C,(X)
which is an external network for r(A)*(C,(K(A))) in C,(X). Moreover,
the assignment O is w-monotone because of Remark 3.2 (1) and the fact
that the assignments W and N are w-monotone.

Let ¢ be a neighborhood assignment on Cp,(X). There is no loss of
generality to assume that ¢(f) is a standard open set in Cp,(X) for any
f € Cp(X). Then for each f € C,(X) we can choose a finite set S(¢(f)) C
X such that ¢(f) = 7T§(1¢(f))(Ws(¢(f))(d)(f))). We will construct in a
recursive process a countable closed and discrete set D C Cp(X) such
that U{¢(f) : f € D} = Cp(X). For any set N C Cp,(X) say that f € N
is a central point of N if N C ¢(f); denote by Z(IN) the set of all central
points of N. It is easy to find a partition {Q, : n € w} of w in infinite
subsets such that {0,...,n} C QU,...,UQ,.

Step 0. Pick a function fy € C,(X) arbitrarily. Let Ay = S(¢(fo)) and
let {Ny : k € Qo} be an enumeration for the family O(Ay).

Proceeding inductively, assume that for n € w we have constructed
countable sets Ay, ..., A4, C X and functions fy,..., f, € Cp(X) such
that:

a(n) A; C A4 for i < m;
b(n) S(o(fi)) C A, for i <m;
e(n) ULZ(N,): j < i} € UL6(fy) 5 < i} for i < m:
dn) Jir € CyX) \ULS(T5) 4 < i} o fiss = fur for i < m
e(n) {Ng : k € Q;} is an enumeration for the family O(A4;) for every
i< n.

Step n+ 1. Let U, = U{o(fs) : i <n}. If for any k € J{Q : i < n}
we have Z(Ny) C U, then let f,11 = fn. In the other case, let I(n)
be the least element of (J{€; : i < n} such that Z(Ny) \ U, # 0
and choose fny1 € Z(Nypy) \ Un. Let Apy1 = Ay U S(@(fng1)) and let
{N : k € Q,41} be an enumeration of O(A4,4+1). This completes the
inductive step in such a way that properties a(n + 1)-e(n + 1) hold.

Therefore, we can construct the family A = {A; : i € w} of subsets of
X together with a set D = {f, : i € w} C C,(X) such that the conditions
a(n)-e(n) are satisfied for all n € w. Take A = |J{4; : i € w}.
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To show that J{¢(fi) : ¢ € w} = Cp(X), fix an arbitrary point f €
Cp(X). Let g = (f | K(A))or(A) € r(A)*(Cp(K(A))). Since O(A)
is an external network of r(A4)*(C,(K(A))) in Cp(X), we can find a set
N € O(A) such that g € N C ¢(g), that is, g € Z(N). Since O is w-
monotone, we have N € O(A4) = |J{O(4;) : i € w}. So, there exists n € w
such that N € O(A,,). By e(n) we have N = Ny, for some k € Q,, C w. By
c(k+1) we know that g € Z(Ny) C U{¢(fi) : © € w}. Choose m € w such
that g € ¢(fm). By b(m) we know that S(¢(fm)) C A, C A C K(A).
Since r(A)(x) = x for any x € A, we have f | A =g | A. In particular,
1 8@(fm) =g 1 5(@(fm)). Thus, we conclude that f € ¢(fm). The
point f € Cp(X) was chosen arbitrarily, so {¢(f;) : i € w} is a cover of
Cp(X).

It follows from d(n) for n € w and the fact that {¢(f;) : i € w} is a
cover of C(X) that D is closed and discrete in C,(X). Thus, Cp(X) is a
D-space.

Finally, to see that C,(X) is a Lindeldf space, let U be an open cover of
Cp(X). For any f € Cp(X) we can choose ¢(f) € U such that f € ¢(f).
Since ¢ is a neighborhood assignment, we can find a countable closed and
discrete set D C C,(X) such that C,(X) = U{¢(f) : f € D}. Asa
consequence, {¢(f): f € D} is a countable subcover of U. O

Corollary 3.19. Let X be a monotonically retractable space. Then the
spaces Cp(X)* and Cp(X¥) have the D-property and are Lindeldf spaces.

Corollary 3.20. For any monotonically retractable space X we have
tHXY) = w.

Corollary 3.21. Let X be a monotonically retractable space and suppose
that f : X =Y is an R-quotient map. Then Cp(Y)¥ has the D-property
and is a Lindeldf space.

Remark 3.22. Given a space X, let us note that if K C X, f € C,(X)
and 7 : X — K is a continuous retraction, then f | K = ((f | K)or) | K.

Lemma 3.23. If K C X andr : X — K is a continuous retraction, then
r* oK 1S a continuous retraction onto its image.

Proof. Clearly r* o mg is continuous. Let g € r* o mx(Cp(X)), then
g=(f 1 K)or for some f € C,(X). Since r is a continuous retraction,
by Remark 3.22, r* omg(g9) = (g | K)or = (((f | K)or) | K)or =
(f | K)or = g. This shows that r* o is a retraction onto its image. [
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Lemma 3.24. [1] Let Y be a dense subspace of the product X =
[I{X; : t € T}, where each space X; is cosmic. Then, for every con-
tinuous real-valued function f on'Y, there exists a countable set A C T
and a continuous real-valued function g on pa(Y') such that f = gopa Y.

Theorem 3.25. Let X be a monotonically retractable space. Then the
space CpCph(X) is also monotonically retractable.

Proof. Suppose that for any countable set A C X there exists a set
K(A) C X, a continuous retraction r(4) : X — K(A), and a count-
able family N (A) of subsets of X as in Definition 3.4. For any countable
set E C CpCy(X) we shall construct a set L(E) C CpCp(X), a retrac-
tion s(E) : CpCy(X) — L(E), and a countable family O(E) of subsets
of C,Cp(X), which satisfy conditions in Definition 3.4. Take A C X
countable. Let r(A4,0) = r(A) and K(4,0) = K(A). For each n € w, let
r(A,n+1) =r(A,n)*ongan and K(A,n+1) = r(A,n+1)(Cpni1(X)).
Because of Lemma 3.23, r(A,n) : Cp(X) — K(A,n) is a retraction
for any n € w. Notice that if f € Cpp41(X) then r(4,n + 1)(f) =
(f I K(A,n))or(A,n).

Let E C C,Cp(X) be countable. By Lemma 3.24, for any f € C,C),(X)
we can choose a countable set A(f) C X and a continuous function g(f) :
a5y (Cp(X)) — R such that f = g(f) o mas). Consider the countable
set A(E) = U{A(f) : f € E} C X. Finally, let s(E) = r(A(E),2),
L(E) = K(A(E),2) = 5(B)(C,C,y(X)), and O(E) = WWWN (A(E)).
We shall prove that s(E), L(E), and O(F) satisfy conditions in Definition
3.4.

It is clear that L(E) C C,Cp(X), s(E) : CpCp(X) = L(E) is a contin-
uous retraction, and O(FE) is a countable family of subsets of C,Cp,(X). It
is easy to see that A is w-monotone. Since YW and N are also w-monotone,
by Remark 3.2 (1) the operator O = Wo W o N o A is w-monotone.

Claim 1. E C L(E).

Proof of Claim 1. Take an arbitrary function f € E C CpCh(X).
By construction we have A(f) C A(E) C K(A(E)), so there exists
a continuous function h(f) : mx(a(p))(Cp(X)) — R such that f = h(f)o
T (A(E))- Forany k € Cp(X) since 7(A(FE)) is a retraction onto K (A(E)),
by Remark 3.22 we have mxapy)((k [ K(A(E))) o r(A(E))] = [(k |

K(A(E))) o r(A(E))] | K(A(E)) = k | K(A(E)) = 7 (A E))(k) As a
consequence f(k) = h(f)omx a(my) (k) = h(f)omramy(k | K(A(E)))o
r(A(E))] = h(f )OWK(A(E»( r(A(E),1)(k)) = [(r(A(E), )( )) for any
k€ Cp(X). Thus f = (f [ K(A(E),1)) o r(A(E), 1) = r(A(E),2)(f) =

s(E)(f) € L(E). Therefore E C L(E).
Claim 2. O(E) is a network for L(E) modulo s(E).
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Proof of Claim 2. It follows from the election of N that the fam-
ily N(A(E)) is a network for K(A(E)) modulo r(A(E)). We can apply
Proposition 3.16 to see that the family W(N(A(F))) is an external net-
work for r(A(E))*(Cp(K(A(E)))). In particular, W(N(A(E))) is an ex-
ternal network for 7(A(E))*(7xae)) (Cp(X))) = r(A(E), 1)(Cp(X)) =
K(A(E),1). Now, we can apply Proposition 3.17 to see that the family
O(E) = WOW(N(A(E)))) is a network for mg(a(g),1)(CpCp(X)) mod-
ulo T (a(m),1)- Since 7(A(EF),1)* is an homeomorphism onto its im-
age, by Remark 3.1 (2), we conclude that the family O(F) is a network
for T(A(E), 1)*(7TK(A(E),1)(CpCp(X))) modulo T’(A(E), 1)* o 7TK(.A(E),1)-
Finally, since s(E) = r(A(E),2) = 7(A(E),1)" o mga(p),1) and L(E) =
5(CpCp(X)) = r(A(E), 1)* (7K (a(E),1)(CpCp(X))), we conclude that the
family O(F) is a network for L(E) modulo s(E). O

Corollary 3.26. Let X be a monotonically retractable space. Then,
Cp2n(X) is monotonically retractable for every n € w.

Corollary 3.27. Let X be a monotonically retractable space. Then,
Cpan+1(X) is Lindeldf and a D-space for every n € w.

Theorem 3.28. Suppose that X is a first countable countably compact
subspace of an ordinal, then X is monotonically retractable.

Proof. We can suppose that X = {a € p: ¢f(a) < w} for some ordinal p.
There is no loss of generality to assume that X is infinite. Any interval
is considered only for the points of X; in particular [a,—) = {8 € X :
a <} for each @ € X and [a,8) = {# € X : « < z < B} whenever
a,f € X and « < . For any A C X let Z(A) = {{a} : a € A} U
{l[,=) : @« € A} U{[a,B) : a,8 € Aand o < B}. Let us observe
that the assignment A — Z(A) is w-monotone. Say that a set A C X is
saturated if 0 € A and every isolated point of A is also isolated in X. For
each a € p non-isolated in p, fix a countable strictly increasing sequence
X, of isolated ordinals converging to «.

Take a countable set A C X. Let us consider the set S(4) = AU
{0} U{X, : @ € A and « is non-isolated in u}. The set S(A) is count-
able as a countable union of countable sets. Notice that S(A) and also
K(A) = clx(S(A)) are saturated sets. Since S(A) is countable, it is
standard to prove that K(A) is compact and countable. Define a map
r(A) : X — K(A) by the formula r(A)(a) = max{s € K(A): < a} for
each o € X. Finally, let N'(A) = Z(S(A)). It is clear that A/ (A) is count-
able. We shall prove that r(A), K(A) and N (A) satisfy conditions in
Definition 3.4. Clearly A C K(A) C X. Since K(A) is compact and sat-
urated, by Lemma 2.4 in [15], the map r(A4) : X — K(A) is a continuous
retraction. Let us observe that the assignment A — S(A) is w-monotone.
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Since Z is also w-monotone, then N is w-monotone. So, we only need to
prove that N (A) is a network for K(A) modulo r(A).

Let £ € X and U € 7(r(A)(£), K(A4)). If £ € S(A), then £ € N and
r(A)(N) C U for N = {&} € N(A). Otherwise, it follows from r(A4)(¢) €
K(A) = clx(S(A)) that there exists @ € S(A) with o < r(A)(§) and
[a, 7(A)(§)]NK(A) C U. We have two cases to consider. (1) a < & for any
a € S(A). In this case £ € N and r(A)(N) C U for N = [a, —) € N(A).
(2) There exists v € S(A) with £ < ~. Let = min{y € S(A4) : £ < 7}.
In this case £ € N and r(A)(N) C U for N = [a, 3) € N(A). Thus, N'(A)
is a network for K (A) modulo r(A4). O

Corollary 3.29. Suppose that X is a first countable countably compact
subspace of an ordinal. Then Cp 25,11(X) is Lindeldf and a D-space for
every n € w.

Corollary 3.30. Let k be a cardinal number and let X be a X-product in
[0,w1)", then Cp an+1(X) is Lindeldf and a D-space for every n € w.

Theorem 3.31. IfY is a closed subspace of a S-product of cosmic spaces,
then Y is monotonically retractable.

Proof. Let {X; : t € T} be a family of cosmic spaces, and let P; be a
countable network for X; for every t € T. Let X = [[{X: :t € T}, let
Z be a Y-product in X centered at some point ¢* € X, and let Y be a
closed subspace of Z. For each countable set A C Y we shall construct
r(A), K(A) and N (A) which witness that Y is monotonically retractable.

For each set D C Z let S(D) = J{supp(y) : y € D}. Let us observe
that S is w-monotone. For each finite subset F' of T' we denote by Pr(Y)
the collection of all non-empty sets of the form Y N[[{P; : ¢t € T}, where
P, € Py forany t € F and P, = X, for t € T\ F. Given a finite subset
F of X and a set N € Pp, we fix a point yy € NNY. Given a set
EcCT,let P(E)=J{Pr: F € [E]<*} and D(E) = {yny : N € P(E)}.
Let us observe that the assignments £ — P(E) and E — D(FE) are w-
monotone. Finally, for any set £ C T let eg : Xg — X be the map given
by ep(z)(t) = x(t) for t € F and eg(x)(t) = a*(t) for t € T\ E. It is easy
to see that eg is an embedding.

Take a countable set A C Y. Let So(4) = S(4), and S,41(A) =
S, (A)US(D(S,(4))) for any n € w. Take E(A) = | J{Sn(A) : n € w} C
T. By Remark 3.2 (2), the assignment S(A4) — £(A) is w-monotone.
Hence, the assignment A — £(A) is w-monotone. Finally, let r(A) =
eg(a) © pe(ay |'Y, K(A) = r(A)(Y), and N(A) = P(E(A)). We shall
prove that r(A4), K(A) and N (A) satisfy the conditions in Definition 3.4.
Since £ and P are w-monotone, by Remark 3.2 (1), the assignment N is
w-monotone.
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Claim 1. N(A) is a network for K(A) modulo r(A4).

Proof of Claim 1. Let y € Y and U € 7(r(A)(y), K(A)). We can find
a finite set H C T and a collection {B; : t € T} with B; open in X; for
eacht € H and By = X, for t € T\ H such that, if B=[[{B;:t €T}
then r(A)(y) € BNK(A) CU. Let F = HNE(A). For any t € F we
can find P, € P; such that y(t) = r(A)(y)(t) € P, C By. Fort € T\ F
let P, = X;. Take N =Y N[[{P,:t €T}, theny € N and N € Pp C
P(E(A)) = N(A). We shall prove that 7(A)(N) C U. Let z € N. If
t € F then r(A)(z)(t) = z(t) € P, C B,. Fort € H\F C T\ £(A), we
have r(A)(z)(t) = a*(t) = r(A)(y)(t) € B;. Thus, r(A)(z) € B for any
x € N and so (4 )( JCBNK(A)CU.

Claim 2. A C K(A) C Y and r(A) : Y — K(A) is a continuous
retraction.

Proof of Claim 2. Let us observe that if y € Y then r(A)(y) = y if
and only if supp(y) C £(A). If y € A then supp(y) C Sp(4) C £(A),
and so y = r(A)(y) € K(A). Hence, A C K(A). If y € Y then
supp(r(A)(y)) C E(A) and so r(A)(r(A)(y)) = r(A)(y). Thus, r(A) is
a continuous retraction. We only need to show that K(A4) C Y.

Notice that, since D(E(A)) ={yn: N € P(E(A))} ={yn: N e N(A)},
we can conclude that D(E(A)) N N # () for each N € N(A). Moreover,
if y € D(E(A) = DULSA(A) : 0 € w}) = UIDSA(A)) = n € wh,
then y € D(S,(A)) for some n € w, and so supp(y) € S(D(S,(A))) =
Snt+1(A4) C E(A); that is, y = r(A)(y). Therefore, because of Claim 1 and
Remark 3.1 (3), D(E(A)) = r(A)(D(E(A))) is dense in K(A). Now, since
E(A) is countable, it is clear that eg(4)0opg(a)(X) C Z. Since Y is closed in
Z and by the continuity of eg(a) © pg(a), we have eg(a)y o pe(ay(clx (Y)) C
clz(eg(a) o pe(a)(Y)) = clz(r(A)(Y)) = clz(K(A4)) = clz(D(E(A))) C
clz(Y) =Y. In particular, K(A) = 7(A)(Y) = egayopgay(Y) CY. O

Corollary 3.32. Any Corson compact space is monotonically retractable.

Corollary 3.33. If Y is a X-product of a family of Corson compact
spaces, then C,(Y') is Lindeldf and has the D-property.

Corollary 3.34. IfY is a closed subspace of a X-product of cosmic spaces,
then Cpant+1(Y) is a D-space for every n € w.

Example 3.35. There exists a compact scattered Sokolov space which is
not monotonically retractable.

Proof. Given a countable limit ordinal «, a ladder on « is a set S

{a(n) : n € w} of isolated ordinals in « such that a(n) < a(m) when-
ever n < m and o = sup{a(n) : n € w}. Let L be a set of countable
limit ordinals of wy such that L and wy \ L are stationary sets in w; and
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fix a ladder S, on «, for any a € L. We associate a compact space X, in
the following standard way. Let @ = w; and declare all points of wy \ L
to be isolated in Q). If & € L then the local base of a in @ is the family
{{a} U (Sa \ F) : F is a finite subset of S,}. Finally, consider the one-
point compactification X, of the locally compact space () with w; being
the point at infinity. It is easy to see that X, is scattered. Since w; \ L
is a stationary set in wy, it follows from Proposition 4.2 in [10] that X7,
is a Sokolov space and hence has countable tightness.

We will prove that X, is not monotonically retractable. Suppose that
for any countable set A C X, we have assigned K(A), 7(A), and N'(A) as
in Definition 3.4. Let T, = So U{w1} and T = {«(0),...,a(n)} U{w:},
for any o € L and n € w. It follows from T, = (J{T? : n € w} that
N(T,) = U{N(TE) : n € w}. It follows from (T, )(a(n)) = a(n) for each
n € w and the continuity of r(T,) that 7(T,)(«) = . Since N (T,) is a
network for K (T, ) modulo r(T,), the family A (T,) contains an element
N, such that o € N, and a € 7(T,)(Ny) C {a} US,. Also, there exists
a natural number n, € w such that N, € N (T2).

Since L is stationary, there exists a stationary set L’ C L such that, for
some m € w we have n, = m for every a € L’. The function o — «(0)
is a regressive map on L'; so, there exists an ordinal p(0) € w\ L and
a stationary set Ly C L’ such that a(0) = p(0) for any o € Lg. The
function @ — «(1) is a regressive map on Lg; so, there exists an ordinal
(1) € w\ L and a stationary set L1 C Ly such that (1) = u(1) for any
a € L. Repeating this procedure m+ 1 times we will obtain a stationary
set L, C L' and ordinals p(0),...,u(m) such that a(i) = p(i) for any
a € Ly, and ¢ < m. Consequently T/ = M = {u(0),. .., u(m)}U{w;} for
all &« € Ly,. Hence, N, € N(T2*) = N(T") = N(M) for any a € Ly,.
Since N (M) is countable, there exist N € M(M) and a stationary set
Ly C L,, such that N, = N for each « € Ly. Then « € N, = N for
each a € Ly, that is Ly C N. Finally, if we take any o € Ly then
r(To)(Ly) C r(Ty)(Ny) C {a} US,. Being Ly uncountable and by the
continuity of 7(T,,) we have r(T,)(w1) € {a}US,. This is a contradiction
because (T, )(w1) = wy. O

Theorem 3.36. Let C be the class of all spaces which are homeomorphic
to a closed subspace in a X-product of cosmic spaces. Then C is closed
under closed subspaces of Y-products.

Proof. Let {Y, : @ < k} be a family of spaces in C, let Z’ be a X-product
in X' = [[{Ya : @ < k} centered at some point a* € X’ and let Y be a
closed subspace of Z’. We shall prove that Y is homeomorphic to a closed
subspace of a X-product of cosmic spaces.
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There is no loss of generality to assume that for each o < &k there
exists a family of cosmic spaces {X; : t € T,} such that Y, is a closed
subspace of the Y-product Z, in X, = [[{X: : t € T,} centered at
some point a} € X,. We can suppose that the family {7, : a« < K} is
pairwise disjoint. Let T = | {Tn : o < k} and X = [[{X; : t € T}. We
canonically identify X with [[{X, : @ < k}. Since a*(a) € Y, C Za,
then Z,, coincides with the ¥-product in X,, centered at a*(«a), so we can
suppose that a*(«) = a. Let Z be the X-product in X centered at a*.
Let us observe that Z and the X-product of {Z, : @ < k} centered at
a* are canonically identified. Also, observe that Y € Z/ € Z C X, so in
order to finish the proof it is enough to show that Z’ is closed in Z.

We will show that Z \ Z’ is open in Z. Let z € Z \ Z'. Notice that
since a*(a) = a}, we have z(a) € Z, for each o < k. Also, there exists
a countable set A C & such that z(a) = a*(a) € Y, for any a € &\ A.
Because of z ¢ Z’, there exists £ € A such that x(§) € Z¢ \ Ye. Since Yz is
closed in Z¢ we conclude that Us = Z¢ \ Y¢ is open in Z;. For o € \ {¢}
let U, = Z,. Then for the canonical open set U = [[{U, : a < K} in
[I{Za : @ < k} we have x e UNZ C Z\ Z'. This shows that Z \ Z’ is
open in Z. ]

Corollary 3.37. Let k be a cardinal number and let X be a closed sub-
space of a X-product in [0,w1)", then X is monotonically retractable.

4. OPEN QUESTIONS

The following list of questions contains some interesting problems that
the author could not solve while working on this paper.

Question 4.1. Suppose that a compact space X is monotonically re-
tractable. Must X be Corson compact?

Question 4.2. Suppose that a scattered compact space X is monotonically
retractable. Must X be Corson compact?

Question 4.3. Suppose that X is a monotonically retractable compact
space and p(Cp(X)) = w. Must X be metrizable?

Question 4.4. Suppose that X is a monotonically retractable realcompact
space. Must X be Lindeldf?

Question 4.5. Suppose that a space X is monotonically retractable and
w1 18 a caliber of X. Must X have a countable network?

Question 4.6. Suppose that a space X is monotonically retractable and
X has a small diagonal. Must X have a countable network?
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Question 4.7. Suppose that X is a space such that (X x X)\ A is
monotonically retractable. Must X have a countable network? Here A =
{(z,z) : x € X} is the diagonal of the space X.

Question 4.8. Suppose that X is hereditarily monotonically retractable.
Must X have a countable network?

Question 4.9. Suppose that X is a Lindeldf P-space. Must Cp(X) be
monotonically retractable?
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