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FUNCTION SPACES AND D-PROPERTY

R. ROJAS-HERNÁNDEZ

Abstract. In this article we introduce the notion of monotoni-
cally retractable space and we show that: (1) Cp(X) is Lindelöf
and a D-space whenever X is monotonically retractable. (2) If
X is monotonically retractable then Cp,2n(X) is monotonically re-
tractable for any n ∈ ω. (3) Any first countable countably com-
pact subspace of an ordinal is monotonically retractable. (4) Every
closed subspace of a Σ-product of cosmic spaces is monotonically
retractable.

As a consequence of these results we conclude that Cp,2n+1(X)
is Lindelöf and has the D-property for any n ∈ ω, whenever X is
a first countable countably compact subspace of an ordinal; this
answers a question posed by Tkachuk in [15].

1. Introduction

The notion of D-space is due to van Douwen, first studied with Pfeffer
in [3]. The question whether every regular Lindelöf space is D has been
attributed to van Douwen [6]. There are no consistency results in either
direction even for hereditarily Lindelöf spaces. In [12], assuming 3, an
example of a hereditarily Lindelöf T2-space that is not a D-space was
constructed. The example also has the property that any of its finite
powers is Lindelöf, but is not known if it can be made regular. The
concept of a D-space was studied a great deal ever since in almost every
context and Cp-theory was not an exception. However, the Cp-version of
the question of van Douwen and Pfeffer remains open. Indeed, it is not
known if Cp(X) is a D-space whenever it is Lindelöf [4].
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It is easy to see that the ordinal space ω1 embeds in a Σ-product of real
lines as a closed subspace, so the results in [7] are applicable to prove that
Cp(ω1) is Lindelöf. Buzyakova generalized this result in [2] establishing
that, for any first countable countably compact subspace X of an ordinal,
the space Cp(X) is Lindelöf. In the same paper Buzyakova asked whether
Cp(X) has to be a D-space if X is a countably compact first countable
subspace of an ordinal. Peng showed in [8] that the answer to Buzyakova’s
question is positive. On the other hand, it was established by Tkachuk
in [15] that if X is a first countable countably compact subspace of an
ordinal then X is a Sokolov space. It follows from general properties of
Sokolov spaces that for any first countable countably compact subspace
X of an ordinal, the spaces (Cp(X))ω and Cp(X

ω) are Lindelöf and the
iterated function space Cp,2n+1(X) is Lindelöf for any n ∈ ω. Also, using
the same technique, Tkachuk gave a new method of proof of Peng’s result
which answered the question of Buzyakova.

It follows from the above results that: if X is a first countable count-
ably compact subspace of an ordinal, then Cp(X) is a D-space and Y =
Cp(Cp(Cp(X))) is a Lindelöf space and a Sokolov space. Tkachuk asked
in [15] whether Y is a D-space.

In this paper we introduce the notion of monotone retractability and
it is proved that this property is preserved under retracts, countable free
topological sums, σ-products, Σ-products, and Σs-products. Our main
results are the following: Cp(X) is Lindelöf and has the D-property when-
ever X is monotonically retractable, and if X is monotonically retractable
then Cp(Cp(X)) is monotonically retractable. We also prove that any first
countable countably compact subspace of an ordinal is monotonically re-
tractable. As a consequence, if X is a first countable countably compact
subspace of an ordinal, then the spaces (Cp(X))ω and Cp(X

ω) are Lin-
delöf and D-spaces and the iterated function space Cp,2n+1(X) is Lindelöf
and has the D-property for any n ∈ ω. This answers the above question
of Tkachuk in the affirmative. Furthermore, we prove that any closed
subspace of a Σ-product of cosmic spaces is monotonically retractable. In
particular, any Corson compact space is monotonically retractable. Fi-
nally, we will deal with the class of Sokolov spaces. The Sokolov spaces
constitute a wide class systematically studied in [13]. It is known that: if
X is a Sokolov space with t∗(X) ≤ ω then Cp,2n+1(X) is Lindelöf for any
n ∈ ω, if X is a first countable countably compact subspace of an ordinal
then X is a Sokolov space, and any closed subspace of a Σ-product of cos-
mic spaces is Sokolov. So, it will be interesting to clarify the relationship
between monotonically retractable spaces and Sokolov spaces. We give
an example of a compact scattered Sokolov space of countable tightness
which is not monotonically retractable.
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2. Notation and Terminology

The letters α, β and γ represent ordinal numbers and the letters κ and
λ represent infinite cardinal numbers; ω is the first infinite cardinal. All
spaces are assumed to be Tychonoff. Given a space X, the family τ(X)
is its topology; if x ∈ X, then τ(x,X) = {U ∈ τ(X) : x ∈ U}; besides, for
any set A ⊂ X, we will need the family τ(A,X) = {U ∈ τ(X) : A ⊂ U}.
We denote by R the real line with its natural topology. From now on we
will fix a countable base B(R) for the usual topology in the set of real
numbers R.

For a subset A of a topological space X, clX(A) is the closure of A
in X. If there is no possibility of confusion, we will simply write cl(A)
instead of clX(A).

The network weight nw(X) of a space X is the minimal cardinality of
a network in X. A space that has a countable network is called cosmic.

For any spaces X and Y the set C(X,Y ) consists of continuous func-
tions from X to Y ; if it has the topology induced from Y X then the
corresponding space is denoted by Cp(X,Y ). We write C(X) instead of
C(X,R) and Cp(X) instead of Cp(X,R). Given a space X let Cp,0(X) =
X and Cp,n+1(X) = Cp(Cp,n(X)) for all n ∈ ω, i.e., Cp,n(X) is the n-th
iterated function space of X.

Let f : X → Y be a continuous function between the spaces X and Y .
The dual function f∗ : Cp(Y ) → Cp(X) is defined as follows: if g ∈ Cp(Y ),
then f∗(g) = g ◦ f .

Let Y be a subspace ofX. By πY we denote the function from Cp(X) to
Cp(Y ) which restricts each element in Cp(X) to Y ; that is, πY (f) = f � Y .

If X =
∏
{Xt : t ∈ T} is a topological product, we denote by XE

the product
∏
{Xt : t ∈ E} for each E ⊂ T . Moreover, if t ∈ T and

E ⊂ T , then pt and pE denote the natural projections onto Xt and XE ,
respectively.

A continuous map f : X → Y is called R-quotient if, for any g : Y → R,
the continuity of g ◦ f implies continuity of g.

Say that X is a Sokolov space if for any sequence {Fn : n ∈ N} where
Fn is a closed subset of Xn for each n ∈ N, there exists a continuous map
φ : X → X such that φ(X) is cosmic and φn(Fn) ⊂ Fn for all n ∈ N, the
map φn : Xn → Xn is the n-th power of φ.

A function ϕ defined on a space X is a neighborhood assignment on X
if, for any x ∈ X, the set ϕ(x) is an open neighborhood of the point x; let
ϕ(A) =

∪
{ϕ(x) : x ∈ A} for every A ⊂ X. Call X a D-space if, for any

neighborhood assignment ϕ on the space X, there exists a closed discrete
subspace D ⊂ X such that ϕ(D) = X.
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Let a∗ be a point in X =
∏
{Xt : t ∈ T}. For x ∈ X let us set

supp(x) = {t ∈ T : x(t) ̸= a∗(t)}. The subspace {x ∈ X : |supp(x)| ≤ ω}
of X is called the Σ-product of the family {Xt : t ∈ T} centered at the
point a∗.

For those concepts and notations which appear in this article without
a definition, consult [14] and [5].

3. Monotonically retractable spaces

Given a set A in a space X say that a family N of subsets of X is an
external network of A in X if for any x ∈ A and U ∈ τ(x,X) there exists
N ∈ N such that x ∈ N ⊂ U .

Let N be a family of subsets of X and let f be a function from X onto
Y . We say that N is a network for Y modulo f if for every x ∈ X and
each U ∈ τ(f(x), Y ) there is N ∈ N such that x ∈ N and f(N) ⊂ U .

Remark 3.1. Let f be a function from X onto Y and let N be a family
of subsets of X which is a network for Y modulo f . Then:

(1) f(N ) is a network for Y .
(2) If g is a continuous function from Y onto Z, then N is a network

for Z modulo g ◦ f .
(3) If D is a subset of X with D ∩N ̸= ∅ for any N ∈ N , then f(D)

is a dense subset of Y .
(4) If Z ⊂ X then {N ∩ Z : N ∈ N} is a network for f(Z) modulo

f � Z.

Given a family A of subsets of X, a family B of subsets of Y and
ψ : A → B; we say that ψ is ω-monotone if:

(1) ψ(A) is countable whenever A is countable;
(2) if A,B ∈ A and A ⊂ B then ψ(A) ⊂ ψ(B);
(3) if {An : n ∈ ω} ⊂ A and An ⊂ An+1 for any n ∈ ω then

ψ(
∪
{An : n ∈ ω}) =

∪
{ψ(An) : n ∈ ω}.

Remark 3.2. Let A, B and C be families of subsets of X, Y and Z,
respectively.

(1) If ψ : A → B and φ : B → C are ω-monotone, then φ ◦ ψ is
ω-monotone.

(2) Suppose that A is closed under countable unions and that the
assignment ψ : A → A is ω-monotone. If for each A ∈ A
we choose φ(A) =

∪
{ψn(A) : n ∈ ω}, where ψ0(A) = A and

ψn+1(A) = ψn(A) ∪ ψ(ψn(A)) for each n ∈ ω, then the assign-
ment φ is ω-monotone.
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For subsets E1, . . . , En of a spaceX and subsets U1, . . . , Un of R, we will
use the symbol [E1, . . . , En;U1, . . . , Un] to denote the set {f ∈ Cp(X) :
f(Ei) ⊂ Ui for i = 1, . . . , n}. If E is a family of subsets of X, then W(E)
will be the family of all the sets of the form [E1, . . . , En;B1, . . . , Bn] where
E1, . . . , En ∈ E , B1, . . . , Bn ∈ B(R) and n ∈ ω.

Remark 3.3. The assignment E → W(E) is ω-monotone.

Definition 3.4. Say that a space X is monotonically retractable if for
any countable set A ⊂ X we can assign K(A), r(A) and N (A) in such a
form that: A ⊂ K(A) ⊂ X, r(A) : X → K(A) is a continuous retraction,
N (A) is a family of subsets of X which is a network for K(A) modulo
r(A), and the assignment N is ω-monotone.

Remark 3.5. By Remark 3.1 (1), the space K(A) in the above definition
has countable network weight; indeed {r(A)(N) : N ∈ N (A)} is a network
for K(A).

Proposition 3.6. A space X is monotonically retractable if and only if
for any countable set A ⊂ X we can assign L(A), s(A) and O(A) in such
a form that: A ⊂ L(A) ⊂ X, s(A) : X → L(A) is a continuous and onto
function such that s(A)(x) = x for any x ∈ A, O(A) is a family of subsets
of X which is a network for L(A) modulo s(A), and the assignment O is
ω-monotone.

Proof. Clearly, a monotonically retractable space satisfies the conditions
in the proposition. Suppose that for any countable set A ⊂ X it is
possible to assign L(A), s(A), and O(A) as in the proposition, we shall
prove that X is monotonically retractable. Let O(X) =

∪
{O(A) :

A is a countable subset of X}. We can suppose that all the elements of
O(X) are non-empty. For any set N ∈ O(X) fix a point xN ∈ N . If A
is a countable subset of X let E(A) = {xN : N ∈ O(A)}. Let us observe
that the assignment E is ω-monotone.

Let A be a countable subset of X. Choose D0(A) = A. If for some
n ∈ ω we have defined D0(A), . . . , Dn(A), let Dn+1(A) = Dn(A) ∪
E(Dn(A)). Let D(A) =

∪
{Dn(A) : n ∈ ω}, r(A) = s(D(A)), K(A) =

r(A)(X) = L(D(A)), and N (A) = O(D(A)). First, let us observe that
A = r(A)(A) ⊂ K(A) ⊂ X and N (A) is a network for K(A)
modulo r(A). Notice that E(D(A)) = E(

∪
{Dn(A) : n ∈ ω}) =∪

{E(Dn(A)) : n ∈ ω} ⊂
∪
{Dn+1(A) : n ∈ ω} ⊂ D(A). Since E(D(A)) =

{xN : N ∈ O(D(A))} = {xN : N ∈ N (A)}, we conclude that D(A)∩N ̸=
∅ for any N ∈ N (A). It follows from Remark 3.1 (3) that r(A)(D(A)) is
dense in K(A). Using this fact and the fact that r(A)(x) = s(D(A))(x) =
x for any x ∈ D(A), we conclude that r(A) is a continuous retraction.
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It follows from Remark 3.2 (2) and the fact that the assignment E is ω-
monotone, that the assignment D is ω-monotone. Since the assignment
O is also ω-monotone, it follows from Remark 3.2 (1) that the assignment
N is ω-monotone. This finishes the proof. �

Proposition 3.7. If X is monotonically retractable, Y ⊂ X and t : X →
Y is a continuous retraction, then Y is monotonically retractable.

Proof. Suppose that for any countable set A ⊂ X we have assigned K(A),
r(A) and N (A) as in Definition 3.4. By Proposition 3.6, it is enough to
show that for any countable set A ⊂ Y we can assign L(A), s(A) and
O(A) in such a form that: A ⊂ L(A) ⊂ Y , s(A) : Y → L(A) is a
continuous and onto function such that s(A)(x) = x for any x ∈ A, O(A)
is a family of subsets of Y which is a network for L(A) modulo s(A), and
the assignment O is ω-monotone.

For each countable subset A of Y let s(A) = t ◦ r(A) � Y , L(A) =
s(A)(Y ) and O(A) = {N ∩ Y : N ∈ N (A)}. Let us observe that the
assignment O is ω-monotone. Clearly, s(A) : Y → L(A) is a continuous
and onto function. Moreover, if x ∈ A, then x = t(x) = t(r(A)(x)) =
s(A)(x) ∈ L(A). So, s(A)(x) = x and A ⊂ L(A). Also, since t is a
continuous retraction onto Y , if y ∈ Y then s(A)(y) = t(r(A)(y)) ∈ Y .
Thus, L(A) ⊂ Y . Now, since N (A) is a network for K(A) = r(A)(X)
modulo r(A), it follows from Remark 3.1 (4) that O(A) is a network for
r(A)(Y ) modulo r(A) � Y . Because of Remark 3.1 (2) and the continuity
of t, we can see that O(A) is a network for L(A) = s(A)(Y ) = t◦ r(A)(Y )
modulo s(A) = t ◦ r(A) � Y . �

Proposition 3.8. Let {Xn : n ∈ ω} be a family of monotonically re-
tractable spaces, then X =

⊕
{Xn : n ∈ ω} also is monotonically re-

tractable.

Proof. Let n ∈ ω, sinceXn is monotonically retractable, for any countable
set An ⊂ Xn we can assign Kn(An), rn(An) and Nn(An) as in Definition
3.4. For any countable set A ⊂ X, let An = A ∩Xn for each n ∈ ω. Let
K(A) =

∪
{Kn(An) : n ∈ ω}, r(A) =

⊕
{rn(An) : n ∈ ω}, and N (A) =∪

{Nn(An) : n ∈ ω}. It is easy to verify that K(A), r(A) and N (A)
satisfy the conditions in Definition 3.4; therefore, X is monotonically
retractable. �

We will need the following notation.
Let X =

∏
{Xt : t ∈ T} be a product of monotonically retractable

spaces and let Z be a Σ-product in X centered at some point a∗ ∈ X.
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Given a countable set A ⊂ Z let A∗ = A ∪ {a∗}. For any t ∈ T and any
countable set At ⊂ Xt choose rt(At), Kt(At) and Nt(At) as in Definition
3.4. Given a countable set A ⊂ Z and a countable set E ⊂ T , the
retraction r(A,E) : Z → Z is given by:

r(A,E)(x)(t) =

{
rt(pt(A

∗))(x(t)) if t ∈ E;
a∗(t), if t ∈ T \ E.

A subspace Y of Z is said to be monotonically invariant if for each count-
able subset A of Y we can assign a subset E(A) of T in such a way that;∪
{supp(x) : x ∈ A} ⊂ E(A), r(A, E(A))(Y ) ⊂ Y , and the assignment E

is ω-monotone.

Remark 3.9. If Y is a monotonically invariant subspace of a Σ-product
of monotonically retractable spaces and A is a countable subset of Y , then
r(A, E(A)) � Y : Y → Y is a continuous retraction onto its image and
r(A, E(A))(x) = x for any x ∈ A.

Remark 3.10. Let X be a product of monotonically retractable spaces
and let Z be a Σ-product in X centered at some point a∗ ∈ X. If we
choose E(A) =

∪
{supp(x) : x ∈ A} for any countable subset A of Z, then

we can verify that the respective σ-product (Σs-product or Σ-product) in
X centered at a∗ is a monotonically invariant subspace of Z.

Theorem 3.11. If Z is a Σ-product of monotonically retractable spaces
and Y is a monotonically invariant subspace of Z, then Y is monotonically
retractable.

Proof. Let {Xt : t ∈ T} be a family of monotonically retractable spaces.
Suppose that for any t ∈ T and any countable set At ⊂ Xt we can assign
rt(At), Kt(At) and Nt(At) as in Definition 3.4. Let X =

∏
{Xt : t ∈ T}

and let Z be a Σ-product in X centered at some point a∗ ∈ X. Take a
monotonically invariant subspace Y of Z. For each countable subset A
of Y choose a subset E(A) of T in such a way that:

∪
{supp(x) : x ∈

A} ⊂ E(A), r(A, E(A))(Y ) ⊂ Y , and the assignment E is ω-monotone.
For each countable set A ⊂ Y we shall construct r(A), K(A) and N (A)
which witness that Y is monotonically retractable.

Given a set A ⊂ Y , let r(A) = r(A, E(A)) � Y and letK(A) = r(A)(Y ).
Moreover, let N (A) be the collection of all sets of the form Y ∩

∏
{Nt : t ∈

T}, where Nt ∈ Nt(pt(A
∗)) for any t ∈ F , Nt = Xt for t ∈ T \F , and F is

a finite subset of E(A). Because of Remark 3.9, the map r(A) : Y → K(A)
is a continuous retraction and A ⊂ K(A) ⊂ Y .

Claim 1. N (A) is a network for K(A) modulo r(A).
Proof of Claim 1. Let y ∈ Y and U ∈ τ(r(A)(y),K(A)). We can find a

finite set H ⊂ T and an open set B =
∏
{Bt : t ∈ T} with Bt open in Xt

for t ∈ H and Bt = Xt for t ∈ T \H, such that r(A)(y) ∈ B ∩K(A) ⊂ U .
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Then rt(pt(A
∗))(y(t)) = r(A)(y)(t) ∈ Bt ∩Kt(pt(A

∗)) for any t ∈ E(A).
Let F = H ∩E(A). Since Nt(pt(A

∗)) is a network for Kt(pt(A
∗)) modulo

rt(pt(A
∗)), for any t ∈ F we can choose Nt ∈ Nt(pt(A

∗)) such that
y(t) ∈ Nt and rt(pt(A

∗))(Nt) ⊂ Bt ∩ Kt(pt(A
∗)). For t ∈ T \ F let

Nt = Xt. Then we can see that N = Y ∩
∏
{Nt : t ∈ T} ∈ N (A) and

y ∈ N . We shall prove that r(A)(N) ⊂ U . Take x ∈ N . If t ∈ F then
r(A)(x)(t) = rt(pt(A

∗))(x(t)) ⊂ rt(pt(A
∗))(Nt) ⊂ Bt. If t ∈ H \ F then

r(A)(x)(t) = a∗(t) = r(A)(y)(t) ∈ Bt. Hence, r(A)(x) ∈ B ∩K(A) ⊂ U .
Thus, r(A)(N) ⊂ U .

Claim 2. The assignment N is ω-monotone.
Proof of Claim 2. (1) Given a countable subset A of Y , since E(A) is

countable and Nt(pt(A
∗)) is countable for each t ∈ T , it is easy to see that

N (A) is countable. (2) Suppose that A ⊂ B ⊂ Y , where B is a countable
set. Let us observe that E(A) ⊂ E(B). Moreover, pt(A∗) ⊂ pt(B

∗) and
Nt(pt(A

∗)) ⊂ Nt(pt(B
∗)) for each t ∈ T . It follows from these facts that

N (A) ⊂ N (B). (3) Let {An : n ∈ ω} be a family of countable subsets
of Y with An ⊂ An+1 for any n ∈ ω, and let A =

∪
{An : n ∈ ω}.

It follows from (2) that
∪
{N (An) : n ∈ ω} ⊂ N (A). We shall prove

the other contention. We know that E(A) =
∪
{E(An) : n ∈ ω}. Also,

Nt(pt(A
∗)) = Nt(pt(

∪
{A∗

n : n ∈ ω})) =
∪
{Nt(pt(A

∗
n)) : n ∈ ω} for each

t ∈ T . Let N ∈ N (A), then there exists a finite set F ⊂ E(A) such that
N = Y ∩

∏
{Nt : t ∈ T}, where Nt ∈ Nt(pt(A

∗)) for any t ∈ F and
Nt = Xt for t ∈ T \ F . We can choose n ∈ ω such that F ⊂ E(An)
and Nt ∈ Nt(pt(A

∗
n)) for any t ∈ F . Then N ∈ N (An). Therefore

N (A) ⊂
∪
{N (An) : n ∈ ω}. �

Corollary 3.12. If Y is a σ-product of monotonically retractable spaces,
then Y is monotonically retractable.

Corollary 3.13. If Y is a Σs-product of monotonically retractable spaces,
then Y is monotonically retractable.

Corollary 3.14. If Y is a Σ-product of monotonically retractable spaces,
then Y is monotonically retractable.

Corollary 3.15. Let {Xn : n ∈ ω} be a family of monotonically re-
tractable spaces, then X =

∏
{Xn : n ∈ ω} also is monotonically re-

tractable.

Proposition 3.16. [9] Let f : X → Y be an onto and continuous function
and N be a family of subsets of X which is a network for Y modulo f .
Then W(N ) is an external network of f∗(Cp(Y )) in Cp(X).

Proposition 3.17. [9] Let Y ⊂ X. If N is an external network of Y in
X, then the family W(N ) of subsets of Cp(X) is a network for πY (Cp(X))
modulo πY .
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Theorem 3.18. Let X be a monotonically retractable space. Then Cp(X)
has the D-property and is a Lindelöf space.

Proof. Since X is monotonically retractable, for any countable set A ⊂ X
we can assign K(A), r(A) and N (A) in such a form that: A ⊂ K(A) ⊂ X,
r(A) : X → K(A) is a continuous retraction, N (A) is a family of subsets
of X which is a network for K(A) modulo r(A), and the assignment N is
ω-monotone. Let O(A) = W(N (A)) for any countable subset A of X. It
follows from Proposition 3.16 that O(A) is a family of subsets of Cp(X)
which is an external network for r(A)∗(Cp(K(A))) in Cp(X). Moreover,
the assignment O is ω-monotone because of Remark 3.2 (1) and the fact
that the assignments W and N are ω-monotone.

Let ϕ be a neighborhood assignment on Cp(X). There is no loss of
generality to assume that ϕ(f) is a standard open set in Cp(X) for any
f ∈ Cp(X). Then for each f ∈ Cp(X) we can choose a finite set S(ϕ(f)) ⊂
X such that ϕ(f) = π−1

S(ϕ(f))(πS(ϕ(f))(ϕ(f))). We will construct in a
recursive process a countable closed and discrete set D ⊂ Cp(X) such
that

∪
{ϕ(f) : f ∈ D} = Cp(X). For any set N ⊂ Cp(X) say that f ∈ N

is a central point of N if N ⊂ ϕ(f); denote by Z(N) the set of all central
points of N . It is easy to find a partition {Ωn : n ∈ ω} of ω in infinite
subsets such that {0, . . . , n} ⊂ Ω1∪, . . . ,∪Ωn.

Step 0. Pick a function f0 ∈ Cp(X) arbitrarily. Let A0 = S(ϕ(f0)) and
let {Nk : k ∈ Ω0} be an enumeration for the family O(A0).

Proceeding inductively, assume that for n ∈ ω we have constructed
countable sets A0, . . . , An ⊂ X and functions f0, . . . , fn ∈ Cp(X) such
that:
a(n) Ai ⊂ Ai+1 for i < n;
b(n) S(ϕ(fi)) ⊂ Ai for i ≤ n;
c(n)

∪
{Z(Nj) : j < i} ⊂

∪
{ϕ(fj) : j ≤ i} for i ≤ n;

d(n) fi+1 ∈ Cp(X) \
∪
{ϕ(fj) : j ≤ i} or fi+1 = fi, for i < n;

e(n) {Nk : k ∈ Ωi} is an enumeration for the family O(Ai) for every
i ≤ n.

Step n + 1. Let Un =
∪
{ϕ(fi) : i ≤ n}. If for any k ∈

∪
{Ωi : i ≤ n}

we have Z(Nk) ⊂ Un then let fn+1 = fn. In the other case, let l(n)
be the least element of

∪
{Ωi : i ≤ n} such that Z(Nl(n)) \ Un ̸= ∅

and choose fn+1 ∈ Z(Nl(n)) \ Un. Let An+1 = An ∪ S(ϕ(fn+1)) and let
{Nk : k ∈ Ωn+1} be an enumeration of O(An+1). This completes the
inductive step in such a way that properties a(n+ 1)-e(n+ 1) hold.

Therefore, we can construct the family A = {Ai : i ∈ ω} of subsets of
X together with a set D = {fi : i ∈ ω} ⊂ Cp(X) such that the conditions
a(n)-e(n) are satisfied for all n ∈ ω. Take A =

∪
{Ai : i ∈ ω}.
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To show that
∪
{ϕ(fi) : i ∈ ω} = Cp(X), fix an arbitrary point f ∈

Cp(X). Let g = (f � K(A)) ◦ r(A) ∈ r(A)∗(Cp(K(A))). Since O(A)
is an external network of r(A)∗(Cp(K(A))) in Cp(X), we can find a set
N ∈ O(A) such that g ∈ N ⊂ ϕ(g), that is, g ∈ Z(N). Since O is ω-
monotone, we have N ∈ O(A) =

∪
{O(Ai) : i ∈ ω}. So, there exists n ∈ ω

such that N ∈ O(An). By e(n) we have N = Nk for some k ∈ Ωn ⊂ ω. By
c(k+1) we know that g ∈ Z(Nk) ⊂

∪
{ϕ(fi) : i ∈ ω}. Choose m ∈ ω such

that g ∈ ϕ(fm). By b(m) we know that S(ϕ(fm)) ⊂ Am ⊂ A ⊂ K(A).
Since r(A)(x) = x for any x ∈ A, we have f � A = g � A. In particular,
f � S(ϕ(fm)) = g � S(ϕ(fm)). Thus, we conclude that f ∈ ϕ(fm). The
point f ∈ Cp(X) was chosen arbitrarily, so {ϕ(fi) : i ∈ ω} is a cover of
Cp(X).

It follows from d(n) for n ∈ ω and the fact that {ϕ(fi) : i ∈ ω} is a
cover of Cp(X) that D is closed and discrete in Cp(X). Thus, Cp(X) is a
D-space.

Finally, to see that Cp(X) is a Lindelöf space, let U be an open cover of
Cp(X). For any f ∈ Cp(X) we can choose ϕ(f) ∈ U such that f ∈ ϕ(f).
Since ϕ is a neighborhood assignment, we can find a countable closed and
discrete set D ⊂ Cp(X) such that Cp(X) =

∪
{ϕ(f) : f ∈ D}. As a

consequence, {ϕ(f) : f ∈ D} is a countable subcover of U . �

Corollary 3.19. Let X be a monotonically retractable space. Then the
spaces Cp(X)ω and Cp(X

ω) have the D-property and are Lindelöf spaces.

Corollary 3.20. For any monotonically retractable space X we have
t(Xω) = ω.

Corollary 3.21. Let X be a monotonically retractable space and suppose
that f : X → Y is an R-quotient map. Then Cp(Y )ω has the D-property
and is a Lindelöf space.

Remark 3.22. Given a space X, let us note that if K ⊂ X, f ∈ Cp(X)
and r : X → K is a continuous retraction, then f � K = ((f � K)◦r) � K.

Lemma 3.23. If K ⊂ X and r : X → K is a continuous retraction, then
r∗ ◦ πK is a continuous retraction onto its image.

Proof. Clearly r∗ ◦ πK is continuous. Let g ∈ r∗ ◦ πK(Cp(X)), then
g = (f � K) ◦ r for some f ∈ Cp(X). Since r is a continuous retraction,
by Remark 3.22, r∗ ◦ πK(g) = (g � K) ◦ r = (((f � K) ◦ r) � K) ◦ r =
(f � K)◦r = g. This shows that r∗ ◦πK is a retraction onto its image. �
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Lemma 3.24. [1] Let Y be a dense subspace of the product X =∏
{Xt : t ∈ T}, where each space Xt is cosmic. Then, for every con-

tinuous real-valued function f on Y , there exists a countable set A ⊂ T
and a continuous real-valued function g on pA(Y ) such that f = g◦pA � Y .

Theorem 3.25. Let X be a monotonically retractable space. Then the
space CpCp(X) is also monotonically retractable.

Proof. Suppose that for any countable set A ⊂ X there exists a set
K(A) ⊂ X, a continuous retraction r(A) : X → K(A), and a count-
able family N (A) of subsets of X as in Definition 3.4. For any countable
set E ⊂ CpCp(X) we shall construct a set L(E) ⊂ CpCp(X), a retrac-
tion s(E) : CpCp(X) → L(E), and a countable family O(E) of subsets
of CpCp(X), which satisfy conditions in Definition 3.4. Take A ⊂ X
countable. Let r(A, 0) = r(A) and K(A, 0) = K(A). For each n ∈ ω, let
r(A,n+1) = r(A,n)∗◦πK(A,n) and K(A,n+1) = r(A,n+1)(Cp,n+1(X)).
Because of Lemma 3.23, r(A,n) : Cp,n(X) → K(A,n) is a retraction
for any n ∈ ω. Notice that if f ∈ Cp,n+1(X) then r(A,n + 1)(f) =
(f � K(A,n)) ◦ r(A,n).

Let E ⊂ CpCp(X) be countable. By Lemma 3.24, for any f ∈ CpCp(X)
we can choose a countable set A(f) ⊂ X and a continuous function g(f) :
πA(f)(Cp(X)) → R such that f = g(f) ◦ πA(f). Consider the countable
set A(E) =

∪
{A(f) : f ∈ E} ⊂ X. Finally, let s(E) = r(A(E), 2),

L(E) = K(A(E), 2) = s(E)(CpCp(X)), and O(E) = W(W(N (A(E)))).
We shall prove that s(E), L(E), and O(E) satisfy conditions in Definition
3.4.

It is clear that L(E) ⊂ CpCp(X), s(E) : CpCp(X) → L(E) is a contin-
uous retraction, and O(E) is a countable family of subsets of CpCp(X). It
is easy to see that A is ω-monotone. Since W and N are also ω-monotone,
by Remark 3.2 (1) the operator O = W ◦W ◦N ◦ A is ω-monotone.

Claim 1. E ⊂ L(E).
Proof of Claim 1. Take an arbitrary function f ∈ E ⊂ CpCp(X).

By construction we have A(f) ⊂ A(E) ⊂ K(A(E)), so there exists
a continuous function h(f) : πK(A(E))(Cp(X)) → R such that f = h(f) ◦
πK(A(E)). For any k ∈ Cp(X) since r(A(E)) is a retraction ontoK(A(E)),
by Remark 3.22 we have πK(A(E))[(k � K(A(E))) ◦ r(A(E))] = [(k �
K(A(E))) ◦ r(A(E))] � K(A(E)) = k � K(A(E)) = πK(A(E))(k). As a
consequence f(k) = h(f)◦πK(A(E))(k) = h(f)◦πK(A(E))[(k � K(A(E)))◦
r(A(E))] = h(f) ◦ πK(A(E))(r(A(E), 1)(k)) = f(r(A(E), 1)(k)) for any
k ∈ Cp(X). Thus f = (f � K(A(E), 1)) ◦ r(A(E), 1) = r(A(E), 2)(f) =
s(E)(f) ∈ L(E). Therefore E ⊂ L(E).

Claim 2. O(E) is a network for L(E) modulo s(E).
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Proof of Claim 2. It follows from the election of N that the fam-
ily N (A(E)) is a network for K(A(E)) modulo r(A(E)). We can apply
Proposition 3.16 to see that the family W(N (A(E))) is an external net-
work for r(A(E))∗(Cp(K(A(E)))). In particular, W(N (A(E))) is an ex-
ternal network for r(A(E))∗(πK(A(E))(Cp(X))) = r(A(E), 1)(Cp(X)) =
K(A(E), 1). Now, we can apply Proposition 3.17 to see that the family
O(E) = W(W(N (A(E)))) is a network for πK(A(E),1)(CpCp(X)) mod-
ulo πK(A(E),1). Since r(A(E), 1)∗ is an homeomorphism onto its im-
age, by Remark 3.1 (2), we conclude that the family O(E) is a network
for r(A(E), 1)∗(πK(A(E),1)(CpCp(X))) modulo r(A(E), 1)∗ ◦ πK(A(E),1).
Finally, since s(E) = r(A(E), 2) = r(A(E), 1)∗ ◦ πK(A(E),1) and L(E) =
s(CpCp(X)) = r(A(E), 1)∗(πK(A(E),1)(CpCp(X))), we conclude that the
family O(E) is a network for L(E) modulo s(E). �

Corollary 3.26. Let X be a monotonically retractable space. Then,
Cp,2n(X) is monotonically retractable for every n ∈ ω.

Corollary 3.27. Let X be a monotonically retractable space. Then,
Cp,2n+1(X) is Lindelöf and a D-space for every n ∈ ω.

Theorem 3.28. Suppose that X is a first countable countably compact
subspace of an ordinal, then X is monotonically retractable.

Proof. We can suppose that X = {α ∈ µ : cf(α) ≤ ω} for some ordinal µ.
There is no loss of generality to assume that X is infinite. Any interval
is considered only for the points of X; in particular [α,→) = {β ∈ X :
α ≤ β} for each α ∈ X and [α, β) = {z ∈ X : α ≤ z < β} whenever
α, β ∈ X and α < β. For any A ⊂ X let I(A) = {{α} : α ∈ A}∪
{[α,→) : α ∈ A} ∪ {[α, β) : α, β ∈ A and α < β}. Let us observe
that the assignment A → I(A) is ω-monotone. Say that a set A ⊂ X is
saturated if 0 ∈ A and every isolated point of A is also isolated in X. For
each α ∈ µ non-isolated in µ, fix a countable strictly increasing sequence
Xα of isolated ordinals converging to α.

Take a countable set A ⊂ X. Let us consider the set S(A) = A ∪
{0} ∪ {Xα : α ∈ A and α is non-isolated in µ}. The set S(A) is count-
able as a countable union of countable sets. Notice that S(A) and also
K(A) = clX(S(A)) are saturated sets. Since S(A) is countable, it is
standard to prove that K(A) is compact and countable. Define a map
r(A) : X → K(A) by the formula r(A)(α) = max{β ∈ K(A) : β ≤ α} for
each α ∈ X. Finally, let N (A) = I(S(A)). It is clear that N (A) is count-
able. We shall prove that r(A), K(A) and N (A) satisfy conditions in
Definition 3.4. Clearly A ⊂ K(A) ⊂ X. Since K(A) is compact and sat-
urated, by Lemma 2.4 in [15], the map r(A) : X → K(A) is a continuous
retraction. Let us observe that the assignment A→ S(A) is ω-monotone.
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Since I is also ω-monotone, then N is ω-monotone. So, we only need to
prove that N (A) is a network for K(A) modulo r(A).

Let ξ ∈ X and U ∈ τ(r(A)(ξ),K(A)). If ξ ∈ S(A), then ξ ∈ N and
r(A)(N) ⊂ U for N = {ξ} ∈ N (A). Otherwise, it follows from r(A)(ξ) ∈
K(A) = clX(S(A)) that there exists α ∈ S(A) with α ≤ r(A)(ξ) and
[α, r(A)(ξ)]∩K(A) ⊂ U . We have two cases to consider. (1) α < ξ for any
α ∈ S(A). In this case ξ ∈ N and r(A)(N) ⊂ U for N = [α,→) ∈ N (A).
(2) There exists γ ∈ S(A) with ξ < γ. Let β = min{γ ∈ S(A) : ξ < γ}.
In this case ξ ∈ N and r(A)(N) ⊂ U for N = [α, β) ∈ N (A). Thus, N (A)
is a network for K(A) modulo r(A). �

Corollary 3.29. Suppose that X is a first countable countably compact
subspace of an ordinal. Then Cp,2n+1(X) is Lindelöf and a D-space for
every n ∈ ω.

Corollary 3.30. Let κ be a cardinal number and let X be a Σ-product in
[0, ω1)

κ, then Cp,2n+1(X) is Lindelöf and a D-space for every n ∈ ω.

Theorem 3.31. If Y is a closed subspace of a Σ-product of cosmic spaces,
then Y is monotonically retractable.

Proof. Let {Xt : t ∈ T} be a family of cosmic spaces, and let Pt be a
countable network for Xt for every t ∈ T . Let X =

∏
{Xt : t ∈ T}, let

Z be a Σ-product in X centered at some point a∗ ∈ X, and let Y be a
closed subspace of Z. For each countable set A ⊂ Y we shall construct
r(A), K(A) and N (A) which witness that Y is monotonically retractable.

For each set D ⊂ Z let S(D) =
∪
{supp(y) : y ∈ D}. Let us observe

that S is ω-monotone. For each finite subset F of T we denote by PF (Y )
the collection of all non-empty sets of the form Y ∩

∏
{Pt : t ∈ T}, where

Pt ∈ Pt for any t ∈ F and Pt = Xt for t ∈ T \ F . Given a finite subset
F of X and a set N ∈ PF , we fix a point yN ∈ N ∩ Y . Given a set
E ⊂ T , let P(E) =

∪
{PF : F ∈ [E]<ω} and D(E) = {yN : N ∈ P(E)}.

Let us observe that the assignments E → P(E) and E → D(E) are ω-
monotone. Finally, for any set E ⊂ T let eE : XE → X be the map given
by eE(x)(t) = x(t) for t ∈ E and eE(x)(t) = a∗(t) for t ∈ T \E. It is easy
to see that eE is an embedding.

Take a countable set A ⊂ Y . Let S0(A) = S(A), and Sn+1(A) =
Sn(A) ∪ S(D(Sn(A))) for any n ∈ ω. Take E(A) =

∪
{Sn(A) : n ∈ ω} ⊂

T . By Remark 3.2 (2), the assignment S(A) → E(A) is ω-monotone.
Hence, the assignment A → E(A) is ω-monotone. Finally, let r(A) =
eE(A) ◦ pE(A) � Y , K(A) = r(A)(Y ), and N (A) = P(E(A)). We shall
prove that r(A), K(A) and N (A) satisfy the conditions in Definition 3.4.
Since E and P are ω-monotone, by Remark 3.2 (1), the assignment N is
ω-monotone.
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Claim 1. N (A) is a network for K(A) modulo r(A).
Proof of Claim 1. Let y ∈ Y and U ∈ τ(r(A)(y),K(A)). We can find

a finite set H ⊂ T and a collection {Bt : t ∈ T} with Bt open in Xt for
each t ∈ H and Bt = Xt for t ∈ T \H such that, if B =

∏
{Bt : t ∈ T}

then r(A)(y) ∈ B ∩ K(A) ⊂ U . Let F = H ∩ E(A). For any t ∈ F we
can find Pt ∈ Pt such that y(t) = r(A)(y)(t) ∈ Pt ⊂ Bt. For t ∈ T \ F
let Pt = Xt. Take N = Y ∩

∏
{Pt : t ∈ T}, then y ∈ N and N ∈ PF ⊂

P(E(A)) = N (A). We shall prove that r(A)(N) ⊂ U . Let x ∈ N . If
t ∈ F then r(A)(x)(t) = x(t) ∈ Pt ⊂ Bt. For t ∈ H \ F ⊂ T \ E(A), we
have r(A)(x)(t) = a∗(t) = r(A)(y)(t) ∈ Bt. Thus, r(A)(x) ∈ B for any
x ∈ N and so r(A)(N) ⊂ B ∩K(A) ⊂ U .

Claim 2. A ⊂ K(A) ⊂ Y and r(A) : Y → K(A) is a continuous
retraction.

Proof of Claim 2. Let us observe that if y ∈ Y then r(A)(y) = y if
and only if supp(y) ⊂ E(A). If y ∈ A then supp(y) ⊂ S0(A) ⊂ E(A),
and so y = r(A)(y) ∈ K(A). Hence, A ⊂ K(A). If y ∈ Y then
supp(r(A)(y)) ⊂ E(A) and so r(A)(r(A)(y)) = r(A)(y). Thus, r(A) is
a continuous retraction. We only need to show that K(A) ⊂ Y .

Notice that, since D(E(A)) = {yN :N ∈P(E(A))}= {yN :N ∈N (A)},
we can conclude that D(E(A)) ∩ N ̸= ∅ for each N ∈ N (A). Moreover,
if y ∈ D(E(A)) = D(

∪
{Sn(A) : n ∈ ω}) =

∪
{D(Sn(A)) : n ∈ ω},

then y ∈ D(Sn(A)) for some n ∈ ω, and so supp(y) ∈ S(D(Sn(A))) =
Sn+1(A) ⊂ E(A); that is, y = r(A)(y). Therefore, because of Claim 1 and
Remark 3.1 (3), D(E(A)) = r(A)(D(E(A))) is dense in K(A). Now, since
E(A) is countable, it is clear that eE(A)◦pE(A)(X) ⊂ Z. Since Y is closed in
Z and by the continuity of eE(A) ◦ pE(A), we have eE(A) ◦ pE(A)(clX(Y )) ⊂
clZ(eE(A) ◦ pE(A)(Y )) = clZ(r(A)(Y )) = clZ(K(A)) = clZ(D(E(A))) ⊂
clZ(Y ) = Y . In particular, K(A) = r(A)(Y ) = eE(A) ◦ pE(A)(Y ) ⊂ Y . �
Corollary 3.32. Any Corson compact space is monotonically retractable.

Corollary 3.33. If Y is a Σ-product of a family of Corson compact
spaces, then Cp(Y ) is Lindelöf and has the D-property.

Corollary 3.34. If Y is a closed subspace of a Σ-product of cosmic spaces,
then Cp,2n+1(Y ) is a D-space for every n ∈ ω.

Example 3.35. There exists a compact scattered Sokolov space which is
not monotonically retractable.

Proof. Given a countable limit ordinal α, a ladder on α is a set Sα =
{α(n) : n ∈ ω} of isolated ordinals in α such that α(n) < α(m) when-
ever n < m and α = sup{α(n) : n ∈ ω}. Let L be a set of countable
limit ordinals of ω1 such that L and ω1 \ L are stationary sets in ω1 and
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fix a ladder Sα on α, for any α ∈ L. We associate a compact space XL in
the following standard way. Let Q = ω1 and declare all points of ω1 \ L
to be isolated in Q. If α ∈ L then the local base of α in Q is the family
{{α} ∪ (Sα \ F ) : F is a finite subset of Sα}. Finally, consider the one-
point compactification XL of the locally compact space Q with ω1 being
the point at infinity. It is easy to see that XL is scattered. Since ω1 \ L
is a stationary set in ω1, it follows from Proposition 4.2 in [10] that XL

is a Sokolov space and hence has countable tightness.
We will prove that XL is not monotonically retractable. Suppose that

for any countable set A ⊂ XL, we have assigned K(A), r(A), and N (A) as
in Definition 3.4. Let Tα = Sα ∪ {ω1} and Tn

α = {α(0), . . . , α(n)} ∪ {ω1},
for any α ∈ L and n ∈ ω. It follows from Tα =

∪
{Tn

α : n ∈ ω} that
N (Tα) =

∪
{N (Tn

α ) : n ∈ ω}. It follows from r(Tα)(α(n)) = α(n) for each
n ∈ ω and the continuity of r(Tα) that r(Tα)(α) = α. Since N (Tα) is a
network for K(Tα) modulo r(Tα), the family N (Tα) contains an element
Nα such that α ∈ Nα and α ∈ r(Tα)(Nα) ⊂ {α} ∪ Sα. Also, there exists
a natural number nα ∈ ω such that Nα ∈ N (Tnα

α ).
Since L is stationary, there exists a stationary set L′ ⊂ L such that, for

some m ∈ ω we have nα = m for every α ∈ L′. The function α → α(0)
is a regressive map on L′; so, there exists an ordinal µ(0) ∈ ω \ L and
a stationary set L0 ⊂ L′ such that α(0) = µ(0) for any α ∈ L0. The
function α → α(1) is a regressive map on L0; so, there exists an ordinal
µ(1) ∈ ω \ L and a stationary set L1 ⊂ L0 such that α(1) = µ(1) for any
α ∈ L1. Repeating this procedure m+1 times we will obtain a stationary
set Lm ⊂ L′ and ordinals µ(0), . . . , µ(m) such that α(i) = µ(i) for any
α ∈ Lm and i ≤ m. Consequently Tm

α =M = {µ(0), . . . , µ(m)}∪{ω1} for
all α ∈ Lm. Hence, Nα ∈ N (Tnα

α ) = N (Tm
α ) = N (M) for any α ∈ Lm.

Since N (M) is countable, there exist N ∈ N (M) and a stationary set
LN ⊂ Lm such that Nα = N for each α ∈ LN . Then α ∈ Nα = N for
each α ∈ LN , that is LN ⊂ N . Finally, if we take any α ∈ LN then
r(Tα)(LN ) ⊂ r(Tα)(Nα) ⊂ {α} ∪ Sα. Being LN uncountable and by the
continuity of r(Tα) we have r(Tα)(ω1) ∈ {α}∪Sα. This is a contradiction
because r(Tα)(ω1) = ω1. �

Theorem 3.36. Let C be the class of all spaces which are homeomorphic
to a closed subspace in a Σ-product of cosmic spaces. Then C is closed
under closed subspaces of Σ-products.

Proof. Let {Yα : α < κ} be a family of spaces in C, let Z ′ be a Σ-product
in X ′ =

∏
{Yα : α < κ} centered at some point a∗ ∈ X ′ and let Y be a

closed subspace of Z ′. We shall prove that Y is homeomorphic to a closed
subspace of a Σ-product of cosmic spaces.
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There is no loss of generality to assume that for each α < κ there
exists a family of cosmic spaces {Xt : t ∈ Tα} such that Yα is a closed
subspace of the Σ-product Zα in Xα =

∏
{Xt : t ∈ Tα} centered at

some point a∗α ∈ Xα. We can suppose that the family {Tα : α < κ} is
pairwise disjoint. Let T =

∪
{Tα : α < κ} and X =

∏
{Xt : t ∈ T}. We

canonically identify X with
∏
{Xα : α < κ}. Since a∗(α) ∈ Yα ⊂ Zα,

then Zα coincides with the Σ-product in Xα centered at a∗(α), so we can
suppose that a∗(α) = a∗α. Let Z be the Σ-product in X centered at a∗.
Let us observe that Z and the Σ-product of {Zα : α < κ} centered at
a∗ are canonically identified. Also, observe that Y ⊂ Z ′ ⊂ Z ⊂ X, so in
order to finish the proof it is enough to show that Z ′ is closed in Z.

We will show that Z \ Z ′ is open in Z. Let x ∈ Z \ Z ′. Notice that
since a∗(α) = a∗α we have x(α) ∈ Zα for each α < κ. Also, there exists
a countable set A ⊂ κ such that x(α) = a∗(α) ∈ Yα for any α ∈ κ \ A.
Because of x ̸∈ Z ′, there exists ξ ∈ A such that x(ξ) ∈ Zξ \Yξ. Since Yξ is
closed in Zξ we conclude that Uξ = Zξ \Yξ is open in Zξ. For α ∈ κ \ {ξ}
let Uα = Zα. Then for the canonical open set U =

∏
{Uα : α < κ} in∏

{Zα : α < κ} we have x ∈ U ∩ Z ⊂ Z \ Z ′. This shows that Z \ Z ′ is
open in Z. �

Corollary 3.37. Let κ be a cardinal number and let X be a closed sub-
space of a Σ-product in [0, ω1)

κ, then X is monotonically retractable.

4. Open Questions

The following list of questions contains some interesting problems that
the author could not solve while working on this paper.

Question 4.1. Suppose that a compact space X is monotonically re-
tractable. Must X be Corson compact?

Question 4.2. Suppose that a scattered compact space X is monotonically
retractable. Must X be Corson compact?

Question 4.3. Suppose that X is a monotonically retractable compact
space and p(Cp(X)) = ω. Must X be metrizable?

Question 4.4. Suppose that X is a monotonically retractable realcompact
space. Must X be Lindelöf?

Question 4.5. Suppose that a space X is monotonically retractable and
ω1 is a caliber of X. Must X have a countable network?

Question 4.6. Suppose that a space X is monotonically retractable and
X has a small diagonal. Must X have a countable network?
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Question 4.7. Suppose that X is a space such that (X × X) \ ∆ is
monotonically retractable. Must X have a countable network? Here ∆ =
{(x, x) : x ∈ X} is the diagonal of the space X.

Question 4.8. Suppose that X is hereditarily monotonically retractable.
Must X have a countable network?

Question 4.9. Suppose that X is a Lindelöf P -space. Must Cp(X) be
monotonically retractable?
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