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A NOTE ON
GENERALIZED ORDERED TOPOLOGICAL PRODUCTS

AI-JUN XU AND WEI-XUE SHI

ABsTRACT. In this paper, we present an equivalent definition of
a generalized ordered topological product (GOTP) (X *Y) of two
generalized ordered spaces X and Y by a mapping p. Moreover,
we investigate the mapping p and show p is a continuous mapping
from a GOTP(X *Y) to generalized ordered space X under some
conditions. Finally, we give other results on the mapping p.

1. INTRODUCTION

In [4] and [5], we introduced a new topology on the lexicographic prod-
uct set X x Y for two generalized ordered (GO) spaces X and Y and in-
vestigated the relationship of properties, such as Lindeléfness, monotone
Lindel6fness, paracompactness, and perfectness, of the two GO-spaces
and their generalized ordered topological product. However, the defini-
tion of the generalized ordered topological product (GOTP) (X %Y of
two GO spaces X and Y (in [4] and [5]) is somewhat complicated and has
many parts. In this paper, for GO-spaces X and Y, let p: X xY — X
be the projection. We refine the definition of the GOTP in Definition
2.3 by the mapping p. We show that if Y has two endpoints, then the
mapping p is a closed quotient mapping, and if Y has either a left or a
right endpoint, but not both, then X has no neighbor points if and only
if p is a continuous mapping. In addition, we know that mapping p is not
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necessarily open by Example 2.12, but we give other interesting results
(see Theorem 2.14 and Theorem 2.15).

In this paper, we reserve the symbol N for the set of positive integers.
A linearly ordered topological space (LOTS) is a triple (X, Ax, <), where
(X, <) is a linearly ordered set and Ax is the interval topology on (X, <).
A generalized ordered space( GO-space) is a triple (X, 7x, <), where (X, <)
is a linearly ordered set and 7x is a topology on (X, <) such that Ax C 7x
and 7x has a base consisting of order convex sets, where a set A is called
order convez if x € A for every = lying between two points of A. If m
and n are points of a GO-space X such that m < n and (m,n) = ), then
m and n are said to be neighbor points in X; m is called the left neighbor
point of n and n is the right neighbor point of m.

For the undefined terminology and notions, refer to [1] and [3].

2. MAIN RESULTS

For GO-spaces X and Y, denote by p the mapping of GOTP(X *Y)
to X assigning the point (z,y) € GOTP(X *Y) to the point = € X. For
a GO-space X = (X, 7x, <), let

Lx={re X | (+,z] €1x — Ax},

Rx ={z e X |[z,—) €rx — Ax}, and

Ix ={z € X | z is an isolated point of X},
where \x is the usual order topology on X.

In the following, we present a definition of a GOTP that is equivalent
to that of [4] and [5] but is often easier to use.

Definition 2.1 ([2]). Let (X, <x) and (Y, <y) be linearly ordered sets.
Then the lexicographic product X Y of (X, <x) and (Y, <y) is defined
as the ordered set (X x Y, <) where < is the lexicographic ordering; i.e.,
if a=(x1,y1) and b = (x2,y2) € X XY, then

a < b if and only if 1 <x x2 or 1 = z9 and y; <y yo.

Definition 2.2 ([4], [5]). Let (X, 7x,<x) and (Y, 7y, <y) be GO-spaces,
let Ax and Ay be the usual interval topology on X and Y, respectively,
and let Ax.y be the usual interval topology on the linearly ordered set
XxY.

We mean a topology on X xY which has a subbase

B:)\X*yUTRUTL
U{[<x7y>7_>)gX*Y|x€X7yeyand[:%_))e’r}’_)\}’}
U{(<—,<l‘,y>]gX*Y|.’IJ€X,yEYal’ld((—,y]ETy—Ay}7
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where either
7r =0 and 7, = (), if Y does not have endpoints,
or

R ={[(z,v0), =) |z € X and [z, =) € 7x — Ax} and 71, =0,
if Y has a left endpoint yy, but no right one,

or

Tr =0 and 71, = {(+, (z,y1)] | € X and (+,2] € 7x — Ax },
if Y has a right endpoint y;, but no left one,

or

TR :{[<x7y0>7_>) ‘ z € X and [x’ —)) ETx — )\X} and
7L ={(+ {2, y1)] | * € X and (+-, 2] € 7x — A\x},
if Y has both a left endpoint yy and a right endpoint y;.

Definition 2.3. Let (X,7x,<x) and (Y, 7y, <y) be GO-spaces and let
Ax, Ay, and Ax,y be the usual interval topology on X, Y, and X %Y,
respectively. The generalized ordered topology O on X *Y is generated
by the subbase

P =Ax.y U{p *([z,=)) |z € X and [z, =) € Tx — Ax}
U{p Y+ z]) |z € X and (+, 2] € 7x — Ax}
U{l{z,y), =) CX*xY [z€X, yeY and [y,—=) €7y — Ay}
U{(+{z, )] CX*xY |z e X, yeY and (+,y] € v — A\v }.

As said in [5], for different ordered sets, the orderings may be different.
But in almost all cases, we can distinguish them from their contexts. So
we will use the symbol < for all the orderings unless another symbol is
necessary to avoid confusion.

Now we show that the generalized ordered topology O in Definition 2.3
and the generalized ordered topology 7x.y in Definition 2.2 are the same
generalized ordered topology on lexicographic product X =Y.

Proposition 2.4. Let (X,7x,<x) and (Y,7y,<y) be GO-spaces. The
generalized ordered topology O on the lexicographic product X Y (defined
in Definition 2.3) coincides with the generalized ordered topology Tx .y on
the lexicographic product X x Y (defined in Definition 2.2).

Proof. Let P and B be the subbases defined in Definition 2.3 and Defini-
tion 2.2, respectively. Now we show that O = 7x,y. There are four cases
to consider.
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Case 1: Y has a left endpoint yg, but no right one. Then, for each z € X
and [z,—) € Tx — Ax, p~ 1 ([z,—)) = [(x,y0), —). By Definition 2.2 and
Definition 2.3, it is clear that B C P and 7x.y C O. In addition, for each
x € X, if (+,2] € Tx — Ax, then p~((+—,7]) = U{(+—, (z,y))ly € Y} C
Axsy. Hence, each member of P is a member of 7x.y. So, O C Tx.v.
Consequently, 7x.y = O.

Case 2: Y has a right endpoint g, but no left one.
Case 3: Y has both a left endpoint yo and a right endpoint ;.
Case 4: Y does not has endpoints.

Cases 2, 3, and 4 can be proved by some modifications. O

In the following, we say that the space (X * Y, Tx.y) is the GOTP of
GO-spaces (X, 7x,<x) and (Y, 7y, <y) and denote it by GOTP(X xY).
In GOTP(X *Y'), the mapping p is not necessarily a continuous mapping
(see Example 2.7). But, if Y has two endpoints, the mapping p is not only
a continuous mapping but also a closed quotient mapping (see Theorem
2.6).

Lemma 2.5. Let X and Y be GO-spaces and yo (y1) be the left (right)
endpoint of Y.
(1) [z,—) is open in X iff [(z,y0),—) is open in GOTP(X xY).
(2) (4, x] is open in X iff (+, (x,y1)] is open in GOTP(X xY).
(3) x is isolated in X iff {z} xY is open in GOTP(X xY).

Proof. (1) Necessity. Assume [z, —) is open in X. If z has an immediate
predecessor ' in X, then (z/,y;) is an immediate predecessor of (z,yo)
in X «Y. So [(z,y0),—) is open in GOTP(X %Y. If x does not have an
immediate predecessor in X, there are two cases to consider:

(a) z is not a left endpoint of X. Then [z,—) € Tx — Ax. Hence,
[(z,y0), —) is open in GOTP(X % Y) by Definition 2.3.

(b) x is a left endpoint of X. Then (z,yo) is a left endpoint of X %Y.
Hence, [(x,y0), —) is open in GOTP(X *Y').

Sufficiency. Assume [(z,y), —) is open in GOTP(X xY). If x is a left
endpoint of X, then [z, —) is open in X. If x is not a left endpoint of X,
there are two possibilities:

(i) = has an immediate predecessor 2’ in X. Then [z, —) is open in X.

(ii) « does not have an immediate predecessor in X. Then (z,yo) does
not have an immediate predecessor in GOTP(X *Y) and [(x,yo), —) €
Txsy — Ax«y. Hence, [x,—) is open in X. Otherwise, [x,—) ¢ 7x — Ax.
By Definition 2.3, [{(z,v0), =) ¢ Tx«y — Ax+y. Contradiction.

The proofs of (2) and (3) are similar. O
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Theorem 2.6. Let X and Y be GO-spaces. If Y has both a left and a
right endpoint, then

(1) p is a quotient mapping,

(2) X is a quotient space,

(3) p is a closed mapping.

Proof. (1) Let yo be a left endpoint of Y and y; a right endpoint of Y.

CrLAM 1. O is open in X if p~1(O) is open in GOTP(X xY) for every
subset O of X. It suffices to prove that, for each x € O, there is an open
neighborhood U(z) of z in X such that U(x) C O. There are four cases:

(i) € Ix. Then let U(z) = {x}.

(ii) « ¢ Ix and [x,—) is open in X. Then (4+,z] is not open in
X. By Lemma 2.5(2), (+—, (z,41)] is not open in GOTP(X % Y).
Thus, there exists a v > z such that [(x,y0), (v,50)) € p~(O)
since (z,y1) € p~1(O). Therefore, let U(z) = [z,v).

(iii) = ¢ Ix and (<, x] is open in X.

(iv) Neither [z, —) nor (+,z] is open in X.

The proofs of (iii) and (iv) are similar to (ii).

CLAIM 2. p~1(0) is open in GOTP(X*Y') for every open convex subset
O of X. If O is an open convex subset of X, then there exist a,b € X
such that O = [a,b) or O = (a,b] or O = (a,b) or O = [a,b] or O = [a,—)
or O = (+,b or O = (a,—) or O = («-,b). If O = (a,b) or O = (a,—)
or O = (+-,b), it is clear that p~1(0) is open in GOTP(X *Y). Next, we
only show the case that O = [a,b); the other cases are proved similarly.
If a is a left endpoint of X, then p~1(O) = [{a,vo), (b,y0)) is open in
GOTP(X xY). If a is not a left endpoint of X, there are two possibilities:

(i) a has an immediate predecessor a’ in X. Then

p~H(0) = [(a,50), (b, y0)) = ({a’, 1), (b, 50))-

Hence, p~1(0) is open in GOTP(X *Y).

(ii) a does not have an immediate predecessor in X. Then [a,—) €
Tx —Ax. Thus, [{(a,yo), —) is open in GOTP(X *Y") by Definition 2.3. So,
p~1(0) is open in GOTP(X *Y) since p~(0) = [{a,y0), —) N (+, (b, y0))-

Therefore, p is a quotient mapping by Claim 1 and Claim 2.

(2) is obvious by (1).

(3) Suppose that A is a closed subset of GOTP(X * Y). Without
loss of generality, we assume that A is a convex subset. Then there
exist zq,x, € X and yq,yp € Y such that A = [(z4,Ya), (b, ys)] oOr
A= [(Ta;Ya)s (6, 9)) or A= ((Ta, Ya), (6, )] or A = ((Ta;Ya), (T6,Yp))
or A = [<xa7ya>7_>) or A = (<maaya>a_>) or A = (%7 <‘rb7yb>] or A =
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(+—, {xp, yp)). Next, we only show the case that A = [(xa,ya), (Tb, Yp)).
There are two cases to consider:
(i) yp is not a left endpoint of Y. Then p(A) = [z,, ] is a closed
subset of X.
(ii) yp is a left endpoint of Y. Then [(xp, ys), —) is open in GOTP (X
Y). So [zp,—) is open in X by Lemma 2.5(1). Hence, p(A) =
[€a,xp) is & closed subset of X. |

In Lemma 2.5 and Theorem 2.6, the condition that Y has two endpoints
cannot be removed (see Example 2.7 and Example 2.8).

Example 2.7. Let X =Y = N, where N is the set of positive integers.
Then for each n € X — {1}, {n} is open in X, and neither [(n,1),—) nor
{n} *Y is open in GOTP(X *Y). It is clear that p~*({n}) = {n} * Y.
Hence, p is not continuous.

Example 2.8. Let S be the Sorgenfrey line and Y = [0,1) with usual
interval topology. Then for each x € S, [z, —) € 79 — Ag, and {z} *xY is
open in GOTP(X *Y) by Definition 2.3. In addition, p~t({z}) = {z} *Y
and {z} is not open in S. Hence, p is not a quotient mapping. However,
it is easy to prove that p is continuous.

Now we consider the cases in which ¥ in GOTP(X *Y') does not have
the left endpoint or the right endpoint. Obviously, if Y has neither, then
GOTP(X *Y) is the topological sum of |X| many copies of Y so that
the topology of X does not matter. So it is clear that p is a continuous
mapping.

Theorem 2.9. Let X and Y be GO-spaces. If Y has either the left or
the right endpoint, but not both, then X has no neighbor points if and only
if p is a continuous mapping.

Proof. Suppose that Y has the left endpoint but not the right one and g
is the left endpoint of Y.

Necessity. Suppose that X has no neighbor points. Let O be any open
convex subset of X. We only counsider the case that O = [a,b), where
a,b € X. The proofs of the other cases are similar. There are two cases
to consider:

(1) a is the left endpoint of X. Then p~1(O) is open in GOTP(X *Y)
by Definition 2.3.

(2) @ is not the left endpoint of X. Then [a,b) € Tx — Ax since a does
not have a left neighbor point in X. Thus, p~1(0) is open in GOTP (X *Y)
by Definition 2.3. Hence, p is a continuous mapping.

Sufficiency. Suppose that p is a continuous mapping. We assume that
X has neighbor points and m is the left neighbor point of n, where m,n €
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X. Then [n,—) is open in X and [(n,yo),—) = p~'([n,—)) is open in
GOTP(X *Y). However, (n,yo) ¢ Int([(n,y0),—)) by Definition 2.3.
Contradiction. Hence, X has no neighbor points.

For the case that Y has the right endpoint but not the left one, the
proof is similar. O

Remark 2.10. In Definition 2.3, by Theorem 2.6, if Y has two endpoints,
then the subbase P of GOTP(X %Y') can be improved to

P =Axy U{p™H(U) | U € 7x}
Ufl{z,y), =) S XY [ze X, yeYand[y,—) €y — Av}
U{(,(z,9)] CXxY |z e X, yeY and (+—,y] € 7v — A\v }.
In addition, we have other results on the mapping p.

Proposition 2.11. For every open cover U of GOTP(X xY), Intp(U)
= {Intp(U) | U € U} covers the set Rx U Lx UIx, and if X has the left
(or right) endpoint xo (or x1), then Intp(U) contains xo (or x1).

Proof. It is clear that Intp(U) contains Ix for each open cover U of
GOTP(X *Y). It remains to consider three cases:

(1) r € Rx — Ix;

(2) re€Lx —Ix.

(3) ¢ Ix and x is an endpoint of X;

We only prove that x must be covered by Intp(Uf) for (1). For the
other cases, we can prove them similarly. Let x € Rx — Ix. There exists
a convex open subset V of GOTP(X % Y') with (z,y,) e VCU €eU. In
addition, by Lemma 2.5, (+—, (x,y1)] is not open in GOTP(X %Y since
(¢—,z] is not open in X. Then there exists a v € X with x < v and
(v,y0) € V. Then z € [z,v) C Intp(V) C Intp(U). O

In Theorem 2.6, the mapping p may not necessarily be an open mapping
by Example 2.12. Furthermore, we give an interesting result in Theorem
2.15.

Example 2.12. Let X =Y = [0,1] with the same base consisting of
all intervals [z,7) and (y,1], where © < r and z,y,r € [0,1]. Then
U= ((3,%),(3,3)) is open in GOTP(X = Y), but p(U) = [4, 2] is not
open in X.
Lemma 2.13. Let X and Y be GO-spaces and yo (y1) the left (right)
endpoint of Y. If U is an open convex subset of GOTP(X xY'), then the
set

UAr={zeX|{z}*xY CU}
is an open convexr set in X, and if V is also an open convex subset of
GOTP(X *Y) with V C U, then VA C UA.
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Proof. We only need prove that U is open and convex in X. Assume
that z/,2” € U» with 2’ < 2”. Let € X with 2/ < = < 2”. For any
y €Y, we have (¢/,y) € U and (z",y) € U. Also (2, y) < (x,y) < (z",y)
since ¢’ < x < 2. Hence, (x,y) € U since U is convex in GOTP(X xY).
So {x}*Y C U. It follows that x € UA.

Next we prove that U2 is open in X. Let z € U2. If z is neither the
minimum point nor the maximum point of U2, then x is obviously an
interior point of U2, Assume that z is the maximum point of U%. Then
(x,y1) € U so that (x,y;) is an interior point of U. If (+, z] is not open
in X, then x must have no immediate successor in X. It follows that
there exists an 2’/ € X with x < 2’ such that [(z,y1), (", y0)) C U. So
for any 2’ € X with 2 < 2’ < 2", we have {2/} * Y C U. Hence, 2’ € U»
which is contrary to the maximality of x. So (+,z] must be open in
X. If, simultaneously, z is not the minimum point of U?, then taking
2 € UA with 2/ < 2, (2/,2] is an open neighborhood of z contained
in U2, If, simultaneously, « is the minimum point of U?, then we can
similarly prove that [z, —) is open in X so that U2 = {z} is open. For
the case that x is the minimum point of U?, we similarly prove that x is
an interior point of U”. Thus, U? is open in X. (]

Theorem 2.14. Let X and Y be GO-spaces and yo (y1) the left (right)
endpoint of Y. If U is an open convexr subset of GOTP(X % Y), then
Ip(U) —UA| <2, and if p(U) — U # 0, then the elements of p(U) — U»
must be the mazimum or minimum points of p(U).

Theorem 2.15. Let X and Y be GO-spaces and yo (y1) the left (right)
endpoint of Y. Suppose that U is an open convex subset of GOTP(X xY)
and US # 0.

If the mazimum point x1(U) of p(U) — U? belongs to Lx U Ix, then
UA U {z1(U)} is an open convex subset of X.

If the minimum point 2o(U) of p(U) — U? belongs to Rx U Ix, then
UB U{xo(U)} is an open conver subset of X.

The proofs of Theorem 2.14 and Theorem 2.15 are easy by Definition
2.3 and Lemma 2.13.
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