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A NOTE ON
GENERALIZED ORDERED TOPOLOGICAL PRODUCTS

AI-JUN XU AND WEI-XUE SHI

Abstract. In this paper, we present an equivalent definition of
a generalized ordered topological product (GOTP) (X ∗ Y ) of two
generalized ordered spaces X and Y by a mapping p. Moreover,
we investigate the mapping p and show p is a continuous mapping
from a GOTP(X ∗ Y ) to generalized ordered space X under some
conditions. Finally, we give other results on the mapping p.

1. Introduction

In [4] and [5], we introduced a new topology on the lexicographic prod-
uct set X × Y for two generalized ordered (GO) spaces X and Y and in-
vestigated the relationship of properties, such as Lindelöfness, monotone
Lindelöfness, paracompactness, and perfectness, of the two GO-spaces
and their generalized ordered topological product. However, the defini-
tion of the generalized ordered topological product (GOTP) (X ∗ Y ) of
two GO spaces X and Y (in [4] and [5]) is somewhat complicated and has
many parts. In this paper, for GO-spaces X and Y , let p : X ∗ Y → X
be the projection. We refine the definition of the GOTP in Definition
2.3 by the mapping p. We show that if Y has two endpoints, then the
mapping p is a closed quotient mapping, and if Y has either a left or a
right endpoint, but not both, then X has no neighbor points if and only
if p is a continuous mapping. In addition, we know that mapping p is not
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necessarily open by Example 2.12, but we give other interesting results
(see Theorem 2.14 and Theorem 2.15).

In this paper, we reserve the symbol N for the set of positive integers.
A linearly ordered topological space (LOTS ) is a triple (X,λX ,≤), where
(X,≤) is a linearly ordered set and λX is the interval topology on (X,≤).
A generalized ordered space(GO-space) is a triple (X, τX ,≤), where (X,≤)
is a linearly ordered set and τX is a topology on (X,≤) such that λX ⊆ τX
and τX has a base consisting of order convex sets, where a set A is called
order convex if x ∈ A for every x lying between two points of A. If m
and n are points of a GO-space X such that m < n and (m,n) = ∅, then
m and n are said to be neighbor points in X; m is called the left neighbor
point of n and n is the right neighbor point of m.

For the undefined terminology and notions, refer to [1] and [3].

2. Main Results

For GO-spaces X and Y , denote by p the mapping of GOTP(X ∗ Y )
to X assigning the point ⟨x, y⟩ ∈ GOTP(X ∗ Y ) to the point x ∈ X. For
a GO-space X = (X, τX , <), let

LX = {x ∈ X | (←, x] ∈ τX − λX},
RX = {x ∈ X | [x,→) ∈ τX − λX}, and
IX = {x ∈ X | x is an isolated point of X},

where λX is the usual order topology on X.
In the following, we present a definition of a GOTP that is equivalent

to that of [4] and [5] but is often easier to use.

Definition 2.1 ([2]). Let (X,<X) and (Y,<Y ) be linearly ordered sets.
Then the lexicographic product X ∗ Y of (X,<X) and (Y,<Y ) is defined
as the ordered set (X × Y,l) where l is the lexicographic ordering; i.e.,
if a = ⟨x1, y1⟩ and b = ⟨x2, y2⟩ ∈ X × Y , then

al b if and only if x1 <X x2 or x1 = x2 and y1 <Y y2.

Definition 2.2 ([4], [5]). Let (X, τX , <X) and (Y, τY , <Y ) be GO-spaces,
let λX and λY be the usual interval topology on X and Y , respectively,
and let λX∗Y be the usual interval topology on the linearly ordered set
X ∗ Y .

We mean a topology on X ∗ Y which has a subbase

B =λX∗Y ∪ τR ∪ τL

∪ {[⟨x, y⟩,→) ⊆ X ∗ Y | x ∈ X, y ∈ Y and [y,→) ∈ τY − λY }
∪ {(←, ⟨x, y⟩] ⊆ X ∗ Y | x ∈ X, y ∈ Y and (←, y] ∈ τY − λY },
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where either

τR =∅ and τL = ∅, if Y does not have endpoints,

or

τR ={[⟨x, y0⟩,→) | x ∈ X and [x,→) ∈ τX − λX} and τL = ∅,
if Y has a left endpoint y0, but no right one,

or

τR =∅ and τL = {(←, ⟨x, y1⟩] | x ∈ X and (←, x] ∈ τX − λX},
if Y has a right endpoint y1, but no left one,

or

τR ={[⟨x, y0⟩,→) | x ∈ X and [x,→) ∈ τX − λX} and
τL ={(←, ⟨x, y1⟩] | x ∈ X and (←, x] ∈ τX − λX},

if Y has both a left endpoint y0 and a right endpoint y1.

Definition 2.3. Let (X, τX , <X) and (Y, τY , <Y ) be GO-spaces and let
λX , λY , and λX∗Y be the usual interval topology on X, Y , and X ∗ Y ,
respectively. The generalized ordered topology O on X ∗ Y is generated
by the subbase

P =λX∗Y ∪ {p−1([x,→)) | x ∈ X and [x,→) ∈ τX − λX}
∪ {p−1((←, x]) | x ∈ X and (←, x] ∈ τX − λX}
∪ {[⟨x, y⟩,→) ⊆ X ∗ Y | x ∈ X, y ∈ Y and [y,→) ∈ τY − λY }
∪ {(←, ⟨x, y⟩] ⊆ X ∗ Y | x ∈ X, y ∈ Y and (←, y] ∈ τY − λY }.

As said in [5], for different ordered sets, the orderings may be different.
But in almost all cases, we can distinguish them from their contexts. So
we will use the symbol < for all the orderings unless another symbol is
necessary to avoid confusion.

Now we show that the generalized ordered topology O in Definition 2.3
and the generalized ordered topology τX∗Y in Definition 2.2 are the same
generalized ordered topology on lexicographic product X ∗ Y .

Proposition 2.4. Let (X, τX , <X) and (Y, τY , <Y ) be GO-spaces. The
generalized ordered topology O on the lexicographic product X ∗Y (defined
in Definition 2.3) coincides with the generalized ordered topology τX∗Y on
the lexicographic product X ∗ Y (defined in Definition 2.2).

Proof. Let P and B be the subbases defined in Definition 2.3 and Defini-
tion 2.2, respectively. Now we show that O = τX∗Y . There are four cases
to consider.
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Case 1: Y has a left endpoint y0, but no right one. Then, for each x ∈ X
and [x,→) ∈ τX − λX , p−1([x,→)) = [⟨x, y0⟩,→). By Definition 2.2 and
Definition 2.3, it is clear that B ⊆ P and τX∗Y ⊆ O. In addition, for each
x ∈ X, if (←, x] ∈ τX − λX , then p−1((←, x]) = ∪{(←, ⟨x, y⟩)|y ∈ Y } ⊆
λX∗Y . Hence, each member of P is a member of τX∗Y . So, O ⊆ τX∗Y .
Consequently, τX∗Y = O.

Case 2: Y has a right endpoint y0, but no left one.
Case 3: Y has both a left endpoint y0 and a right endpoint y1.
Case 4: Y does not has endpoints.

Cases 2, 3, and 4 can be proved by some modifications. �

In the following, we say that the space (X ∗ Y, τX∗Y ) is the GOTP of
GO-spaces (X, τX , <X) and (Y, τY , <Y ) and denote it by GOTP(X ∗ Y ).
In GOTP(X ∗Y ), the mapping p is not necessarily a continuous mapping
(see Example 2.7). But, if Y has two endpoints, the mapping p is not only
a continuous mapping but also a closed quotient mapping (see Theorem
2.6).

Lemma 2.5. Let X and Y be GO-spaces and y0 (y1) be the left (right)
endpoint of Y .

(1) [x,→) is open in X iff [⟨x, y0⟩,→) is open in GOTP(X ∗ Y ).
(2) (←, x] is open in X iff (←, ⟨x, y1⟩] is open in GOTP(X ∗ Y ).
(3) x is isolated in X iff {x} ∗ Y is open in GOTP(X ∗ Y ).

Proof. (1) Necessity. Assume [x,→) is open in X. If x has an immediate
predecessor x′ in X, then ⟨x′, y1⟩ is an immediate predecessor of ⟨x, y0⟩
in X ∗ Y . So [⟨x, y0⟩,→) is open in GOTP(X ∗ Y ). If x does not have an
immediate predecessor in X, there are two cases to consider:

(a) x is not a left endpoint of X. Then [x,→) ∈ τX − λX . Hence,
[⟨x, y0⟩,→) is open in GOTP(X ∗ Y ) by Definition 2.3.

(b) x is a left endpoint of X. Then ⟨x, y0⟩ is a left endpoint of X ∗ Y .
Hence, [⟨x, y0⟩,→) is open in GOTP(X ∗ Y ).

Sufficiency. Assume [⟨x, y0⟩,→) is open in GOTP(X ∗Y ). If x is a left
endpoint of X, then [x,→) is open in X. If x is not a left endpoint of X,
there are two possibilities:

(i) x has an immediate predecessor x′ in X. Then [x,→) is open in X.
(ii) x does not have an immediate predecessor in X. Then ⟨x, y0⟩ does

not have an immediate predecessor in GOTP(X ∗ Y ) and [⟨x, y0⟩,→) ∈
τX∗Y − λX∗Y . Hence, [x,→) is open in X. Otherwise, [x,→) /∈ τX − λX .
By Definition 2.3, [⟨x, y0⟩,→) /∈ τX∗Y − λX∗Y . Contradiction.

The proofs of (2) and (3) are similar. �
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Theorem 2.6. Let X and Y be GO-spaces. If Y has both a left and a
right endpoint, then

(1) p is a quotient mapping,
(2) X is a quotient space,
(3) p is a closed mapping.

Proof. (1) Let y0 be a left endpoint of Y and y1 a right endpoint of Y .
Claim 1. O is open in X if p−1(O) is open in GOTP(X ∗Y ) for every

subset O of X. It suffices to prove that, for each x ∈ O, there is an open
neighborhood U(x) of x in X such that U(x) ⊆ O. There are four cases:

(i) x ∈ IX . Then let U(x) = {x}.
(ii) x /∈ IX and [x,→) is open in X. Then (←, x] is not open in

X. By Lemma 2.5(2), (←, ⟨x, y1⟩] is not open in GOTP(X ∗ Y ).
Thus, there exists a v > x such that [⟨x, y0⟩, ⟨v, y0⟩) ⊆ p−1(O)
since ⟨x, y1⟩ ∈ p−1(O). Therefore, let U(x) = [x, v).

(iii) x /∈ IX and (←, x] is open in X.
(iv) Neither [x,→) nor (←, x] is open in X.

The proofs of (iii) and (iv) are similar to (ii).
Claim 2. p−1(O) is open in GOTP(X∗Y ) for every open convex subset

O of X. If O is an open convex subset of X, then there exist a, b ∈ X
such that O = [a, b) or O = (a, b] or O = (a, b) or O = [a, b] or O = [a,→)
or O = (←, b] or O = (a,→) or O = (←, b). If O = (a, b) or O = (a,→)
or O = (←, b), it is clear that p−1(O) is open in GOTP(X ∗Y ). Next, we
only show the case that O = [a, b); the other cases are proved similarly.
If a is a left endpoint of X, then p−1(O) = [⟨a, y0⟩, ⟨b, y0⟩) is open in
GOTP(X ∗Y ). If a is not a left endpoint of X, there are two possibilities:

(i) a has an immediate predecessor a′ in X. Then

p−1(O) = [⟨a, y0⟩, ⟨b, y0⟩) = (⟨a′, y1⟩, ⟨b, y0⟩).

Hence, p−1(O) is open in GOTP(X ∗ Y ).
(ii) a does not have an immediate predecessor in X. Then [a,→) ∈

τX−λX . Thus, [⟨a, y0⟩,→) is open in GOTP(X∗Y ) by Definition 2.3. So,
p−1(O) is open in GOTP(X ∗Y ) since p−1(O) = [⟨a, y0⟩,→)∩(←, ⟨b, y0⟩).

Therefore, p is a quotient mapping by Claim 1 and Claim 2.

(2) is obvious by (1).

(3) Suppose that A is a closed subset of GOTP(X ∗ Y ). Without
loss of generality, we assume that A is a convex subset. Then there
exist xa, xb ∈ X and ya, yb ∈ Y such that A = [⟨xa, ya⟩, ⟨xb, yb⟩] or
A = [⟨xa, ya⟩, ⟨xb, yb⟩) or A = (⟨xa, ya⟩, ⟨xb, yb⟩] or A = (⟨xa, ya⟩, ⟨xb, yb⟩)
or A = [⟨xa, ya⟩,→) or A = (⟨xa, ya⟩,→) or A = (←, ⟨xb, yb⟩] or A =
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(←, ⟨xb, yb⟩). Next, we only show the case that A = [⟨xa, ya⟩, ⟨xb, yb⟩).
There are two cases to consider:

(i) yb is not a left endpoint of Y . Then p(A) = [xa, xb] is a closed
subset of X.

(ii) yb is a left endpoint of Y . Then [⟨xb, yb⟩,→) is open in GOTP(X∗
Y ). So [xb,→) is open in X by Lemma 2.5(1). Hence, p(A) =
[xa, xb) is a closed subset of X. �

In Lemma 2.5 and Theorem 2.6, the condition that Y has two endpoints
cannot be removed (see Example 2.7 and Example 2.8).

Example 2.7. Let X = Y = N, where N is the set of positive integers.
Then for each n ∈ X −{1}, {n} is open in X, and neither [⟨n, 1⟩,→) nor
{n} ∗ Y is open in GOTP(X ∗ Y ). It is clear that p−1({n}) = {n} ∗ Y .
Hence, p is not continuous.

Example 2.8. Let S be the Sorgenfrey line and Y = [0, 1) with usual
interval topology. Then for each x ∈ S, [x,→) ∈ τS − λS , and {x} ∗ Y is
open in GOTP(X ∗Y ) by Definition 2.3. In addition, p−1({x}) = {x}∗Y
and {x} is not open in S. Hence, p is not a quotient mapping. However,
it is easy to prove that p is continuous.

Now we consider the cases in which Y in GOTP(X ∗ Y ) does not have
the left endpoint or the right endpoint. Obviously, if Y has neither, then
GOTP(X ∗ Y ) is the topological sum of |X| many copies of Y so that
the topology of X does not matter. So it is clear that p is a continuous
mapping.

Theorem 2.9. Let X and Y be GO-spaces. If Y has either the left or
the right endpoint, but not both, then X has no neighbor points if and only
if p is a continuous mapping.

Proof. Suppose that Y has the left endpoint but not the right one and y0
is the left endpoint of Y .

Necessity. Suppose that X has no neighbor points. Let O be any open
convex subset of X. We only consider the case that O = [a, b), where
a, b ∈ X. The proofs of the other cases are similar. There are two cases
to consider:

(1) a is the left endpoint of X. Then p−1(O) is open in GOTP(X ∗ Y )
by Definition 2.3.

(2) a is not the left endpoint of X. Then [a, b) ∈ τX − λX since a does
not have a left neighbor point in X. Thus, p−1(O) is open in GOTP(X∗Y )
by Definition 2.3. Hence, p is a continuous mapping.

Sufficiency. Suppose that p is a continuous mapping. We assume that
X has neighbor points and m is the left neighbor point of n, where m,n ∈
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X. Then [n,→) is open in X and [⟨n, y0⟩,→) = p−1([n,→)) is open in
GOTP(X ∗ Y ). However, ⟨n, y0⟩ /∈ Int([⟨n, y0⟩,→)) by Definition 2.3.
Contradiction. Hence, X has no neighbor points.

For the case that Y has the right endpoint but not the left one, the
proof is similar. �
Remark 2.10. In Definition 2.3, by Theorem 2.6, if Y has two endpoints,
then the subbase P of GOTP(X ∗ Y ) can be improved to

P =λX∗Y ∪ {p−1(U) | U ∈ τX}
∪ {[⟨x, y⟩,→) ⊆ X ∗ Y | x ∈ X, y ∈ Y and [y,→) ∈ τY − λY }
∪ {(←, ⟨x, y⟩] ⊆ X ∗ Y | x ∈ X, y ∈ Y and (←, y] ∈ τY − λY }.

In addition, we have other results on the mapping p.

Proposition 2.11. For every open cover U of GOTP(X ∗ Y ), Intp(U)
= {Intp(U) | U ∈ U} covers the set RX ∪ LX ∪ IX , and if X has the left
(or right) endpoint x0 (or x1), then Intp(U) contains x0 (or x1).

Proof. It is clear that Intp(U) contains IX for each open cover U of
GOTP(X ∗ Y ). It remains to consider three cases:

(1) x ∈ RX − IX ;
(2) x ∈ LX − IX .
(3) x /∈ IX and x is an endpoint of X;
We only prove that x must be covered by Intp(U) for (1). For the

other cases, we can prove them similarly. Let x ∈ RX − IX . There exists
a convex open subset V of GOTP(X ∗ Y ) with ⟨x, y1⟩ ∈ V ⊆ U ∈ U . In
addition, by Lemma 2.5, (←, ⟨x, y1⟩] is not open in GOTP(X ∗ Y ) since
(←, x] is not open in X. Then there exists a v ∈ X with x < v and
⟨v, y0⟩ ∈ V . Then x ∈ [x, v) ⊆ Intp(V ) ⊆ Intp(U). �

In Theorem 2.6, the mapping p may not necessarily be an open mapping
by Example 2.12. Furthermore, we give an interesting result in Theorem
2.15.

Example 2.12. Let X = Y = [0, 1] with the same base consisting of
all intervals [x, r) and (y, 1], where x < r and x, y, r ∈ [0, 1]. Then
U = (⟨ 13 ,

1
2 ⟩, ⟨

2
3 ,

1
2 ⟩) is open in GOTP(X ∗ Y ), but p(U) = [ 13 ,

2
3 ] is not

open in X.

Lemma 2.13. Let X and Y be GO-spaces and y0 (y1) the left (right)
endpoint of Y . If U is an open convex subset of GOTP(X ∗ Y ), then the
set

U∆ = {x ∈ X | {x} ∗ Y ⊂ U}
is an open convex set in X, and if V is also an open convex subset of
GOTP(X ∗ Y ) with V ⊂ U , then V ∆ ⊂ U∆.
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Proof. We only need prove that U∆ is open and convex in X. Assume
that x′, x′′ ∈ U∆ with x′ < x′′. Let x ∈ X with x′ < x < x′′. For any
y ∈ Y , we have ⟨x′, y⟩ ∈ U and ⟨x′′, y⟩ ∈ U . Also ⟨x′, y⟩ < ⟨x, y⟩ < ⟨x′′, y⟩
since x′ < x < x′′. Hence, ⟨x, y⟩ ∈ U since U is convex in GOTP(X ∗ Y ).
So {x} ∗ Y ⊂ U . It follows that x ∈ U∆.

Next we prove that U∆ is open in X. Let x ∈ U∆. If x is neither the
minimum point nor the maximum point of U∆, then x is obviously an
interior point of U∆. Assume that x is the maximum point of U∆. Then
⟨x, y1⟩ ∈ U so that ⟨x, y1⟩ is an interior point of U . If (←, x] is not open
in X, then x must have no immediate successor in X. It follows that
there exists an x′′ ∈ X with x < x′′ such that [⟨x, y1⟩, ⟨x′′, y0⟩) ⊂ U . So
for any x′ ∈ X with x < x′ < x′′, we have {x′} ∗ Y ⊂ U . Hence, x′ ∈ U∆

which is contrary to the maximality of x. So (←, x] must be open in
X. If, simultaneously, x is not the minimum point of U∆, then taking
x′ ∈ U∆ with x′ < x, (x′, x] is an open neighborhood of x contained
in U∆. If, simultaneously, x is the minimum point of U∆, then we can
similarly prove that [x,→) is open in X so that U∆ = {x} is open. For
the case that x is the minimum point of U∆, we similarly prove that x is
an interior point of U∆. Thus, U∆ is open in X. �

Theorem 2.14. Let X and Y be GO-spaces and y0 (y1) the left (right)
endpoint of Y . If U is an open convex subset of GOTP(X ∗ Y ), then
|p(U)−U∆| ≤ 2, and if p(U)−U∆ ̸= ∅, then the elements of p(U)−U∆

must be the maximum or minimum points of p(U).

Theorem 2.15. Let X and Y be GO-spaces and y0 (y1) the left (right)
endpoint of Y . Suppose that U is an open convex subset of GOTP(X ∗Y )
and U∆ ̸= ∅.

If the maximum point x1(U) of p(U) − U∆ belongs to LX ∪ IX , then
U∆ ∪ {x1(U)} is an open convex subset of X.

If the minimum point x0(U) of p(U) − U∆ belongs to RX ∪ IX , then
U∆ ∪ {x0(U)} is an open convex subset of X.

The proofs of Theorem 2.14 and Theorem 2.15 are easy by Definition
2.3 and Lemma 2.13.
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