

http://topology.auburn.edu/tp/

A NOTE ON GENERALIZED ORDERED TOPOLOGICAL PRODUCTS

by

AI-JUN XU AND WEI-XUE SHI

Electronically published on June 10, 2013

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124
COPYRIGHT © by Topology Proceedings. All rights reserved.	

E-Published on June 10, 2013

A NOTE ON GENERALIZED ORDERED TOPOLOGICAL PRODUCTS

AI-JUN XU AND WEI-XUE SHI

ABSTRACT. In this paper, we present an equivalent definition of a generalized ordered topological product (GOTP)(X * Y) of two generalized ordered spaces X and Y by a mapping p. Moreover, we investigate the mapping p and show p is a continuous mapping from a GOTP(X * Y) to generalized ordered space X under some conditions. Finally, we give other results on the mapping p.

1. INTRODUCTION

In [4] and [5], we introduced a new topology on the lexicographic product set $X \times Y$ for two generalized ordered (GO) spaces X and Y and investigated the relationship of properties, such as Lindelöfness, monotone Lindelöfness, paracompactness, and perfectness, of the two GO-spaces and their generalized ordered topological product. However, the definition of the generalized ordered topological product (GOTP) (X * Y) of two GO spaces X and Y (in [4] and [5]) is somewhat complicated and has many parts. In this paper, for GO-spaces X and Y, let $p: X * Y \to X$ be the projection. We refine the definition of the GOTP in Definition 2.3 by the mapping p. We show that if Y has two endpoints, then the mapping p is a closed quotient mapping, and if Y has either a left or a right endpoint, but not both, then X has no neighbor points if and only if p is a continuous mapping. In addition, we know that mapping p is not

²⁰¹⁰ Mathematics Subject Classification. 54F05, 54B10, 54C05.

Key words and phrases. continuous mapping, generalized ordered space, lexicographic product, quotient mapping.

This work is supported by NSFC (no:11271178), Youth Foundation of Science and Technology Department of Jilin Province (no:20120108).

^{©2013} Topology Proceedings.

necessarily open by Example 2.12, but we give other interesting results (see Theorem 2.14 and Theorem 2.15).

In this paper, we reserve the symbol \mathbb{N} for the set of positive integers. A linearly ordered topological space (LOTS) is a triple (X, λ_X, \leq) , where (X, \leq) is a linearly ordered set and λ_X is the interval topology on (X, \leq) . A generalized ordered space (GO-space) is a triple (X, τ_X, \leq) , where (X, \leq) is a linearly ordered set and τ_X is a topology on (X, \leq) such that $\lambda_X \subseteq \tau_X$ and τ_X has a base consisting of order convex sets, where a set A is called order convex if $x \in A$ for every x lying between two points of A. If m and n are points of a GO-space X such that m < n and $(m, n) = \emptyset$, then m and n are said to be neighbor points in X; m is called the left neighbor point of n and n is the right neighbor point of m.

For the undefined terminology and notions, refer to [1] and [3].

2. MAIN RESULTS

For GO-spaces X and Y, denote by p the mapping of GOTP(X * Y) to X assigning the point $\langle x, y \rangle \in \text{GOTP}(X * Y)$ to the point $x \in X$. For a GO-space $X = (X, \tau_X, <)$, let

$$L_X = \{x \in X \mid (\leftarrow, x] \in \tau_X - \lambda_X\},\$$

$$R_X = \{x \in X \mid [x, \rightarrow) \in \tau_X - \lambda_X\},\$$
and

$$I_X = \{x \in X \mid x \text{ is an isolated point of } X\}.$$

where λ_X is the usual order topology on X.

In the following, we present a definition of a GOTP that is equivalent to that of [4] and [5] but is often easier to use.

Definition 2.1 ([2]). Let $(X, <_X)$ and $(Y, <_Y)$ be linearly ordered sets. Then the lexicographic product X * Y of $(X, <_X)$ and $(Y, <_Y)$ is defined as the ordered set $(X \times Y, <)$ where < is the lexicographic ordering; i.e., if $a = \langle x_1, y_1 \rangle$ and $b = \langle x_2, y_2 \rangle \in X \times Y$, then

$$a \leq b$$
 if and only if $x_1 \leq x x_2$ or $x_1 = x_2$ and $y_1 \leq y y_2$.

Definition 2.2 ([4], [5]). Let $(X, \tau_X, <_X)$ and $(Y, \tau_Y, <_Y)$ be GO-spaces, let λ_X and λ_Y be the usual interval topology on X and Y, respectively, and let λ_{X*Y} be the usual interval topology on the linearly ordered set X*Y.

We mean a topology on X * Y which has a subbase

$$\mathcal{B} = \lambda_{X*Y} \cup \tau_R \cup \tau_L$$
$$\cup \{ [\langle x, y \rangle, \to) \subseteq X * Y \mid x \in X, \ y \in Y \text{ and } [y, \to) \in \tau_Y - \lambda_Y \}$$
$$\cup \{ (\leftarrow, \langle x, y \rangle] \subseteq X * Y \mid x \in X, \ y \in Y \text{ and } (\leftarrow, y] \in \tau_Y - \lambda_Y \},$$

108

where either

$$\tau_R = \emptyset$$
 and $\tau_L = \emptyset$, if Y does not have endpoints,

or

$$\tau_R = \{ [\langle x, y_0 \rangle, \rightarrow) \mid x \in X \text{ and } [x, \rightarrow) \in \tau_X - \lambda_X \} \text{ and } \tau_L = \emptyset,$$

if Y has a left endpoint y_0 , but no right one,

 or

$$\tau_R = \emptyset$$
 and $\tau_L = \{(\leftarrow, \langle x, y_1 \rangle] \mid x \in X \text{ and } (\leftarrow, x] \in \tau_X - \lambda_X\},$
if Y has a right endpoint y_1 , but no left one,

or

$$\tau_R = \{ [\langle x, y_0 \rangle, \to) \mid x \in X \text{ and } [x, \to) \in \tau_X - \lambda_X \} \text{ and}$$

$$\tau_L = \{ (\leftarrow, \langle x, y_1 \rangle] \mid x \in X \text{ and } (\leftarrow, x] \in \tau_X - \lambda_X \},$$

if Y has both a left endpoint y_0 and a right endpoint y_1 .

Definition 2.3. Let $(X, \tau_X, <_X)$ and $(Y, \tau_Y, <_Y)$ be GO-spaces and let λ_X, λ_Y , and λ_{X*Y} be the usual interval topology on X, Y, and X*Y, respectively. The generalized ordered topology \mathcal{O} on X*Y is generated by the subbase

$$\mathcal{P} = \lambda_{X*Y} \cup \{p^{-1}([x, \to)) \mid x \in X \text{ and } [x, \to) \in \tau_X - \lambda_X\}$$
$$\cup \{p^{-1}((\leftarrow, x]) \mid x \in X \text{ and } (\leftarrow, x] \in \tau_X - \lambda_X\}$$
$$\cup \{[\langle x, y \rangle, \to) \subseteq X * Y \mid x \in X, \ y \in Y \text{ and } [y, \to) \in \tau_Y - \lambda_Y\}$$
$$\cup \{(\leftarrow, \langle x, y \rangle] \subseteq X * Y \mid x \in X, \ y \in Y \text{ and } (\leftarrow, y] \in \tau_Y - \lambda_Y\}$$

As said in [5], for different ordered sets, the orderings may be different. But in almost all cases, we can distinguish them from their contexts. So we will use the symbol < for all the orderings unless another symbol is necessary to avoid confusion.

Now we show that the generalized ordered topology \mathcal{O} in Definition 2.3 and the generalized ordered topology τ_{X*Y} in Definition 2.2 are the same generalized ordered topology on lexicographic product X*Y.

Proposition 2.4. Let $(X, \tau_X, <_X)$ and $(Y, \tau_Y, <_Y)$ be GO-spaces. The generalized ordered topology \mathcal{O} on the lexicographic product X * Y (defined in Definition 2.3) coincides with the generalized ordered topology τ_{X*Y} on the lexicographic product X * Y (defined in Definition 2.2).

Proof. Let \mathcal{P} and \mathcal{B} be the subbases defined in Definition 2.3 and Definition 2.2, respectively. Now we show that $\mathcal{O} = \tau_{X*Y}$. There are four cases to consider.

Case 1: *Y* has a left endpoint y_0 , but no right one. Then, for each $x \in X$ and $[x, \to) \in \tau_X - \lambda_X$, $p^{-1}([x, \to)) = [\langle x, y_0 \rangle, \to)$. By Definition 2.2 and Definition 2.3, it is clear that $\mathcal{B} \subseteq \mathcal{P}$ and $\tau_{X*Y} \subseteq \mathcal{O}$. In addition, for each $x \in X$, if $(\leftarrow, x] \in \tau_X - \lambda_X$, then $p^{-1}((\leftarrow, x]) = \cup \{(\leftarrow, \langle x, y \rangle) | y \in Y\} \subseteq \lambda_{X*Y}$. Hence, each member of \mathcal{P} is a member of τ_{X*Y} . So, $\mathcal{O} \subseteq \tau_{X*Y}$. Consequently, $\tau_{X*Y} = \mathcal{O}$.

Case 2: Y has a right endpoint y_0 , but no left one.

Case 3: Y has both a left endpoint y_0 and a right endpoint y_1 .

Case 4: Y does not has endpoints.

Cases 2, 3, and 4 can be proved by some modifications.

In the following, we say that the space $(X * Y, \tau_{X*Y})$ is the GOTP of GO-spaces $(X, \tau_X, <_X)$ and $(Y, \tau_Y, <_Y)$ and denote it by GOTP(X * Y). In GOTP(X * Y), the mapping p is not necessarily a continuous mapping (see Example 2.7). But, if Y has two endpoints, the mapping p is not only a continuous mapping but also a closed quotient mapping (see Theorem 2.6).

Lemma 2.5. Let X and Y be GO-spaces and $y_0(y_1)$ be the left (right) endpoint of Y.

(1) $[x, \rightarrow)$ is open in X iff $[\langle x, y_0 \rangle, \rightarrow)$ is open in GOTP(X * Y).

(2) $(\leftarrow, x]$ is open in X iff $(\leftarrow, \langle x, y_1 \rangle]$ is open in GOTP(X * Y).

(3) x is isolated in X iff $\{x\} * Y$ is open in GOTP(X * Y).

Proof. (1) Necessity. Assume $[x, \rightarrow)$ is open in X. If x has an immediate predecessor x' in X, then $\langle x', y_1 \rangle$ is an immediate predecessor of $\langle x, y_0 \rangle$ in X * Y. So $[\langle x, y_0 \rangle, \rightarrow)$ is open in GOTP(X * Y). If x does not have an immediate predecessor in X, there are two cases to consider:

(a) x is not a left endpoint of X. Then $[x, \rightarrow) \in \tau_X - \lambda_X$. Hence, $[\langle x, y_0 \rangle, \rightarrow)$ is open in GOTP(X * Y) by Definition 2.3.

(b) x is a left endpoint of X. Then $\langle x, y_0 \rangle$ is a left endpoint of X * Y. Hence, $[\langle x, y_0 \rangle, \rightarrow)$ is open in GOTP(X * Y).

Sufficiency. Assume $[\langle x, y_0 \rangle, \rightarrow)$ is open in GOTP(X * Y). If x is a left endpoint of X, then $[x, \rightarrow)$ is open in X. If x is not a left endpoint of X, there are two possibilities:

(i) x has an immediate predecessor x' in X. Then $[x, \rightarrow)$ is open in X.

(ii) x does not have an immediate predecessor in X. Then $\langle x, y_0 \rangle$ does not have an immediate predecessor in GOTP(X * Y) and $[\langle x, y_0 \rangle, \rightarrow) \in \tau_{X*Y} - \lambda_{X*Y}$. Hence, $[x, \rightarrow)$ is open in X. Otherwise, $[x, \rightarrow) \notin \tau_X - \lambda_X$. By Definition 2.3, $[\langle x, y_0 \rangle, \rightarrow) \notin \tau_{X*Y} - \lambda_{X*Y}$. Contradiction.

The proofs of (2) and (3) are similar.

110

Theorem 2.6. Let X and Y be GO-spaces. If Y has both a left and a right endpoint, then

- (1) p is a quotient mapping,
- (2) X is a quotient space,
- (3) p is a closed mapping.

Proof. (1) Let y_0 be a left endpoint of Y and y_1 a right endpoint of Y.

CLAIM 1. *O* is open in *X* if $p^{-1}(O)$ is open in GOTP(X * Y) for every subset *O* of *X*. It suffices to prove that, for each $x \in O$, there is an open neighborhood U(x) of *x* in *X* such that $U(x) \subseteq O$. There are four cases:

- (i) $x \in I_X$. Then let $U(x) = \{x\}$.
- (ii) $x \notin I_X$ and $[x, \rightarrow)$ is open in X. Then $(\leftarrow, x]$ is not open in X. By Lemma 2.5(2), $(\leftarrow, \langle x, y_1 \rangle]$ is not open in GOTP(X * Y). Thus, there exists a v > x such that $[\langle x, y_0 \rangle, \langle v, y_0 \rangle) \subseteq p^{-1}(O)$ since $\langle x, y_1 \rangle \in p^{-1}(O)$. Therefore, let U(x) = [x, v).
- (iii) $x \notin I_X$ and $(\leftarrow, x]$ is open in X.
- (iv) Neither $[x, \rightarrow)$ nor $(\leftarrow, x]$ is open in X.

The proofs of (iii) and (iv) are similar to (ii).

CLAIM 2. $p^{-1}(O)$ is open in GOTP(X*Y) for every open convex subset O of X. If O is an open convex subset of X, then there exist $a, b \in X$ such that O = [a, b) or O = (a, b] or O = (a, b) or O = [a, b] or O = [a, -) or $O = (\leftarrow, b]$ or O = (a, -) or $O = (\leftarrow, b)$. If O = (a, b) or O = (a, -) or $O = (\leftarrow, b)$, it is clear that $p^{-1}(O)$ is open in GOTP(X*Y). Next, we only show the case that O = [a, b]; the other cases are proved similarly. If a is a left endpoint of X, then $p^{-1}(O) = [\langle a, y_0 \rangle, \langle b, y_0 \rangle)$ is open in GOTP(X*Y). If a is not a left endpoint of X, there are two possibilities:

(i) a has an immediate predecessor a' in X. Then

$$p^{-1}(O) = [\langle a, y_0 \rangle, \langle b, y_0 \rangle) = (\langle a', y_1 \rangle, \langle b, y_0 \rangle).$$

Hence, $p^{-1}(O)$ is open in GOTP(X * Y).

(ii) a does not have an immediate predecessor in X. Then $[a, \rightarrow) \in \tau_X - \lambda_X$. Thus, $[\langle a, y_0 \rangle, \rightarrow)$ is open in GOTP(X * Y) by Definition 2.3. So, $p^{-1}(O)$ is open in GOTP(X * Y) since $p^{-1}(O) = [\langle a, y_0 \rangle, \rightarrow) \cap (\leftarrow, \langle b, y_0 \rangle)$. Therefore, p is a quotient mapping by Claim 1 and Claim 2.

Therefore, p is a quotient mapping by Chain 1 and

(2) is obvious by (1).

(3) Suppose that A is a closed subset of GOTP(X * Y). Without loss of generality, we assume that A is a convex subset. Then there exist $x_a, x_b \in X$ and $y_a, y_b \in Y$ such that $A = [\langle x_a, y_a \rangle, \langle x_b, y_b \rangle]$ or $A = [\langle x_a, y_a \rangle, \langle x_b, y_b \rangle)$ or $A = (\langle x_a, y_a \rangle, \langle x_b, y_b \rangle]$ or $A = (\langle x_a, y_a \rangle, \langle x_b, y_b \rangle)$ or $A = [\langle x_a, y_a \rangle, \rightarrow)$ or $A = (\langle x_a, y_a \rangle, \rightarrow)$ or $A = (\langle x_b, y_b \rangle]$ or A = $(\leftarrow, \langle x_b, y_b \rangle)$. Next, we only show the case that $A = [\langle x_a, y_a \rangle, \langle x_b, y_b \rangle)$. There are two cases to consider:

- (i) y_b is not a left endpoint of Y. Then $p(A) = [x_a, x_b]$ is a closed subset of X.
- (ii) y_b is a left endpoint of Y. Then $[\langle x_b, y_b \rangle, \rightarrow)$ is open in GOTP(X * Y). So $[x_b, \rightarrow)$ is open in X by Lemma 2.5(1). Hence, $p(A) = [x_a, x_b)$ is a closed subset of X.

In Lemma 2.5 and Theorem 2.6, the condition that Y has two endpoints cannot be removed (see Example 2.7 and Example 2.8).

Example 2.7. Let $X = Y = \mathbb{N}$, where \mathbb{N} is the set of positive integers. Then for each $n \in X - \{1\}, \{n\}$ is open in X, and neither $[\langle n, 1 \rangle, \rightarrow)$ nor $\{n\} * Y$ is open in GOTP(X * Y). It is clear that $p^{-1}(\{n\}) = \{n\} * Y$. Hence, p is not continuous.

Example 2.8. Let S be the Sorgenfrey line and Y = [0, 1) with usual interval topology. Then for each $x \in S$, $[x, \to) \in \tau_S - \lambda_S$, and $\{x\} * Y$ is open in GOTP(X * Y) by Definition 2.3. In addition, $p^{-1}(\{x\}) = \{x\} * Y$ and $\{x\}$ is not open in S. Hence, p is not a quotient mapping. However, it is easy to prove that p is continuous.

Now we consider the cases in which Y in GOTP(X * Y) does not have the left endpoint or the right endpoint. Obviously, if Y has neither, then GOTP(X * Y) is the topological sum of |X| many copies of Y so that the topology of X does not matter. So it is clear that p is a continuous mapping.

Theorem 2.9. Let X and Y be GO-spaces. If Y has either the left or the right endpoint, but not both, then X has no neighbor points if and only if p is a continuous mapping.

Proof. Suppose that Y has the left endpoint but not the right one and y_0 is the left endpoint of Y.

Necessity. Suppose that X has no neighbor points. Let O be any open convex subset of X. We only consider the case that O = [a, b), where $a, b \in X$. The proofs of the other cases are similar. There are two cases to consider:

(1) *a* is the left endpoint of *X*. Then $p^{-1}(O)$ is open in GOTP(*X* * *Y*) by Definition 2.3.

(2) *a* is not the left endpoint of *X*. Then $[a, b) \in \tau_X - \lambda_X$ since *a* does not have a left neighbor point in *X*. Thus, $p^{-1}(O)$ is open in GOTP(*X***Y*) by Definition 2.3. Hence, *p* is a continuous mapping.

Sufficiency. Suppose that p is a continuous mapping. We assume that X has neighbor points and m is the left neighbor point of n, where $m, n \in$

112

X. Then $[n, \rightarrow)$ is open in X and $[\langle n, y_0 \rangle, \rightarrow) = p^{-1}([n, \rightarrow))$ is open in GOTP(X * Y). However, $\langle n, y_0 \rangle \notin \text{Int}([\langle n, y_0 \rangle, \rightarrow))$ by Definition 2.3. Contradiction. Hence, X has no neighbor points.

For the case that Y has the right endpoint but not the left one, the proof is similar. $\hfill \Box$

Remark 2.10. In Definition 2.3, by Theorem 2.6, if Y has two endpoints, then the subbase \mathcal{P} of GOTP(X * Y) can be improved to

$$\mathcal{P} = \lambda_{X*Y} \cup \{p^{-1}(U) \mid U \in \tau_X\}$$
$$\cup \{[\langle x, y \rangle, \to) \subseteq X * Y \mid x \in X, \ y \in Y \text{ and } [y, \to) \in \tau_Y - \lambda_Y\}$$
$$\cup \{(\leftarrow, \langle x, y \rangle] \subseteq X * Y \mid x \in X, \ y \in Y \text{ and } (\leftarrow, y] \in \tau_Y - \lambda_Y\}.$$

In addition, we have other results on the mapping p.

Proposition 2.11. For every open cover \mathcal{U} of GOTP(X * Y), $\text{Intp}(\mathcal{U}) = \{\text{Intp}(U) \mid U \in \mathcal{U}\}$ covers the set $R_X \cup L_X \cup I_X$, and if X has the left (or right) endpoint x_0 (or x_1), then $\text{Intp}(\mathcal{U})$ contains x_0 (or x_1).

Proof. It is clear that $\operatorname{Int} p(\mathcal{U})$ contains I_X for each open cover \mathcal{U} of $\operatorname{GOTP}(X * Y)$. It remains to consider three cases:

- (1) $x \in R_X I_X;$
- $(2) x \in L_X I_X.$
- (3) $x \notin I_X$ and x is an endpoint of X;

We only prove that x must be covered by $\operatorname{Int} p(\mathcal{U})$ for (1). For the other cases, we can prove them similarly. Let $x \in R_X - I_X$. There exists a convex open subset V of $\operatorname{GOTP}(X * Y)$ with $\langle x, y_1 \rangle \in V \subseteq U \in \mathcal{U}$. In addition, by Lemma 2.5, $\langle \leftarrow, \langle x, y_1 \rangle$] is not open in $\operatorname{GOTP}(X * Y)$ since $\langle \leftarrow, x]$ is not open in X. Then there exists a $v \in X$ with x < v and $\langle v, y_0 \rangle \in V$. Then $x \in [x, v) \subseteq \operatorname{Int} p(V) \subseteq \operatorname{Int} p(U)$.

In Theorem 2.6, the mapping p may not necessarily be an open mapping by Example 2.12. Furthermore, we give an interesting result in Theorem 2.15.

Example 2.12. Let X = Y = [0,1] with the same base consisting of all intervals [x,r) and (y,1], where x < r and $x, y, r \in [0,1]$. Then $U = (\langle \frac{1}{3}, \frac{1}{2} \rangle, \langle \frac{2}{3}, \frac{1}{2} \rangle)$ is open in GOTP(X * Y), but $p(U) = [\frac{1}{3}, \frac{2}{3}]$ is not open in X.

Lemma 2.13. Let X and Y be GO-spaces and y_0 (y_1) the left (right) endpoint of Y. If U is an open convex subset of GOTP(X * Y), then the set

$$U^{\Delta} = \{ x \in X \mid \{x\} * Y \subset U \}$$

is an open convex set in X, and if V is also an open convex subset of GOTP(X * Y) with $V \subset U$, then $V^{\Delta} \subset U^{\Delta}$.

Proof. We only need prove that U^{Δ} is open and convex in X. Assume that $x', x'' \in U^{\Delta}$ with x' < x''. Let $x \in X$ with x' < x < x''. For any $y \in Y$, we have $\langle x', y \rangle \in U$ and $\langle x'', y \rangle \in U$. Also $\langle x', y \rangle < \langle x, y \rangle < \langle x'', y \rangle$ since x' < x < x''. Hence, $\langle x, y \rangle \in U$ since U is convex in GOTP(X * Y). So $\{x\} * Y \subset U$. It follows that $x \in U^{\Delta}$.

Next we prove that U^{Δ} is open in X. Let $x \in U^{\Delta}$. If x is neither the minimum point nor the maximum point of U^{Δ} , then x is obviously an interior point of U^{Δ} . Assume that x is the maximum point of U^{Δ} . Then $\langle x, y_1 \rangle \in U$ so that $\langle x, y_1 \rangle$ is an interior point of U. If $(\leftarrow, x]$ is not open in X, then x must have no immediate successor in X. It follows that there exists an $x'' \in X$ with x < x'' such that $[\langle x, y_1 \rangle, \langle x'', y_0 \rangle) \subset U$. So for any $x' \in X$ with x < x' < x'', we have $\{x'\} * Y \subset U$. Hence, $x' \in U^{\Delta}$ which is contrary to the maximality of x. So $(\leftarrow, x]$ must be open in X. If, simultaneously, x is not the minimum point of U^{Δ} , then taking $x' \in U^{\Delta}$ with x' < x, (x', x] is an open neighborhood of x contained in U^{Δ} . If, simultaneously, x is the minimum point of U^{Δ} , then we can similarly prove that $[x, \rightarrow)$ is open in X so that $U^{\Delta} = \{x\}$ is open. For the case that x is the minimum point of U^{Δ} , we similarly prove that x is an interior point of U^{Δ} . Thus, U^{Δ} is open in X.

Theorem 2.14. Let X and Y be GO-spaces and y_0 (y_1) the left (right) endpoint of Y. If U is an open convex subset of GOTP(X * Y), then $|p(U) - U^{\Delta}| \leq 2$, and if $p(U) - U^{\Delta} \neq \emptyset$, then the elements of $p(U) - U^{\Delta}$ must be the maximum or minimum points of p(U).

Theorem 2.15. Let X and Y be GO-spaces and y_0 (y_1) the left (right) endpoint of Y. Suppose that U is an open convex subset of GOTP(X * Y) and $U^{\Delta} \neq \emptyset$.

If the maximum point $x_1(U)$ of $p(U) - U^{\Delta}$ belongs to $L_X \cup I_X$, then $U^{\Delta} \cup \{x_1(U)\}$ is an open convex subset of X.

If the minimum point $x_0(U)$ of $p(U) - U^{\Delta}$ belongs to $R_X \cup I_X$, then $U^{\Delta} \cup \{x_0(U)\}$ is an open convex subset of X.

The proofs of Theorem 2.14 and Theorem 2.15 are easy by Definition 2.3 and Lemma 2.13.

References

- Ryszard Engelking, General Topology. Translated from the Polish by the author. 2nd ed. Sigma Series in Pure Mathematics, 6. Berlin: Heldermann Verlag, 1989.
- [2] M. J. Faber, Metrizability in Generalized Ordered Spaces. Mathematical Centre Tracts, No. 53. Amsterdam: Mathematisch Centrum, 1974.

- [3] David J. Lutzer, Ordered topological spaces in Surveys in General Topology. Ed. George M. Reed. New York-London-Toronto, Ont.: Academic Press, 1980. 247– 295.
- [4] Ai-Jun Xu and Wei-Xue Shi, On lexicographic products of two GO-spaces with a generalized ordered topology, Top. Proc. 31(2007), no. 1, 361–376.
- [5] _____, Notes on monotone Lindelöf property, Czechoslovak Math. J. 59(134) (2009), no. 4, 943–955.

(Xu) Department of Applied Mathematics; Nanjing Forest University; Nanjing 210037, PR China

 $E\text{-}mail\ address: \texttt{ajxu@njfu.edu.cn}$

(Shi) Department of Mathematics; Nanjing University; Nanjing 210093, P.R. China

E-mail address: wxshi@nju.edu.cn