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Electronically published on July 11, 2013

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c⃝ by Topology Proceedings. All rights reserved.



TOPOLOGY
PROCEEDINGS
Volume 44 (2014)
Pages 151-159

http://topology.auburn.edu/tp/

E-Published on July 11, 2013

CONTINUA X FOR WHICH C(X) HAS
A PLANE NEIGHBORHOOD AT THE TOP

SERGIO LÓPEZ AND NORBERTO ORDOÑEZ

Abstract. Let X be a metric continuum and C(X) be the hy-
perspace of subcontinua of X. In this paper we prove that if X
has a planar neighborhood in C(X), then X has a neighborhood in
C(X) which is a 2-cell. This answers a question by Sergio López.

1. Introduction

A continuum is a compact connected metric and nondegenerate space.
Given a continuum X, we consider the hyperspace of subcontinua C(X) of
X defined by the collection of all nonempty connected and closed subsets
of X, endowed with the Hausdorff metric H.

The element X has a special position in C(X) and it is natural to
ask what local properties X has in C(X). For example, it is known that
C(X) is always locally connected at X ([5, Corollary 15.5]); however, it
is easy to construct continua X for which C(X) is locally connected only
at X. Answering a question stated by Anne Marie Dilks in [2, Question
111], Hsao Kato, in [7, Example 3.3], and Alejandro Illanes, in [4], gave
examples of continua X such that C(X) is not locally contractible at X. In
[10], Luis Montejano-Peimbert and Isabel Puga-Espinosa gave conditions
under which a smooth dendroid X has a neighborhood in C(X) which is
homeomorphic to a topological cone of some continuum. Sergio López,
in [8], obtained characterizations of the continua X such that there exist
closed neighborhoods around X in C(X) which are 2-cells. In [8, Corollary
2], he showed that C(X) has closed neighborhoods around X in C(X)
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which are 2-cells if and only if there exists a Whitney level for C(X) that
is either an arc or a simple closed curve.

In this paper we show that if there exists a neighborhood D of X in
C(X) such that D is embeddable in R2, then X has a neighborhood in
C(X) which is a 2-cell, giving an affirmative answer to [8, Question 10].

2. Preliminary Results

In this section we introduce some definitions and results which we will
use in this paper.

If X is a continuum, A and B are subcontinua of X, and ε > 0, then
• N(ε,A) =

∪
{Bε(a) : a ∈ A};

• H(A,B) < ε if and only if A ⊂ N(ε,A) and B ⊂ N(ε,B) (see [5,
Theorem 2.2 and Exercise 2.9]);

• BH(ε,A) = {B ∈ C(X) : H(A,B) < ε} is the ball induced by
the Hausdorff metric in C(X) of radius ε and center at A;

• if C is a subset of X, then int(C) and C denote the interior and
the closure of C in X, respectively.

Definition 2.1. Let X be a continuum, a Whitney map for C(X) is a
continuous map µ : C(X) 7→ [0, 1] such that

(1) µ(X) = 1 and µ({x}) = 0 for all x ∈ X,
(2) if A ( B, then µ(A) < µ(B), and
(3) µ(X) = 1.

It is well known that if X is a continuum, then there exists a Whitney
map for C(X) (see [5, Theorem 13.4]).

Definition 2.2. Let X be a continuum and let µ be a Whitney map for
C(X). A Whitney level for C(X) is a subset of the form µ−1(t), where
t ∈ [0, 1].

Remark 2.3. If µ is a Whitney map for C(X), by [5, Theorem 19.9],
µ−1(t) is a subcontinuum of C(X) for each t ∈ [0, 1]; this implies that µ
is monotone. Thus, by [13, Chapter VIII, Theorem (2.2)], we obtain that
µ−1([t, s]) is a subcontinuum of C(X) for every t, s ∈ [0, 1] and t < s.

Definition 2.4. Let X be a continuum and let A and B be subcontinua
of X such that A ( B. An order arc from A to B is an embedding
α : [0, 1] 7→ C(X) such that

(1) α(0) = A and α(1) = B and
(2) α(s) ( α(t), if 0 ≤ s < t ≤ 1.
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3. Local Connectedness of Whitney Levels

The purpose of this section is to show that if X has a planar neigh-
borhood in C(X), then Whitney levels µ−1(t), for t close to 1, are locally
connected.

Let X be a continuum and let µ be a Whitney map for C(X). If
t ∈ [0, 1) and F ⊂ C(X), we define

T [F , t] = {B ∈ µ−1([t, 1]) : F ⊂ B for some F ∈ F}.

Lemma 3.1. Let X be a continuum and let µ be a Whitney map for
C(X). If t ∈ [0, 1) and F is a nonempty closed subset of C(X), then
T [F , t] is a subcontinuum of C(X) contained in µ−1([t, 1]).

Proof. First we show that if M ∈ C(X), then T [{M}, t] is a subcontinuum
of C(X) contained in µ−1([t, 1]).

Since X ∈ T [{M}, t], we obtain that T [{M}, t] is nonempty.
If N ∈ T [{M}, t] − {X}, then M ⊂ N . By [5, Theorem 14.6], there

exists an order arc α : [0, 1] 7→ C(X) from N to X. So, for each s ∈ [0, 1],
M ⊂ α(s), which implies that µ(α(s)) ≥ µ(M) ≥ t. Therefore, α([0, 1]) ⊂
T [{M}, t], and hence T [{M}, t] is connected. Clearly, T [{M}, t] is closed
in C(X). This shows that T [{M}, t] is a subcontinuum of C(X) contained
in µ−1([t, 1]).

Notice that T [F , t] =
∪

M∈F T [{M}, t]. Since T [{M}, t] is a subcon-
tinuum of C(X) contained in µ−1([t, 1]) and X ∈ T [{M}, t] for each
M ∈ F , we have that T [F , t] is connected. Since F is closed, it follows
that T [F , t] is closed. This ends the proof of this lemma. �

Definition 3.2. A continuum X is said to have property (b) if every
mapping of X into S1 is homotopic to a constant mapping.

In [1, Lemma 13], José G. Anaya showed the following.

Lemma 3.3. Let X be a continuum, let A ∈ C(X), and let RA = {B ∈
C(X) : A ⊂ B}. If R is a nonempty subset of C(X) and RA ⊂ R for
each A ∈ R, then R has property (b).

Definition 3.4. A continuum X is aposyndetic provided that, for every
two different elements a, b ∈ X, there exists a subcontinuum A ∈ C(X)
such that a ∈ int(A) and b ̸∈ A.

Theorem 3.5. Let X be a continuum and let µ be a Whitney map for
C(X). If t < 1, then

(1) µ−1([t, 1]) has property (b) and
(2) µ−1([t, 1]) is aposyndetic.

Proof. (1) follows from Lemma 3.3.



154 S. LÓPEZ AND N. ORDOÑEZ

Now we prove (2). Let A,B ∈ µ−1([t, 1]) be two different elements.
We consider three cases.

Case 1: µ(A) < µ(B).
By Remark 2.3, D = µ−1([t, µ(A)+µ(B)

2 ]) is a subcontinuum of C(X)

contained in µ−1([t, 1]) which contains A in its interior and B ̸∈ D.
Case 2: µ(A) = µ(B).

We can choose a ∈ A − B. Let U be an open set of X such that
a ∈ U and U ∩ B = ∅. Let F = {E ∈ C(X) : E ∩ U ̸= ∅}, by Lemma
3.1, T [F , t] is a subcontinuum of C(X) and B ̸∈ T [F , t]. Since U is open
in X, we have that W = {E ∈ C(X) : E ∩ U ̸= ∅} is an open subset of
C(X) and A ∈ W. Thus, W ∩ µ−1([t, 1]) is an open subset of µ−1([t, 1])
and W ∩ µ−1([t, 1]) ⊂ T [F , t]. This shows that T [F , t] contains A in its
interior.

Case 3: µ(A) > µ(B).
By Remark 2.3, G = µ−1([µ(A)+µ(B)

2 , 1]) is a subcontinuum of C(X)

contained in µ−1([t, 1]) which contains A in its interior and B ̸∈ G.
This ends the proof of the theorem. �

Corollary 3.6. Let X be a continuum and let µ be a Whitney map for
C(X). Suppose that µ−1([t, 1]) is embeddable in R2 for some t < 1, then
µ−1([t, 1]) is locally connected.

Proof. By (1) of Theorem 3.5 and [3, Theorem VI 13], µ−1([t, 1]) does
not separate R2. In [6, Theorem 1], F. Burton Jones showed that an
aposyndetic continuum in the plane which does not separate R2 is locally
connected. Therefore, applying (2) of Theorem 3.5, we conclude that
µ−1([t, 1]) is locally connected. �
Theorem 3.7. Let X be a continuum and let µ be a Whitney map for
C(X). If µ−1([t, 1]) is locally connected for some t < 1, then µ−1(t) is
locally connected.

Proof. We only need to prove that µ−1(t) is connected im kleinen at each
one of its elements. Let A ∈ µ−1(t) and let ε > 0. By [5, Exercise
66.8], there exists δ > 0 such that if B ∈ µ−1(t) and B ⊂ N(δ,A), then
H(A,B) < ε.

Let C be the component of BH( δ2 , A) ∩ µ−1([t, 1]) such that A ∈ C.
Since µ−1([t, 1]) is connected im kleinen at A, A lies in the interior of C in
µ−1([t, 1]). On the other hand, by [12, Lemma 1.43], E =

∪
{D : D ∈ C}

is a subcontinuum of X, and by [12, Theorem 14.11.1], B = µ−1(t)∩C(E)
is a subcontinuum of µ−1(t).

Now we show that B is contained in BH(ε,A). Since C is a component
of BH( δ2 , A), we have that E ⊂ N(δ,A). So, if M ∈ B, then M ∈ µ−1(t)
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and M ⊂ N(δ,A). By the choice of δ, we obtain that H(M,A) < ε.
Therefore, B is contained in BH(ε,A). Since C ⊂ C(E), we have that
C ∩ µ−1(t) ⊂ B. Since A is in the interior of C in µ−1([t, 1]), then A is in
the interior of B in µ−1(t). Since B is a subcontinuum of µ−1(t) contained
in BH(ε,A), we conclude that µ−1(t) is connected im kleinen at A. Thus,
µ−1(t) is locally connected. �

4. Simple Triods in Whitney Levels

Definition 4.1. A simple triod is a continuum which is the union of three
arcs L1, L2, and L3 such that Li ∩ Lj = {p} for every i ̸= j and p is an
end point of each one of the arcs.

Lemma 4.2. Let X be a continuum and let x0, x1, x2, x3 ∈ X be four
different points. For each i ∈ {1, 2, 3}, suppose that there exist embeddings
γi : [0, 1] 7→ X with γi(0) = x0 and γi(1) = xi for each i ∈ {1, 2, 3} and
xi /∈ γj([0, 1]) if i ̸= j. Then X contains a simple triod.

Proof. Let t2 = max{t ∈ [0, 1] : γ2(t) ∈ γ1([0, 1])}. Since x2 = γ(1) ̸∈
γ1([0, 1]), we have that t2 < 1. We consider two cases.

Case 1: t2 > 0.
Let t1 ∈ [0, 1] be such that γ1(t1) = γ2(t2). Since γ2 is an embedding

and x1 ̸∈ γ2([0, 1]), we have that t1 ∈ (0, 1). Therefore, γ1([0, t1]) ∪
γ1([t1, 1]) ∪ γ2([t2, 1]) is a simple triod.

Case 2: t2 = 0.
We have that γ1([0, 1])∪γ2([0, 1]) is an arc. Let t3 = max{t ∈ [0, 1] :

γ3(t) ∈ γ1([0, 1]) ∪ γ2([0, 1])}. Since x3 = γ3(1) ̸∈ γ1([0, 1]) ∪ γ2([0, 1]),
we have that t3 < 1. Suppose, without loss of generality, that γ3(t3) ∈
γ1([0, 1]). Let t1 ∈ [0, 1] be such that γ1(t1) = γ3(t3). Since x1 ̸∈ γ3([0, 1]),
we have that t1 < 1. Thus, γ1([t1, 1]) ∪ [γ1([0, t1]) ∪ γ2([0, 1])] ∪ γ3([t3, 1])
is a simple triod.

This ends the proof of the lemma. �

Construction 4.3. Let X be a continuum, let µ be a Whitney map for
C(X), and let t0 ∈ [0, 1]. Suppose that A0, A1 ∈ µ−1(t0) and there exists
an arc, denoted by [A0, A1], joining A0 and A1 in µ−1(t0). We suppose
that [A0, A1] is endowed by the natural order <, where A0 < A1.

Given B,C ∈ [A0, A1], where B ≤ C, [B,C] denotes the subinterval
of [A0, A1] with end points B and C. As usual,

∪
[B,C] denotes the

union of the elements of [B,C]. By [5, Exercise 11.5], the function φ :
{[B,C] ∈ C([A0, A1]) : B,C ∈ [A0, A1] and B ≤ C} 7→ C(X) given by
φ([B,C]) =

∪
[B,C] is well defined and continuous.

Given D ∈ [A0, A1] − {A1} and s ∈ [t0, µ(
∪
[A0, D])], for each B ∈

[D,A1], we have µ(
∪
[A0, B]) ≥ µ(

∪
[A0, D]) ≥ s ≥ t0 = µ(

∪
[B,B]).
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Thus, there exists CB ∈ [A0, B] such that µ([CB , B]) = s. Define β :
[D,A1] 7→ µ−1(s) by β(B) =

∪
[CB , B].

Lemma 4.4. The function β defined in Construction 4.3 is well defined
and continuous.

Proof. For each B ∈ [D,A1], we have that β(B) =
∪
[CB , B] ∈ µ−1(s).

Now suppose that there exists C ∈ [A0, B] such that µ(
∪
[C,B]) = s.

We can suppose, without loss of generality, that C ≤ CB . So, [C,B] ⊂
[CB , B], which implies that

∪
[CB , B] ⊂

∪
[C,B], but

∪
[CB , B],

∪
[C,B] ∈

µ−1(s), then β(B) =
∪
[CB , B] =

∪
[C,B]. Therefore, β is well defined.

To show the continuity of β, let {Bn}∞n=1 be a sequence in [D,A1]
converging to an element B ∈ [D,A1]. For each n ∈ N, let CBn ∈
[A0, Bn] be an element such that β(Bn) =

∪
[CBn , Bn] and we suppose

that limCBn = C for some C ∈ [A0, A1]. By the continuity of the union,
we have that lim

∪
[CBn , Bn] =

∪
[C,B]; thus, by the continuity of µ,

we have that
∪
[C,B] ∈ µ−1(s). By the paragraph above,

∪
[CB , B] =∪

[C,B]. This shows that β is continuous. �
Lemma 4.5. Let X be a continuum and let µ be a Whitney map for
C(X). Suppose that there exists t0 ∈ [0, 1) such that µ−1(t0) contains
a simple triod, then there exists t1 ∈ (t0, 1) such that µ−1(t) contains a
simple triod for all t ∈ [t0, t1].

Proof. Suppose that T = [A0, A1] ∪ [A0, A2] ∪ [A0, A3] is a simple triod
in µ−1(t0), where [A0, Ai] is an arc joining A0 to Ai and [A0, Ai] ∩
[A0, Aj ] = {A0} for i ̸= j and i, j ∈ {1, 2, 3}. Let ε > 0 be such
that 2ε < min{H(Ai, A) : A ∈ [A0, Aj ], i, j ∈ {1, 2, 3} and i ̸= j}.
For every i ∈ {1, 2, 3}, notice that A0 (

∪
[A0, Ai], which implies that

t0 > µ(
∪
[A0, Ai]) ≤ 1. Let t1 = min{µ(

∪
[A0, Ai]) : i ∈ {1, 2, 3}}. By [5,

Lemma 17.3], we can choose δ > 0 with the following properties:
(1) t0 + δ < t1 and
(2) if A,B ∈ C(X) are such that A ⊂ B and µ(B)− µ(A) < δ, then

H(A,B) < ε.
Let t ∈ [t0, t0 + δ); we are going to construct a simple triod in µ−1(t).
Since µ([A0, Ai]) > t > µ(

∪
[Ai, Ai]), for each i ∈ {0, 1, 2, 3}, we can fix

elements Li ∈ [A0, Ai] and D1 ∈ [A0, A1] such that
∪
[Li, Ai],

∪
[A0, D1] ∈

µ−1(t).
Claim 1. The elements

∪
[A0, D1],

∪
[L1, A1],

∪
[L2, A2], and

∪
[L3, A3]

are all different.
We divide the proof of Claim 1 into two steps.

Step 1.
∪
[A0, D1] ̸=

∪
[Li, Ai] for each i ∈ {1, 2, 3}.

Let i ∈ {1, 2, 3} and suppose that
∪
[A0, D1] =

∪
[Li, Ai]. Then

A0, Ai ⊂
∪
[A0, D1] and µ(

∪
[A0, D1])− µ(A0) = µ(

∪
[A0, D1])− µ(Ai) <
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(t0+δ)−t0 = δ. By the choice of δ, we conclude that H(
∪
[A0, D1], A0) < ε

and H(
∪
[A0, D1], Ai) < ε. Thus, H(A0, Ai) < 2ε, a contradiction with

the choice of ε.

Step 2.
∪
[Li, Ai] ̸=

∪
[Lj , Aj ] for all i ̸= j where i, j ∈ {1, 2, 3}.

Let i, j ∈ {1, 2, 3} with i ̸= j and suppose that
∪
[Li, Ai] =∪

[Li, Aj ], then Ai, Aj ⊂
∪
[Li, Ai] and we obtain, as in Step 1, that

H(Ai, Aj) < 2ε, a contradiction with the choice of ε. This ends the proof
of Claim 1.

We use Construction 4.3 for the arc [A0, A1], s = t and D1. Then there
exists a mapping β1 : [D1, A1] 7→ µ−1(t) such that

∪
[A0, D1],

∪
[L1, A1] ∈

β1([D1, A1]). Now, we can choose an embedding α1 : [0, 1] 7→ β1([D1, A1])
such that α1(0) =

∪
[A0, D1] and α1(1) =

∪
[L1, A1].

We use Construction 4.3 for the arc [D1, A0] ∪ [A0, A2] = [D1, A2]
and s = t. Then there exists a mapping β2 : [A0, A2] 7→ µ−1(t) such that∪
[D1, A0],

∪
[L2, A2] ∈ β2([A0, A2]). So, we can choose an embedding α2 :

[0, 1] 7→ β2([A0, A2]) such that α2(0) =
∪
[D1, A0] and α2(1) =

∪
[L2, A2].

Finally, we use Construction 4.3 for the arc [D1, A0] ∪ [A0, A3] =
[D1, A3] and s = t. Then there exists a mapping β3 : [A0, A3] 7→ µ−1(t)
such that

∪
[D1A0],

∪
[L3, A3] ∈ β3([A0, A3]). So, we can choose an em-

bedding α3 : [0, 1] 7→ β3([A0, A3]), such that α3(0) =
∪
[D1, A0] and

α3(1) =
∪
[L3, A3].

Claim 2.
∪
[Li, Ai] /∈ αj([0, 1]) if i ̸= j and i, j ∈ {1, 2, 3}.

We prove Claim 2. Suppose that there exist i, j ∈ {1, 2, 3} with
i ̸= j such that

∪
[Li, Ai] ∈ αj([0, 1]). Since αj([0, 1]) ⊂ βj([A0, Aj ]),

there exists E ∈ [A0, Aj ] such that βj(E) =
∪
[Li, Ai]. By definition

of βj , we have that βj(E) =
∪
[CE , E]; thus, E,Ai ⊂

∪
[Li, Ai]. Now

notice that µ(
∪
[Li, Ai])− µ(E) = t− t0 < δ and µ(

∪
[Li, Ai])− µ(Ai) =

t − t0 < δ, which implies, by the election of δ, that H(
∪
[Li, Ai], E) < ε

and H(
∪
[Li, Ai], Ai) < ε. Therefore, H(E,Ai) < 2ε, a contradiction with

the choice of ε. This ends the proof of Claim 2.

To finish the proof of this lemma, we apply Lemma 4.2 at the elements∪
[L1, A1],

∪
[L2, A2],

∪
[L3, A3], and

∪
[A0, D1], and the embeddings α1,

α2, and α3. �

5. Main Theorem

The following theorem answers Question 10 of [8].

Theorem 5.1. Let X be a continuum. Suppose that there is a plane
neighborhood of X in C(X). Then there exists a neighborhood of X in
C(X) which is a 2-cell.
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Proof. Let µ be a Whitney map for C(X). Let D be a neighborhood of
X in C(X) such that it is embeddable in R2. By [8, Lemma 1.28], there
exists t0 ∈ [0, 1) such that µ−1([t0, 1]) ⊂ D. So, µ−1([t0, 1]) is embeddable
in R2. By Corollary 3.6, µ−1([t0, 1]) is locally connected, and, by Theorem
3.7, µ−1(t0) is locally connected.

Now suppose that µ−1(t0) contains a simple triod. By Lemma 4.5,
there exists t1 ∈ (t0, 1) such that µ−1(t) contains a simple triod for all
t ∈ [t0, t1]. Thus, there exists a family of uncountably many pairwise
disjoint simple triods contained in D, which implies, by [11, Theorem
1], that D cannot embedded in R2, a contradiction. Since µ−1(t0) does
not contain simple triods and it is a locally connected continuum, by [5,
Exercise 8.40(b)], it is either an arc or a simple closed curve.

Finally, by [8, Corollary 2], there exists a neighborhood of X in C(X),
which is a 2-cell. �
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