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CONTINUA X FOR WHICH C(X) HAS
A PLANE NEIGHBORHOOD AT THE TOP

SERGIO LOPEZ AND NORBERTO ORDONEZ

ABSTRACT. Let X be a metric continuum and C(X) be the hy-
perspace of subcontinua of X. In this paper we prove that if X
has a planar neighborhood in C(X), then X has a neighborhood in
C(X) which is a 2-cell. This answers a question by Sergio Lopez.

1. INTRODUCTION

A continuum is a compact connected metric and nondegenerate space.
Given a continuum X, we consider the hyperspace of subcontinua C(X) of
X defined by the collection of all nonempty connected and closed subsets
of X, endowed with the Hausdorff metric H.

The element X has a special position in C(X) and it is natural to
ask what local properties X has in C'(X). For example, it is known that
C(X) is always locally connected at X ([5, Corollary 15.5]); however, it
is easy to construct continua X for which C'(X) is locally connected only
at X. Answering a question stated by Anne Marie Dilks in [2, Question
111], Hsao Kato, in [7, Example 3.3], and Alejandro Illanes, in [4], gave
examples of continua X such that C(X) is not locally contractible at X. In
[10], Luis Montejano-Peimbert and Isabel Puga-Espinosa gave conditions
under which a smooth dendroid X has a neighborhood in C'(X) which is
homeomorphic to a topological cone of some continuum. Sergio Lopez,
in [8], obtained characterizations of the continua X such that there exist
closed neighborhoods around X in C(X) which are 2-cells. In [8, Corollary
2], he showed that C(X) has closed neighborhoods around X in C(X)
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which are 2-cells if and only if there exists a Whitney level for C'(X) that
is either an arc or a simple closed curve.

In this paper we show that if there exists a neighborhood D of X in
C(X) such that D is embeddable in R?, then X has a neighborhood in
C(X) which is a 2-cell, giving an affirmative answer to [8, Question 10].

2. PRELIMINARY RESULTS

In this section we introduce some definitions and results which we will
use in this paper.
If X is a continuum, A and B are subcontinua of X, and € > 0, then
o N(g,A) =U{B:(a) :a € A};
e H(A,B) <eifand only if A C N(e,A) and B C N(e, B) (see [5,
Theorem 2.2 and Exercise 2.9]);
e BA(c,A) = {B € C(X) : H(A,B) < &} is the ball induced by
the Hausdorff metric in C(X) of radius € and center at A;
e if C is a subset of X, then int(C) and C denote the interior and
the closure of C in X, respectively.

Definition 2.1. Let X be a continuum, a Whitney map for C(X) is a
continuous map pu : C(X) — [0, 1] such that

(1) w(X)=1and p({z})=0for all x € X,
(2) if A C B, then u(A) < u(B), and
(3) w(x) = 1.

It is well known that if X is a continuum, then there exists a Whitney
map for C(X) (see [5, Theorem 13.4]).

Definition 2.2. Let X be a continuum and let ;4 be a Whitney map for
C(X). A Whitney level for C(X) is a subset of the form p~1(t), where
t e 0,1].

Remark 2.3. If p is a Whitney map for C(X), by [5, Theorem 19.9],
p~1(t) is a subcontinuum of C(X) for each ¢ € [0,1]; this implies that p
is monotone. Thus, by [13, Chapter VIII, Theorem (2.2)], we obtain that
u=L([t, s]) is a subcontinuum of C'(X) for every t,s € [0,1] and ¢ < s.

Definition 2.4. Let X be a continuum and let A and B be subcontinua
of X such that A C B. An order arc from A to B is an embedding
a:[0,1] = C(X) such that

(1) a(0) = A and a(1) = B and
(2) a(s) Cat),if0<s<t<1.
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3. Local Connectedness of Whitney Levels

The purpose of this section is to show that if X has a planar neigh-
borhood in C(X), then Whitney levels u~1(t), for ¢ close to 1, are locally
connected.

Let X be a continuum and let g be a Whitney map for C(X). If
t€0,1) and F C C(X), we define

T[F,t|={B € u'(t,1]) : F C B for some F € F}.

Lemma 3.1. Let X be a continuum and let p be a Whitney map for
C(X). Ift € [0,1) and F is a nonempty closed subset of C(X), then
T[F,t] is a subcontinuum of C(X) contained in pu= ([t,1]).

Proof. First we show that if M € C(X), then T[{ M}, 1] is a subcontinuum
of C(X) contained in p~1([t, 1]).

Since X € T[{M},t], we obtain that T[{M},t] is nonempty.

If N e T{M},t] — {X}, then M C N. By [5, Theorem 14.6], there
exists an order arc « : [0, 1] — C(X) from N to X. So, for each s € [0, 1],
M C a(s), which implies that p(a(s)) > p(M) > t. Therefore, ([0, 1]) C
T[{M},t], and hence T[{M},t] is connected. Clearly, T[{M},t] is closed
in C(X). This shows that T[{M}, ] is a subcontinuum of C'(X) contained
in g ([t 1))

Notice that T[F,t] = Uy;er T[{M},t]. Since T[{M},t] is a subcon-
tinuum of C'(X) contained in p~'([t,1]) and X € T[{M},¢] for each
M € F, we have that T[F,t] is connected. Since F is closed, it follows
that T[F,t] is closed. This ends the proof of this lemma. O

Definition 3.2. A continuum X is said to have property (b) if every
mapping of X into S' is homotopic to a constant mapping.

In [1, Lemma 13|, José G. Anaya showed the following.
Lemma 3.3. Let X be a continuum, let A € C(X), and let R4 ={B €
C(X): AcC B}. If R is a nonempty subset of C(X) and R4 C R for
each A € R, then R has property (b).
Definition 3.4. A continuum X is aposyndetic provided that, for every

two different elements a,b € X, there exists a subcontinuum A € C(X)
such that a € int(A) and b &€ A.

Theorem 3.5. Let X be a continuum and let p be a Whitney map for
C(X). Ift < 1, then

(1) p=L([t,1]) has property (b) and

(2) p=t([t,1]) is aposyndetic.

Proof. (1) follows from Lemma 3.3.
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Now we prove (2). Let A,B € p~*([t,1]) be two different elements.
We consider three cases.
Case 1: p(A) < u(B).

By Remark 2.3, D = p~1([t, M]) is a subcontinuum of C(X)

contained in p~1([t, 1]) which contains A in its interior and B ¢ D.
Case 2: u(A) = p(B).

We can choose a € A — B. Let U be an open set of X such that
acUand UNB =0. Let F = {E € C(X): ENU # 0}, by Lemma
3.1, T[F,t] is a subcontinuum of C(X) and B ¢ T[F,t]. Since U is open
in X, we have that W = {E € C(X) : ENU # (} is an open subset of
C(X) and A € W. Thus, WN p~([t,1]) is an open subset of u~1([t,1])
and W N u~1([t,1]) C T[F,t]. This shows that T[F,t] contains A in its
interior.

Case 3: p(A) > u(B).
By Remark 2.3, G = u_l([w, 1]) is a subcontinuum of C(X)
contained in p~1([t,1]) which contains A in its interior and B ¢ G.
This ends the proof of the theorem. O

Corollary 3.6. Let X be a continuum and let p be a Whitney map for
C(X). Suppose that p=1([t,1]) is embeddable in R? for some t < 1, then
w=t([t, 1]) is locally connected.

Proof. By (1) of Theorem 3.5 and [3, Theorem VI 13|, u=*([t,1]) does
not separate R2. In [6, Theorem 1], F. Burton Jones showed that an
aposyndetic continuum in the plane which does not separate R? is locally
connected. Therefore, applying (2) of Theorem 3.5, we conclude that
put([t,1]) is locally connected. O

Theorem 3.7. Let X be a continuum and let p be a Whitney map for
C(X). If p=([t,1]) is locally connected for some t < 1, then p=t(t) is
locally connected.

Proof. We only need to prove that p~1(t) is connected im kleinen at each
one of its elements. Let A € p~!(t) and let ¢ > 0. By [5, Exercise
66.8|, there exists § > 0 such that if B € p~!(¢) and B C N(4, A), then
H(A,B) <e.

Let C be the component of BH (3, A) N p~*([t,1]) such that A € C.
Since 1~ 1([t, 1]) is connected im kleinen at A, A lies in the interior of C in
= 1([t,1]). On the other hand, by [12, Lemma 1.43], E = |J{D : D € C}
is a subcontinuum of X, and by [12, Theorem 14.11.1], B = p~1(t)NC(E)
is a subcontinuum of p~1(t).

Now we show that B is contained in B (¢, A). Since C is a component

of BH (2, A), we have that E C N(5,A). So, if M € B, then M € pu~1(t)
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and M C N(0,A). By the choice of 4, we obtain that H(M,A) < e.
Therefore, B is contained in B (g, A). Since C C C(E), we have that
CNu~Y(t) C B. Since A is in the interior of C in p~1([t,1]), then A is in
the interior of B in u~!(¢). Since B is a subcontinuum of = (¢) contained
in B (e, A), we conclude that p~!(t) is connected im kleinen at A. Thus,
pu~t(t) is locally connected. O

4. Simple Triods in Whitney Levels

Definition 4.1. A simple triod is a continuum which is the union of three
arcs L1, Lo, and Lg such that L; N L; = {p} for every i # j and p is an
end point of each one of the arcs.

Lemma 4.2. Let X be a continuum and let xg,x1,x2,23 € X be four
different points. For eachi € {1,2,3}, suppose that there exist embeddings
vi : [0,1] = X with v;(0) = zo and v;(1) = z; for each i € {1,2,3} and
x; & v;([0,1]) if i # j. Then X contains a simple triod.

Proof. Let to = max{t € [0,1] : 72(t) € v1([0,1])}. Since xo = (1) &
([0, 1]), we have that t3 < 1. We consider two cases.
Case 1: t5 > 0.

Let t1 € [0, 1] be such that v1(¢1) = y2(t2). Since 72 is an embedding
and z1 & 72([0,1]), we have that ¢; € (0,1). Therefore, v1([0,¢1]) U
v ([t1,1]) U~2([t2, 1]) is a simple triod.

Case 2: t, = 0.

We have that 71 ([0, 1]) U~2([0, 1]) is an arc. Let t3 = max{t € [0,1] :
73(t) € 71([0,1]) Un2([0,1])}. Since x5 = 43(1) & 71([0,1]) U72([0,1]),
we have that t3 < 1. Suppose, without loss of generality, that v3(t3) €
7([0,1]). Let ¢; € [0, 1] be such that v1(t1) = vs(t3). Since z1 & v3([0, 1]),
we have that ¢; < 1. Thus, v1([t1, 1]) U [v1([0,¢1]) U~2([0, 1])] U~s([ts, 1])
is a simple triod.

This ends the proof of the lemma. O

Construction 4.3. Let X be a continuum, let u be a Whitney map for
C(X), and let ty € [0,1]. Suppose that Ag, A1 € u=1(ty) and there exists
an arc, denoted by [Ag, A1], joining Ay and Ay in u~*(to). We suppose
that [Ag, A1] is endowed by the natural order <, where Ay < Aj.

Given B,C € [Ag, A1], where B < C, [B,C] denotes the subinterval
of [Ao, A1] with end points B and C. As usual, |J[B,C] denotes the
union of the elements of [B,C]. By [5, Exercise 11.5], the function ¢ :
{[B,C] € C([Ao,A1]) : B,C € [Ag,A1] and B < C} — C(X) given by
o([B,C)) = U[B, (] is well defined and continuous.

Given D € [Ao, A1] — {A1} and s € [to, u(U[Ao, D))], for each B €
1D, Au), we have u(UlAo, B)) = u(UlAo, D)) = s > to = a(U[B, B).
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Thus, there exists Cp € [Ag, B] such that u([Cp,B]) = s. Define § :
[D, Ai] = p=(s) by B(B) = U[CB, B].

Lemma 4.4. The function 8 defined in Construction 4.3 is well defined
and continuous.

Proof. For each B € [D, A;], we have that 3(B) = |J[Cp,B] € u=*(s).
Now suppose that there exists C' € [Ap, B] such that u(J[C, B]) = s.
We can suppose, without loss of generality, that C' < Cp. So, [C, B] C
[Cg, B], which implies that | J[Cg, B] ¢ U[C, B], but J|Cg, B, U[C, B] €
pu=t(s), then 3(B) = [Cps, B] = U[C, B]. Therefore, 3 is well defined.
To show the continuity of 8, let {B,}>2, be a sequence in [D, A;]
converging to an element B € [D, A;]. For each n € N, let Cp, €
[Ao, By] be an element such that 8(B,) = J[Cg, , Bn] and we suppose
that lim Cp, = C for some C € [Ag, A1]. By the continuity of the union,
we have that lim(J[Cp,, B,] = U|[C, B]; thus, by the continuity of u,
we have that |J[C, B] € u~'(s). By the paragraph above, J[Cp, B] =
UIC, B]. This shows that /3 is continuous. O

Lemma 4.5. Let X be a continuum and let p be a Whitney map for
C(X). Suppose that there exists to € [0,1) such that p='(ty) contains
a simple triod, then there exists t1 € (to,1) such that u='(t) contains a
simple triod for all t € [to, t1].

Proof. Suppose that T = [Ag, A1] U [Aog, A2] U [Ag, As] is a simple triod
in u~1(ty), where [Ag, 4;] is an arc joining Ap to A; and [Ag, 4;] N
[Ag, Aj] = {Ao} for i # j and i,j € {1,2,3}. Let ¢ > 0 be such
that 2¢ < min{H(A4;,A) : A € [Ao, 4], i,j € {1,2,3} and @ # j}.
For every i € {1,2,3}, notice that A9 C (J[Ao, A;], which implies that
to > /L(U[Ao,Ai]) <1. Lett; = mln{,u(U[Ao,Al]) NS {1,2,3}} By [5,
Lemma 17.3|, we can choose § > 0 with the following properties:
(1) to + 0 < t; and
(2) if A,B € C(X) are such that A C B and u(B) — u(A) < 6, then
H(A,B) <e.
Let t € [to,to + 0); we are going to construct a simple triod in pu=1(¢).
Since pu([Ag, A;]) >t > p(UJ[Ai, Ai]), for each i € {0, 1,2, 3}, we can fix
elements L; € [Ao, 4;] and Dy € [Ag, A1] such that J[L;, 4;], U[A4o, D1] €
ph ().
CLAIM 1. The elements |J[Ao, D1], U[L1, A1], U[L2, A2], and [ L3, As]
are all different.
We divide the proof of Claim 1 into two steps.
Step 1. U[Ao, D1] # U[L;, As] for each i € {1,2,3}.
Let ¢ € {1,2,3} and suppose that |J[Ao, D1] = U[L:, 4;]. Then
Ao, A; € U[Ao, D1 and p(U[Ao, D1]) — pu(Ao) = p(U[Ao, D1]) — p(Ai) <
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(to+0)—to = 0. By the choice of 4, we conclude that H (| J[Ao, D1], Ag) < €
and H(J[Ao, D1], A;) < e. Thus, H(Ap, A;) < 2e, a contradiction with
the choice of €.

Step 2. J[Li, A;] # U[Lj, A;] for all i # j where i,j € {1,2,3}.
Let i, € {1,2,3} with ¢ # j and suppose that J[L;, 4;] =
U[Ls, Aj], then A;, A; C (U[L;, Ai] and we obtain, as in Step 1, that
H(A;, A;) < 2, a contradiction with the choice of €. This ends the proof
of Claim 1.

We use Construction 4.3 for the arc [Ag, A1], s = ¢ and D;. Then there
exists a mapping 3y : [D1, A1] — p~1(¢) such that |J[Ao, D1],U[L1, A1] €
B1([D1, A1]). Now, we can choose an embedding ay : [0,1] — £1([D1, 41])
such that 051(0) = U[Ao, Dl] and Oél(].) = U[Ll, Al]

We use Construction 4.3 for the arc [Di1, Ag] U [Ag, A2] = [D1, Az]
and s = t. Then there exists a mapping B2 : [Ag, A2] — p~1(t) such that
UID1, Ao], U[L2, A2] € B2([Ap, As]). So, we can choose an embedding as :
[O, 1] = BQ([AO,AQ]) such that 042(0) = U[Dl, Ao] and 042(1) = U[LQ, Ag]

Finally, we use Construction 4.3 for the arc [Dy, Ag] U [Ag, A3] =
[D1, As] and s = t. Then there exists a mapping B3 : [Ag, A3] — p~1(t)
such that (J[D14o], U[Ls, As] € B3([Ao, A3]). So, we can choose an em-
bedding as : [0,1] — B3([Ao, As]), such that a3(0) = J[D1, Ag] and
043(1) = U[Lg, Ag]

CLam 2. U[Ls, Ai] € o;([0,1]) if i # j and i, 5 € {1,2,3}.

We prove Claim 2. Suppose that there exist i, € {1,2,3} with
i # j such that J[L;, 4;] € ;([0,1]). Since «;([0,1]) C B;([Ao, 4;]),
there exists E € [Ag, A;] such that 8;(E) = U[L:, 4;]. By definition
of B;, we have that 8;(E) = [Cg, E]; thus, E, A; C U[L;, A;]. Now
notice that p(J[L;, 4;]) — w(E) =t —to < 0 and pu(U[Li, Ai]) — pu(4;) =
t —to < 0, which implies, by the election of ¢, that H(|J[L:, 4], E) < ¢
and H(J[L:, Ai], A;) < e. Therefore, H(E, A;) < 2e, a contradiction with
the choice of €. This ends the proof of Claim 2.

To finish the proof of this lemma, we apply Lemma 4.2 at the elements
UIL1, A1], U[L2, A2], U[Ls, As], and |J[Ao, D1], and the embeddings oy,
s, and ag. O

5. Main Theorem

The following theorem answers Question 10 of [§].

Theorem 5.1. Let X be a continuum. Suppose that there is a plane
neighborhood of X in C(X). Then there exists a neighborhood of X in
C(X) which is a 2-cell.
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Proof. Let p be a Whitney map for C'(X). Let D be a neighborhood of
X in C(X) such that it is embeddable in R?. By [8, Lemma 1.28], there
exists to € [0,1) such that 4= 1([to, 1]) € D. So, u~1([t, 1]) is embeddable
in R2. By Corollary 3.6, =1 ([to, 1]) is locally connected, and, by Theorem
3.7, u~t(to) is locally connected.

Now suppose that p~!(tg) contains a simple triod. By Lemma 4.5,
there exists t; € (¢, 1) such that p~1(t) contains a simple triod for all
t € [to,t1]. Thus, there exists a family of uncountably many pairwise
disjoint simple triods contained in D, which implies, by [11, Theorem
1], that D cannot embedded in R?, a contradiction. Since p~!(ty) does
not contain simple triods and it is a locally connected continuum, by [5,
Exercise 8.40(b)], it is either an arc or a simple closed curve.

Finally, by [8, Corollary 2|, there exists a neighborhood of X in C'(X),
which is a 2-cell. O
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