

http://topology.auburn.edu/tp/

Continua X for Which C(X) Has a Plane Neighborhood at the Top

by

Sergio López and Norberto Ordoñez

Electronically published on July 11, 2013

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124
COPYRIGHT \textcircled{O} by Topology Proceedings. All rights reserved.	

E-Published on July 11, 2013

CONTINUA X FOR WHICH C(X) HAS A PLANE NEIGHBORHOOD AT THE TOP

SERGIO LÓPEZ AND NORBERTO ORDOÑEZ

ABSTRACT. Let X be a metric continuum and C(X) be the hyperspace of subcontinua of X. In this paper we prove that if X has a planar neighborhood in C(X), then X has a neighborhood in C(X) which is a 2-cell. This answers a question by Sergio López.

1. INTRODUCTION

A continuum is a compact connected metric and nondegenerate space. Given a continuum X, we consider the hyperspace of subcontinua C(X) of X defined by the collection of all nonempty connected and closed subsets of X, endowed with the Hausdorff metric H.

The element X has a special position in C(X) and it is natural to ask what local properties X has in C(X). For example, it is known that C(X) is always locally connected at X ([5, Corollary 15.5]); however, it is easy to construct continua X for which C(X) is locally connected only at X. Answering a question stated by Anne Marie Dilks in [2, Question 111], Hsao Kato, in [7, Example 3.3], and Alejandro Illanes, in [4], gave examples of continua X such that C(X) is not locally contractible at X. In [10], Luis Montejano-Peimbert and Isabel Puga-Espinosa gave conditions under which a smooth dendroid X has a neighborhood in C(X) which is homeomorphic to a topological cone of some continuum. Sergio López, in [8], obtained characterizations of the continua X such that there exist closed neighborhoods around X in C(X) which are 2-cells. In [8, Corollary 2], he showed that C(X) has closed neighborhoods around X in C(X)

²⁰¹⁰ Mathematics Subject Classification. Primary 54B20; Secondary 54F15, 54F65.

 $Key\ words\ and\ phrases.$ hyperspace of subcontinua, hyperspaces, neighborhood at the top.

^{©2013} Topology Proceedings.

which are 2-cells if and only if there exists a Whitney level for C(X) that is either an arc or a simple closed curve.

In this paper we show that if there exists a neighborhood \mathcal{D} of X in C(X) such that \mathcal{D} is embeddable in \mathbb{R}^2 , then X has a neighborhood in C(X) which is a 2-cell, giving an affirmative answer to [8, Question 10].

2. Preliminary Results

In this section we introduce some definitions and results which we will use in this paper.

If X is a continuum, A and B are subcontinua of X, and $\varepsilon > 0$, then

- $N(\varepsilon, A) = \bigcup \{ B_{\varepsilon}(a) : a \in A \};$
- $H(A,B) < \varepsilon$ if and only if $A \subset N(\varepsilon, A)$ and $B \subset N(\varepsilon, B)$ (see [5, Theorem 2.2 and Exercise 2.9]);
- $B^H(\varepsilon, A) = \{B \in C(X) : H(A, B) < \varepsilon\}$ is the ball induced by the Hausdorff metric in C(X) of radius ε and center at A;
- if C is a subset of X, then int(C) and \overline{C} denote the interior and the closure of C in X, respectively.

Definition 2.1. Let X be a continuum, a Whitney map for C(X) is a continuous map $\mu : C(X) \mapsto [0, 1]$ such that

- (1) $\mu(X) = 1$ and $\mu(\{x\}) = 0$ for all $x \in X$,
- (2) if $A \subsetneq B$, then $\mu(A) < \mu(B)$, and
- (3) $\mu(X) = 1.$

It is well known that if X is a continuum, then there exists a Whitney map for C(X) (see [5, Theorem 13.4]).

Definition 2.2. Let X be a continuum and let μ be a Whitney map for C(X). A Whitney level for C(X) is a subset of the form $\mu^{-1}(t)$, where $t \in [0, 1]$.

Remark 2.3. If μ is a Whitney map for C(X), by [5, Theorem 19.9], $\mu^{-1}(t)$ is a subcontinuum of C(X) for each $t \in [0, 1]$; this implies that μ is monotone. Thus, by [13, Chapter VIII, Theorem (2.2)], we obtain that $\mu^{-1}([t, s])$ is a subcontinuum of C(X) for every $t, s \in [0, 1]$ and t < s.

Definition 2.4. Let X be a continuum and let A and B be subcontinua of X such that $A \subsetneq B$. An order arc from A to B is an embedding $\alpha : [0,1] \mapsto C(X)$ such that

- (1) $\alpha(0) = A$ and $\alpha(1) = B$ and
- (2) $\alpha(s) \subsetneq \alpha(t)$, if $0 \le s < t \le 1$.

3. Local Connectedness of Whitney Levels

The purpose of this section is to show that if X has a planar neighborhood in C(X), then Whitney levels $\mu^{-1}(t)$, for t close to 1, are locally connected.

Let X be a continuum and let μ be a Whitney map for C(X). If $t \in [0,1)$ and $\mathcal{F} \subset C(X)$, we define

$$T[\mathcal{F}, t] = \{ B \in \mu^{-1}([t, 1]) : F \subset B \text{ for some } F \in \mathcal{F} \}.$$

Lemma 3.1. Let X be a continuum and let μ be a Whitney map for C(X). If $t \in [0,1)$ and \mathcal{F} is a nonempty closed subset of C(X), then $T[\mathcal{F},t]$ is a subcontinuum of C(X) contained in $\mu^{-1}([t,1])$.

Proof. First we show that if $M \in C(X)$, then $T[\{M\}, t]$ is a subcontinuum of C(X) contained in $\mu^{-1}([t, 1])$.

Since $X \in T[\{M\}, t]$, we obtain that $T[\{M\}, t]$ is nonempty.

If $N \in T[\{M\}, t] - \{X\}$, then $M \subset N$. By [5, Theorem 14.6], there exists an order arc $\alpha : [0, 1] \mapsto C(X)$ from N to X. So, for each $s \in [0, 1]$, $M \subset \alpha(s)$, which implies that $\mu(\alpha(s)) \ge \mu(M) \ge t$. Therefore, $\alpha([0, 1]) \subset T[\{M\}, t]$, and hence $T[\{M\}, t]$ is connected. Clearly, $T[\{M\}, t]$ is closed in C(X). This shows that $T[\{M\}, t]$ is a subcontinuum of C(X) contained in $\mu^{-1}([t, 1])$.

Notice that $T[\mathcal{F}, t] = \bigcup_{M \in \mathcal{F}} T[\{M\}, t]$. Since $T[\{M\}, t]$ is a subcontinuum of C(X) contained in $\mu^{-1}([t, 1])$ and $X \in T[\{M\}, t]$ for each $M \in \mathcal{F}$, we have that $T[\mathcal{F}, t]$ is connected. Since \mathcal{F} is closed, it follows that $T[\mathcal{F}, t]$ is closed. This ends the proof of this lemma. \Box

Definition 3.2. A continuum X is said to have *property* (b) if every mapping of X into S^1 is homotopic to a constant mapping.

In [1, Lemma 13], José G. Anaya showed the following.

Lemma 3.3. Let X be a continuum, let $A \in C(X)$, and let $\mathcal{R}_A = \{B \in C(X) : A \subset B\}$. If \mathcal{R} is a nonempty subset of C(X) and $\mathcal{R}_A \subset \mathcal{R}$ for each $A \in \mathcal{R}$, then \mathcal{R} has property (b).

Definition 3.4. A continuum X is *aposyndetic* provided that, for every two different elements $a, b \in X$, there exists a subcontinuum $A \in C(X)$ such that $a \in int(A)$ and $b \notin A$.

Theorem 3.5. Let X be a continuum and let μ be a Whitney map for C(X). If t < 1, then

- (1) $\mu^{-1}([t,1])$ has property (b) and
- (2) $\mu^{-1}([t, 1])$ is aposyndetic.

Proof. (1) follows from Lemma 3.3.

Now we prove (2). Let $A, B \in \mu^{-1}([t, 1])$ be two different elements. We consider three cases.

Case 1: $\mu(A) < \mu(B)$.

By Remark 2.3, $\mathcal{D} = \mu^{-1}([t, \frac{\mu(A)+\mu(B)}{2}])$ is a subcontinuum of C(X) contained in $\mu^{-1}([t, 1])$ which contains A in its interior and $B \notin \mathcal{D}$.

Case 2: $\mu(A) = \mu(B)$.

We can choose $a \in A - B$. Let U be an open set of X such that $a \in U$ and $\overline{U} \cap B = \emptyset$. Let $\mathcal{F} = \{E \in C(X) : E \cap \overline{U} \neq \emptyset\}$, by Lemma 3.1, $T[\mathcal{F}, t]$ is a subcontinuum of C(X) and $B \notin T[\mathcal{F}, t]$. Since U is open in X, we have that $\mathcal{W} = \{E \in C(X) : E \cap U \neq \emptyset\}$ is an open subset of C(X) and $A \in \mathcal{W}$. Thus, $\mathcal{W} \cap \mu^{-1}([t, 1])$ is an open subset of $\mu^{-1}([t, 1])$ and $\mathcal{W} \cap \mu^{-1}([t, 1]) \subset T[\mathcal{F}, t]$. This shows that $T[\mathcal{F}, t]$ contains A in its interior.

Case 3: $\mu(A) > \mu(B)$.

By Remark 2.3, $\mathcal{G} = \mu^{-1}([\frac{\mu(A) + \mu(B)}{2}, 1])$ is a subcontinuum of C(X) contained in $\mu^{-1}([t, 1])$ which contains A in its interior and $B \notin \mathcal{G}$.

This ends the proof of the theorem.

Corollary 3.6. Let X be a continuum and let μ be a Whitney map for C(X). Suppose that $\mu^{-1}([t,1])$ is embeddable in \mathbb{R}^2 for some t < 1, then $\mu^{-1}([t,1])$ is locally connected.

Proof. By (1) of Theorem 3.5 and [3, Theorem VI 13], $\mu^{-1}([t, 1])$ does not separate \mathbb{R}^2 . In [6, Theorem 1], F. Burton Jones showed that an aposyndetic continuum in the plane which does not separate \mathbb{R}^2 is locally connected. Therefore, applying (2) of Theorem 3.5, we conclude that $\mu^{-1}([t, 1])$ is locally connected.

Theorem 3.7. Let X be a continuum and let μ be a Whitney map for C(X). If $\mu^{-1}([t,1])$ is locally connected for some t < 1, then $\mu^{-1}(t)$ is locally connected.

Proof. We only need to prove that $\mu^{-1}(t)$ is connected in kleinen at each one of its elements. Let $A \in \mu^{-1}(t)$ and let $\varepsilon > 0$. By [5, Exercise 66.8], there exists $\delta > 0$ such that if $B \in \mu^{-1}(t)$ and $B \subset N(\delta, A)$, then $H(A, B) < \varepsilon$.

Let \mathcal{C} be the component of $\overline{B^H(\frac{\delta}{2}, A)} \cap \mu^{-1}([t, 1])$ such that $A \in \mathcal{C}$. Since $\mu^{-1}([t, 1])$ is connected in kleinen at A, A lies in the interior of \mathcal{C} in $\mu^{-1}([t, 1])$. On the other hand, by [12, Lemma 1.43], $E = \bigcup \{D : D \in \mathcal{C}\}$ is a subcontinuum of X, and by [12, Theorem 14.11.1], $\mathcal{B} = \mu^{-1}(t) \cap C(E)$ is a subcontinuum of $\mu^{-1}(t)$.

Now we show that \mathcal{B} is contained in $B^H(\varepsilon, A)$. Since \mathcal{C} is a component of $\overline{B^H(\frac{\delta}{2}, A)}$, we have that $E \subset N(\delta, A)$. So, if $M \in \mathcal{B}$, then $M \in \mu^{-1}(t)$

and $M \subset N(\delta, A)$. By the choice of δ , we obtain that $H(M, A) < \varepsilon$. Therefore, \mathcal{B} is contained in $B^H(\varepsilon, A)$. Since $\mathcal{C} \subset C(E)$, we have that $\mathcal{C} \cap \mu^{-1}(t) \subset \mathcal{B}$. Since A is in the interior of \mathcal{C} in $\mu^{-1}([t, 1])$, then A is in the interior of \mathcal{B} in $\mu^{-1}(t)$. Since \mathcal{B} is a subcontinuum of $\mu^{-1}(t)$ contained in $B^H(\varepsilon, A)$, we conclude that $\mu^{-1}(t)$ is connected in kleinen at A. Thus, $\mu^{-1}(t)$ is locally connected.

4. Simple Triods in Whitney Levels

Definition 4.1. A simple triod is a continuum which is the union of three arcs L_1 , L_2 , and L_3 such that $L_i \cap L_j = \{p\}$ for every $i \neq j$ and p is an end point of each one of the arcs.

Lemma 4.2. Let X be a continuum and let $x_0, x_1, x_2, x_3 \in X$ be four different points. For each $i \in \{1, 2, 3\}$, suppose that there exist embeddings $\gamma_i : [0,1] \mapsto X$ with $\gamma_i(0) = x_0$ and $\gamma_i(1) = x_i$ for each $i \in \{1, 2, 3\}$ and $x_i \notin \gamma_i([0,1])$ if $i \neq j$. Then X contains a simple triod.

Proof. Let $t_2 = \max\{t \in [0,1] : \gamma_2(t) \in \gamma_1([0,1])\}$. Since $x_2 = \gamma(1) \notin \gamma_1([0,1])$, we have that $t_2 < 1$. We consider two cases.

Case 1: $t_2 > 0$.

Let $t_1 \in [0,1]$ be such that $\gamma_1(t_1) = \gamma_2(t_2)$. Since γ_2 is an embedding and $x_1 \notin \gamma_2([0,1])$, we have that $t_1 \in (0,1)$. Therefore, $\gamma_1([0,t_1]) \cup \gamma_1([t_1,1]) \cup \gamma_2([t_2,1])$ is a simple triod.

Case 2: $t_2 = 0$.

We have that $\gamma_1([0,1]) \cup \gamma_2([0,1])$ is an arc. Let $t_3 = \max\{t \in [0,1] : \gamma_3(t) \in \gamma_1([0,1]) \cup \gamma_2([0,1])\}$. Since $x_3 = \gamma_3(1) \notin \gamma_1([0,1]) \cup \gamma_2([0,1])$, we have that $t_3 < 1$. Suppose, without loss of generality, that $\gamma_3(t_3) \in \gamma_1([0,1])$. Let $t_1 \in [0,1]$ be such that $\gamma_1(t_1) = \gamma_3(t_3)$. Since $x_1 \notin \gamma_3([0,1])$, we have that $t_1 < 1$. Thus, $\gamma_1([t_1,1]) \cup [\gamma_1([0,t_1]) \cup \gamma_2([0,1])] \cup \gamma_3([t_3,1])$ is a simple triod.

This ends the proof of the lemma.

Construction 4.3. Let X be a continuum, let μ be a Whitney map for C(X), and let $t_0 \in [0, 1]$. Suppose that $A_0, A_1 \in \mu^{-1}(t_0)$ and there exists an arc, denoted by $[A_0, A_1]$, joining A_0 and A_1 in $\mu^{-1}(t_0)$. We suppose that $[A_0, A_1]$ is endowed by the natural order <, where $A_0 < A_1$.

Given $B, C \in [A_0, A_1]$, where $B \leq C$, [B, C] denotes the subinterval of $[A_0, A_1]$ with end points B and C. As usual, $\bigcup [B, C]$ denotes the union of the elements of [B, C]. By [5, Exercise 11.5], the function φ : $\{[B, C] \in C([A_0, A_1]) : B, C \in [A_0, A_1] \text{ and } B \leq C\} \mapsto C(X) \text{ given by}$ $\varphi([B, C]) = \bigcup [B, C] \text{ is well defined and continuous.}$

Given $D \in [A_0, A_1] - \{A_1\}$ and $s \in [t_0, \mu(\bigcup[A_0, D])]$, for each $B \in [D, A_1]$, we have $\mu(\bigcup[A_0, B]) \ge \mu(\bigcup[A_0, D]) \ge s \ge t_0 = \mu(\bigcup[B, B])$.

Thus, there exists $C_B \in [A_0, B]$ such that $\mu([C_B, B]) = s$. Define β : $[D, A_1] \mapsto \mu^{-1}(s)$ by $\beta(B) = \bigcup [C_B, B]$.

Lemma 4.4. The function β defined in Construction 4.3 is well defined and continuous.

Proof. For each $B \in [D, A_1]$, we have that $\beta(B) = \bigcup [C_B, B] \in \mu^{-1}(s)$. Now suppose that there exists $C \in [A_0, B]$ such that $\mu(\bigcup [C, B]) = s$. We can suppose, without loss of generality, that $C \leq C_B$. So, $[C, B] \subset [C_B, B]$, which implies that $\bigcup [C_B, B] \subset \bigcup [C, B]$, but $\bigcup [C_B, B], \bigcup [C, B] \in \mu^{-1}(s)$, then $\beta(B) = \bigcup [C_B, B] = \bigcup [C, B]$. Therefore, β is well defined.

To show the continuity of β , let $\{B_n\}_{n=1}^{\infty}$ be a sequence in $[D, A_1]$ converging to an element $B \in [D, A_1]$. For each $n \in \mathbb{N}$, let $C_{B_n} \in [A_0, B_n]$ be an element such that $\beta(B_n) = \bigcup[C_{B_n}, B_n]$ and we suppose that $\lim C_{B_n} = C$ for some $C \in [A_0, A_1]$. By the continuity of the union, we have that $\lim \bigcup [C_{B_n}, B_n] = \bigcup [C, B]$; thus, by the continuity of μ , we have that $\bigcup [C, B] \in \mu^{-1}(s)$. By the paragraph above, $\bigcup [C_B, B] = \bigcup [C, B]$. This shows that β is continuous.

Lemma 4.5. Let X be a continuum and let μ be a Whitney map for C(X). Suppose that there exists $t_0 \in [0,1)$ such that $\mu^{-1}(t_0)$ contains a simple triod, then there exists $t_1 \in (t_0,1)$ such that $\mu^{-1}(t)$ contains a simple triod for all $t \in [t_0, t_1]$.

Proof. Suppose that $T = [A_0, A_1] \cup [A_0, A_2] \cup [A_0, A_3]$ is a simple triod in $\mu^{-1}(t_0)$, where $[A_0, A_i]$ is an arc joining A_0 to A_i and $[A_0, A_i] \cap [A_0, A_j] = \{A_0\}$ for $i \neq j$ and $i, j \in \{1, 2, 3\}$. Let $\varepsilon > 0$ be such that $2\varepsilon < \min\{H(A_i, A) : A \in [A_0, A_j], i, j \in \{1, 2, 3\}$ and $i \neq j\}$. For every $i \in \{1, 2, 3\}$, notice that $A_0 \subsetneq \bigcup[A_0, A_i]$, which implies that $t_0 > \mu(\bigcup[A_0, A_i]) \leq 1$. Let $t_1 = \min\{\mu(\bigcup[A_0, A_i]) : i \in \{1, 2, 3\}\}$. By [5, Lemma 17.3], we can choose $\delta > 0$ with the following properties:

- (1) $t_0 + \delta < t_1$ and
- (2) if $A, B \in C(X)$ are such that $A \subset B$ and $\mu(B) \mu(A) < \delta$, then $H(A, B) < \varepsilon$.

Let $t \in [t_0, t_0 + \delta)$; we are going to construct a simple triod in $\mu^{-1}(t)$. Since $\mu([A_0, A_i]) > t > \mu(\bigcup[A_i, A_i])$, for each $i \in \{0, 1, 2, 3\}$, we can fix elements $L_i \in [A_0, A_i]$ and $D_1 \in [A_0, A_1]$ such that $\bigcup[L_i, A_i], \bigcup[A_0, D_1] \in \mu^{-1}(t)$.

CLAIM 1. The elements $\bigcup [A_0, D_1], \bigcup [L_1, A_1], \bigcup [L_2, A_2]$, and $\bigcup [L_3, A_3]$ are all different.

We divide the proof of Claim 1 into two steps.

Step 1. $\bigcup [A_0, D_1] \neq \bigcup [L_i, A_i]$ for each $i \in \{1, 2, 3\}$.

Let $i \in \{1, 2, 3\}$ and suppose that $\bigcup [A_0, D_1] = \bigcup [L_i, A_i]$. Then $A_0, A_i \subset \bigcup [A_0, D_1]$ and $\mu(\bigcup [A_0, D_1]) - \mu(A_0) = \mu(\bigcup [A_0, D_1]) - \mu(A_i) < 0$

 $(t_0+\delta)-t_0 = \delta$. By the choice of δ , we conclude that $H(\bigcup[A_0, D_1], A_0) < \varepsilon$ and $H(\bigcup[A_0, D_1], A_i) < \varepsilon$. Thus, $H(A_0, A_i) < 2\varepsilon$, a contradiction with the choice of ε .

Step 2. $\bigcup [L_i, A_i] \neq \bigcup [L_j, A_j]$ for all $i \neq j$ where $i, j \in \{1, 2, 3\}$.

Let $i, j \in \{1, 2, 3\}$ with $i \neq j$ and suppose that $\bigcup [L_i, A_i] = \bigcup [L_i, A_j]$, then $A_i, A_j \subset \bigcup [L_i, A_i]$ and we obtain, as in Step 1, that $H(A_i, A_j) < 2\varepsilon$, a contradiction with the choice of ε . This ends the proof of Claim 1.

We use Construction 4.3 for the arc $[A_0, A_1]$, s = t and D_1 . Then there exists a mapping $\beta_1 : [D_1, A_1] \mapsto \mu^{-1}(t)$ such that $\bigcup [A_0, D_1], \bigcup [L_1, A_1] \in \beta_1([D_1, A_1])$. Now, we can choose an embedding $\alpha_1 : [0, 1] \mapsto \beta_1([D_1, A_1])$ such that $\alpha_1(0) = \bigcup [A_0, D_1]$ and $\alpha_1(1) = \bigcup [L_1, A_1]$.

We use Construction 4.3 for the arc $[D_1, A_0] \cup [A_0, A_2] = [D_1, A_2]$ and s = t. Then there exists a mapping $\beta_2 : [A_0, A_2] \mapsto \mu^{-1}(t)$ such that $\bigcup [D_1, A_0], \bigcup [L_2, A_2] \in \beta_2([A_0, A_2])$. So, we can choose an embedding $\alpha_2 :$ $[0, 1] \mapsto \beta_2([A_0, A_2])$ such that $\alpha_2(0) = \bigcup [D_1, A_0]$ and $\alpha_2(1) = \bigcup [L_2, A_2]$.

Finally, we use Construction 4.3 for the arc $[D_1, A_0] \cup [A_0, A_3] = [D_1, A_3]$ and s = t. Then there exists a mapping $\beta_3 : [A_0, A_3] \mapsto \mu^{-1}(t)$ such that $\bigcup [D_1A_0], \bigcup [L_3, A_3] \in \beta_3([A_0, A_3])$. So, we can choose an embedding $\alpha_3 : [0, 1] \mapsto \beta_3([A_0, A_3])$, such that $\alpha_3(0) = \bigcup [D_1, A_0]$ and $\alpha_3(1) = \bigcup [L_3, A_3]$.

CLAIM 2. $\bigcup [L_i, A_i] \notin \alpha_j([0, 1])$ if $i \neq j$ and $i, j \in \{1, 2, 3\}$.

We prove Claim 2. Suppose that there exist $i, j \in \{1, 2, 3\}$ with $i \neq j$ such that $\bigcup [L_i, A_i] \in \alpha_j([0, 1])$. Since $\alpha_j([0, 1]) \subset \beta_j([A_0, A_j])$, there exists $E \in [A_0, A_j]$ such that $\beta_j(E) = \bigcup [L_i, A_i]$. By definition of β_j , we have that $\beta_j(E) = \bigcup [C_E, E]$; thus, $E, A_i \subset \bigcup [L_i, A_i]$. Now notice that $\mu(\bigcup [L_i, A_i]) - \mu(E) = t - t_0 < \delta$ and $\mu(\bigcup [L_i, A_i]) - \mu(A_i) = t - t_0 < \delta$, which implies, by the election of δ , that $H(\bigcup [L_i, A_i], E) < \varepsilon$ and $H(\bigcup [L_i, A_i], A_i) < \varepsilon$. Therefore, $H(E, A_i) < 2\varepsilon$, a contradiction with the choice of ε . This ends the proof of Claim 2.

To finish the proof of this lemma, we apply Lemma 4.2 at the elements $\bigcup [L_1, A_1], \bigcup [L_2, A_2], \bigcup [L_3, A_3], \text{ and } \bigcup [A_0, D_1], \text{ and the embeddings } \alpha_1, \alpha_2, \text{ and } \alpha_3.$

5. Main Theorem

The following theorem answers Question 10 of [8].

Theorem 5.1. Let X be a continuum. Suppose that there is a plane neighborhood of X in C(X). Then there exists a neighborhood of X in C(X) which is a 2-cell.

Proof. Let μ be a Whitney map for C(X). Let \mathcal{D} be a neighborhood of X in C(X) such that it is embeddable in \mathbb{R}^2 . By [8, Lemma 1.28], there exists $t_0 \in [0, 1)$ such that $\mu^{-1}([t_0, 1]) \subset \mathcal{D}$. So, $\mu^{-1}([t_0, 1])$ is embeddable in \mathbb{R}^2 . By Corollary 3.6, $\mu^{-1}([t_0, 1])$ is locally connected, and, by Theorem 3.7, $\mu^{-1}(t_0)$ is locally connected.

Now suppose that $\mu^{-1}(t_0)$ contains a simple triod. By Lemma 4.5, there exists $t_1 \in (t_0, 1)$ such that $\mu^{-1}(t)$ contains a simple triod for all $t \in [t_0, t_1]$. Thus, there exists a family of uncountably many pairwise disjoint simple triods contained in \mathcal{D} , which implies, by [11, Theorem 1], that \mathcal{D} cannot embedded in \mathbb{R}^2 , a contradiction. Since $\mu^{-1}(t_0)$ does not contain simple triods and it is a locally connected continuum, by [5, Exercise 8.40(b)], it is either an arc or a simple closed curve.

Finally, by [8, Corollary 2], there exists a neighborhood of X in C(X), which is a 2-cell.

Acknowledgment. The authors thank Professor Alejandro Illanes for all his suggestions and his motivation to conclude this paper.

References

- José G. Anaya, Making holes in hyperspaces, Topology Appl. 154 (2007), no. 10, 2000–2008.
- [2] Anne Marie Dilks, Structure of hyperspaces. Ph.D. Thesis. Tulane University, 1980.
- [3] Witold Hurewicz and Henry Wallman, Dimension Theory. Princeton Mathematical Series, v. 4. Princeton, N. J.: Princeton University Press, 1941.
- [4] Alejandro Illanes, A continuum having its hyperspaces not locally contractible at the top, Proc. Amer. Math. Soc. 111 (1991), no. 4, 1177–1182.
- [5] Alejandro Illanes and Sam B. Nadler, Jr. Hyperspaces: Fundamentals and Recent Advances. Monographs and Textbooks in Pure and Applied Mathematics, 216. New York: Marcel Dekker, Inc., 1999.
- [6] F. Burton Jones, Concerning aposyndetic and non-aposyndetic continua, Bull. Amer. Math. Soc. 58 (1952), 137–151.
- [7] Hisao Kato, On local contractibility at X in hyperspaces C(X) and 2^X, Houston J. Math. 15 (1989), no. 3, 363–370.
- [8] Sergio López, Hyperspaces locally 2-cell at the top in Continuum Theory (Denton, TX, 1999). Ed. Alejandro Illanes, Sergio Macías, and Wayne Lewis. Lecture Notes in Pure and Appl. Math., 230. New York: Dekker, 2002. 173–190.
- [9] Ernest Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182.
- [10] Luis Montejano-Peimbert and Isabel Puga-Espinosa, Shore points in dendroids and conical pointed hyperspaces, Topology Appl. 46 (1992), no. 1, 41–54.
- [11] R. L. Moore, Concerning triods in the plane and the junction points of plane continua, Proc. Nat. Acad. Sci. U. S. A. 14 (1928), no. 1, 85–88.

- [12] Sam B. Nadler, Jr. Hyperspaces of Sets. A Text with Research Questions. Monographs and Textbooks in Pure and Applied Mathematics, Vol. 49. New York-Basel: Marcel Dekker, Inc., 1978.
- [13] Gordon Thomas Whyburn, Analytic Topology. American Mathematical Society Colloquium Publications, v. 28. New York: American Mathematical Society, 1942.

(López) Universidad Pedagógica Nacional; Carretera al Ajusco 24; Héroes de Padierna; Tlalpan, 14200, México D. F.

E-mail address: perceptormx@yahoo.com

(Ordoñez) Instituto de Matemáticas; Universidad Nacional Autónoma de México; Circuito Exterior; Ciudad Universitaria, 04510, México D. F. *E-mail address:* oramirez@matem.unam.mx