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BOX PRODUCTS OF
ONE POINT COMPACTIFICATIONS

AND RELATED RESULTS

JUDITH ROITMAN

Abstract. Let A+∞ be the one-point compactification of a dis-
crete space A. If �(ω + 1)ω is basic ultraparacompact, i.e., every
open cover has a pairwise disjoint subcover by canonical basic sets,
and |A| < ℵω , then �(A+∞)ω is paracompact. If all but finitely
many |An| ≥ ℵ2, then ∇n<ω(An + ∞)ω fails to be hereditarily
normal. We also give an elementary submodel proof of the follow-
ing theorem by Scott W. Williams: The box product of countably
many compact T3 spaces each of weight at most ω1 is paracompact.

1. Preliminaries

Definition 1.1. The box product �i∈IXi of topological spaces {Xi : i ∈
I} is the topology on Πi∈IXi whose basis is all sets of the form Πi∈Iui

where each ui is open in Xi.

Box products have been intensively studied. Two main questions are
asked about box products: Which ones are normal? Which ones are
paracompact? There are many models in which �(ω + 1)ω is known to
be paracompact; the biggest unsolved problem in this area is whether
“�(ω+1)ω is not paracompact” is consistent. For various reasons (see [9]
for a recent survey), much of the focus has been on the index set I being
countable and the Xi’s being compact (or some version of compact). Note
that we do not assume spaces are Hausdorff or T1.

A related topology is defined below.
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Definition 1.2. The nabla product ∇i∈IXi of topological spaces {Xi : i ∈
I} is the quotient topology induced by the following equivalence relation
on �i∈IXi: x =∗ y if and only if {i : x(i) ̸= y(i)} is finite.

We will use the standard notation =∗ for partial functions as well.
Similarly, we write a ⊆∗ b if and only if a \ b is finite, and so on. “∀∞ ”
means “for all but finitely many” ; “∃∞ ” means “there exists infinitely
many. ”

When I is countable, the study of box products is made a little easier
by results of Mary Ellen Rudin [10] (Fact 1.3) and K. Kunen [8] (Theorem
1.5).

Fact 1.3. For any ∇i<ωXi, the countable intersection of open sets is
open.

Definition 1.4. A space X is ultraparacompact if and only if every open
cover has a pairwise disjoint open refinement covering X.

Theorem 1.5. If each Xi is compact, then �i<ωXi is paracompact if and
only if ∇i<ωXi is paracompact if and only if ∇i<ωXi is ultraparacompact.

Fact 1.3 and the first equivalence in Theorem 1.5 appeared in [8]; the
second equivalence is also due to Kunen, but we know of no written refer-
ence. It follows from the fact that a regular paracompact space in which
every countable intersection of open sets is open is ultraparacompact.

Theorem 1.5 allows us to focus on the nabla product.

Definition 1.6. A space is scattered if and only if every subset has an
isolated point.

Kunen [8] also proved the following theorem.

Theorem 1.7. Assume CH. If each Xn is compact scattered, then �n<ωXn

is paracompact.

We ask the basic question of this paper: In the context of compact
scattered spaces, what can we do without CH?

In particular, under axioms weaker than CH, we consider the box prod-
uct of Fort spaces1, i.e., one-point compactifications of discrete spaces. We
ask, “ Under which set theoretic hypotheses is the box product of various
Fort spaces paracompact? ” We also investigate the hereditary normality
of nabla products of Fort spaces. And, finally, we give an alternate proof
of Scott W. Williams’ theorem [11, Theorem 5.7(i)] that if d = ω1, then
the box product of countably many compact regular spaces with weight
at most ω1 is paracompact.

1so called because these spaces were first systematically investigated by M. K. Fort,
Jr. [5].
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2. The Nabla Topology for Fort Spaces

For any set A, we will denote the Fort space of cardinality |A| by
A+∞.2 As a set, A+∞ = A ∪ {∞}, where A has the discrete topology
and neighborhoods of ∞ are cofinite. We only consider infinite A.

Note that if A ⊂ B, then A+∞ embeds continuously into B +∞ by
the identity mapping.

The point ∞ is the function in �(A+∞)ω constantly equal to ∞; in an
abuse of notation, we also denote its image in the ∇ product by ∞. In a
similar abuse of notation, we will refer to objects such as {n : x(n) = ∞},
x � a, etc., when x ∈ ∇(A+∞)ω.

A basic open set for any ∇(A + ∞)ω has the form N(g,G) where
g ∈ A⊆ω (i.e., g is a partial function from ω to A), G : ω → [A]<ω (recall
that [A]<ω is the set of finite subsets of A), and x ∈ N(g,G) if and only if
x � dom g =∗ g and ∀∞n /∈ dom g x(n) /∈ G(n). By “basic set,” we mean
a set of the form N(g,G). Each basic set is clopen. If N = N(g,G), we
write g = gN and G = GN .

Fact 2.1. (a) Let N and N∗ be basic sets. N ⊆ N∗ if and only if
gN ⊇ gN∗ , ∀∞n /∈ dom gN GN (n) ⊇ GN∗(n), and ∀∞n ∈ dom(gN \
gN∗) gN (n) /∈ GN∗(n).

(b) If A ⊆ B and N is basic for ∇(B+∞)ω, then ∇(A+∞)ω ∩N ̸= ∅
if and only if ∀∞n ∈ dom gN gN (n) ∈ A.

Let A ⊆ B. Given N = N(g,G), basic in ∇(B+∞)ω with N ∩∇(A+
∞)ω ̸= ∅, we write NA = N(g,GA) where GA(n) = G(n)∩A for all n. A
collection of basic open sets V is basic for A if and only if for all V ∈ V,
V ∩∇(A+∞)ω ̸= ∅ and

∪
V ⊇ ∇(A+∞)ω.

For x ∈ ∇(B + ∞)ω, we define x = x � {n : x(n) ̸= ∞}, and if
A ⊂ B, we write xA = x � {n : x(n) ∈ A}. For g ∈ B⊆ω, we define g as

g(n) =

{
g(n) if n ∈ dom g
∞ if otherwise.

Definition 2.2. An open family U is basic if and only if all of its elements
are basic sets.

Definition 2.3. ∇(A+∞)ω is basic ultraparacompact if and only if every
open cover has a pairwise disjoint basic covering refinement.

In every model in which we know ∇(ω+1)ω to be ultraparacompact, it
is basic ultraparacompact, in fact, hereditarily basic ultraparacompact.3

2This is not standard notation, but we need to distinguish, e.g., the Fort space
δ +∞ from the ordinal space δ + 1; if δ = ω, then these spaces are homeomorphic.

3So a technical open question is if ∇(ω+1)ω is ultraparacompact, must it be basic
ultraparacompact? Hereditarily basic ultraparacompact?
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In particular, ∇(ω+1)ω is hereditarily basic ultraparacompact under the
combinatorial principle ∆ (see [9]) which holds in every model in which
we know ∇(ω+1)ω is ultraparacompact. ∆ is consistent; it is not known
if ¬∆ is consistent. For completeness, we state ∆ here.

Definition 2.4. ∆ is the following statement: For all f ∈ ω⊆ω, there is
hf : ω → ω so that if f, g ∈ ω⊆ω and (f \ g) ̸=∗ ∅ ≠∗ (g \ f), then either
(1) {n ∈ dom f ∩ dom g : f(n) ̸= g(n)} is infinite, or (2) ∃∞n ∈ (dom
f\ dom g) f(n) ≤ hg(n), or (3) ∃∞n ∈ (dom g\ dom f) g(n) ≤ hf (n)

By contrast, in section 4 we show that, without any extra hypotheses,
a nabla product of countably many Fort spaces of size > ℵ1 is not hered-
itarily normal, even when the nabla product is basic paracompact. The
status of the hereditary normality of ∇(ℵ1 +∞)ω is open.

3. ∇(ℵn +∞)ω Can Be Paracompact

Lemma 3.1. Let A ⊂ B and suppose ∇(A+∞)ω is basic ultraparacom-
pact. If U is an open cover of ∇(B +∞)ω, then there is a basic pairwise
disjoint family refining U and covering ∇(A+∞)ω.

Proof. We may assume U is a collection of basic sets. Let UA = {N ∈ U :
N ∩ ∇(A + ∞)ω ̸= ∅}. Let V be a pairwise disjoint basic refinement of
{NA : N ∈ UA} covering ∇(A + ∞)ω. Given N ∈ V, there is N∗ ∈ UA

with N ⊆ N∗A. We define N†: Let gN† = gN , GN†(n) = GN (n)∪GN∗(n)
for all n. Then N† ⊆ N ∩N∗ and N† ∩ ∇(A+∞)ω = N ∩ ∇(A+∞)ω.
So {N† : N ∈ V} is the desired refinement. �

Lemma 3.2. Let A ⊂ B. If V is a disjoint collection of basic sets in
∇(B +∞)ω which is basic for A, then

∪
V is closed.

Proof. Given V as in the hypothesis, suppose x /∈
∪
V.

Let N(f, F ) be the unique element of V with xA ∈ N(f, F ). Since
xA ⊃ f and x /∈ N(f, F ), for infinitely many n ∈ dom (x\f), x(n) ∈ F (n).
Hence, every N(x,H) ∩N(f, F ) = ∅.

Now let N(g,G) ∈ V with N(f, F ) ̸= N(g,G). Since N(g,G) ∩
N(f, F ) = ∅, either

(1) ∃∞n ∈ dom (f ∩ g) f(n) ̸= g(n), or
(2) case (1) fails and ∃∞n ∈ dom (f \ g) f(n) ∈ G(n), or
(3) cases (1) and (2) fail and ∃∞n ∈ dom (g \ f) g(n) ∈ F (n).

In cases (1) and (2), it is immediate that N(x, F ) ∩ N(g,G) = ∅. In
case (3), let E = {n ∈ dom (g \ f) : g(n) ∈ F (n)}. If E\ dom x ̸=∗ ∅,
again it is immediate that N(x, F ) ∩ N(g,G) = ∅. So we may assume
that E ⊆∗ dom x. Since each N ∈ V has N ∩∇(A+∞)ω ̸= ∅, E ⊆∗ dom
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xA. We may assume g � E =∗ xA � E. Hence, ∃∞n ∈ dom (xA \ f) with
xA(n) ∈ F (n). So xA /∈ N(f, F ), a contradiction.

Thus, in all cases, N(x, F ) ∩N(g,G) = ∅, so N(x, F ) ∩
∪
V = ∅. �

Lemma 3.3. Suppose B ⊇
∪

n<ω An, each An ⊂ An+1, each An+1 \ An

infinite, and there are basic families Vn in ∇(B +∞)ω where each Vn is
pairwise disjoint, basic for An, and each Vn ⊆ Vn+1. Let V =

∪
n<ω Vn.

Then
∪

V is closed in ∇(B +∞)ω.

Proof. By Lemma 3.2, each
∪
Vn is closed. By Fact 1.3,

∪
V is closed. �

Lemma 3.4. If A ⊂ B, ∇(A+∞)ω is basic ultraparacompact, and |B| =
|A|, then, for every open cover U of ∇(B+∞)ω, there is a basic pairwise
disjoint refinement V1 ∪ V2 of U covering ∇(B +∞)ω where V1 is basic
for A.

Proof. First note that, because of the uniform way we have defined basic
open sets, if |A| = |B| and ∇(A + ∞)ω is basic ultraparacompact, then
so is ∇(B +∞)ω.

Given U a cover of ∇(B +∞)ω, by Lemma 3.1, we construct a basic
pairwise disjoint V1 refining U , covering ∇(A+∞)ω, and if N ∈ V1, then
N ∩ ∇(A + ∞)ω ̸= ∅. By Lemma 3.2,

∪
V1 is closed in ∇(B + ∞)ω.

Construct a basic cover U1 of ∇(B + ∞)ω \
∪
V1 refining U so that if

N ∈ U1, then N ∩
∪
V1 = ∅.

Since |B| = |A| and
∪
V1 is clopen, there is V2, a basic pairwise disjoint

refinement of U1 covering ∇(B+∞)ω \
∪

V1. Then V1 ∪V2 is the desired
basic disjoint refinement of U covering ∇(B +∞)ω. �

Lemma 3.5. Suppose B ⊇
∪

n<ω An, each An ⊂ An+1 and |B| = |An| for
some n. If ∇(An+∞)ω is basic ultraparacompact, then there is a sequence
{Vn : n ≤ ω} where if n < ω, then Vn ⊆ Vn+1 and

∪
i≤n Vi is a basic

pairwise disjoint cover of ∇(An +∞)ω refining U ,
∪
Vω ∩

∪
n<ω Vn = ∅,

and
∪

n≤ω Vn covers ∇(B +∞)ω.

Proof. Let U be an open cover of ∇(B + ∞)ω. Using the technique of
Lemma 3.4, we construct Vn, n < ω by induction. Let V =

∪
n<ω Vn.

By Lemma 3.3,
∪
V is closed. Let U1 be a basic refinement of U with∪

U1∩
∪
V = ∅. Since |B| = |An| for some n, we can find a basic pairwise

disjoint refinement Vω of U1 covering ∇(B +∞)ω \
∪

V. Then V ∪ Vω is
the desired basic disjoint refinement of U covering ∇(B +∞)ω. �

Lemma 3.6. Suppose κ has uncountable cofinality and B =
∪

α<κ Aα

where if α < β < κ, then Aα ⊂ Aβ. If each ∇(Aα + ∞)ω is basic
ultraparacompact, so is ∇(B +∞)ω.
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Proof. Let U be an open cover of ∇(B + ∞)ω. By induction, construct
Vα basic pairwise disjoint refinements of U so that if α < β, then Vα ⊂ Vβ

and Vα is basic for Aα. If β has uncountable cofinality, then at stage β, we
define Vβ =

∪
α<β Vα. This works because ∇(Aβ +∞)ω =

∪
α<β ∇(Aα +

∞)ω. �
Theorem 3.7. Assume ∇(ω+1)ω is basic ultraparacompact. If |A| < ℵω,
then ∇(A+∞)ω is basic ultraparacompact.

Proof. Without loss of generality, |A| = κ < ℵω and κ > ω. Let Λ =
{δα : α < κ}. List the limit ordinals below κ in increasing order. By
hypothesis, if α has countable cofinality and α > ω, then for some β < α,
|δα| = |δβ |, so by induction and lemmas 3.4, 3.5, and 3.6, each ∇(δα +
∞)ω is basic ultraparacompact. By Lemma 3.6, ∇(κ + ∞)ω is basic
ultraparacompact. �

4. Not Hereditarily Normal

Kunen [7] showed that �(ω + 1)ω is not hereditarily normal. This is
a fundamental difference from ∇(ω + 1)ω, since we know of no models
in which ∇(ω + 1)ω fails to be hereditarily ultraparacompact. By con-
trast, in this section, we show that if all but finitely many κn > ω1, then
∇n<ω(κn+∞) is not hereditarily normal. We do not know the consistency
of the (non-)hereditary normality of ∇(ℵ1 +∞)ω.

Since ∇(ω2 + ∞) is a closed subset of any ∇n<ω(κn + ∞) in which
all but finitely many κn > ω1, it suffices to prove that ∇(ω2 +∞) is not
hereditarily normal.

Theorem 4.1. ∇(ω2 +∞) \ {∞} is not normal.

Proof. Let a be an infinite co-infinite subset of ω. Let H = {x ∈ ∇(ω2 +
∞)ω : dom x = a, ∃α < ω2 ∀∞n ∈ a x(n) = α}. We write xα = the unique
elements in H so that ∀∞n ∈ a x(n) = α. Let K = {y ∈ ∇(ω2 +∞)ω: if
i < j and i, j ∈ dom y, then y(i) < y(j)}.

H ∩K = ∅ and cl H ∩ cl K = {∞}.
Fix U open with H ⊂ U and V open with K ⊂ V . We may assume

U =
∪
U where U = {ux : x ∈ H} and each ux = N(x, Fx). We may

assume V =
∪

V where V = {vy : y ∈ K} and each vy = N(y,Gy). We
show U ∩ V ̸= ∅.

For each α < ω2, write Fα =
∪

n<ω Fxα(n). Each Fα is countable. So
there is a sequence {δγ : γ < ω1} where if ∀∞n ∈ dom x x(n) = α < δγ ,
then

∪
n<ω Fx(n) ⊂ δγ . Let δ = sup{δγ : γ < ω1} ∈ [ω1, ω2). Let

Hδ = {x ∈ H : ∀∞n if x(n) ̸= ∞n then x(n) < δ}.
Let y ∈ K with dom y ∩ a = ∅ and ∀∞n ∈ dom y y(n) > δ. There is

x ∈ Hδ with range x ∩
∪

n<ω Gy(n) = ∅. Then vy ∩ ux ̸= ∅. �
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5. An Alternate Proof of a Theorem of Williams

Definition 5.1. w(X) = inf{κ : ∃B a base of open sets for X with
|B| = κ}.

In [11, Theorem 5.7(i)], Williams proves the following theorem.

Theorem 5.2. If d = ω1 and each Xn is a compact T3 space with
w(Xn) ≤ ω1, then ∇n<ωXn is ultraparacompact.4

Both Williams’ proof and our proof proceed by showing that, under
the hypothesis of Theorem 5.2, ∇n<ωXn is ω1-metrizable; κ-metrizability
implies paracompactness (see [3]).

Definition 5.3. X is κ-metrizable if and only if every point x has a
neighborhood base Vx = {Vx,α : α < κ} where, for each x and y and
for each β ≥ α, if y /∈ Vx,α, then Vx,α ∩ Vyβ = ∅, and if y ∈ Vx,α, then
Vy,β ⊆ Vx,α.5

Williams proved ω1-metrizability by using uniformities, necessitating
familiarity with machinery which is not in everyone’s toolbox. Here we
give an elementary submodel proof. Elementary submodels are also not
in everyone’s toolbox, but hopefully they are in the toolboxes of a large
proportion of people unfamiliar with uniformities.

First, some preliminaries.

Definition 5.4. d = inf{κ : there exists F ⊂ ωω |F| = κ and for all g ∈
ωω, there exists f ∈ g g ≤∗ f}.6

The theorem below is a corollary to the proof of Theorem 10.6 in [3].

Theorem 5.5. If d = ω1 and each Xn is compact and pseudometrizable,
then ∇n<ωXn is ω1-metrizable.7

Note that a regular space of countable weight is pseudometrizable.
Using countable models, we will define an inverse limit sequence {Xα :
α < ω1} of compact completely regular spaces of countable weight, so
each Xα will be pseudometrizable and Theorem 5.5 will apply.

Definition 5.6. Let X be a completely regular space and X ∈ M where
M is a model of enough set theory. For x, y ∈ X, define x ≈M y if and
only if ∀f ∈ C(X) ∩M f(x) = f(y). X/M is the quotient space defined
by ≈M .

4This theorem is stated incorrectly in [11] due to a typographical error: “b” was
written instead of “d.”

5This is not the usual definition of κ-metrizability, but it is equivalent if cf κ > ω.
6g ≤∗ f if and only if ∀∞n g(n) < f(n).
7This theorem was originally stated for compact metrizable spaces, but the proof

goes through for pseudometrizable.
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Every completely regular space X has a base B = {f←(p, q) : f ∈
C(X), p, q ∈ Q}, and if w(X) = κ, then there is F ⊂ C(X) with |F| = κ
and a base B = {f←(p, q) : f ∈ F , p, q ∈ Q}. We will call such an F a
generating family.

Definition 5.7. X(M) is the topology on X where u is open if and only
if there exists v open in X/M u = {x : x/M ∈ v}.

Note that X(M) is generally very badly not Hausdorff.

Fact 5.8. If X is completely regular, X ∈ M where M is a model of
enough set theory, then X/M is completely regular.

Proof. Let X and M be as in Definition 5.6 and suppose x/M /∈ H/M
where H/M is closed in X/M . We may assume H ∈ M . By elementarity,
there is f ∈ C(X) ∩ M, r, s ∈ Q with f(x) ∈ (r, s), and for all h ∈ H,
f(h) /∈ (r, s). �

Note that if X/M is completely regular, so is X(M).
With these preliminaries, here is the proof of Theorem 5.2.

Proof. Without loss of generality, we consider ∇Xω where w(X) = ω1.
Let F be a generating family for the topology on X, |F| = ω1.

Let {Mα : α < ω1} be an increasing sequence of countable models of
enough set theory with X,F ∈ M0, F ⊂

∪
α<ω1

Mα. Let Xα = X(Mα).
Each Xα is completely regular and has a countable base, so each Xα is
pseudometrizable. By Theorem 5.5, each ∇(Xα)

ω is ω1-metrizable. Let
{Vx,β,α : β < ω1, x ∈ ∇(Xα)

ω} witness this.
For each α, β < ω1, let Tβ,α = {Vx,β,α : x ∈ ∇(Xα)

ω}. Each Tβ,α

covers ∇Xω.
For x ∈ ∇Xω, let Wx,α =

∩
β≤α Vx,β,α. Then each Wx,α is open, and

{Wx,α : α < ω1} witnesses the ω1-metrizability of ∇Xω �

6. Open Questions

The following questions, closely related to the results of this paper,
remain open.

Question 6.1. Without CH, is ∇(κ+∞)ω consistently paracompact for
κ ≥ ℵω?

Question 6.2. Is ∇(ℵ1 +∞)ω hereditarily normal? Consistently hered-
itarily normal?

A question which deserves more notice than it has gotten relates to a
result of William G. Fleissner and Adrienne M. Stanley [4]. First, their
result.
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Theorem 6.3. The box product of arbitrarily many scattered spaces of
Cantor-Bendixson height 2 is a D-space. (A scattered space X has height
2 if and only if X \ I is discrete, where I is the set of isolated points of
X.)

“D-space” is a covering property: X is a D-space if and only if for every
{ux : x ∈ X} where x ∈ ux is open, there is a closed discrete set Y so
that {uy : y ∈ Y } covers X.

In particular, Fort spaces have Cantor-Bendixson height 2, so Theorem
6.3 has as a corollary that the box product of arbitrarily many Fort spaces
is a D-space. For a survey of D-spaces, see [6]. In particular, it is not
known whether every ultraparacompact space is a D-space, which leads
to the following question.

Question 6.4. Is there a scattered space of finite height with a box
product which fails to be a D-space? What about compact scattered
spaces of arbitrary height?

Question 6.5. Is every ultraparacompact space a D-space?

Finally, going back to Definition 2.4, we have the following question.

Question 6.6. Is ¬∆ consistent?
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