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CONNECTED OPEN NEIGHBORHOODS OF
SUBCONTINUA OF PRODUCT CONTINUA

WITH INDECOMPOSABLE FACTORS

DAVID P. BELLAMY AND JANUSZ M. LYSKO

Abstract. In a product either of Knaster continua or of pseudo-
arcs, a continuum W has arbitrarily small connected open neigh-
borhoods if and only if the projection of W to every factor is onto.
This is not true for all products of indecomposable continua.

1. Introduction

The general question considered here is the following: Suppose M is a
subcontinuum of a product X of at least two nondegenerate indecompos-
able continua. Under what conditions does it follow that M has arbitrarily
small connected open neighborhoods in X? Precisely, when is it true that
given any open set O with M ⊆ O ⊆ X, there exists a connected open
set U satisfying M ⊆ U ⊆ O ? The particular cases to which we present
solutions involve products of Knaster-type indecomposable continua, of
solenoids, and of pseudo-arcs. Both positive and negative results are in-
cluded, along with some open questions.

We did most of this research a number of years ago, but we held off
on publishing it in the hope of getting improved results. The only result
of this delay was the strengthening of Theorem 4.4 from the case of a
product of two pseudo-arcs to all finite products (and, in light of the ob-
servation in §5, to all products of pseudo-arcs). Since the research in this
paper was done, there has been a lot more progress in this area. Impor-
tant work, especially, is contained in the papers of Janusz R. Prajs and
Keith Whittington [13], [14], and to some extent, in the papers of Karen
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Villarreal [15], [16]. The referee has stated that the property of having
arbitrarily small connected open neighborhoods, for a subcontinuum of a
Kelly continuum, is equivalent to the property of being an ample subcon-
tinuum. The notion of ample subcontinua was introduced by Prajs and
Whittington in [13].

2. Definitions and Notation

A continuum is a compact connected metric space. A continuum X is
locally connected at p ∈ X provided that for every open subset O of X
with p ∈ O, there exists a connected open set U with p ∈ U ⊆ O; X is
locally connected if it is locally connected at every point of itself. The con-
tinuum X is indecomposable provided that whenever A and B are proper
subcontinua of X, A ∪B is a proper subset of X; X is hereditarily inde-
composable provided that every subcontinuum of X is indecomposable.

A reader unfamiliar with inverse limits may wish to consult W. T.
Ingram’s book [8]. If {Xk; fk}k∈N is an inverse sequence of continua and
continuous maps, the inverse limit of {Xk; fk}k∈N is the set

{⟨xk⟩ ∈
∞∏
k=1

Xk | for each k ≥ 2, fk(xk) = xk−1}.

A basic open set in an inverse limit is a set obtained by restricting a single
coordinate to an open set in a single factor. (It is not difficult to verify
that the collection of such open sets is a base, not merely a subbase.)

Since the theorems herein sometimes involve products of inverse lim-
its, it is convenient to use notation that is not quite standard. When
{Xk; fk}k∈N is an inverse sequence of continua, the multi-step bonding
maps will be denoted f [m,n] : Xm → Xn, where fk = f [k, k− 1] for each
k ≥ 2.

When there are finitely many inverse limits under consideration, the
i−th inverse limit will be denoted using superscripts, {Xi

k; f
i
k}k∈N, with

the multi-step bonding maps being f i[m,n] : Xi
m → Xi

n.
A continuous map f : [0, 1]→ [0, 1] is a folding map if and only if there

is a subdivision (in the sense of Riemann integration) ⟨xj⟩nj=0 of [0, 1] such
that for every j, 0 < j ≤ n, f |[xj−1, xj ] is a homeomorphism of [xj−1, xj ]
onto [0, 1]. A continuum which is an inverse limit of a sequence of arcs
[0, 1] and folding maps is called a continuum of Knaster-type, or simply a
Knaster continuum.

Any nondegenerate continuum which is homeomorphic to an inverse
limit of a sequence of arcs [0, 1] and continuous maps is called chainable
or arc-like (an older equivalent term is snake-like.) A pseudo-arc is a
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continuum which is both arc-like and hereditarily indecomposable (see
[1], [4], [5], [9], [10], [11]).

Suppose that for each i, 1 ≤ i ≤ n, f i : Xi → Y i is a continuous map.

Then the product mapping
n∏

i=1

f i :

n∏
i=1

Xi →
n∏

i=1

Y i is defined by

( n∏
i=1

f i
)(
⟨xi⟩ni=1

)
= ⟨f i(xi)⟩ni=1,

where we are indexing with superscripts instead of subscripts in keeping
with our notational convention introduced above.

The unit circle of complex numbers is denoted by S; S is a topological
group under complex multiplication. A map which sends each z ∈ S
to zk for some integer k ̸∈ {−1, 0, 1} is a power mapping. An inverse
limit of a sequence of copies of S and power mappings is a solenoid. A
solenoid is both an indecomposable continuum and a topological group
under term-by-term complex multiplication.

A face of the n-dimensional cube
n∏

i=1

[0, 1] is the subset obtained by

setting a single coordinate to either 0 of 1; thus
n∏

i=1

[0, 1] has 2n faces.

3. Introductory and Background Information

The following results are mostly either well known or easy to prove.
They are included here for ease of reference.

Lemma 3.1. An indecomposable continuum with more than one point is
not locally connected at any point.

Lemma 3.2. Suppose that X and Y are continua and p ∈ Y . Then
X × {p} has arbitrarily small connected open neighborhoods in X × Y if
and only if Y is locally connected at p.

Lemma 3.3. Suppose f =
n∏

i=1

f i is a product mapping of
n∏

i=1

[0, 1] to it-

self, where each f i is a folding map. Suppose A is a connected subset of
n∏

i=1

[0, 1] and suppose A intersects every face of this cube. Then f−1(A) is

connected and also intersects every face of
n∏

i=1

[0, 1].
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To make the notation less cumbersome, the letter I, with or without
subscripts or superscripts, will henceforth denote the real interval [0, 1].

The next lemma is a special case of the well-known, but somewhat
vague, statement that inverse limits commute with products.

Lemma 3.4. If Ki is a Knaster continuum for 1 ≤ i ≤ n and Ki

is the inverse limit of {Iik; f i
k}k∈N, then

n∏
i=1

Ki is the inverse limit of

{
n∏

i=1

Iik;
n∏

i=1

f i
k}k∈N.

This result has the effect of making it possible to represent a point
of a product of n inverse limit continua as either an n-tuple of infinite
sequences or as an infinite sequence of n-tuples, interchangeably. It is
important for our purposes in the case when each f i

k is a folding map.
The next lemma is more technical, since without compactness an in-

verse limit of connected sets need not be connected.

Lemma 3.5. Suppose each Ki is a Knaster continuum, 1 ≤ i ≤ n, and

suppose O is a connected open subset of
n∏

i=1

I and that O intersects every

face of the cube. Let Ki = lim←−{I
i
k; f

i
k} where the f i

k are folding maps, and

suppose that m is a positive integer. Let U = {⟨xj⟩∞j=1 ∈
n∏

i=1

Ki|xm ∈ O}.

Then U is a connected open subset of
n∏

i=1

Ki. (Here, each xj is a point of

the n-cube, and hence is an n-tuple of points of I, making use of Lemma
3.4.)

Proof. The set U is, by definition, a basic open set in the inverse limit of
n-cubes, so only the connectedness of U needs to be established. Suppose
⟨pk⟩∞k=1 and ⟨qk⟩∞k=1 are points of U . Then pm, qm ∈ O. Since O is a
connected open subset of a cube, it is arcwise connected, so there is a
continuum Wm such that pm, qm ∈ Wm ⊆ O and Wm intersects every

face of
n∏

i=1

Ii. For k < m, define Wk = f [m, k](Wm), and for k > m,

Wk = (f [k,m])−1(Wm). Then each Wk is a continuum by continuity
and Lemma 3.3, and W , the inverse limit of the Wk’s, is a subcontinuum

of
n∏

i=1

Ki. The points ⟨pk⟩∞k=1 and ⟨qk⟩∞k=1 belong to W and W ⊆ U .
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The two points of U chosen were arbitrary, so U is a connected subset of
n∏

i=1

Ki. �

Lemma 3.6. Let Xi be an indecomposable continuum for each i, 1 ≤

i ≤ n, and let W be a subcontinuum of
n∏

i=1

Xi. If for some j, the j−th

projection πj(W ) is a proper subcontinuum of Xj, then W cannot have

arbitrarily small connected open neighborhoods in
n∏

i=1

Xi.

Proof. Assuming that W and
n∏

i=1

Xi are as in the hypotheses, note that

every connected open subset of the indecomposable continuum Xj is
dense. There exists an open set O ⊆ Xj such that πj(W ) ⊆ O and
O is not dense in Xj . Then the component K of O containing πj(W ) has
empty interior in Xj . Thus, π−1

j (K) has empty interior in
∏n

i=1 X
i, since

πj is an open map. Therefore, there is no connected open neighborhood

U of W in
n∏

i=1

Xi contained in the open set π−1
j (O). �

Lemma 3.7. Let {Xk; fk}k∈N be an inverse sequence of continua and
continuous mappings. Let X denote the inverse limit and suppose M ⊆
U ⊆ X, with M closed in X and U open in X. Then there exists V open
in X such that M ⊆ V ⊆ U , and V is a basic open set.

Proof. Let {Xk; fk} be an inverse system with inverse limit X as given.
Let M ⊂ U ⊂ X and assume M is closed in X and U is open in X.
For each x = ⟨xk⟩∞k=1 ∈ M , let Vx be a basic open set given by Vx =
{⟨yi⟩∞i=1 | yi(x) ∈ Vi(x)} where Vi(x) is an open subset of Xi(x), satisfying
x ∈ Vx ⊂ U . The collection {Vx} is an open cover of M and so has a
finite subcover {Vxj}. Let k = max{i(xj)}nj=1, and let f [k, i(xj)]

−1(Vi(xj))
be called simply Vj(k). Let Uj = {⟨xi⟩∞i=1 ∈ X |xk ∈ Vj(k)}, and let
V =

∪n
j=1 Uj . Then V = {⟨xi⟩∞i=1 |xj ∈

∪n
k=1 Vj(k)} which is a basic

open set, as required. �

Suppose X and Y are continua and f : X → Y is a continuous map.
Then f is called universal provided that, for every map g : X → Y , there
exists x ∈ X such that g(x) = f(x).

Lemma 3.8 ([7]). Every map of a continuum onto a chainable continuum
is universal.
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4. Principal Results

Theorem 4.1. Let
n∏

i=1

Ki be a product of Knaster continua, and suppose

W is a subcontinuum of
n∏

i=1

Ki. Then W has arbitrarily small connected

open neighborhoods in
n∏

i=1

Ki if and only if for every i, the projection of

W to Ki is all of Ki.

Proof. Let Ki and W be as in the hypotheses. If for some j, πj(W ) ̸= Kj ,
it follows from Lemma 3.6 that W cannot have arbitrary small connected

open neighborhoods in
n∏

i=1

Ki.

To prove the converse, let X =
n∏

i=1

Ki, and suppose πj(W ) = Kj for

each j. Let U be an open subset of X with W ⊆ U . By Lemma 3.7, there
is a basic open set Ṽ , such that W⊆ Ṽ ⊆ U . Let Ṽ be determined by
the m−th term in the inverse limit. Then let Vm denote the component
of U containing Wm, the m−th projection of W . By local connectedness
of this cube, Vm is open. Let V be the set of points of

∏n
i=1 K

i with
the m−th coordinate (in the inverse limit, using Lemma 3.4) belonging

to Vm. By Lemma 3.5, V is a connected open subset of
n∏

i=1

Ki. Since

W ⊆ V ⊆ Ṽ ⊆ U , the proof is complete. �

Theorem 4.2. If G is both a topological group and a continuum, the
diagonal ∆ of G × G has arbitrarily small connected open neighborhoods
in G×G if and only if G is locally connected.

Proof. Let G be a topological group with identity element e. The function
f : G×G→ G×G defined by f(x, y) = (y−1x, y−1) is a homeomorphism
which interchanges the {e} ×G and ∆. Therefore, ∆ has the same kinds
of neighborhoods as {e}×G. By Lemma 3.2, {e}×G has arbitrarily small
connected open neighborhoods if and only if G is locally connected at e.
Of course, G is locally connected at e if and only if it is locally connected
at every point. �

Corollary 4.3. The diagonal in the product of a solenoid with itself does
not have arbitrarily small connected open neighborhoods.
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Theorem 4.4. A subcontinuum W of a finite product of pseudo-arcs
has arbitrarily small connected open neighborhoods if and only if each
projection of W is onto the pseudo-arc factor.

Proof. This proof is adapted from an approach suggested to the authors
by Prajs [12]. Without his idea, we had only been able to prove the result
for the product of two pseudo-arcs. We appreciate his help.

Let P denote a pseudo-arc and let W be a subcontinuum of
n∏

i=1

P

satisfying πj(W ) = P for each j, 1 ≤ j ≤ n. Let U be an arbitrary open

subset of
n∏

i=1

P with W ⊆ U . Let ρ be the max metric on
n∏

i=1

P , that is

ρ(⟨xi⟩ni=1, ⟨yi⟩ni=1) = max1≤i≤n d(xi, yi), where d is a metric on P . Let

ϵ > 0 be such that the ϵ-neighborhood of W in
n∏

i=1

P is a subset of U ,

and such that any homeomorphism, within ϵ of the identity, of
n∏

i=1

P to

itself is a product homeomorphism h(⟨xi⟩ni=1) = ⟨hi(xi)⟩ni=1. Using [2,
Theorem 3], it is easy to see that, for ϵ less than half the diameter of P ,
any self homeomorphism of

∏n
i=1 P within ϵ of the identity is a product

homeomorphism. Now, by choice of ρ, h is within ϵ of the identity if and
only if each hi is. Let O = H(W ), where H is the ϵ-neighborhood of the

identity in the full homeomorphism group of
n∏

i=1

P . Then by the Effros

theorem, O is open in
n∏

i=1

P . It remains to be shown that O is connected.

Let ⟨yi⟩ni=1 ∈ O. Then for some ⟨xi⟩ni=1 ∈ W and some homeomorphism
h ∈ H, h(⟨xi⟩ni=1) = ⟨yi⟩ni=1. Since h is a product homeomorphism, there

exist homeomorphisms hi : P → P such that h =

n∏
i=1

hi and, in particular,

hi(xi) = yi for each i. Furthermore, hi is at a distance less than ϵ from
the identity on P .

For 0 ≤ j ≤ n, let p(j) be the point ⟨pi(j)⟩ni=1 given by pi(j) = yi for
i ≤ j and pi(j) = xi for i > j. Then p(0) = ⟨xi⟩ni=1 and p(n) = ⟨yi⟩ni=1.
Let Hj : Pn → Pn be the homeomorphism which is hj in the j−th
factor of Pn and the identity in every other factor. Then h is equal to the
composition of the Hj ’s, 1 ≤ j ≤ n (in any order) and Hj(p(j−1)) = p(j)
for each j, 1 ≤ j ≤ n.
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Define W0 = W and, for each j, define Wj = Hj(Wj−1). In particular,

Wn = h(W ) while W0 = W . Let M =
n∪

j=0

Wj . Then W ⊆ M ⊆ O and

⟨yi⟩ni=1 ∈M .
Now since P is chainable, the map πj |Wj−1 : Wj−1 → P is universal,

so there exists p = ⟨pi⟩ni=1 ∈ Wj−1 such that πj(p) = πj ◦ Hj(p). Since
πj ◦Hj(p) = hj(pj), it follows that pj = hj(pj). Therefore, p ∈ Wj−1 ∩
Hj(Wj−1), so that Wj−1 ∩ Wj = Wj ∩ Hj(Wj−1) ̸= ∅. Thus, M is a
continuum, and since ⟨yi⟩ni=1 was an arbitrary point of O, the set O is
connected also. �

5. Final Observations

The referee has pointed out to us that Theorem 4.1 and Theorem
4.4 are true for arbitrary products, not just finite ones. To see this,
notice that given any compact set W ⊆

∏
α∈A Xα and any open U in this

product with W ⊆ U , there is a finite F ⊆ A and an open V ⊆
∏

α∈F Xα

satisfying the condition that WF ⊆ V (where WF is the projection of
W into

∏
α∈F Xα) and W ⊆ V ×

∏
α∈A\F Xα ⊆ U . By the respective

theorems, where W is a continuum projecting onto each factor, the same
is true for WF , and V can then be chosen to be connected. Since V is
connected, so is V ×

∏
α∈A\F Xα.

6. Questions

In the following products, does the result hold that a continuum W has
arbitrarily small connected open neighborhoods if its projection to each
factor is onto:

(1) the product of a Knaster continuum and a pseudo-arc,
(2) the product of a Knaster continuum and a solenoid, either its

associated one or a different one,
(3) any product of chainable indecomposable continua, or more gen-

erally, any product of chainable continua,
(4) the product of two non-homeomorphic solenoid groups.
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