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HOMEOMORPHISMS BETWEEN INVERSE LIMITS
WITH N-SHAPED SET-VALUED FUNCTIONS

SCOTT VARAGONA

Abstract. Suppose the graph of g : [0, 1] → [0, 1] consists of
three straight line segments, one joining (0, 0) to (1/3, 1), one join-
ing (1/3, 1) to (2/3, 0), and one joining (2/3, 0) to (1, 1), so that
lim←−g is an indecomposable continuum. Using itineraries, we prove
that various inverse limits with “N -shaped” upper semi-continuous
bonding functions are homeomorphic to lim←−g. Thus, we answer a
question recently raised by W. T. Ingram in the affirmative.

1. Introduction

Let us consider the inverse limit with the single upper semi-continuous
(u.s.c.) bonding function f : [0, 1] → C([0, 1]) whose graph consists of
three straight line segments, one joining (0, 0) to (1/2, 1), one joining
(1/2, 1) to (1/2, 0), and one joining (1/2, 0) to (1, 1). This inverse limit,
lim←− f, has been studied closely and has turned out to be a fruitful example
for the theory of u.s.c. inverse limits. lim←− f was first examined by W. T.
Ingram in [2], where he proved it had the full projection property and that
it was an indecomposable continuum. This same example later turned out
to be useful in other ways, e.g., as an example of a u.s.c. inverse limit
that is treelike [5], and then, chainable [4].

In [4, Remark 5.2], Ingram asks whether lim←− f is, in fact, homeomorphic
to the two-endpoint Knaster continuum lim←−g, where g : [0, 1] → [0, 1] is
the mapping whose graph consists of three straight line segments, one
joining (0, 0) to (1/3, 1), one joining (1/3, 1) to (2/3, 0), and one joining
(2/3, 0) to (1, 1). Our main result in this paper, Theorem 3.1, answers this
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234 S. VARAGONA

question in the affirmative. In fact, we prove something more general: If
0 < p < 1 and the graph of f : [0, 1]→ C([0, 1]) consists of three straight
line segments, one joining (0, 0) to (p, 1), one joining (p, 1) to (p, 0), and
one joining (p, 0) to (1, 1), then lim←− f is homeomorphic to lim←−g. (If we let
p = 1/2, then f is Ingram’s original function as described above.) We then
prove a similar theorem for inverse limits with another type of, roughly
speaking, “N -shaped” bonding function. Finally, we end this paper by
studying a few examples that do not fit the same mold. We hope that the
techniques we illustrate here may be useful to others who, in the course
of their research, need to prove certain u.s.c. inverse limits are (or are
not) homeomorphic.

2. Definitions and Preliminary Remarks

Much of the background material we will need is the same as was given
by the author in [10]. Suppose X and Y are compact Hausdorff spaces,
and define 2Y to be the set of all non-empty compact subsets of Y . A
function f : X → 2Y is called upper semi-continuous (u.s.c.) if, for any
x ∈ X and open V in Y containing f(x), there exists an open U in X
containing x so that f(u) ⊆ V for all u ∈ U . A non-empty subset C of
a Hausdorff space is a continuum if C is compact and connected. Thus,
if f : X → 2Y is u.s.c. and f(x) is connected for each x ∈ X, then
f is a u.s.c. continuum-valued function; in this case, for emphasis, we
will usually write f : X → C(Y ) instead, where C(Y ) is the set of all
subcontinua of Y . If f : X → 2Y is u.s.c. and f(x) = {y} for some
x ∈ X and y ∈ Y , then, although f is a set-valued function, we use
the convention of writing simply f(x) = y. Therefore, in the case where
f : X → 2Y is u.s.c., but f(x) is degenerate for all x ∈ X, we may regard
f as the corresponding continuous function f : X → Y . A continuous
function will also be referred to as a mapping. If f : X → 2Y is u.s.c. and
A is a subset of X, then f |A is the restriction of f to A.

Again, let X and Y be compact Hausdorff spaces and let f : X → 2Y

be a u.s.c. function. If y ∈ Y , then the preimage of y via f is f−1(y) =
{x ∈ X| y ∈ f(x)}. More generally, if A ⊆ Y , then the preimage of A via
f is f−1(A) = {x ∈ X| f(x)∩A 6= ∅}. (If, on the other hand, f is simply
a mapping, then the standard definition of preimage applies.) We say f
is surjective if, for each y ∈ Y , f−1(y) is non-empty. Assuming that f :
X → 2Y is a surjective u.s.c. function, the inverse of f , i.e., the set-valued
function f−1 : Y → 2X , is given by f−1(y) = {x ∈ X| y ∈ f(x)}. Given
compact Hausdorff spaces X and Y and a u.s.c. function f : X → 2Y ,
the graph of f , abbreviated G(f), is the set {(x, y) ∈ X × Y | y ∈ f(x)}.

Now suppose that, for each positive integer i, Xi is a compact Hausdorff
space and fi : Xi+1 → 2Xi is a u.s.c. function. We define lim←−{Xi, fi}∞i=1
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to be the set {(x1, x2, x3, . . .) ∈
∏∞

i=1Xi | xi ∈ fi(xi+1) for all positive
integers i}. (For convenience, we will denote sequences by boldface letters:
For example, we denote the sequence (x1, x2, x3, . . .) by x and denote
the sequence of functions (f1, f2, f3, . . .) by f. Thus, we may abbreviate
lim←−{Xi, fi}∞i=1 by lim←− f.) Then we say lim←− f is an inverse limit space with
u.s.c. bonding functions, and a basis for the topology on lim←− f is {O ∩
lim←− f | O is basic open in

∏∞
i=1Xi}. For brevity’s sake, we will sometimes

call an inverse limit space with u.s.c. bonding functions simply a u.s.c.
inverse limit space. Finally, in the special case where X is a compact
Hausdorff space, f : X → 2X is u.s.c., and f = (f, f, f, . . .), we say lim←− f is
the inverse limit with the single bonding function f . (If, in the description
of a particular inverse limit, only the single bonding function f : X → 2X

is given, then it will be clear from context that lim←− f is the inverse limit
with the single bonding function f .)

Let us note in advance that this paper will only deal with inverse limits
whose factor spaces are all the unit interval [0, 1], i.e., Xi = [0, 1] for each
positive integer i. However, as we will see, it is still helpful to use the
notation X1, X2, X3, . . . in order to distinguish between different factor
spaces of an inverse limit.

If O = (
∏∞

i=1Oi) ∩ lim←− f is a basic open set in lim←− f with On a proper
subset of Xn and Ok = Xk for all k > n, then O is a basic open set of
order n. We may also say that O has order n. Note that if x ∈ lim←− f and
V is any open subset of lim←− f containing x, then there exists some positive
integer n and some basic open set O of order n so that x ∈ O ⊆ V .

Suppose, for each positive integer i, Xi is a compact Hausdorff space
and fi : Xi+1 → 2Xi is u.s.c. Suppose, for some positive integer n, Un is
a subset of Xn. Then

←−
Un = {x ∈ lim←− f | xn ∈ Un}. If Un is an open subset

of Xn, then, since
←−
Un = (X1×X2× . . .×Xn−1×Un×Xn+1× . . .)∩ lim←− f,

←−
Un is open in lim←− f. Thus, if Un is an open subset of Xn, then we will call
←−
Un an open set rooted in the nth factor space Xn.

The following lemma will be useful in the proof of our major theorem
and will also help familiarize the reader with the “rooted” open sets of
lim←− f.

Lemma 2.1. Suppose, for each positive integer i, Xi is a compact Haus-
dorff space and fi : Xi+1 → Xi is a mapping. Suppose that, for some
positive integer n, Un+1 ⊆ Xn+1 and fn(Un+1) ⊆ Un ⊆ Xn. Then
←−−−
Un+1 ⊆

←−
Un.
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Proof. Let x ∈
←−−−
Un+1. Then xn+1 ∈ Un+1, so that fn(xn+1) ∈ fn(Un+1).

Since x ∈ lim←− f, fn(xn+1) = xn. By assumption, fn(Un+1) ⊆ Un. Thus,
xn ∈ Un, from which it follows that x ∈

←−
Un. �

For further background information on inverse limits, the reader should
see [7] or [3].

3. Results and Examples

As we stated in the introduction, our main goal is to prove a gen-
eral theorem which will imply that Ingram’s example, lim←− f, is homeo-
morphic to the two-endpoint Knaster continuum lim←−g. We will then
move on to study inverse limits whose graphs have a similar “italicized
N ” shape. Again, in the proofs of the following theorems, we will let
Xi = [0, 1] for each positive integer i, so that the factor spaces of lim←− f
(and of lim←−g) may be denoted by X1, X2, X3, . . .. Also, we will use the
notion of itineraries of an inverse limit to define the homeomorphisms we
need; however, we define our itinerary spaces from scratch, so no prior ex-
perience with itineraries should be necessary for the reader to understand
the proof. The itinerary technique we use here is reminiscent of the one
the author used in [9], yet involves a much different sort of strategy. For
a more detailed treatment of itineraries, see, e.g., Stewart Baldwin [1].

Theorem 3.1. Suppose 0 < p < 1. Let f : [0, 1] → C([0, 1]) be the
u.s.c. function whose graph consists of three straight line segments, one
joining (0, 0) to (p, 1), one joining (p, 1) to (p, 0), and one joining (p, 0) to
(1, 1). Let g : [0, 1] → [0, 1] be the mapping whose graph consists of three
straight line segments, one joining (0, 0) to (1/3, 1), one joining (1/3, 1)
to (2/3, 0), and one joining (2/3, 0) to (1, 1). (See Figure 1.) Then lim←− f
and lim←− g are homeomorphic.

Proof. We will denote f |[0,p) by fa, f |{p} by fb, and f |(p,1] by fc. Thus,
fa, fb, and fc are mutually exclusive and f = fa ∪ fb ∪ fc. Note that fa
is a homeomorphism from [0, p) onto [0, 1), fb is the u.s.c. function from
{p} into C([0, 1]) given by fb(p) = [0, 1], and fc is a homeomorphism from
(p, 1] onto (0, 1].

Next, let us denote g|[0,1/3) by ga, g|[1/3,2/3] by gb, and g|(2/3,1] by gc.
Thus, ga, gb, and gc are mutually exclusive and g = ga∪gb∪gc. Note that
ga is a homeomorphism from [0, 1/3) onto [0, 1), gb is a homeomorphism
from [1/3, 2/3] onto [0, 1], and gc is a homeomorphism from (2/3, 1] onto
(0, 1].

We will now define a map from one inverse limit to the other us-
ing itineraries. First, we create an itinerary space for lim←− f. Let H =
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Figure 1. Left: The graph of the bonding function f in
Theorem 3.1 with p = 1/2. Right: The graph of g.

{fa, fb, fc} and let If = [0, 1]×
∏∞

i=2H. Define the function φ : lim←− f→ If
by φ(x) = (x1, α2, α3, α4, . . .), where for each i ≥ 2, αi is the element of
H such that (xi, xi−1) ∈ G(αi). Then φ(lim←− f), which we denote by Ĩf , is
the itinerary space for lim←− f.

To create an itinerary space for lim←−g, we let K = {ga, gb, gc} and let
Ig = [0, 1]×

∏∞
i=2K. Define ψ : lim←−g→ Ig by ψ(x) = (x1, β2, β3, β4, . . .),

where, for each i ≥ 2, βi is the element of K such that (xi, xi−1) ∈ G(βi).
Then ψ(lim←−g), which we denote by Ĩg, is the itinerary space for lim←−g.

Now, direct inspection shows that Ĩf consists exactly of all sequences
of the following forms:

(1) (x1, α2, α3, . . .), where x1 ∈ (0, 1) and for each i ≥ 2, αi ∈ H,
(2) (0, fa, fa, fa, . . .),
(3) (0, fa, fa, . . . , fa, fb, αk, αk+1, . . .); i.e., for some k ≥ 4, coordinates

2 through k− 2 are fa, coordinate k− 1 is fb, and αi ∈ H for each i ≥ k,
(4) (0, fb, α3, α4, . . .), where αi ∈ H for each i ≥ 3,
(5) (1, fc, fc, fc, . . .),
(6) (1, fc, fc, . . . , fc, fb, αk, αk+1, . . .); i.e., for some k ≥ 4, coordinates

2 through k− 2 are fc, coordinate k− 1 is fb, and αi ∈ H for each i ≥ k,
(7) (1, fb, α3, α4, . . .), where αi ∈ H for each i ≥ 3.

Similarly, by direct inspection, we see that Ĩg consists exactly of all
sequences of the following forms:
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(1) (x1, β2, β3, . . .), where x1 ∈ (0, 1) and for each i ≥ 2, βi ∈ K,
(2) (0, ga, ga, ga, . . .),
(3) (0, ga, ga, . . . , ga, gb, βk, βk+1, . . .); i.e., for some k ≥ 4, coordinates

2 through k − 2 are ga, coordinate k − 1 is gb, and βi ∈ K for each i ≥ k,
(4) (0, gb, β3, β4, . . .), where βi ∈ K for each i ≥ 3,
(5) (1, gc, gc, gc, . . .),
(6) (1, gc, gc, . . . , gc, gb, βk, βk+1, . . .); i.e., for some k ≥ 4, coordinates

2 through k − 2 are gc, coordinate k − 1 is gb, and βi ∈ K for each i ≥ k,
(7) (1, gb, β3, β4, . . .), where βi ∈ K for each i ≥ 3.

We note that whenever x,y ∈ lim←− f with x 6= y, φ(x) 6= φ(y). So φ
is one-to-one, and ψ is one-to-one by the same reasoning. Of course, φ
maps onto its image Ĩf , just as ψ maps onto its image Ĩg. There is also a
natural one-to-one onto function from Ĩg to Ĩf : let ρ : Ĩg → Ĩf be given
by ρ((x1, β2, β3, . . .)) = (x1, α2, α3, . . .), where, for each i ≥ 2, βi = ga iff
αi = fa, βi = gb iff αi = fb, and βi = gc iff αi = fc.

Now we define h : lim←−g → lim←− f by h = φ−1|
Ĩf
◦ ρ ◦ ψ. We intend to

show h is a homeomorphism.
Since h is a composition of one-to-one onto functions, h is one-to-one

and onto. It remains to show that h and h−1 are continuous. Certainly,
lim←−g is a compact space since it is an inverse limit on [0, 1] with a sin-
gle continuous bonding function; also, lim←− f is a Hausdorff space. Thus,
it suffices to show that h is continuous (for then h−1 is continuous au-
tomatically; see [10, Theorem 2.21]). So, let us assume x ∈ lim←−g. We
will show that, for each positive integer n, if O = (

∏∞
i=1Oi) ∩ lim←− f is a

basic open subset of lim←− f of order n containing h(x), there is an open
set
←−
Un ⊆ lim←−g (rooted in Xn, the nth factor space of lim←−g) containing x

with h(
←−
Un) ⊆ O. We will prove this claim by induction.

Suppose O = (O1 ×X2 ×X3 × . . .) ∩ lim←− f is a basic open set in lim←− f
that has order 1 and contains h(x). Note that O consists of all elements
w ∈ lim←− f with w1 ∈ O1. By the way h is defined, the first coordinate
of h(x) is the same as the first coordinate of x, namely x1. So, since
h(x) ∈ O, x1 ∈ O1. Thus, the set

←−
O1 = {y ∈ lim←−g | y1 ∈ O1} is an open

set in lim←−g rooted in X1 that contains x, and (by the way h was defined)
h(
←−
O1) ⊆ O.
Now assume that for any basic open set O = (

∏∞
i=1Oi)∩ lim←− f of order

n that contains h(x), there is an open set
←−
Un ⊆ lim←−g rooted in Xn and

containing x such that h(
←−
Un) ⊆ O. We need to show the claim is true for

n+1. (For the rest of the proof, to avoid confusion, whenever we mention
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a rooted open set
←−
Un, it is understood that

←−
Un is a subset of lim←−g; the

subscript n indicates that
←−
Un is rooted in Xn. Also, for simplicity, let

h(x) = z = (z1, z2, z3, . . .).)
We begin by assuming O = (

∏∞
i=1Oi) ∩ lim←− f is basic open of order

n + 1 and z ∈ O. We need to show that there exists an open set
←−−−
Un+1

rooted in Xn+1 and containing x such that h(
←−−−
Un+1) ⊆ O.

Let us break this task into cases, based on characteristics of z.
Case 1: (zn+1, zn) ∈ G(fa).
Since z ∈ O, we know zn ∈ On and zn+1 ∈ On+1. Since (zn+1, zn) ∈

G(fa), it follows that zn+1 ∈ [0, p). So, let Vn+1 = On+1∩ [0, p); note that
Vn+1 is an open subset of Xn+1 containing zn+1. Since zn = fa(zn+1), we
know zn ∈ fa(Vn+1). Since fa is a homeomorphism from [0, p) onto [0, 1),
fa(Vn+1) is an open subset of [0, 1) ⊆ Xn. So, let Vn = On ∩ fa(Vn+1), so
that Vn is an open proper subset of Xn containing zn.

Thus, Õ = (O1×O2×. . .×On−1×Vn×Xn+1×. . .)∩lim←− f is a basic open
set in lim←− f of order n containing z. Therefore, the inductive hypothesis
applies, and there exists some open set

←−
Un ⊆ lim←−g rooted in Xn that

contains x with h(
←−
Un) ⊆ Õ. So xn ∈ Un. Since (zn+1, zn) ∈ G(fa),

by the way h is defined, we also have (xn+1, xn) ∈ G(ga), which implies
that xn ∈ [0, 1). So, let Bn = Un ∩ [0, 1), so that Bn is open in Xn and
contains xn. Since (xn+1, xn) ∈ G(ga), we know xn+1 = g−1a (xn); thus,
xn+1 ∈ g−1a (Bn). Let Un+1 = g−1a (Bn), and note that Un+1 is open in
Xn+1. Moreover, note that x ∈

←−−−
Un+1, where

←−−−
Un+1 is rooted in Xn+1.

Since g(Un+1) = Bn ⊆ Un, by Lemma 2.1, we have
←−−−
Un+1 ⊆

←−
Un, so that

h(
←−−−
Un+1) ⊆ h(

←−
Un) ⊆ Õ.

Now we claim h(
←−−−
Un+1) ⊆ O. Let y ∈

←−−−
Un+1 (and let h(y) = w). Then,

since h(
←−−−
Un+1) ⊆ Õ, we know w ∈ Õ, and thus, wn ∈ Vn. Now since

y ∈
←−−−
Un+1, we know (yn+1, yn) ∈ G(ga). Thus, (wn+1, wn) ∈ G(fa). That

means wn+1 = f−1a (wn) ∈ f−1a (Vn). But fa is a homeomorphism, so since
Vn ⊆ fa(Vn+1), we know f−1a (Vn) ⊆ Vn+1. Thus, wn+1 ∈ Vn+1 ⊆ On+1.
Since w ∈ Õ, we also know w1 ∈ O1, w2 ∈ O2, . . . , wn−1 ∈ On−1, and
wn ∈ Vn ⊆ On. Thus, w ∈ O.

Case 2: (zn+1, zn) ∈ G(fc).
This case is very similar to Case 1; we leave the details to the reader.

Case 3: (zn+1, zn) ∈ G(fb) and 0 < zn < 1.
Note that, in this case, zn+1 = p. Let Vn = On ∩ (0, 1), so that

Vn is an open subset of (0, 1) ⊆ Xn containing zn. Since Vn is a proper
subset of Xn that contains zn, the set Õ = (O1×O2× . . .×On−1× Vn×
Xn+1 × . . .) ∩ lim←− f is basic open of order n and contains z. Therefore,
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the inductive hypothesis applies: There exists some open set
←−
Un ⊆ lim←−g

rooted in Xn and containing x with h(
←−
Un) ⊆ Õ. That means xn ∈ Un.

Since zn ∈ (0, 1), it follows from the definition of h that xn ∈ (0, 1). Let
Bn = Un ∩ (0, 1), so that Bn is an open subset of Xn containing xn.
Because (zn+1, zn) ∈ G(fb), we know (xn+1, xn) ∈ G(gb); thus, g−1b (Bn)
is an open subset of (1/3, 2/3) ⊆ Xn+1 containing xn+1. Let Un+1 =

g−1b (Bn), and note that x ∈
←−−−
Un+1, where

←−−−
Un+1 is rooted in Xn+1. Since

g(Un+1) = Bn ⊆ Un,
←−−−
Un+1 ⊆

←−
Un, so that h(

←−−−
Un+1) ⊆ h(

←−
Un) ⊆ Õ.

Now we claim h(
←−−−
Un+1) ⊆ O. Let y ∈

←−−−
Un+1 (and let h(y) = w).

Since y ∈
←−−−
Un+1, we know (yn+1, yn) ∈ G(gb). Thus, by the way h is

defined, (wn+1, wn) ∈ G(fb). That means wn+1 = p. But p = zn+1 and
zn+1 ∈ On+1. Thus, wn+1 ∈ On+1. Since w ∈ Õ, we also know w1 ∈ O1,
w2 ∈ O2, . . ., wn−1 ∈ On−1, and wn ∈ Vn ⊆ On. Thus, w ∈ O.

Case 4: zn = 0 and zn+1 = p.
We begin by noting that, in this case, xn = 0 and xn+1 = 2/3.

Since p = zn+1 ∈ On+1, there exists an interval of form [p, r) that is
a subset of On+1 ∩ [p, 1). Let Vn+1 = (p, r). Note that, by the way
f is defined, fc(Vn+1) = (0, s) for some s with 0 < s < 1. Let Vn =
On ∩ (fc(Vn+1) ∪ {0}), so that Vn is an open subset of Xn containing
zn = 0; since 1 6∈ fc(Vn+1), we know Vn is a proper subset of Xn.

Thus, Õ = (O1×O2×. . .×On−1×Vn×Xn+1×. . .)∩lim←− f is a basic open
set of order n containing z. The inductive hypothesis applies: We conclude
that there exists some open set

←−
Un ⊆ lim←−g rooted in Xn that contains

x with h(
←−
Un) ⊆ Õ. Let Bn be an open interval subset of Un ∩ [0, 1/2)

containing xn = 0. Then g−1b (Bn)∪ g−1c (Bn) is an open interval subset of
Xn+1 containing xn+1 = 2/3. Let Un+1 = g−1b (Bn) ∪ g−1c (Bn); note that
g(Un+1) = Bn ⊆ Un, so that

←−−−
Un+1 ⊆

←−
Un and h(

←−−−
Un+1) ⊆ h(

←−
Un) ⊆ Õ.

It remains to show that h(
←−−−
Un+1) ⊆ O. Let y ∈

←−−−
Un+1 and let w = h(y).

Since yn+1 ∈ Un+1, either (yn+1, yn) ∈ G(gb) or (yn+1, yn) ∈ G(gc).
Suppose (yn+1, yn) ∈ G(gb); then (wn+1, wn) ∈ G(fb). Thus, we know

wn+1 = p. But p = zn+1 ∈ On+1, so wn+1 ∈ On+1. Because w ∈ Õ, using
the same reasoning as in the previous cases, we may conclude w ∈ O.

Suppose (yn+1, yn) ∈ G(gc). Then (wn+1, wn) ∈ G(fc). Moreover,
w ∈ Õ, so wn ∈ Vn. Thus, wn+1 = f−1c (wn) ∈ f−1c (Vn). Since 0 is
not in the range of fc, we know f−1c (Vn) = f−1c (Vn \ {0}). Because
Vn ⊆ fc(Vn+1) ∪ {0}, we may deduce that Vn \ {0} ⊆ fc(Vn+1). Thus,
since fc is a homeomorphism, we have that f−1c (Vn \ {0}) ⊆ Vn+1. Since
Vn+1 ⊆ On+1, it follows that wn+1 ∈ On+1. Once again, since we know
w ∈ Õ already, we may now conclude that w ∈ O.
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Case 5: zn = 1 and zn+1 = p.
This case is very similar to Case 4.

All cases have been accounted for, so we have completed the induction
and shown that h is continuous. From this we conclude that h is in fact
a homeomorphism, and the proof is complete. �

Having seen Theorem 3.1, it is a natural next step to investigate inverse
limits with some different types of “N -shaped” u.s.c. bonding functions;
we define one such function in Theorem 3.2. It turns out that the same
sort of technique from the proof of Theorem 3.1 can be used to prove
this inverse limit is also homeomorphic to lim←−g. The inverse limit lim←− f in
Theorem 3.2 was the first example known to the author of an inverse limit
on [0, 1] with a single surjective, u.s.c., non-continuum-valued bonding
function that gives rise to an indecomposable continuum. (However, other
examples have been found independently by James P. Kelly and Jonathan
Meddaugh [8].)

Theorem 3.2. Suppose 0 < p < q < 1. Let f : [0, 1]→ 2[0,1] be the u.s.c.
function whose graph is the union of three straight line segments, the first
joining (0, 0) to (q, 1), the second joining (q, 1) to (p, 0), and the third
joining (p, 0) to (1, 1). (See Figure 2.) Let g be defined as in Theorem
3.1. Then lim←− f and lim←− g are homeomorphic.

Figure 2. The graph of the bonding function f in The-
orem 3.2 with p = 1/3 and q = 2/3.

Proof. Let fa : [0, q)→ [0, 1) be given by fa(t) = 1
q t, let fb : [p, q]→ [0, 1]

be given by fb(t) = 1
q−p (t − p), and let fc : (p, 1] → (0, 1] be given

by fc(t) = 1
1−p (t − p). Note that fa, fb, and fc are mutually exclusive

and f = fa ∪ fb ∪ fc; also note that fa is a homeomorphism from [0, q)
onto [0, 1), fb is a homeomorphism from [p, q] onto [0, 1], and fc is a
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homeomorphism from (p, 1] onto (0, 1]. We define ga, gb, and gc as in the
proof of Theorem 3.1.

As before, we will define a map from one inverse limit to the other
using itineraries. Let H = {fa, fb, fc} and let If = [0, 1]×

∏∞
i=2H. Define

φ : lim←− f → If by φ(x) = (x1, α2, α3, α4, . . .), where, for each i ≥ 2, αi

is the element of H such that (xi, xi−1) ∈ G(αi). Then φ(lim←− f), which
we denote by Ĩf , is the itinerary space for lim←− f. The itinerary space for
lim←−g, namely ψ(lim←−g) = Ĩg, was already defined in Theorem 3.1.

Now, direct inspection shows that Ĩf consists of exactly the same se-
quences that Ĩf consisted of in the proof of Theorem 3.1. Of course, Ĩg
is the same as in Theorem 3.1. We also define ρ : Ĩg → Ĩf as before,
and conclude that h = φ−1|

Ĩf
◦ ρ ◦ ψ is a one-to-one onto function from

lim←−g to lim←− f. It remains to show that h and h−1 are continuous; as we
argued in Theorem 3.1, it suffices to show that h is continuous. So, let
us assume x ∈ lim←−g. We will show that, for each positive integer n, if
O = (

∏∞
i=1Oi)∩ lim←− f is a basic open subset of lim←− f of order n containing

h(x), there is an open set
←−
Un ⊆ lim←−g (rooted in Xn, the nth factor space

of lim←−g) containing x with h(
←−
Un) ⊆ O. Again, we will prove this claim

by induction.
Suppose O = (O1 ×X2 ×X3 × . . .) ∩ lim←− f is a basic open set in lim←− f

that has order 1 and contains h(x). Note that O consists of all elements
w ∈ lim←− f with w1 ∈ O1. Thus, as in Theorem 3.1, the set

←−
O1 = {y ∈

lim←−g | y1 ∈ O1} is an open set in lim←−g rooted in X1 that contains x, and
(by the way h was defined) h(

←−
O1) ⊆ O.

Now assume that, for any basic open set O = (
∏∞

i=1Oi)∩ lim←− f of order
n that contains h(x), there is an open set

←−
Un ⊆ lim←−g rooted in Xn and

containing x such that h(
←−
Un) ⊆ O. We need to show the claim is true

for n+ 1. (Once more, as in the proof of the previous theorem, whenever
we mention a rooted open set

←−
Un, it is understood that

←−
Un is a subset

of lim←−g; the subscript n indicates that
←−
Un is rooted in Xn. Also, for

simplicity, let h(x) = z = (z1, z2, z3, . . .).)
We begin by assuming O = (

∏∞
i=1Oi) ∩ lim←− f is basic open of order

n + 1 and z ∈ O. We need to show that there exists an open set
←−−−
Un+1

rooted in Xn+1 and containing x such that h(
←−−−
Un+1) ⊆ O.
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Let us break this task into cases, based on characteristics of z.
Case 1: (zn+1, zn) ∈ G(fa).
Since z ∈ O, we know zn ∈ On and zn+1 ∈ On+1. Since (zn+1, zn) ∈

G(fa), it follows that zn+1 ∈ [0, q). So, let Vn+1 = On+1∩ [0, q); note that
Vn+1 is an open subset of Xn+1 containing zn+1. Since zn = fa(zn+1), we
know zn ∈ fa(Vn+1). Since fa is a homeomorphism from [0, q) onto [0, 1),
fa(Vn+1) is an open subset of [0, 1) ⊆ Xn. So, let Vn = On ∩ fa(Vn+1), so
that Vn is an open proper subset of Xn containing zn.

Thus, Õ = (O1 × O2 × . . . × On−1 × Vn × Xn+1 × . . .) ∩ lim←− f is a
basic open set in lim←− f of order n containing z. Therefore, the inductive
hypothesis applies, and there exists some open set

←−
Un ⊆ lim←−g rooted in

Xn that contains x with h(
←−
Un) ⊆ Õ. The rest of the proof in this case is

identical to the corresponding argument for Case 1 of Theorem 3.1.
Case 2: (zn+1, zn) ∈ G(fc).

This case is very similar to Case 1; we leave the details to the reader.
Case 3: (zn+1, zn) ∈ G(fb) and p < zn+1 < q.
Let Vn+1 = On+1 ∩ (p, q), so that Vn+1 is an open subset of (p, q) ⊆

Xn+1 containing zn+1. Thus, fb(Vn+1) is an open subset of Xn containing
zn. Let Vn = On∩fb(Vn+1), so that Vn is an open subset of Xn containing
zn. Since Vn+1 ⊆ (p, q), fb(Vn+1) ⊆ (0, 1), so Vn is a proper subset of Xn.
Thus, the inductive hypothesis applies to Õ = (O1 × O2 × . . . × On−1 ×
Vn × Xn+1 × . . .) ∩ lim←− f, and there exists some open set

←−
Un ⊆ lim←−g

rooted in Xn and containing x with h(
←−
Un) ⊆ Õ. Thus, xn ∈ Un. Again,

since zn+1 ∈ (p, q), zn ∈ (0, 1), so it follows from the definition of h that
xn ∈ (0, 1). Let Bn = Un ∩ (0, 1), so that Bn is an open subset of Xn

containing xn. Thus, g−1b (Bn) is an open subset of (1/3, 2/3) ⊆ Xn+1

containing xn+1. Let Un+1 = g−1b (Bn); the rest of the proof is analogous
to the argument that finishes Case 1.

Case 4: zn = 0 and zn+1 = p.
Since zn+1 ∈ On+1, there exists some r with p < r < q such that

the interval [p, r) is a subset of On+1 ∩ [p, q). Note that, by the way f
is defined, fb([p, r)) = [0, s) where s = r−p

q−p , and fc((p, r)) = (0, t) where
t = r−p

1−p (so t < s < 1). Let Vn be an open interval subset of On ∩ [0, t)

containing zn = 0; note that Vn is a proper subset of Xn.
Thus, Õ = (O1×O2×. . .×On−1×Vn×Xn+1×. . .)∩lim←− f is a basic open

set of order n containing z. The inductive hypothesis applies: We conclude
that there exists some open set

←−
Un ⊆ lim←−g rooted in Xn that contains

x with h(
←−
Un) ⊆ Õ. Let Bn be an open interval subset of Un ∩ [0, 1/2)

containing xn = 0. Then g−1b (Bn)∪ g−1c (Bn) is an open interval subset of
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Xn+1 containing xn+1 = 2/3. Let Un+1 = g−1b (Bn) ∪ g−1c (Bn); note that
g(Un+1) = Bn ⊆ Un, so that

←−−−
Un+1 ⊆

←−
Un and h(

←−−−
Un+1) ⊆ h(

←−
Un) ⊆ Õ.

It remains to show that h(
←−−−
Un+1) ⊆ O. Let y ∈

←−−−
Un+1 and let w = h(y).

Since yn+1 ∈ Un+1, either (yn+1, yn) ∈ G(gb) or (yn+1, yn) ∈ G(gc).
Suppose (yn+1, yn) ∈ G(gb); then (wn+1, wn) ∈ G(fb). w ∈ Õ, so

wn ∈ Vn. That means that wn+1 = f−1b (wn) ∈ f−1b (Vn). But since
Vn ⊆ [0, t) ⊆ [0, s) = fb([p, r)) and fb is a homeomorphism, f−1b (Vn) ⊆
[p, r) ⊆ On+1. So wn+1 ∈ On+1, and since w ∈ Õ, we conclude w ∈ O.

Suppose (yn+1, yn) ∈ G(gc). Then (wn+1, wn) ∈ G(fc). Moreover,
w ∈ Õ, so wn ∈ Vn. Since 0 is not in the range of fc, we know wn 6= 0.
Thus, wn ∈ Vn \ {0}, and therefore wn+1 = f−1c (wn) ∈ f−1c (Vn \ {0}).
Since Vn ⊆ [0, t), Vn \ {0} ⊆ (0, t). However, (0, t) = fc((p, r)). So,
because fc is a homeomorphism, we have f−1c (Vn \ {0}) ⊆ (p, r). Since
(p, r) ⊆ On+1, it follows that wn+1 ∈ On+1. Once again, since we know
w ∈ Õ already, we may conclude that w ∈ O.

Case 5: zn = 1 and zn+1 = q.
This case is very similar to Case 4.

All cases have been accounted for, so we have completed the induction
and shown that h is continuous. From this we conclude that h is, in fact,
a homeomorphism, and the proof is complete. �

The preceding two theorems motivate a definition that will make our
intuitive notion of an “N -shaped” function more precise. Let us say that
f : [0, 1]→ 2[0,1] is an N -graph if there exist p and q with 0 < p ≤ 1 and
0 ≤ q < 1 such that f is the union of three straight line segments, one
from (0, 0) to (q, 1), one from (q, 1) to (p, 0), and one from (p, 0) to (1, 1).
We will distinguish between the types of N -graphs we have already seen
as follows: If 0 < q < p < 1, let us refer to f as α-type; if p = q, we call f
β-type; if 0 < p < q < 1, f is γ-type.

It is a basic exercise using itineraries to show that if f is any α-type
N -graph and g is defined as in the previous theorems, then lim←− f is home-
omorphic to lim←−g. Theorem 3.1 (Theorem 3.2, respectively) says that
if f is a β-type (γ-type, respectively) N -graph, lim←− f is homeomorphic
to lim←−g. Thus, putting all these results together, we have the following
theorem.

Theorem 3.3. Suppose f : [0, 1] → 2[0,1] is an N -graph of α-, β-, or γ-
type. Then lim←− f is homeomorphic to the two-endpoint Knaster continuum
lim←− g.

The only remaining N -graphs that are not addressed by Theorem 3.3
are those such that either p = 1 or q = 0. Interestingly, if f is an N -graph
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that satisfies either p = 1 or q = 0, then lim←− f is not homeomorphic to the
two-endpoint Knaster continuum lim←−g. One simple way to prove this is
to use the author’s techniques from [9] and [10] to show that lim←− f would
be a decomposable continuum.

Theorem 3.4. Suppose f : [0, 1]→ 2[0,1] is an N -graph with either p = 1
or q = 0. Then lim←− f is a decomposable continuum, and hence, it is not
homeomorphic to the two-endpoint Knaster continuum lim←− g.

Proof. Suppose p = 1. Since q < 1, p 6= q. By the definition of N -graph,
the graph of f is the union of three straight line segments, one joining
(0, 0) to (q, 1), one joining (q, 1) to (1, 0), and one joining (1, 0) to (1, 1).
f is a continuum-valued u.s.c. function; so, by [3, Theorem 2.7] (or [6,
Theorem 4.7], the original source), lim←− f is a continuum. Let the graph of
j1 : [0, 1]→ C([0, 1]) be the union of two line segments, one joining (0, 0)
to (q, 1) and one joining (q, 1) to (1, 0). Then j1 is also continuum-valued,
and G(j1) ⊆ G(f). For each positive integer i ≥ 2, let ji = f . Then
lim←− j is a subcontinuum of lim←− f. Since (1, 1, 1, 1, . . .) ∈ lim←− f \ lim←− j, we
know lim←− j is a proper subcontinuum of lim←− f. Moreover, if O2 = [0, 1/2)

and Oi = [0, 1] for each positive integer i 6= 2, then (
∏∞

i=1Oi) ∩ lim←− f is
an open subset of lim←− f that is a subset of lim←− j. Thus, lim←− f contains a
proper subcontinuum that is not nowhere dense, and it follows that lim←− f
is a decomposable continuum. Since lim←−g is indecomposable, lim←− f is not
homeomorphic to lim←−g. The proofs are similar in the cases where q = 1
or both p = 0 and q = 1. �

It is worth mentioning, however, that inverse limits with N -graphs
that satisfy either p = 1 or q = 0 are surprisingly complicated continua in
their own right and deserve further study. To close this paper, we give two
examples of such N -graphs and indicate a few properties of the resulting
inverse limits that hint at their complexity.

Example 3.5. Let the graph of f : [0, 1]→ C([0, 1]) consist of the straight
line segments joining (0, 0) to (1/2, 1), joining (1/2, 1) to (1, 0) and joining
(1, 0) to (1, 1). (This is an N -graph with p = 1 and q = 1/2; see Figure
3.) Then lim←− f contains a bucket handle continuum H that is the limiting
set for uncountably many sequences of arcs, where (1) any arc A in any
of these sequences satisfies A∩H = ∅, and (2) if A and B are any two of
these sequences of arcs, then

⋃
A ∩

⋃
B = ∅.

Proof. Let Λ : [0, 1] → [0, 1] be the function whose graph consists of the
straight line segments joining (0, 0) to (1/2, 1), and joining (1/2, 1) to
(1, 0). Then lim←−Λ is well known to be the bucket handle continuum H,
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Figure 3. Left: The graph of the bonding function f in
Example 3.5. Right: The graph of the bonding function
f in Example 3.6.

and, since G(Λ) ⊆ G(f), clearly lim←−Λ ⊆ lim←− f. We will now show how to
construct the aforementioned sequences of arcs.

Let y be a particular sequence in lim←− f with y1 = 1, y2 = 1, and
(yd+1, yd) ∈ G(Λ) for each integer d ≥ 2. Then we define the sequence
Ay = {Ay

1 , A
y
2 , A

y
3 , . . .} as follows: For each positive integer n, let Ay

n =
{x ∈ lim←− f | (xi+1, xi) ∈ G(Λ) for all i with 1 ≤ i ≤ n; xi = yi−(n+1) for
each positive integer i ≥ n+ 2}. (Thus, Ay

n consists of all x in lim←− f with
(xi+1, xi) ∈ G(Λ) for 1 ≤ i ≤ n and with the “tail” of x from coordinate
n+ 2 onward being y, i.e., (xn+2, xn+3, xn+4, . . .) = (y1, y2, y3, . . .)). It is
straightforward to prove that for each positive integer n, Ay

n is a contin-
uum that contains exactly two non-cut points (namely, the element of Ay

n

with xn+1 = 0 and the element of Ay
n with xn+1 = 1), so that each Ay

n is
an arc.

To see that lim←−Λ is the limiting set for Ay, first let z ∈ lim←−Λ and let
O = (

∏∞
i=1Oi) ∩ lim←− f be a basic open set of order k containing z. Thus,

in particular, zi ∈ Oi for each i ≤ k. We also know that for each positive
integer n, (zn+1, zn) ∈ G(Λ). Therefore, we know that for each positive
integer n ≥ k, (z1, z2, . . . , zn, zn+1, y1, y2, y3, . . .) ∈ Ay

n ∩O. On the other
hand, suppose by way of contradiction that z ∈ lim←− f and every open set
in lim←− f containing z intersects infinitely many arcs in Ay, but z 6∈ lim←−Λ.
Then we know for some positive integer n, (zn+1, zn) ∈ G(f) \G(Λ). Let
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On+1×On be a basic open subset of Xn+1×Xn containing (zn+1, zn) and
missing G(Λ). Then (X1×X2×. . .×Xn−1×On×On+1×Xn+2×. . .)∩lim←− f
is an open subset of lim←− f containing z that can intersect only finitely many
arcs in Ay; this is a contradiction. Thus, we have proven that lim←−Λ is
the limiting set for Ay.

Finally, we turn to conditions (1) and (2). To show (1), note that
y1 = y2 = 1 and (1, 1) 6∈ G(Λ), so that every arc in the sequence Ay

does not intersect lim←−Λ. For (2), let y,w ∈ lim←− f with y1 = y2 = w1 =

w2 = 1, (yd+1, yd) ∈ G(Λ) for all d ≥ 2, and (wd+1, wd) ∈ G(Λ) for all
d ≥ 2. We wish to show that if y 6= w, then

⋃
Ay ∩

⋃
Aw = ∅. Suppose

z ∈
⋃
Ay ∩

⋃
Aw. Then z ∈ Ay

n for some positive integer n and z ∈ Aw
m

for some positive integer m. If n = m, then by the way Ay
n and Aw

n are
defined, y and w are both the same as the sequence (zn+2, zn+3, zn+4, . . .).
This implies y = w, which is a contradiction. So, suppose n < m. Then,
since z ∈ Ay

n, we know zn+2 = 1, zn+3 = 1, and (zd+1, zd) ∈ G(Λ) for all
d ≥ n + 3. However, since z ∈ Aw

m and n < m, we know that for some
k ≥ n + 3, zk = 1 and zk+1 = 1. That means (zk+1, zk) 6∈ G(Λ), which
is a contradiction. A similar contradiction is reached if m < n. Thus, we
conclude that

⋃
Ay ∩

⋃
Aw = ∅.

Since there are uncountably many different elements y in lim←− f with
y1 = y2 = 1 and (yd+1, yd) ∈ G(Λ) for all d ≥ 2, there are uncountably
many different sequences of arcs with the desired properties. Thus, the
proof is complete. �

Example 3.6. Let the graph of f : [0, 1] → C([0, 1]) consist of the
straight line segments joining (0, 0) to (0, 1), joining (0, 1) to (1, 0), and
joining (1, 0) to (1, 1). (This is an N -graph with p = 1 and q = 0; see
Figure 3.)

Letting Ω : [0, 1] → C([0, 1]) be the u.s.c. function whose graph is
the union of two straight line segments, one joining (0, 0) to (0, 1) and
one joining (0, 1) to (1, 0), we see that lim←−Ω ⊆ lim←− f. The complicated in-
verse limit lim←−Ω has been studied thoroughly by Ingram (see [3, Example
2.15]), who discovered that it is a non-planar continuum that contains a
topologist’s sine curve, fans, and n-ods for each n. The addition of the
line segment from (1, 0) to (1, 1) in the graph of f will add even more
complexity to this space in a manner similar to the way the line segment
from (1, 0) to (1, 1) added significant complexity to lim←−Λ in Example 3.5.
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