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CONCERNING CONTINUA IRREDUCIBLE ABOUT
FINITELY MANY POINTS II

DAVID J. RYDEN

Abstract. The purpose of this paper is to provide new characteri-
zations of continua that are irreducible about finitely many points.
One such characterization is that a continuum M is irreducible
about finitely many points if and only if each monotonic collec-
tion of subcontinua of M such that the difference between any two
members contains a non-separating open subset of M is finite.

1. Introduction

The purpose of this paper is to introduce several new characterizations
of continua that are irreducible about finitely many points. The denials
of these are given in parts (4) through (7) of the following theorem.

Theorem 1.1. Suppose M is a continuum. The following are equivalent.
(1) M fails to be irreducible about a finite set.
(2) M contains infinitely many pair-wise disjoint non-separating open

sets.
(3) M has infinitely many weakly non-separating subcontinua each of

which has an interior point that fails to lie in the closure of the
union of the others.

(4) M has infinitely many subcontinua each of which contains a non-
separating open subset of M that fails to intersect any of the other
subcontinua.

(5) There is an infinite monotonic collection of subcontinua of M
such that the difference between any two members contains a non-
separating open subset of M .
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(6) There is an infinite increasing sequence M1,M2,M3, . . . of sub-
continua of M such that Mn+1 − Mn contains a non-separating
open subset of M for each n ∈ N.

(7) Either M is an ∞-od or there is an infinite increasing sequence
M1,M2,M3, . . . of non-separating subcontinua of M such that
Mn+1 −Mn contains a non-separating open subset of M for each
n ∈ N.

(8) (Maćkowiak) M is the union of an infinite monotonic collection
of its proper subcontinua.

The point of departure for the proof is the equivalence of (1) with (2),
which, together with their equivalence to (3), was among the main results
in this paper’s namesake [3]. In that paper, R. H. Sorgenfrey’s theorems
[4], [5] on irreducibility were shown to follow readily from those results as
testimony to their utility.

Another characterization of finite irreducibility, equal in beauty to Sor-
genfrey’s classic theorems, was suggested by Fugate in the Houston Prob-
lem Book (see [1, Problem 113] and later proved by T. Maćkowiak [2].
It asserts the equivalence of (the denials of) parts (1) and (8) in The-
orem 1.1. The new results in this paper lead naturally to an alternate
proof of Maćkowiak’s theorem, which is thus included as testimony to
their utility.

A continuum is a compact connected subset of a metric space. A
continuum is said to be irreducible about a closed set H if and only if it
contains H but has no proper subcontinuum that contains H.

If A is a subset of a continuum M , then A is said to be a subset of M
with interior if and only if it contains a nonempty open subset of M .

A non-separating subset of a continuum M is a nonempty subset of M
whose complement is connected. A weakly non-separating subset of M is
a subset of M that contains a nonempty non-separating open subset of
M .

Two sets are said to be mutually separated if and only if they are mu-
tually exclusive and neither contains a limit point of the other.

If A is a collection of sets, then the notation A∗ denotes the union of
the sets belonging to A.

2. Proof of Theorem 1.1

2.1. A preliminary lemma.

Lemma 2.1. Suppose M is a continuum.
(1) If a non-separating open subset of M is the union of finitely many

mutually separated sets, then each of them is a non-separating
open set.
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(2) If M has a subcontinuum whose complement has infinitely many
components, then there is a subcontinuum K of M and a sequence
D1, D2, D3, . . . of non-separating open subsets of M such that K∪
Dn is a continuum for each positive integer n and M = K ∪D1 ∪
D2 ∪D3 ∪ . . . .

Proof. Suppose D1, D2, . . . , Dn are mutually separated sets whose union
is a non-separating open subset D of M . Note that each of D1, D2, . . . , Dn

is the union of a collection of components of D and that each component
of D lies wholly within one of D1, D2, . . . , Dn. Since each such component
bumps the boundary of M −D, the union of M −D with any collection
of components of D is connected. Hence, the complement of each of
D1, D2, . . . , Dn is connected.

Suppose L is a subcontinuum of M whose complement has infinitely
many components. Then M − L is the union of two mutually exclusive
non-separating open sets A1 and D1, one of which, say A1, contains in-
finitely many components of M − L. Similarly, A1 is the union of two
mutually exclusive non-separating open sets A2 and D2, one of which, say
A2, contains infinitely many components. Proceeding inductively yields a
sequence D1, D2, D3, . . . of pair-wise disjoint non-separating open subsets
of M . Define K to be the union of L with each of the components of M−L
that fails to belong to one of D1, D2, D3, . . . . Then K is a continuum as is
K ∪Dn for each positive integer n, and M = K ∪D1 ∪D2 ∪D3 ∪ . . . . �
2.2. Proof of Theorem 1.1.

The equivalence of (1), (2), and (3) was proved in [3]. The remainder
of the proof goes (2) ⇒ (4) ⇒ (5) ⇒ (6) ⇒ (7) ⇒ (8) ⇒ (1). The last
implication is trivial, and the remaining implications are proved below.

Notice that any continuum satisfying the conclusion of Lemma 2.1(2)
satisfies each of the conditions listed in Theorem 1.1. Thus, by Lemma 2.1,
if a continuum M has a subcontinuum K such that M −K has infinitely
many components or, equivalently, if M contains a non-separating open
set with infinitely many components, then each of the conditions in Theo-
rem 1.1 holds. In the forthcoming proofs, this fact will be used regularly.

Proof of (2) ⇒ (4). If M contains a non-separating open set with infin-
itely many components, then (4) follows from Lemma 2.1(2). Otherwise,
since each component of a non-separating open set with finitely many
components is itself a non-separating open set, M contains an infinite
pair-wise disjoint collection of connected, non-separating, open subsets of
M . The collection of closures of all such sets satisfies (4).

Proof of (4) ⇒ (5). Suppose A is an infinite collection of subcontinua
of M , each member of which contains a non-separating open subset of
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M that fails to intersect any other term of A. Denote the corresponding
collection of non-separating open subsets by A′. Since M is connected, it
contains a point p that fails to belong to any member of A′. Denote by
P the collection to which a subcontinuum of M belongs if and only if it
is the component of M −B∗ containing p for some subcollection B of A′.

We wish to show that if P ∈ P and A′ ∈ A′, then P either contains
A′ or fails to intersect A′. To that end suppose P ∈ P, and suppose A′

is a member of A′ that shares a common point with P . Denote by BP a
subcollection of A′ for which P is the component of M − B∗

P containing
p, and denote by A the member of A that corresponds to A′. Recall that
A fails to intersect any member of A′ − {A′}. In particular, A fails to
intersect any member of BP . Hence, P ∪ A is a continuum that fails to
intersect B∗

P . As P is a component of M −B∗
P , it follows that P ∪A ⊂ P .

Consequently, P contains A′.
By the Hausdorff Maximality Principle, the collection P, partially or-

dered by set containment, has a maximal totally ordered subcollection T .
To complete the proof it suffices to show that T is infinite or, equivalently,
that T has more than n terms for each n. To that end suppose n is given,
and suppose T1 < T2 < . . . < Tn is a finite subcollection of T . Notice that
M and the component of M −A′∗ containing p are the unique maximum
and minimum elements of P, respectively. Hence, both belong to T . If
either Tn is not M or T1 is not the component of M −A′∗ that contains
p, then T has more than n terms.

Suppose T1 is the component of M − A′∗ that contains p, and Tn =
M . Then, for some index j, Tj − Tj−1 contains infinitely many of the
non-separating open sets in A′. Define Bj to be the subcollection of A′

consisting of all terms that fail to intersect Tj , and define Bj−1 similarly.
Notice that Tj and Tj−1 are the respective components of M−B∗

j and M−
B∗
j−1 that contain p. Choose B′ ∈ Bj−1−Bj and denote its corresponding

term in A by B.
If B′ and Tj−1 share a common boundary point, then Tj−1 ∪ B is a

continuum that contains p, properly contains Tj−1, and fails to intersect
any term of Bj−1 − {B′}. Thus, for T equal to the component of M −
(Bj−1 − {B′})∗ that contains p, we have T ∈ T and Tj−1 < T < Tj . On
the other hand, if B′ and Tj−1 fail to share a boundary point, then the
component of Tj − B′ that contains p properly contains Tj−1. Thus, for
T equal to the component of M − (Bj ∪ {B′})∗ that contains p, we have
T ∈ T and Tj−1 < T < Tj . It follows that T has more than n terms.

Proof of (5) ⇒ (6). The hypothesis guarantees that either (6) holds or
there is a decreasing sequence C1, C2, C3, . . . of continua such that, for
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each n, Cn − Cn+1 contains a non-separating open set Dn. Suppose the
latter. Denote ∩Cn by C, and note that C is a continuum.

For each x ∈ M − C and each n for which x ∈ M − Cn, define Ln(x)
to be the component of M − Cn that contains x and define L(x) to be
∪Ln(x). Notice that, for each x ∈ M − C, L(x) is the nondecreasing
union of connected sets and is, therefore, connected.

We show that each two sets of the form L(x) are either identical or
mutually exclusive. Suppose x, y ∈ M −C such that L(x) and L(y) have
a common point z. Then Ln(x) and Ln(y) both contain z for each of
cofinitely many positive integers n. Hence, Ln(x) = Ln(z) = Ln(y) for
each such n, from which it follows that L(x) = L(y).

If M − Cn has infinitely many components for some n ∈ N, then (6)
follows from Lemma 2.1(2). Suppose M − Cn has finitely many compo-
nents for each n ∈ N. It follows that Ln(x) is open for each x ∈ M − C
and each n for which x ∈ M − Cn. Consequently, L(x) is open for each
x ∈ M − C.

In summary, L(x) is connected and open for each x ∈ M − C and the
collection of all such sets forms a partition of M −C. Consequently, L(x)
is a component of M − C for each x in M − C.

If M−C has infinitely many components, then (6) follows from Lemma
2.1(2) . If M −C has finitely many components, then there is a point p of
M −C such that L(p) intersects infinitely many terms of D1, D2, D3, . . . .
In other words, ∪n∈NLn(p)∩Dm is nonempty for infinitely many m ∈ N.

Recall that Ln(p) ⊂ M − Cn. Since C1, C2, C3, . . . is a decreasing
sequence, Ln(p) ⊂ M − Cm for all m ≥ n. It follows that Ln(p) fails
to intersect Cm and, therefore, Dm for m ≥ n. Consequently, m < n if
either Ln(p) ∩ Cm or Ln(p) ∩Dm is nonempty.

Choose m1 and n1 such that Ln1(p)∩Dm1 is nonempty. Then m1 < n1.
Choose m2 and n2 such that n1 < m2 and Ln2(p) ∩ Dm2 is nonempty.
Then m2 < n2. Proceeding inductively, we may define a pair of sequences
n1, n2, n3, . . . and m1,m2,m3, . . . such that m1 < n1 < m2 < n2 < m3 <
n3 < . . . and such that Lnk

(p) ∩Dmk
is nonempty for all k ∈ N.

Since, for each k, Dmk
⊂ M − Cnk

and M − Cnk
is the union of

finitely many disjoint open sets, of which Lnk
(p) is one, it follows from

Lemma 2.1(1) that Lnk
(p) ∩ Dmk

is a non-separating open set. Fur-
thermore, since nk−1 < mk, Lnk−1

(p) ∩ Dmk
is empty. It follows that

Ln1(p), Ln2(p), Ln3(p), . . . is an increasing sequence of subcontinua of M
such that, for each k, Lnk+1

(p)−Lnk
(p) contains the non-separating open

set Lnk+1
(p) ∩Dmk+1

.

Proof of (6) ⇒ (7). Suppose M is not an ∞-od, and denote by D2, D3,
D4, . . . a sequence of non-separating open sets such that Dn ⊂ Mn−Mn−1
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for each n. Since M is not an ∞-od, Dn has finitely many components
for each n. Furthermore, each component of Dn is itself a non-separating
open subset of M that is contained in Mn−Mn−1. Hence, we may assume
that each term of the sequence D2, D3, D4, . . . is connected.

Note that, for each n, M −Mn contains cofinitely many terms of the
sequence D1, D2, D3, . . . . Thus, there is a subsequence D1

1, D
1
2, D

1
3, . . . of

D2, D3, D4, . . ., each term of which is contained within a single one of the
finitely many components of M − M1. Denote this component by C1.
Similarly, there is a subsequence D2

1, D
2
2, D

2
3, . . . of D1

1, D
1
2, D

1
3, . . ., each

term of which is contained within a single component C2 of M −M2.
Proceeding inductively, we may define a sequence C1, C2, C3, . . . and a

sequence of sequences {Dn
1 , D

n
2 , D

n
3 , . . .}n∈N with the following properties.

• Dn+1
1 , Dn+1

2 , Dn+1
3 , . . . is a subsequence of Dn

1 , D
n
2 , D

n
3 , . . . for each

n, and D1
1, D

1
2, D

1
3, . . . is a subsequence of D1, D2, D3, . . . .

• Cn is a component of M −Mn for each n.
• Cn contains each term of Dn

1 , D
n
2 , D

n
3 , . . . for each n.

Since Cn+1 is a connected subset of M −Mn that contains a point of
the component Cn of M−Mn (any point of Dn+1

1 , for example), it follows
that Cn+1 ⊂ Cn for each n.

Note that, for each n, Cn is a connected, open, and, by Lemma 2.1(1),
non-separating subset of M . Define Xn to be M − Cn for each n. Then
X1, X2, X3, . . . is a nondecreasing sequence of non-separating subcontinua
of M . Furthermore, Dn ⊂ Mn ⊂ Xn for each n, and infinitely many terms
of D2, D3, D4, . . . lie in the complement of Xn for each n. It follows that
some subsequence of X1, X2, X3, . . . satisfies (7).

Proof of (7) ⇒ (8). If M is an ∞-od, then (8) follows. Suppose there
is an increasing sequence M1,M2,M3, . . . of non-separating subcontinua
of M such that Mn+1 −Mn contains a non-separating open subset of M
for each n ∈ N. If M1 ∪ M2 ∪ . . . = M , then (8) follows. Suppose that
M1 ∪M2 ∪ . . . ̸= M . Denote (M −M1)∩ (M −M2)∩ (M −M3)∩ . . . by
C. Then, as the common part of a monotonic collection of continua, C
is a continuum. Every point of M that does not belong to some term of
M1,M2,M3, . . . belongs to C. Denote by I a subcontinuum of M that is
irreducible about M1 ∪ C. Then I ∪ Mn is a continuum for each n and
M = (I ∪M1) ∪ (I ∪M2) ∪ . . . .

If I ∪Mn is a proper subcontinuum of M for each positive integer n,
then (8) holds. Suppose to the contrary that for some positive integer
N , I ∪ MN = M . Denote by DN+1 the hypothesized non-separating
open subset of M contained by MN+1 −MN . Notice that DN+1 fails to
intersect both C and MN . Then M −DN+1 is a subcontinuum of M that
contains both C and the boundary of MN . Hence, it has a subcontinuum
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J1 that is irreducible about C ∪ bd(MN ). Since C fails to intersect the
interior of MN , so does J1. Hence, J1 is a subcontinuum of I that does
not contain DN+1.

Since I contains both M1 and the boundary of MN , it has a subcontin-
uum J2 that is irreducible about M1∪bd(MN ). Since M1 fails to intersect
the complement of MN , so does J2. Hence, J2 also fails to contain DN+1.
Then J1 ∪ J2 is a proper subcontinuum of I that contains M1 ∪ C, con-
tradicting the irreducibility of I. Thus, I ∪Mn is a proper subcontinuum
of M for each n, and the result follows. �
2.3. Finite irreducibility.

Reformulating (1), (4), (5), (6), and (7) of Theorem 1.1 yields the fol-
lowing new characterizations of continua irreducible about finitely many
points.

Theorem 2.2. Suppose M is a continuum. The following are equivalent.
(1) M is irreducible about a finite set.
(2) Every collection of subcontinua of M each of which contains a

non-separating open subset of M that fails to intersect any of the
other continua is finite.

(3) Every monotonic collection of subcontinua of M such that the
difference between any two members contains a non-separating
open subset of M is finite.

(4) Every increasing sequence M1,M2,M3, . . . of subcontinua of M
such that Mn+1 − Mn contains a non-separating open subset of
M for each n is finite.

(5) M is not an ∞-od, and every increasing sequence M1,M2,M3, . . .
of non-separating subcontinua of M such that Mn+1−Mn contains
a non-separating open subset of M for each n is finite.
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