
Volume 45, 2015

Pages 63–71

http://topology.auburn.edu/tp/

http://topology.nipissingu.ca/tp/

Skeletally generated spaces and

absolutes

by

V. Valov

Electronically published on February 26, 2014

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c⃝ by Topology Proceedings. All rights reserved.



TOPOLOGY
PROCEEDINGS
Volume 45 (2015)
Pages 63-71

http://topology.auburn.edu/tp/
http://topology.nipissingu.ca/tp/

E-Published on February 26, 2014

SKELETALLY GENERATED SPACES AND ABSOLUTES

V. VALOV

Abstract. Some properties of skelatally generated spaces are es-
tablished. In particular, it is shown that any compactum co-
absolute to a κ-metrizable compactum is skeletally generated. We
also prove that a compactum X is skeletally generated if and only if
its superextension λX is skeletally Dugundji and raise some natural
questions.

1. Introduction

In this paper we provide more properties of skeletally generated spaces
introduced in [14]. It was shown in [14] that skeletally generated spaces
coincide with I-favorable spaces [2] (for compact spaces that were actu-
ally done in [6], see also [5] and [7]). It is interesting that at first view
skeletally generated spaces are quite different from I-favorable spaces. I-
favorable spaces were defined as spaces for which the first player has a win-
ning strategy when two players play the so called open-open game, while
skeletally generated spaces can be considered as a skeletal counterpart of
κ-metrizable compacta [12] (everywhere in this paper by a compactum
we mean a compact Hausdorff space).

Recall that a map f : X → Y is called skeletal [10] (resp., semi-
open) if the set IntY clY f(U) (resp., IntY f(U)) is non-empty, for any
U ∈ TX . Obviously, every semi-open map is skeletal, and both notions
are equivalent for closed maps.
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The paper is organized as follows. Some properties of skeletally gen-
erated spaces are provided in Section 2. It is shown that every space
co-absolute with a skeletally generated space is also skeletally generated,
see Theorem 2.4 (recall that two spaces are co-absolute if their absolutes
are homeomorphic). In particular, any space co-absolute to a κ-metrizable
compactum is skeletally generated (Corollary 2.5). Section 3 is devoted
to the connection of skeletally generated and skeletally Dugundji spaces
introduced in [9]. It is well known that a compactum X is κ-metrizable
if and only if its superextension is a Dugundji space, see [3] and [13].
Theorem 3.1 states that the same connection holds between skeletally
generated and skeletally Dugundji compacta (this result, in different ter-
minology, was announced without a proof in [15]; let us also mention that
for zero-dimensional compacta the equivalence (i) ⇒ (iii) from Theorem
3.1 was established in [4, Theorem 5.5.9]).

Corollary 2.5, mentioned above, suggests the following problem:

Question 1.1. Is is true that a compactum is skeletally generated if and
only if it is co-absolute to a κ-metrizable compactum?

Obviously, Question 1.1 is interesting for compacta of weight greater
that ℵ1. For zero-dimensional compacta this question was posed by
Heindorf and Shapiro [4, Section 5.5, p. 140].

Since every skeletally Dugundji space is skeletally generated [9, Corol-
lary 3.4], one can ask if there is any skeletally generated space which
is not skeletally Dugundji. The referee of this paper pointed out that
Heindorf and Shapiro [4, Proposition 6.3.2] established such an exam-
ple. The existence of a skeletally generated space which is not skele-
tally Dugundji provides a solution to a Question 1.13 from [2] whether
every compact I-favorable space is co-absolute to a dyadic space. In-
deed, suppose that every I-favorable compactum is co-absolute to a dyadic
compactum. Since, by [9, Corollary 4.5], dyadic compacta are skeletally
Dugundji, it follows that every compact I-favorable space is co-absolute to
a skeletally Dugundji space. Consequently, all compact I-favorable spaces
would be skeletally Dugundji.

Our results for 0-dimensional compact spaces can be translated using
the language of Boolean algebras, see [4]. For example, Question 1.1 is
equivalent to the question of whether each regularly filtered algebra is
co-complete to an rc-filtered one (see [4], p. 140).

All spaces in this paper are Tychonoff and the maps are continuous.
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2. Skeletally generated spaces

In this section we provide some properties of skeletally generated
spaces.

For a given space X we introduce an order on the set of all maps having
domain X. If ϕ1 and ϕ2 are two such maps, we write ϕ1 ≺ ϕ2 if there
exists a map ϕ : ϕ1(X) → ϕ2(X) such that ϕ2 = ϕ ◦ ϕ1. The notation
ϕ1 = ϕ2 means that the map ϕ is a homeomorphism between ϕ1(X) and
ϕ2(X). We say that X is skeletally generated [14] if there exists an inverse
system S = {Xα, p

β
α, A} of separable metric spaces Xα such that:

(1) All bonding maps pβα are surjective and skeletal;
(2) The index set A is σ-complete (every countable chain in A has a

supremum in A);
(3) For every countable chain {αn :n≥1}⊂A with β= sup{αn :n≥1}

the space Xβ is a (dense) subset of lim
←

{Xαn , p
αn+1
αn

};
(4) X is embedded in lim

←
S such that pα(X) = Xα for each α, where

pα : lim
←

S → Xα is the α-th limit projection;
(5) For every bounded continuous real-valued function f on X there

exists α ∈ A such that pα ≺ f .

Condition (4) implies that X is a dense subset of lim
←

S. An inverse
system S with surjective bonding maps satisfying conditions (2) and (3) is
called almost σ-continuous. If there exists an almost σ-continuous system
S satisfying condition (4), we say that X is the almost limit of S, notation
X = a− lim

←
S.

The following characterizations of skeletally generated spaces was es-
tablished in [14] (see also [6] where the equivalence of items (i) and (ii)
in case X is compact).

Proposition 2.1. [14] For a space X the following are equivalent:

(i) X is skeletally generated;
(ii) X is I-favorable;
(iii) Every C∗-embedding of X in another space is π-regular.

Here, X is called I-favorable [2] if there exists a function
σ :

∪
{T n

X : n ≥ 0} → TX , where TX is the topology of X, such that for
each sequence B0, B1, .., of non-empty open subsets of X with B0 ⊂ σ(∅)
and Bk+1 ⊂ σ(B0, B1, .., Bk) for each k, the union

∪
k≥0 Bk is dense in X.
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We say that a subspace X of a space Y is π-regularly embedded in Y if
there exists a function e : TX → TY between the topologies of X and Y
such that:

(e1) e(∅) = ∅ and e(U) ∩X is a dense subset of U ;
(e2) e(U) ∩ e(V ) = ∅ for any U, V ∈ TX provided U ∩ V = ∅.

The operator e is called strongly π-regular if, in additional, it satisfies
condition (e3) below.

(e3) e(U ∩ V ) = e(U) ∩ e(V ) for any U, V ∈ TX .

Note that π-regular embeddings were introduced in [15], while strongly
π-regular embeddings were considered in [11] under the name π-regular.

The next lemma follows from Daniels-Kunen-Zhou’s observation
[2, Fact 1.3, p.207]. For completeness, we provide here a proof of that
fact.
Lemma 2.2. Let f : X → Y be a closed irreducible map. Then X is a
skeletally generated space if and only if Y is so.

Proof. Assume Y is skeletally generated. So, by Proposition 2.1, there
exists a function σY :

∪
{T n

Y : n ≥ 0} → TY such that for each se-
quence B0, B1, .., of non-empty open subsets of Y with B0 ⊂ σY (∅)
and Bk+1 ⊂ σY (B0, B1, .., Bk) for each k,

∪
k≥0 Bk is dense in Y .

Since f is irreducible, the set f ♯(V ) = {y ∈ Y : f−1(y) ⊂ V } is
non-empty and open in Y for every open V ⊂ X. Therefore, the
function σX :

∪
{T n

X : n ≥ 0} → TX , σX(∅) = f−1(σY (∅)) and
σX(V1, V2, .., Vn) = f−1

(
σY (f

♯(V1), f
♯(V2), .., f

♯(Vn))
)

is well defined. If
V0, V1, .. is a sequence of non-empty open subsets of X with V0 ⊂ σX(∅)
and Vk+1 ⊂ σX(V0, V1, .., Vk) for each k, then U0 ⊂ σY (∅) and Uk+1 ⊂
σY (U0, U1, .., Uk), where Uk = f ♯(Vk), k ≥ 0. Hence,

∪
k≥0 Uk is dense in

Y . Consequently,
∪

k≥0 f
−1(Uk) is dense in X (recall that f is closed and

irreducible). Finally, because f−1(Uk) ⊂ Vk, we obtain that
∪

k≥0 Vk is
dense in X. Thus, X is skeletally generated.

The map f being irreducible and closed is skeletal. Then, according to
[7, Lemma 1], Y is I-favorable provided so is X. �
Corollary 2.3. If X is skeletally generated, then so is each compactifi-
cation of X.

Proof. It was shown in [14] that βX is skeletally generated. Then Lemma
2.2 completes the proof because any compactification of X is an irre-
ducible image of βX. �
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Theorem 2.4. Any space co-absolute to a skeletally generated space is
skeletally generated.

Proof. Suppose the spaces X and Y are co-absolute and Z is their com-
mon absolute. Then there are closed irreducible maps θX : Z → X and
θY : Z → Y . If X is skeletally generated, then Z is also skeletally gener-
ated (by Lemma 2.2). Applying again Lemma 2.2, we conclude that Y is
skeletally generated. �

Corollary 2.5. Any space co-absolute to a κ-metrizable compactum is
skeletally generated.

Recall that κ-metrizable compacta can be also characterized as the
compact spaces X possessing a lattice in the sense of Shchepin [12] con-
sisting of open maps. This means that there exists a family Ψ of open
maps with domain X such that:

(L1) For any map f : X → f(X) there exists ϕ ∈ Ψ with ϕ ≺ f and
w(ϕ(X)) ≤ w(f(X);

(L2) If {ϕα : α ∈ A} ⊂ Ψ such that the diagonal product △{ϕαi : αi ∈
A, i = 1, .., k} belongs to Ψ for any finitely many αi ∈ A, then
△{ϕα : α ∈ A} ∈ Ψ.

Proposition 2.6. Every skeletally generated space has a lattice of skeletal
maps.

Proof. We consider X as a C-embedded subset of M = RA for some
A. Then there exists a strongly π-regular operator e : TX → TM ; see
Proposition 2.1. For any countable set B ⊂ A let BB be an open base for
RB of cardinality |B| ≤ ℵ0. We say that a set B ⊂ A is e-admissible if

π−1B (πB(e(ϕ−1(U) ∩X))) = e(π−1B (U) ∩X) for all U ∈ BB,

where πB : M → RB is the projection. The arguments from the proof
of [9, Proposition 3.1(ii)] imply that all maps ϕB = πB|X, where B is
e-admissible, are skeletal and form a lattice for X. �

Replacing κ-metrizable compacta in Corollary 2.5 with spaces possess-
ing a lattice of open maps, we obtain a little bit of a stronger result.

Proposition 2.7. Let X be a space with a lattice of open maps. Then
every space co-absolute to X has a lattice of semi-open maps.
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Proof. The proof follows the arguments from the proof of [9, Theorem
2.2]. The only difference is that we use Proposition 2.8 below instead of
Proposition 2.1 from [9]. �
Proposition 2.8. Let X be C-embedded in RΓ for some Γ and X has a
lattice Ψ of quotient maps. Then the family A = {B ⊂ Γ : ϕB ∈ Ψ },
where ϕB = πB |X : X → πB(X) is the restriction of the projection
πB : RΓ → RB, has the following properties:

(i) The union of any increasing subfamily of A belongs to A;
(ii) Every A ⊂ Γ is contained in some B ∈ A with |A| = |B|.

Proof. Suppose {Bα} be an increasing family of subsets of Γ with Bα ∈ A
for all α, and B = ∪Bα. Then for any finitely many Bαi , i = 1, .., n, there
exists 1 ≤ j ≤ n such that Bαj =

∪i=n
i=1 Bαi . Hence, △i=n

i=1ϕBαi
= ϕBαj

∈
Ψ. Consequently, by (L2), ϕB = △ϕBα ∈ Ψ and B ∈ A.

Assume C ⊂ Γ is an infinite set of cardinality |C| = τ . We construct by
induction an increasing sequence {B(k)} ⊂ Γ and a sequence {ϕk} ⊂ Ψ
such that B(1) = C, |B(k)| = τ , w(ϕk(X)) ≤ τ and ϕB(k+1) ≺ ϕk ≺ ϕB(k)

for all k. Suppose the construction is done up to level k for some k ≥ 1.
We consider each ϕk(X) as a subspace of Rτ . Since X is C-embedded
in RΓ, there exists a map gk : RΓ → Rτ extending ϕk. Then gk depends
on τ many coordinates of RΓ, so we can find a set B(k + 1) ⊂ Γ of
cardinality τ containing B(k) such that πB(k+1) ≺ gk. Consequently,
ϕB(k+1) ≺ ϕk. Next, by condition (L1), there exists ϕk+1 ∈ Ψ with
ϕk+1 ≺ ϕB(k+1) and w(ϕk+1(X)) ≤ τ . This completes the construction.
Finally, let B =

∪∞
k=1 B(k) and ϕ = △∞k=1ϕk. Obviously, |B| = τ and

ϕB = ϕ ∈ Ψ. Hence, C ⊂ B ∈ A. �

3. Skeletally Dugundji spaces

We say that a space X is skeletally Dugundji [9] if there exists an inverse
system S = {Xα, p

β
α, α < β < τ} with surjective skeletal bonding maps,

where τ is identified with the first ordinal ω(τ) of cardinality τ , satisfying
the following conditions: (i) X0 is a separable metric space and all maps
pα+1
α have metrizable kernels (i.e., there exists a separable metric space

Mα such that Xα+1 is embedded in Xα×Mα and pα+1
α coincides with the

restriction π|Xα+1 of the projection π : Xα×Mα → Xα); (ii) for any limit
ordinal γ < τ the space Xγ is a (dense) subset of lim

←
{Xα, p

β
α, α < β < γ};

(iii) X is embedded in lim
←

S such that pα(X) = Xα for each α; (iv)
for every bounded continuous real-valued function f on lim

←
S there exists

α ∈ A such that pα ≺ f . It was shown in [9] that X is skeletally Dugundji
provided every C∗-embedding of X in another space is strongly π-regular.



SKELETALLY GENERATED SPACES AND ABSOLUTES 69

There exists a tight connection between openly generated compacta
and their superextensions. Ivanov [3] proved that if X is openly gener-
ated compactum, then its superextension λX is a Dugundji space (the
other implication is also true, see [13]). Theorem 3.1 below provides a
similar connection between skeletally generated and skeletally Dugundji
compacta (let us explicitly mention that for zero-dimensional compacta
the equivalence (i) ⇒ (iii) was established in [4, Theorem 5.5.9]).

Theorem 3.1. For a compact space X the following are equivalent:

(i) X is skeletally generated;
(ii) Every embedding of λX in another space is strongly π-regular, in

particular λX is skeletally Dugundji;
(iii) λX is skeletally generated.

Proof. (i) ⇒ (ii). The superextension λX is the set of all maximal linked
systems ξ of closed subsets of X (recall that ξ is linked if any two elements
of ξ intersect). For any set H ⊂ X let H+ be the set of all ξ ∈ λX such
that F ⊂ H for some F ∈ ξ. Then the family B+ of all sets of the form
[U+

1 , U+
2 , .., U+

k ] =
∩i=k

i=1 U
+
i , where U1, .., Uk are open in X, is a base for

the topology of λX. We consider λX as a subset of Iτ for some cardinal τ .
Since, by [1], λX is also skeletally generated, according to Proposition 2.1,
there exists a π-regular operator e : TλX → TIτ . We define a set-valued
map r : Iτ → λX by

r(y) =
∩

{(Ui)
+ : y ∈ e([U+

1 , U+
2 , .., U+

k ])} if y ∈
∪

{e(W ) : W ∈ B+}

and r(y) = λX otherwise. This definition is correct because for every
y ∈ Iτ the system γy = {W ∈ B+ : y ∈ e(W )} is linked, so r(y) ̸= ∅. It is
easily seen that r is upper semi-continuous. Then for any open W ⊂ λX
the set

e1(W ) =
∪

{r♯([U+
1 , U+

2 , .., U+
k ]) :

i=k∩
i=1

(Ui)
+ ⊂ W}

is open in Iτ , where r♯([U+
1 , U+

2 , .., U+
k ]) = {y : r(y) ⊂ [U+

1 , U+
2 , .., U+

k ]}.
It follows directly from our definition that e1 satisfies conditions (e2) and
(e3) from the definition of strongly π-regular operator. We are going to
show that e1(W ) ∩ λX is dense in W for all open W ⊂ λX.

Suppose W ⊂ λX is open and ξ ∈ W . Let ξ ∈ G̃ ⊂ W , where
G̃ = [G+

1 , G
+
2 , .., G

+
k ] ∈ B+. Then for each i ≤ k there exists Fi ∈ ξ

and open sets Vi and Ui in X such that Fi ⊂ Vi ⊂ Vi ⊂ Ui ⊂ Ui ⊂ Gi.
Take η ∈ e([V +

1 , .., V +
k ]) ∩ λX. Then r(η) ⊂

∩i=k
i=1(Vi)

+ ⊂ [U+
1 , .., U+

k ].
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Hence, η ∈ r♯([U+
1 , U+

2 , .., U+
k ]) ∩ λX. Since

∩i=k
i=1(Ui)

+ ⊂ W , we have
η ∈ e1(W ) ∩ G̃. Therefore, e1(W ) ∩ λX is dense in W .

(ii) ⇒ (iii). This implication is obvious because every skeletally
Dugundji space is skeletally generated [9].

(iii) ⇒ (i). Consider λX as a subspace of some IΓ. According to
Proposition 2.6 and Proposition 2.8, there exists a family Ac of countable
sets A ⊂ Γ such that: (i) the union of any increasing sequence from
Ac belongs to Ac; (ii) any countable subset of Γ is contained in some
A ∈ Ac; (iii) any map pA = πA|(λX) → πA(λX), A ∈ Ac, is skeletal,
where πA : IΓ → IA denotes the projection. Let φA be the restriction
of pA on X and XA = φA(X) for each A ∈ Ac (we consider X as a
naturally embedded subset of λX). Then λφA is a map from λX into
λXA. Denote by B the family of all B ∈ Ac such that pB = λφB . Since
the functor λ is continuous, it follows from Shchepin’s spectral theorem
[12], that the union of any increasing sequence from B is again in B, and
any A ∈ Ac is contained in some B ∈ B. Therefore, the inverse system
{XB, φ

C
B, B,C ∈ B} is continuous and its limit is X (here φC

B is the
projection from XC to XB provided B ⊂ C). So, it remains to show that
each φB , B ∈ B, is skeletal.

To this end, let U ⊂ X be open and B ∈ B. Then U+ is open in
λX and, since pB is a closed and skeletal map, the set pB(U

+) has a
non-empty interior in λXB . So, there are open subsets Vi, i = 1, .., k, of
XB with [V +

1 , V +
2 , .., V +

k ] ⊂ pB(U
+). We claim that Vi ∩ Vj ⊂ φB(U) for

some i ̸= j. Indeed, otherwise for every i ̸= j we can choose yi,j = yj,i ∈
Vi ∩ Vj\φB(U). Then {F1 = {y1,2, .., y1,k}, .., Fk = {yk,1, .., yk,k−1}} is a
linked system and generates η ∈ λXB such that η ∈

∩i=k
i=1 F

+
i . Obviously,

η ∈
∩i=k

i=1 V
+
i , which contradicts the fact that

∩i=k
i=1 V

+
i ⊂ pB(U

+). �
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