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METRIZABLE IMAGES OF THE
SORGENFREY LINE

MIKHAIL PATRAKEEV

Abstract. We give descriptions of metrizable topological spaces
that are images of the Sorgenfrey line under continuous maps of
different types (open, closed, quotient and others). To obtain these
descriptions, we introduce the notion of a Lusin π-base; the Sorgen-
frey line and the Baire space have Lusin π-bases, and if a space X
has a Lusin π-base, then for each nonempty Polish space Y, there
exists a continuous open map f : X

onto−−−→ Y.

1. Introduction

The Sorgenfrey line, S, is the real line with topology whose base
consists of all half-open intervals of the form [a, b), where a < b. The
Sorgenfrey line is a hereditarily separable, hereditarily Lindelöf space with
an uncountable weight, and metrizable or compact subsets of S are count-
able [3, 4]. We study questions of the following form:

Let K be a class of continuous maps and suppose f ∈ K is a map from the
Sorgenfrey line onto a metrizable space X. What can we say about X?

The answers to these questions for some classes K are presented in
Table 1; all proofs are given in this paper (see the third column in Table 1).
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K, a class of Description of metrizable images Reference
continuous maps of the Sorgenfrey line to the proof

under maps from class K

All maps

Quotient maps Nonempty analytic

Pseudo-open maps spaces

Biquotient maps Corol. 3.12

Nonempty absolute Borel spaces
One-to-one maps in which every nonempty

open subset is uncountable

Open maps Nonempty Polish spaces Corol. 4.2

Closed maps Nonempty countable Corol. 5.6

Closed-open maps Polish spaces

Countable-to-one There are no such spaces Corol. 4.5

open maps

Table 1

Some of these results were obtained earlier: the description of metriz-
able images of the Sorgenfrey line under all continuous maps was received
by D. Motorov [9]; S. Svetlichnyi proved that every metrizable image of
S under a continuous open map is Polish [12]; the author of this paper
and N. Velichko independently constructed a continuous open map from S
onto the real line [10, 14], and N. Velichko proved in [14] that for each such
map, there is a point with preimage of cardinality 2ℵ0 . The description of
metrizable images of S under continuous one-to-one maps can be easily
derived from results of D.Motorov [9]. Also it is well known that the
Sorgenfrey line cannot be mapped onto a metrizable space by a perfect
map, since the perfect pre-images of metric spaces are the paracompact
p-spaces [1] and a paracompact p-space with a Gδ-diagonal is metrizable.

It is interesting to note that if a class K is among first six classes
listed in Table 1 (i.e., in case of all, quotient, pseudo-open, biquotient,
one-to-one or open continuous maps), then the metrizable images of the
Sorgenfrey line under maps from class K coincides with the metrizable
images of the Baire space under maps from class K. One of the reasons
for this similarity is that both the Sorgenfrey line and the Baire space
have Lusin π-bases (see Definition 3.4, Example 3.5 and Lemma 3.6), and
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that if a space X has a Lusin π-base, then for each nonempty Polish space
Y, there exists a continuous open map f : X

onto−−−→ Y (see Theorem 3.7).

2. Notations and terminology

By N we denote the set of natural numbers, where 0 ∈ N. Let A be any
set and n ∈ N; then by An (A<N, AN) we denote the set of sequences of
length n from A (the set of finite sequences from A, the set of countably
infinite sequences from A, respectively). The length of a sequence s is
denoted by length(s). We assume that there exists a (unique) sequence
of length zero and this sequence coincides with the empty set ∅; in par-
ticular, A0 = {∅} and length(∅) = 0. Suppose s = ⟨s0, . . . , sn−1⟩ ∈ An

and a ∈ A; then by ŝ a we denote the sequence ⟨s0, . . . , sn−1, a⟩ ∈ An+1,
and by s|m we denote the sequence ⟨s0, . . . , sm−1⟩ ∈ Am, where m ≤ n.
Likewise, if x = ⟨x0, x1, . . .⟩ ∈ AN, then the sequence ⟨x0, . . . , xn−1⟩ is
denoted by x|n; in particular, x|0 = ∅.

The Baire space is the space (NN, τB), where the topology τB is gener-
ated by the base (Ns)s∈N<N and

Ns := {x ∈ NN : x|n = s for some n ∈ N};

this base is called the standard base for the Baire space. Thus the Baire
space is a countable infinite topological power of a countably infinite dis-
crete space; note also that the Baire space is homeomorphic to the space
of irrational numbers [5, Ex. 3.4]. The set of reals is denoted by R, a real
segment and half-intervals are denoted by [a, b], [a, b), and (a, b]. The Sor-
genfrey line, S, is the space (R, τS) whose topology τS is generated by the
base

{
[a, b) : a, b ∈ R, a < b

}
. A Polish space is a separable completely

metrizable space. A space X is called analytic (absolute Borel) iff X is
homeomorphic to some analytic subset (some Borel subset) of some Polish
space.

A map f : X → Y is called open (closed, closed-open) iff for any open
(closed, closed-open, respectively) set U ⊆ X, its image f(U) is open
(closed, closed-open, respectively) in Y. A surjective map f : X → Y is
called quotient iff for any set A ⊆ Y, the preimage f−1(A) is open in X if
and only if A is open in Y. The definitions of pseudo-open and biquotient
maps can be found in the book [3]; we only note that in the class of
continuous maps every closed map is pseudo-open, every open map is
biquotient, every biquotient map is pseudo-open, and every pseudo-open
map is quotient. The symbol “ :=” means “equals by definition”. We say
X is countable iff |X| ≤ ℵ0. Other terminology can be found in the books
of R. Engelking [4] and A. Kechris [5].
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3. Sorgenfrey line and spaces with Lusin π-base

The construction of a continuous open map from the Sorgenfrey line
onto the real line [10] uses some special family of subsets of the Sorgen-
frey line. A generalization of this construction allows to build a continu-
ous open map from any space with analogous family of subsets onto any
nonempty Polish space (Theorem 3.7). We shall call such family a Lusin
π-base because this family is a Lusin scheme and a π-base simultaneously.

Recall that [5] a Lusin scheme on a set X is a family (Vs)s∈N<N of
subsets of X such that:

(L0) Vs ⊇ Vŝ n for all s ∈ N<N and n ∈ N.
(L1) Vŝ i ∩ Vŝ j = ∅ for all s ∈ N<N and i ̸= j in N.

Consider a special case of Lusin scheme:

Definition 3.1. A strict Lusin scheme on a set X is a Lusin scheme
(Vs)s∈N<N on X such that:

(L2) V∅ = X.
(L3) Vs =

∪
n Vŝ n for all s ∈ N<N.

(L4)
∩

n Vx|n is a singleton for all x ∈ NN.

Example 3.2. The standard base (Ns)s∈N<N for the Baire space (NN, τB)
is a strict Lusin scheme on the set NN.

This example is not random and the next lemma shows that every
strict Lusin scheme is closely related to the Baire space:

Lemma 3.3. Let (Vs)s∈N<N be a strict Lusin scheme on a set X and let
τ be the topology on X generated by the subbase {Vs : s ∈ N<N}. Then
the space (X, τ) is homeomorphic to the Baire space and each set Vs is
closed-open in (X, τ).

Proof. It follows from Definition 3.1 that for each x ∈ X, there is a unique
sequence σ(x) ∈ NN such that

{x} =
∩

n Vσ(x)|n.

Consider the map σ : X → NN defined in this way. This map is a
bijection, and for all s ∈ N<N, we have σ(Vs) = Ns, where Ns is an
element of the standard base for the Baire space (NN, τB). It follows that
the map σ : (X, τ) → (NN, τB) is a homeomorphism. Since each set Ns

is closed-open in the Baire space, we see that every set Vs is closed-open
in (X, τ). �
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Definition 3.4. A Lusin π-base for a space X is a strict Lusin scheme
(Vs)s∈N<N on X such that:

(L5) Each set Vs is open in X.
(L6) For any point x ∈ X and any of its neighbourhoods O(x), there

are s ∈ N<N and n0 ∈ N such that x ∈ Vs and
∪

n≥n0
Vŝ n ⊆ O(x).

It is clear that every Lusin π-base (Vs)s∈N<N for a space X is a π-
base for X (i.e., every Vs is nonempty open, and for any nonempty open
U ⊆ X, there is Vt such that Vt ⊆ U).

Example 3.5. The standard base (Ns)s∈N<N for the Baire space is a
Lusin π-base for the Baire space.

Lemma 3.6. The Sorgenfrey line has a Lusin π-base.

Proof. We build a Lusin π-base (Vs)s∈N<N for the Sorgenfrey line (R, τS)
by recursion on length(s). Let V∅ := R, and let the set {Vs : length(s) =
1} be the set of all half-intervals of the form [z, z + 1), where z is an
integer. For length(s) ≥ 1, consider an interval [as, bs) = Vs and let
(xn) be a sequence from [as, bs) such that x0 := as, xm+1 > xm, xm+1 −
xm < 1/length(s), and (xn) converges to bs in the real line with Euclidean
topology; then define Vŝ n := [xn, xn+1). �

It follows from Example 3.2 and Lemma 3.3 that the existence of a
strict Lusin scheme that is a base for topology is a characterization of
the Baire space. The existence of a Lusin π-base is a weaker property;
however, this property is sufficient to prove the next theorem:

Theorem 3.7. Suppose that X is a space with a Lusin π-base and Y
is a nonempty Polish space. Then there exists a continuous open map
f : X

onto−−−→ Y.

Corollary 3.8. Every nonempty Polish space is an image of the Sorgen-
frey line under some continuous open map.

The next lemma gives a description of spaces with a Lusin π-base; we
need this description to prove Theorem 3.7.

Lemma 3.9. For every space X, conditions (A) and (B) are equivalent:
(A) X has a Lusin π-base.
(B) There is a topology τ on the set NN such that:

(B0) the space (NN, τ) is homeomorphic to X;
(B1) τ is finer than the topology τB of the Baire space (NN, τB);
(B2) the standard base (Ns)s∈N<N for the Baire space is a Lusin

π-base for (NN, τ).
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Corollary 3.10. There exists a continuous one-to-one map from the
Sorgenfrey line onto the Baire space.

Proof of Lemma 3.9. The implication (B) → (A) is trivial, we prove
(A) → (B). Suppose (Vs)s∈N<N is a Lusin π-base for X. Consider the map
σ : X → NN from the proof of Lemma 3.3. Since σ is a bijection and
σ(Vs) = Ns for all s ∈ N<N, it follows that the topology τ :=

{
σ(U) :

U is open in X
}

satisfies (B0)–(B2). �

Proof of Theorem 3.7. Every nonempty Polish space is a continuous
open image of the Baire space (this was proved by Arhangel’skii in [2],
see also [5, Ex. 7.14]). So, using Lemma 3.9, we only need to construct a
continuous open map from (NN, τ) onto the Baire space (NN, τB), where
τ is a topology that satisfies conditions (B1)–(B2) of Lemma 3.9.

Consider a map φ : N → N such that for each n ∈ N, the preimage
φ−1(n) is infinite. For any function h with the range ran(h) ⊆ N, define
Φ(h) := φ ◦ h. In particular, for s = ⟨s0, . . . , sn−1⟩ ∈ N<N, we have

Φ(s) =
⟨
φ(s0), . . . , φ(sn−1)

⟩
∈ N<N

and for x = ⟨x0, . . . , xn, . . .⟩ ∈ NN, we have

Φ(x) =
⟨
φ(x0), . . . , φ(xn), . . .

⟩
∈ NN.

It is not hard to prove the following:

Φ[Ns] = NΦ(s) for all s ∈ N<N.(3.1)

Φ−1[Nt] =
∪
{Ns : Φ(s) = t} for all t ∈ N<N.(3.2)

Φ
[∪

k≥m Nŝ k

]
= Φ[Ns] for all s ∈ N<N and m ∈ N.(3.3)

We claim that the map Φ : (NN, τ) → (NN, τB) satisfies the required
conditions. It is surjective by (3.1) with s = ∅, it is continuous by
(3.2) and (B1), and it is open by (B2), (L6) of Definition 3.4, (3.3), and
(3.1). �

The next lemma is a strengthening of Corollary 3.10; in its proof we
use some ideas from paper [9] of D. Motorov.

Lemma 3.11. Let f : (R, τS) → Y be a continuous map from the Sorgen-
frey line to a space of countable weight. Then there exists a topology τ on
the set R such that:

• The topology τ is weaker than the topology τS of the Sorgenfrey
line.

• The space (R, τ) is homeomorphic to the Baire space.
• The map f : (R, τ) → Y is continuous.
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Proof. Let (Bλ)λ∈Λ be a countable base for the space Y. The Sorgenfrey
line is hereditarily Lindelöf, therefore for any set f−1(Bλ), which is open
in (R, τS), there exists a sequence

(
[cλ,n, dλ,n)

)
n∈N from the base

{
[c, d) :

c, d ∈ R, c < d
}

such that

(3.4) f−1(Bλ) =
∪
n∈N

[cλ,n, dλ,n).

Let us build a Lusin π-base (Vs)s∈N<N for the Sorgenfrey line in the same
way as we built it in the proof of Lemma 3.6, where for each s ̸= ∅, we
had Vs = [as, bs); but in addition we demand the following:
(3.5)
{cλ,n : λ ∈ Λ, n ∈ N} ∪ {dλ,n : λ ∈ Λ, n ∈ N} ⊆

{
bs : s ∈ N<N \ {∅}

}
.

Let τ be the topology on R generated by the subbase
{
Vs : s ∈ N<N};

this topology is weaker than τS. By Lemma 3.3, (R, τ) is homeomorphic
to the Baire space and each set Vs = [as, bs) is closed-open in (R, τ).
This implies that each set {x ∈ R : x < bs} is also closed-open in (R, τ),
whence using (3.5) we see that every set [cλ,n, dλ,n) is open in (R, τ). It
now follows from (3.4) that the set f−1(Bλ) is open in (R, τ) for all λ ∈ Λ,
hence the map f : (R, τ) → Y is continuous. �
Corollary 3.12. Let Y be a metrizable space. Then:

(i) Y is an image of the Sorgenfrey line under some continuous map
iff Y is a nonempty analytic space.

(ii) Y is an image of the Sorgenfrey line under some continuous one-
to-one map iff Y is a nonempty absolute Borel space in which
every nonempty open subset is uncountable.

(iii) Y is an image of the Sorgenfrey line under some continuous quo-
tient (biquotient, pseudo-open) map iff Y is a nonempty analytic
space.

Proof. Suppose Y is a metrizable space. Since the Sorgenfrey line is sep-
arable, its metrizable images have countable weight. Therefore it follows
from Corollary 3.10 and Lemma 3.11 that Y is an image of the Sorgenfrey
line under some continuous (continuous one-to-one) map iff Y is an image
of the Baire space under some continuous (continuous one-to-one) map.

Part (i) of the corollary now follows from the fact that Y is a continu-
ous image of the Baire space iff Y is a nonempty analytic space [5, Df. 14.1
and Th. 7.9]. Part (ii) follows from the analogous description of metriz-
able continuous one-to-one images of the Baire space. One direction of
this description follows from the fact that in the class of Polish spaces a
continuous one-to-one image of a Borel set is Borel [5, Th. 15.1] and from
the fact that one-to-one maps preserve cardinality. Another direction was
proved by W. Sierpinski [6, Footnote 1 on p. 447].
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It remains to prove the implication from right to left in part (iii).
Suppose Y is a nonempty analytic space; then, as we mentioned above, Y
is a continuous image of the Baire space. E. Michael and A. Stone proved
in [8] (this result was not included in the formulation of a theorem, but was
actually proved on p. 631) that in this case Y is a continuous biquotient
image (and hence is a pseudo-open image and is a quotient image [3,
Ch. 6, Pr. 13 and 14]) of the Baire space. On the other hand Corollary 3.8
says that the Baire space is a continuous open image of the Sorgenfrey
line. It can easily be verified that a composition of a continuous open
map and a continuous biquotient (pseudo-open, quotient) map is again
a continuous biquotient (pseudo-open, quotient, respectively) map. This
implies that Y is a continuous biquotient (pseudo-open, quotient) image
of the Sorgenfrey line. �

4. Open maps and Choquet games

Now in order to study open maps from the Sorgenfrey line to metrizable
spaces we consider the notions of Choquet game and strong Choquet
game. The Choquet game on a nonempty space X is defined as follows:
two players, I and II, alternately choose nonempty open sets

I U0 U1 . . .
II V0 V1 . . .

such that U0 ⊇ V0 ⊇ U1 ⊇ V1 . . . . Player II wins the run (U0, V0, . . .)
of Choquet game on X iff

∩
n Vn ̸= ∅; otherwise player I wins this run.

A nonempty space X is called a Choquet space iff player II has a win-
ning strategy in the Choquet game on X. The strong Choquet game on a
nonempty space X is defined in the same way, except that the n-th move
of player I is a pair (Un, xn), where Un ⊆ Vn−1 is open and xn ∈ Un,
and the n-th move of player II is an open Vn ⊆ Un such that xn ∈ Vn.
A nonempty space X is called a strong Choquet space iff player II has a
winning strategy in the strong Choquet game on X. More precise defini-
tions of this notions can be found in [5].

It is easy to verify that every space with a Lusin π-base is a Choquet
space. On the other hand, there is a separable metrizable space with a
Lusin π-base that is not strong Choquet [11]. Nevertheless, the following
holds:

Lemma 4.1. The Sorgenfrey line is a strong Choquet space.

Proof. We must build a winning strategy for II in the strong Choquet
game on the Sorgenfrey line. Suppose the n-th move of I is (Un, xn), where
xn ∈ Un. There are yn and zn such that [xn, yn) ⊆ Un and zn ∈ (xn, yn).
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Let us tell player II to play Vn := [xn, zn) in his n-th move. We have

U0 ⊇ [x0, z0] ⊇ V0 ⊇ U1 ⊇ [x1, z1] ⊇ V1 . . . ,

therefore ∩
n Vn ⊇

∩
n[xn+1, zn+1] ̸= ∅,

hence this strategy is winning for player II. �

Corollary 4.2. Let Y be a metrizable space. Then Y is an image of
the Sorgenfrey line under some continuous open map iff Y is a nonempty
Polish space.

Proof. The implication from right to left is proved in Corollary 3.8. The
implication from left to right follows from the facts that a continuous
open image of a strong Choquet space is strong Choquet [5, Ex. 8.16],
that a continuous image of a separable space is separable, and that every
separable metrizable strong Choquet space is Polish [5, Th. 8.17]. �

If a Choquet space is metrizable, then player II has a strategy such
that the set

∩
n Vn is always a singleton. We shall use such strategy to

show that there is no continuous open countable-to-one map from the
Sorgenfrey line onto a metrizable space.

Definition 4.3. The strict Choquet game on a nonempty space X is
defined in the same way as Choquet game, except that player II wins the
run (U0, V0, . . .) iff the set

∩
n Vn is a singleton. A nonempty space X is

called a strict Choquet space iff player II has a winning strategy in the
strict Choquet game on X.

Theorem 4.4. Let X be a nonempty Hausdorff Choquet space, Y a strict
Choquet space, and f : X → Y a continuous open map. Then at least one
of the following conditions holds:

(i) There exists a nonempty open set U ⊆ X such that the restriction
f � U : U → f(U) is a homeomorphism.

(ii) The preimage f−1(y) of some point y ∈ Y has cardinality ≥ 2ℵ0 .

Proof. Suppose that condition (i) does not hold; we must prove that
condition (ii) holds. To do this we shall build families (Ws)s∈{0,1}<N ,

(Us)s∈{0,1}<N , and (Vs)s∈{0,1}<N of subsets of X and sequences (W̃n), (Ũn),

and (Ṽn) of subsets of Y such that the following conditions hold:
(a) Ws, Us, Vs are nonempty open subsets of X for all s ∈ {0, 1}<N.

(ã) W̃n, Ũn, Ṽn are nonempty open subsets of Y for all n ∈ N.
(b) Ws ⊇ Us ⊇ Vs ⊇ Wŝ k for all s ∈ {0, 1}<N and k ∈ {0, 1}.
(b̃) W̃n ⊇ Ũn ⊇ Ṽn ⊇ W̃n+1 for all n ∈ N.
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(c) For each σ ∈ {0, 1}N, the sequence (Uσ|0, Vσ|0, Uσ|1, Vσ|1, . . .) is a
run of Choquet game on X in which player II plays according to
some (fixed) winning strategy.

(c̃) The sequence (Ũ0, Ṽ0, Ũ1, Ṽ1, . . .) is a run of strict Choquet game
on Y in which player II plays according to some (fixed) winning
strategy.

(d) The family (Ws)s∈{0,1}n covers the set W̃n for all n ∈ N,

where we say “a family (Pλ)λ∈Λ covers a set Q” iff the following
holds:

◦ Pλ is a nonempty open subset of X for all λ ∈ Λ;
◦ Q is a nonempty open subset of Y ;
◦ the family (Pλ)λ∈Λ is disjoint;
◦ f(Pλ) = Q for all λ ∈ Λ.

Let us show that condition (ii) of the theorem follows from (a)–(d) and
(ã)–(c̃). Using (c̃), we can define the desired point y ∈ Y by the formula
{y} =

∩
n Ṽn. It follows from (b̃) that

∩
n W̃n =

∩
n Ṽn (= {y}). We can

use (d) to show that f(
∩

n Wσ|n) ⊆
∩

n W̃n (= {y}) for all σ ∈ {0, 1}N;
therefore,

f−1(y) ⊇
∪

σ∈{0,1}N

( ∩
n∈N

Wσ|n

)
.

Condition (b) implies that
∩

n Wσ|n =
∩

n Vσ|n, condition (c) implies that
every set

∩
n Vσ|n is not empty, thus every set

∩
n Wσ|n is not empty.

Using (d), it is easy to prove that the family (
∩

n Wσ|n)σ∈{0,1}N is disjoint.
This means that |f−1(y)| ≥ |{0, 1}N| = 2ℵ0 , that is condition (ii) of the
theorem holds.
To complete the proof, it remains to build the sets Ws, Us, Vs, W̃n, Ũn, Ṽn.

Before doing this, let us prove that for any set Q ⊆ Y and any finite family
(P0, . . . , Pm) that covers Q, the following four statements hold:

(p) There exist a set Q′ ⊆ Q and a family (P ′
0, P

′′
0 , P

′
1, P

′
2, . . . , P

′
m)

that covers Q′ such that P ′
0, P

′′
0 ⊆ P0, P ′

1 ⊆ P1, P
′
2 ⊆ P2, . . . ,

P ′
m ⊆ Pm.

(q) There exist a set Q′ ⊆ Q and a family (P ′
0, P

′′
0 , P

′
1, P

′′
1 , . . . , P

′
m, P ′′

m)
that covers Q′ such that P ′

0, P
′′
0 ⊆ P0, . . . , P ′

m, P ′′
m ⊆ Pm.

(r) For any k ∈ {0, . . . ,m} and any nonempty open (in X) set R ⊆ Pk,
there exist a set Q′ ⊆ Q and a family (P ′

0, . . . , P
′
m) that covers Q′

such that P ′
0 ⊆ P0, . . . , P

′
m ⊆ Pm and P ′

k ⊆ R.
(s) For any nonempty open (in Y) set S ⊆ Q, there exist a set Q′ ⊆ S

and a family (P ′
0, . . . , P

′
m) that covers Q′ such that P ′

0 ⊆ P0, . . . ,
P ′
m ⊆ Pm.
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Let us check that statement (p) holds. Since every continuous open
one-to-one map is a homeomorphism and since condition (i) of Theo-
rem 4.4 does not hold, it follows that the nonempty open set P0 contains
two different points p′, p′′ ∈ P0 such that f(p′) = f(p′′). Let Op′ , Op′′ ⊆ P0

be disjoint open neighbourhoods of p′ and p′′. Let

Q′ := f(Op′) ∩ f(Op′′), P ′
0 := f−1(Q′) ∩Op′ ,

P ′′
0 := f−1(Q′) ∩Op′′ , and P ′

i := f−1(Q′) ∩ Pi

for i ∈ {1, . . . ,m}. It is easy to verify that the sets P ′
0, P

′′
0 , P

′
1, . . . , P

′
m,

and Q′ satisfies (p). The statements (r) and (s) can be proved by similar
arguments. To prove statement (q) it is enough to apply statement (p)
m+ 1 times.

Now we can construct the sets Ws, Us, Vs, W̃n, Ũn, Ṽn such that (a)–(d)
and (ã)–(c̃) hold; we build them by recursion on n = length(s). If n = 0

(that is, s = ∅), let W∅ := X and W̃0 := f(X). Note that (d) holds for
n = 0, since {0, 1}0 = {∅}. Fix a winning strategy for player II in the
Choquet game on X and a winning strategy for player II in the strict
Choquet game on Y. Suppose we have constructed Ws for length(s) ≤ n,

Us and Vs for length(s) < n, W̃k for k ≤ n, and Ũk and Ṽk for k < n.
Let {0, 1}n = {s0, . . . , sm}, where all si are different. First we build
Us0 , Vs0 ,. . . ,Usm , Vsm , next Ũn and Ṽn, and finally Ws for s ∈ {0, 1}n+1

and W̃n+1.
Let Us0 := Ws0 and define Vs0 to be the set that II plays according to

his fixed winning strategy in answer to

(Us0|0, Vs0|0, . . . , Us0|(n−1), Vs0|(n−1), Us0).

Apply (r) to the family (Ws0 , . . . ,Wsm), which covers W̃n : for k = 0 and
the nonempty open Vs0 ⊆ Ws0 , there exist a set Ã

(0)
n ⊆ W̃n and a family(

A
(0)
s0 , . . . , A

(0)
sm

)
that covers Ã

(0)
n such that

A(0)
s0 ⊆ Ws0 , . . . , A(0)

sm ⊆ Wsm and A(0)
s0 ⊆ Vs0 .

Let Us1 := A
(0)
s1 and define Vs1 to be the set that II plays according to

his fixed winning strategy in answer to

(Us1|0, Vs1|0, . . . , Us1|(n−1), Vs1|(n−1), Us1).

Apply (r) to the family
(
A

(0)
s0 , . . . , A

(0)
sm

)
, which covers Ã(0)

n : for k = 1 and
the nonempty open Vs1 ⊆ A

(0)
s1 , there exist a set Ã(1)

n ⊆ Ã
(0)
n and a family(

A
(1)
s0 , . . . , A

(1)
sm

)
that covers Ã

(1)
n such that

A(1)
s0 ⊆ A(0)

s0 , . . . , A(1)
sm ⊆ A(0)

sm and A(1)
s1 ⊆ Vs1 .
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Repeat this process until we get a set Ã
(m)
n ⊆ Ã

(m−1)
n and a family(

A
(m)
s0 , . . . , A

(m)
sm

)
that covers Ã

(m)
n such that

A(m)
s0 ⊆ A(m−1)

s0 , . . . , A(m)
sm ⊆ A(m−1)

sm and A(m)
sm ⊆ Vsm .

Let Ũn := Ã
(m)
n and define Ṽn to be the set that II plays according to

his fixed winning strategy (in the strict Choquet game on Y ) in answer to
(Ũ0, Ṽ0, . . . , Ũn). Apply (s) to the family

(
A

(m)
s0 , . . . , A

(m)
sm

)
, which covers

Ã
(m)
n : for the nonempty open Ṽn ⊆ Ã

(m)
n , there exist a set B̃n ⊆ Ṽn and

a family (Bs0 , . . . , Bsm) that covers B̃n such that

Bs0 ⊆ A(m)
s0 , . . . , Bsm ⊆ A(m)

sm .

Apply (q) to the family (Bs0 , . . . , Bsm), which covers B̃n : there exist a set
W̃n+1 ⊆ B̃n and a family (Ws0̂0,Ws0̂1, . . . ,Wsm̂0,Wsm̂1) = (Ws)s∈{0,1}n+1

that covers W̃n+1 such that

Ws0̂0,Ws0̂1 ⊆ Bs0 , . . . , Wsm̂0,Wsm̂1 ⊆ Bsm .

It is not hard to check that the constructed sets satisfy conditions (a)–
(d) and (ã)–(c̃). This concludes the proof. �

Corollary 4.5. Let f : S → Y be a continuous open map from the Sor-
genfrey line onto a metrizable space Y. Then the preimage f−1(y) of some
point y ∈ Y has cardinality 2ℵ0 .

Proof. By Lemma 4.1, the Sorgenfrey line is a strong Choquet space. The
space Y is a continuous open image of S, thus Y is also a strong Choquet
space [5, Ex. 8.16]; therefore both Sorgenfrey line and Y are Choquet
spaces.

The space Y, being metrizable Choquet space, is a strict Choquet space;
a winning strategy for player II can be built as follows. Fix a winning
strategy for II in the Choquet game on Y. Suppose I plays Un in his n-th
move. Let U ′

n ⊆ Un be any nonempty open set of diameter less than
1/n. To win (in the strict Choquet game) II must play the set that the
winning strategy in the Choquet game tells him to choose in case I played
U ′
n instead of Un.
Now we can use Theorem 4.4. Every nonempty open subset of the

Sorgenfrey line contains a copy of S, which is not metrizable. This implies
that condition (i) of Theorem 4.4 does not hold. �

5. Closed maps and scattered spaces

We now turn to study closed maps from the Sorgenfrey line to metric
spaces, and we shall deal with scattered spaces. Let us recall some ter-
minology. The space X is called scattered iff every nonempty subspace



METRIZABLE IMAGES OF THE SORGENFREY LINE 265

of X contains an isolated point. By I(A) we denote the set of isolated
points of a subspace A. Let X be a space and α an ordinal. The α-th
Cantor–Bendixson level of X, Iα(X), is defined by recursion on α :

Iα(X) := I
(
X \

∪{
Iβ(X) : β < α

})
.

In particular, the 0-th Cantor–Bendixson level of X is the set of isolated
points of X. Since the family of nonempty Cantor–Bendixson levels of
X is disjoint, there is the first ordinal α such that Iα(X) is empty; this
ordinal α, denoted by ht(X), is called the Cantor–Bendixson height of
X. If a space X is scattered, then the family of Cantor–Bendixson levels
below ht(X) is a partition of X, and for each x ∈ X, there is a unique α
such that x ∈ Iα(X); we call this ordinal α the Cantor–Bendixson height
of x in X and denote by ht(x,X).

Lemma 5.1. Let X be a scattered space.
(i) If A ⊆ X and x ∈ A, then ht(x,A) ≤ ht(x,X).
(ii) If A ⊆ X, then ht(A) ≤ ht(X).
(iii) Each point x ∈ X has a neighbourhood O(x) such that

ht
(
O(x) \ {x}

)
≤ ht(x,X).

Theorem 5.2. Suppose X is a nonempty zero-dimensional T1-space of
countable character such that every nonempty closed-open subset A ⊆ X
can be decomposed into a countable infinite disjoint union

∪
n An with each

An nonempty and closed-open in A. Suppose also that Y is a nonempty
scattered metrizable space of countable cardinality. Then there exists a
continuous closed-open map f : X

onto−−−→ Y.

Corollary 5.3. Let Y be a nonempty Polish space of countable cardinal-
ity. Then there exists a continuous closed-open map from the Sorgenfrey
line onto Y.

Proof of Corollary 5.3. The Sorgenfrey line satisfies the conditions on
X in Theorem 5.2 and every countable Polish space is scattered [6, § 34,
IV, Cor. 4], so we can use the theorem. �

Let A be the class of all spaces that satisfy the conditions imposed on
X in the premises of Theorem 5.2; likewise, let B be the class of all spaces
that satisfy the conditions imposed on Y.

Lemma 5.4. Let
⊕

λ∈Λ Wλ be a topological sum of spaces, where 0 <
|Λ| ≤ ℵ0, and suppose that for each space X ∈ A and for each λ ∈ Λ,
there exists a continuous closed-open map from X onto Wλ. Then for each
X ∈ A, there exists a continuous closed-open map f : X

onto−−−→
⊕

λ∈Λ Wλ.
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Proof of Lemma 5.4. First consider the case |Λ| = ℵ0; let Λ = {λn :
n ∈ N} and all λn are different. Suppose X belongs to the class A;
then X can be written as a topological sum

⊕
n∈N Xn of nonempty sub-

spaces. Note that each Xn, being a nonempty closed-open subspace of
X, also lies in A. So, for each n ∈ N, there exists a continuous closed-
open map fn : Xn

onto−−−→ Wλn . It is easy to verify that the sum of maps⊕
n fn :

⊕
n Xn −→

⊕
n Wλn is a continuous closed-open map from X

onto
⊕

λ∈Λ Wλ.
Now suppose that 0 < |Λ| < ℵ0; let Λ = {λ0, . . . , λm}. If we consider

the set X ′
m := X \ (X0 ∪ . . . ∪ Xm−1), which is closed-open in X, then

we can write X as X0 ⊕ . . . ⊕ Xm−1 ⊕ X ′
m. The rest of construction is

similar. �

Proof of Theorem 5.2. The theorem says that for every space X from
the class A and every space Y from the class B, there exists a continuous
closed-open map f : X

onto−−−→ Y. We prove this by induction on α = ht(Y ).
The inductive hypothesis says that for each X ′ ∈ A and each Y ′ ∈ B such
that ht(Y ′) < α, there exists a continuous closed-open map f ′ : X ′ → Y ′.

Suppose X ∈ A, Y ∈ B and ht(Y ) = α. Using part (iii) of Lemma 5.1,
to each y ∈ Y assign a neighbourhood O(y) such that ht

(
O(y) \ {y}

)
≤

ht(y, Y ). Since ht(y, Y ) < ht(Y ) = α, we have

(5.1) ht
(
O(y) \ {y}

)
< α.

The Y is a nonempty regular space of countable cardinality, hence Y is
zero-dimensional [4, Cor. 6.2.8], and for each y ∈ Y, there is a closed-open
neighbourhood O′(y) such that y ∈ O′(y) ⊆ O(y). We may assume that
if y is an isolated point of Y, then O′(y) = {y}. The family γ :=

{
O′(y) :

y ∈ Y
}

is countable cover of Y and members of γ are closed-open in Y .
Clearly, we can construct a disjoint countable cover µ of Y such that µ
refines γ and members of µ are nonempty and closed-open in Y. Since
Y is nonempty and can be written as

⊕
{W : W ∈ µ}, it follows from

Lemma 5.4 that to conclude the proof, it remains to build a continuous
closed-open map from Z onto W for each Z ∈ A and W ∈ µ.

Suppose Z ∈ A and W ∈ µ. Since µ refines γ, there exists y0 ∈ Y such
that W ⊆ O′(y0). We consider three cases:

Case 1. y0 /∈ W. Then W ⊆ O(y0)\{y0}. Combining (5.1) with part (ii)
of Lemma 5.1, we get ht(W ) < α. Since W is a nonempty subspace of Y,
we have W ∈ B, therefore a continuous closed-open map f : Z

onto−−−→ W
exists by the inductive hypothesis.

Case 2. y0 ∈ W and y0 is an isolated point of W. Then y0 is an
isolated point of Y, therefore O′(y0) = {y0}, whence W = {y0}. Clearly,
there exists a continuous closed-open map f : Z

onto−−−→ W in this case.
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Case 3. y0 ∈ W and y0 is not an isolated point of W. Let z0 ∈ Z.
We shall build a sequence (Zn) of subsets of Z and a sequence (Wn) of
subsets of W such that the following holds:

(a) Zn is a nonempty closed-open subset of Z for each n ∈ N.
(ã) Wn is a nonempty closed-open subset of W for each n ∈ N.
(b) The family (Zn)n∈N is a partition of Z \ {z0}.
(b̃) The family (Wn)n∈N is a partition of W \ {y0}.
(c) The family

{
Z \ (Z0 ∪ . . . ∪ Zn) : n ∈ N

}
is a base for the space

Z at the point z0.
(c̃) The family

{
W \ (W0 ∪ . . .∪Wn) : n ∈ N

}
is a base for the space

W at the point y0.

Next we shall build a map f : Z → W such that:

(d) f(z0) = y0.
(e) f(Zn) = Wn for each n ∈ N.
(f) The restriction f |Zn : Zn → Wn is continuous and closed-open for

each n ∈ N.

It follows from (a)–(f) and (ã)–(c̃) that the map f : Z → W is surjective,
continuous and closed-open. So we must accomplish the construction to
finish the proof.

First we build the sequence (Zn) of subsets of Z. Since Z ∈ A and
the set {z0} ⊆ Z cannot be decomposed into a countable infinite disjoint
union, {z0} is not closed-open in Z; that is, z0 is not an isolated point of
Z. Since Z is a T1-space of countable character, we can build a strictly
decreasing sequence U0 % U1 % . . . of open sets in Z such that the family
{Un : n ∈ N} is a base for Z at z0 and

∩
n Un = {z0}. The space Z is

zero-dimensional, therefore we may assume that all Un are closed-open in
Z; we may also assume that U0 = Z. Now let Zn := Un \ Un+1. Clearly,
the sequence (Zn) satisfies (a), (b), and (c).

Since y0 is not an isolated point of W, and W is a subspace of Y,
which is metrizable and (as was mentioned above) zero-dimensional, the
sequence (Wn) that satisfies (ã), (b̃), and (c̃) can be built in the same
way.

Finally, we build the map f : Z → W. By (b̃), Wn ⊆ W \ {y0} for each
n ∈ N. The choice of y0 implies that W \ {y0} ⊆ O(y0) \ {y0}. Using (5.1)
and part (ii) of Lemma 5.1, we obtain ht(Wn) < α. Since Z ∈ A and
W ⊆ Y ∈ B, it follows from (a) and (ã) that Zn ∈ A and Wn ∈ B. Now,
by the inductive hypothesis, there exists a continuous closed-open map
fn : Zn

onto−−−→ Wn.
Let the map f : Z → W be given by f(z0) := y0 and f(z) := fn(z) for

z ∈ Zn. This completes the proof, since f satisfies (d)–(f). �
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The next lemma gives a reverse inclusion for descriptions of metrizable
images of the Sorgenfrey line under continuous closed and under contin-
uous closed-open maps.

Lemma 5.5. Suppose that a metrizable space Y is an image of the Sor-
genfrey line under a continuous closed map. Then Y is a Polish space of
countable cardinality.

Proof. Let f be a continuous closed map from S onto a metrizable Y. Since
S is paracompact and Y is first countable [7] there is a closed subspace
H ⊆ S such that f |H is a perfect map onto Y. Hence the pre-image H is
a paracompact p-space [1] with a Gδ-diagonal and so H is a metrizable
subspace of S and must be countable.

The Sorgenfrey line is hereditarily Lindelöf and has a base which con-
sists of Fσ-subsets of the Euclidean real line (R, τE), so H is a Gδ-subset
of (R, τE). Then H, as a subspace of (R, τE), is completely metrizable and
so must be scattered [6, § 34, IV, Cor. 4]. It follows that H, as a subspace
of S, must also be scattered. The perfect image Y of H is also scattered
[Te]. This says that Y is a Polish space [6, § 24, III, Cor. 1a]. �

The following statement is an immediate consequence of Lemma 5.5
and Corollary 5.3:

Corollary 5.6. Let Y be a metrizable space. Then Y is an image of the
Sorgenfrey line under some continuous closed (closed-open) map iff Y is
a nonempty countable Polish space.

References

[1] A.V. Arhangel’skii, On a class of spaces containing all metric spaces and all
locally bicompact spaces, Sov. Math. Dokl., 4 (1963), 751–754.

[2] , Open and close-to-open mappings. Relations among spaces, Trudy
Moskov Mat. Obšč. 1966, no. 15, 181–223.

[3] A.V. Arkhangel’skii and V. I. Ponomarev, Osnovy obschej topologii v zadachakh i
uprazhnenijakh, Izdatel’stvo ’Nauka’, Moscow, 1974 (in Russian); English transla-
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