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ON ONE-LOCAL RETRACT IN QUASI-METRIC SPACES

OLIVIER OLELA OTAFUDU

Abstract. We study a concept of 1-local retract in quasi-metric
spaces. In this article, we generalize further known results about
1-local retract subsets from metric setting to quasi-metric point of
view. In particular we show that any commuting family of nonex-
pansive self-mappings in a nonempty T0-quasi-metric space (X, d)
for which Aq(X) is compact and normal has a common fixed point
and the common fixed point set is a 1-local retract of (X, d).

1. Introduction

A subset A of a metric space (X,m) is said to be a 1-local retract of
(X,m) if for every family {Bi; i ∈ I} of closed balls centered in A with
nonempty intersection, then A ∩ ((Bi)i∈I) ̸= ∅ (see [3], compare [4]). In
[4], Khamsi showed that any commutative family of nonexpansive self-
mapping defined on a metric space with compact and normal convexity
structure has a common fixed point. In this article, we study the concept
of 1-local retract in asymmetric setting. Among other things in this pa-
per we consider subspaces 1-local retracts of a nonempty T0-quasi-metric
space and also present some fixed point theorems. In particular we prove
that a nonexpansive self-mapping nonempty T0-quasi-metric space (X, d)
for which the set of all q-admissible subsets of X is compact and normal
has at least one fixed point.

The concept of 1-local retract is due to Pouzet [4, p.4] and it has
been investigated in detail by Khamsi and others (see for instance [3] and
[4]). Our investigations are done in parallel with the well-known metric
theory of 1-local retract (see [4]) and they confirm the surprising fact
that many classical results about 1-local retract in metric spaces do not
make essential use of the symmetry of the metric and thus still hold in
quasi-metric spaces.
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2. Basic definitions and results

We begin by recalling the most important definitions that we shall use
in this article.

Definition 2.1. Let X be a set and let d : X×X → [0,∞) be a function
mapping into the set [0,∞) of the nonnegative reals. Then, d is called a
quasi-pseudometric on X if

(a) d(x, x) = 0 whenever x ∈ X,
(b) d(x, z) ≤ d(x, y) + d(y, z) whenever x, y, z ∈ X.
We shall say that d is a T0-quasi-metric provided that d also satisfies

the following condition: For each x, y ∈ X,
d(x, y) = 0 = d(y, x) implies that x = y.

Remark 2.2. Let d be a quasi-pseudometric on a set X, then d−1 :
X ×X → [0,∞) defined by d−1(x, y) = d(y, x) whenever x, y ∈ X is also
a quasi-pseudometric, called the conjugate quasi-pseudometric of d. As
usual, a quasi-pseudometric d on X such that d = d−1 is called a pseudo-
metric. Note that for any (T0-)quasi-pseudometric d, ds = max{d, d−1} =
d ∨ d−1 is a pseudometric (metric).

Let (X, d) be a quasi-pseudometric space. For each x ∈ X and ϵ > 0,
Bd(x, ϵ) = {y ∈ X : d(x, y) < ϵ} denotes the open ϵ-ball at x. The collec-
tion of all “open” balls yields a base for a topology τ(d). It is called the
topology induced by d on X. Similarly we set for each x ∈ X and ϵ ≥ 0,
Cd(x, ϵ) = {y ∈ X : d(x, y) ≤ ϵ}. Note that this latter set is τ(dt)-closed,
but not τ(d)-closed in general.

If a, b ∈ R, we shall put a−̇b = max{a− b, 0}. Note that u(x, y) = x−̇y
with x, y ∈ R defines a T0 quasi-metric on the set R of the reals.

A map f : (X, d) → (Y, e) between two quasi-pseudometric spaces
(X, d) and (Y, e) is called an isometry provided that e(f(x), f(y)) =
d(x, y) whenever x, y ∈ X.

Two quasi-pseudometric spaces (X, d) and (Y, e) will be called isometric
provided that there exists a bijective isometry f : (X, d) → (Y, e).

A map f : (X, d) → (Y, e) between two quasi-pseudometric spaces
(X, d) and (Y, e) is called nonexpansive provided that e(f(x), f(y)) ≤
d(x, y) whenever x, y ∈ X.

Let (X, d) be a T0-quasi-metric space. For a nonempty bounded sub-
space A of X, we set:

rx(A)d := sup{d(x, y) : y ∈ A},where x ∈ X

and
rx(A)d−1 := sup{d−1(x, y) : y ∈ A},where x ∈ X.
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Moreover, let

rx(A) := rx(A)d ∨ rx(A)d−1 ,where x ∈ X

and
r(A) := inf{rx(A) : x ∈ A}.

Also, we set
diam(A) := sup{d(x, y) : x, y ∈ A}.

Furthermore
C(A) := {x ∈ A : rx(A) = r(A)}.

Finally,

cov(A)d := ∩{Cd(x, r) : A ⊆ Cd(x, r), x ∈ X, r ≥ 0}
and

cov(A)d−1 := ∩{Cd−1(x, s) : A ⊆ Cd−1(x, s), x ∈ X, s ≥ 0}
and

bicov(A) := cov(A)d ∩ cov(A)d−1 .

Note that the values of diam(A),rx(A), r(A) and C(A) do not change
when defined for the space (X, ds) instead of (X, d).

Remark 2.3. ([7, Remark 4.1.1]) Let (X, d) be a T0-quasi-metric space.
Let A be a nonempty bounded subset in X. Then

cov(A)ds = ∩{Cds(x, r) : A ⊆ Cds(x, r), x ∈ X, r ≥ 0}.
Obviously we have bicov(A) ⊆ cov(A)ds .

Example 2.4. ([6, Example 1]) Let X = [0, 1] × [ 14 ,
3
4 ] be equipped

with the T0-quasi-metric defined by D((α, β), (α
′
, β

′
)) = (α−̇α

′
)∨(β−̇β

′
)

whenever (α, β), (α
′
, β

′
) ∈ X.

Consider A = {(0, 1
2 ), (1,

1
2 )} ⊆ X. Then bicov(A) is equal to the line

segment from x = (0, 1
2 ) to y = (1, 1

2 ). This follows from the fact that
for each ϵ ∈ [0, 1

4 ], y ∈ CD(x, ϵ) = [0, 1]× [ 12 − ϵ, 3
4 ] and x ∈ CD−1(y, ϵ) =

[0, 1] × [ 14 ,
1
2 + ϵ] and that segment is a subset of any set of the form

CD(a, r) ∩ CD−1(b, s) for which {x, y} ⊆ CD(a, r) ∩ CD−1(b, s). Indeed
assume that z belongs to this segment. Then D(z, y) = 0 = D(x, z) and
therefore z ∈ CD(a, r) ∩ CD−1(b, s) by the triangle inequality.

On the other hand cov(A)ds = X, since {x, y} ⊆ CDs(z, ϵ) with
z ∈ X implies that ϵ ≤ 1

2 . Indeed assume that z = (a, b). Then
a ≤ Ds((a, b), (0, 1

2 )) ≤ ϵ and 1 − a ≤ Ds((a, b), (a, 1
2 )) ≤ ϵ. Thus

ϵ ≥ max{a, 1 − a} ≥ 1
2 . It follows that X ⊆ CDs(z, ϵ), because the

interval [ 14 ,
3
4 ] has length 1

2 . Therefore covDs(A) = X.

The following lemma should be compared with [3, Lemma 4.1].
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Proposition 2.5. (Compare [7, Lemma 4.1.1]) Let A be a nonempty
bounded subspace of a T0-quasi-metric space (X, d). Then:

(1) bicov(A) =
∩

x∈A(Cd(x, rx(A)d) ∩ Cd−1(x, rx(A)d−1)).
(2) rx(bicov(A)) = rx(A), whenever x ∈ X.
(3) r(bicov(A)) ≤ r(A).
(4) diam(bicov(A)) = diam(A).

Proof. (1) Let x∈X. For y ∈A, we have d(x, y)≤ sup{d(x, y) : y ∈X}.
Then d(x, y) ≤ rx(A)d which implies y ∈ Cd(x, rx(A)d). Hence A ⊆
Cd(x, rx(A)d) whenever x ∈ X. It must therefore be the case that
cov(A)d ⊆ Cd(x, rx(A)d) whenever x ∈ X.

Similarly one can show that A ⊆ Cd−1(x, rx(A)d−1) whenever x ∈ X.
We then have cov(A)d−1 ⊆ Cd−1(x, rx(A)d−1) whenever x ∈ X.

Then

(2.1) bicov(A) ⊆
∩

x∈X
(Cd(x, rx(A)d) ∩ Cd−1(x, rx(A)d−1)).

On the other hand, suppose that A ⊆ Cd(x, r) and A ⊆ Cd−1(x, s)
for some x ∈ X and r, s ≥ 0. For any y ∈ A, we have d(x, y) ≤ r
and d−1(x, y) ≤ s which implies ry(A)d ≤ r and ry(A)d−1 ≤ s. Thus
Cd(x, rx(A)d) ⊆ Cd(x, r). Hence Cd(x, rx(A)d) ⊆ cov(A)d whenever x ∈
X.

Similarly one can show that Cd(x, rx(A)d−1) ⊆ cov(A)d−1 whenever
x ∈ X.

Hence Cd(x, rx(A)d) ∩Cd−1(x, rx(A)d−1) ⊆ bicov(A) whenever x ∈ X.
Furthermore

(2.2)
∩

x∈X
(Cd(x, rx(A)d) ∩ Cd−1(x, rx(A)d−1)) ⊆ bicov(A).

Combination of (2.1) and (2.2) yields

bicov(A) =
∩

x∈X
(Cd(x, rx(A)d) ∩ Cd−1(x, rx(A)d−1)).

(2) By (1) we have that

rx(bicov(A))= sup{d(x, y) :y∈
∩

x∈X
(Cd(x, rx(A)d)∩Cd−1(x, rx(A)d−1)).

In particular, y ∈ bicov(A) implies that y ∈ Cd(x, rx(A)d) and y ∈
Cd−1(x, rx(A)d−1) whenever x ∈ X.

Hence d(x, y) ≤ rx(A)d and d−1(x, y) ≤ rx(A)d−1 , which implies

rx(bicov(A))d ≤ rx(A)d ≤ rx(A)

and
rx(bicov(A))d−1 ≤ rx(A)d−1 ≤ rx(A).

Altogether we have rx(bicov(A)) = rx(bicov(A))d ∨ rx(bicov(A))d−1 ≤
rx(A). The reverse inequality is obvious since A ⊆ bicov(A).



ON ONE-LOCAL RETRACT IN QUASI-METRIC SPACES 275

(3) This is immediate from the definition of r and property (2).

The proof of (4) can be completed similarly as in the proof of [3, Lemma
4.1]. Moreover, diam(A) is a concept from symmetric topology. �

Let us mention that it has been proved in [7] that if (X, d) is a q-
hyperconvex space in Proposition 2.5, the assertion (3) is an equality.

We next define a q-admissible subset of a T0-quasi-metric space simi-
larly to [3, Definition 4.2].

Definition 2.6. ([7, Definition 4.1.1]) Let (X, d) be a T0-quasi-metric
space. A nonempty bounded subset D of X is q-admissible if D =
bicov(D).

The collection of all q-admissible subsets of a T0-quasi-metric space
(X, d) will be denoted by Aq(X).

Remark 2.7. ([7, Remark 4.1.2]) Let (X, d) be a T0-quasi-metric space.
(a) Note that a subset of X is q-admissible if and only if it can be writ-

ten as the intersection of a family of sets of the form Cd(x, r)∩Cd−1(x, s)
with r, s ≥ 0 and x ∈ X. For this reason, the family Aq(X) is closed
under nonempty intersection of nonempty families.

(b) For any A ∈ Aq(X) let δ = diam(A). We have that

C(A) =
∩

a∈A
(Cd(a,

δ

2
) ∩ Cd−1(a,

δ

2
)) ∩A ∈ Aq(X).

Moreover, diam(C(A)) ≤ diam(A)/2. So we have A = C(A) if and only
if A ∈ Aq(X) and diam(A) = 0, i.e. A is reduced to one point.

3. Compactness and normal structure

The following definitions can be found in [3].

Definition 3.1. ([3, Definition 5.1]) Consider a T0-quasi-metric space
(X, d). Then, Aq(X) is said to be compact if every descending chain of
nonempty members of Aq(X) has nonempty intersection.

Definition 3.2. ([3, Definition 5.2]) Consider a T0-quasi-metric space
(X, d). Then, Aq(X) is said to be normal(or have normal structure) if
r(D) < diam(D) whenever D ∈ Aq(X) and diam(D) > 0.

The normality of Aq(X) is equivalent to saying that: If D ∈ Aq(X)
and has more than one point then there exists two numbers r, s with
r < diam(D) and s < diam(D) and a point z ∈ D such that D ⊆
Cd(z, r) ∩ Cd−1(z, s).
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Lemma 3.3. (Compare [3, Lemma 5.1]) Suppose (X, d) is a nonempty
bounded T0-quasi-metric space for which Aq(X) is compact and normal.
Let A ⊆ X which is a 1-local retract of X. Then r(bicov(A)) = r(A) for
each A ∈ Aq(A).

The following theorem gives a quasi-metric variant of [3, Theorem 5.1]
(compare also [6, Theorem 1]).

Theorem 3.4. Suppose (X, d) is a nonempty bounded T0-quasi-metric
space for which Aq(X) is compact and normal. Then every nonexpansive
T : (X, d) → (X, d) has at least one fixed point.

Proof. Consider the following set F={D∈Aq(X) :D ̸=∅ and T :D→D}.
We have that X ∈ F , therefore F ̸= ∅. One can partially order F by
A ≤ B if and only if B ⊆ A whenever A,B ∈ F . We first observe
that if C is a chain in F then

∩
C ∈ Aq(X). To show that

∩
C ∈ F , it

suffices to prove that
∩
C ̸= ∅. Let C ∈ F , we say that C = {Cα}α∈A

where Cα can be written as the intersection of balls in X, say Cα =∩
iα∈Iα

Cd(xiα , riα) ∩ Cd−1(xiα , siα). Then, by compactness of Aq(X) we
have ∩

α∈A
Cα =

∩
α∈A

(
∩

iα∈Iα
Cd(xiα , riα) ∩ Cd−1(xiα , siα)) ̸= ∅.

Moreover,
∩

α∈ACα ⊆ Cα which means that F is bounded above by∩
α∈ACα then by Zorn’s lemma F has a maximal element. Let D be

a maximal element of F , then D ̸= ∅ and T : D → D.
From Lemma 2.5 (1) we have

bicov(T (D)) =
∩

x∈X
(Cd(x, rx(T (D))d) ∩ Cd−1(x, rx(T (D))d−1)).

Furthermore, since rx(T (D))d ≤ rx(D)d and rx(T (D))d−1 ≤ rx(D)d−1 ,
it follows that

bicov(T (D)) ⊆
∩

x∈X
(Cd(x, rx(D)d) ∩ Cd−1(x, rx(D)d−1)) = D

and T : bicov(T (D)) → bicov(T (D)). Then by minimality of D, we have
D = bicov(T (D)).

Suppose that diam(D) > 0, then there exists r, s with r < diam(D)
and s < diam(D) and x ∈ D such that D ⊆ Cd(x, r) ∩ Cd−1(x, s). Then
the set

C = {x ∈ D : D ⊆ Cd(x, r) ∩ Cd−1(x, s)} ̸= ∅.
Moreover, we have

C = (
∩

x∈D
Cd(x, r) ∩ Cd−1(x, s)) ∩D,

which implies that C ∈ Aq(X). Consider z ∈ C, then if x ∈ D we have

d(T (x), T (z)) ≤ d(x, z) ≤ r



ON ONE-LOCAL RETRACT IN QUASI-METRIC SPACES 277

and
d(T (z), T (x)) ≤ d(z, x) ≤ s.

Therefore, T (x) ∈ Cd(T (z), r) and T (x) ∈ Cd−1(T (z), s) whenever
x ∈ D. Hence T (D) ⊆ Cd(T (z), r) which implies that

cov(T (D))d ⊆ Cd(T (z), r).

Similarly we have

cov(T (D))d−1 ⊆ Cd−1(T (z), s).

Therefore
bicov(T (D)) ⊆ Cd(x, r) ∩ Cd−1(x, s).

Since D = bicov(T (D)), we that D ⊆ Cd(x, r) ∩Cd−1(x, s) which implies
that T (z) ∈ C. So T : C → C.

Moreover, if z, w ∈ C then d(z, w) ≤ r and d−1(z, w) ≤ s, so diam(C) ≤
r < diam(D) and diam(C) ≤ s < diam(D). This shows that C is a proper
subset of D.

Since C ∈ Aq(X) and T : C → C this contradicts the minimality of D.
We then conclude that diam(D) = 0, therefore D is reduced to one point
which must be a fixed point of T . �

4. One-local retract in quasi-metric space

We next define 1-local retract subset of a T0-quasi-metric space and it
can be compared with [4, p.7] or [3, p.103] in metric setting.

Definition 4.1. Let (X, d) be a T0-quasi-metric space. A subset A of X
is said to be a 1-local retract of (X, d) if for each family

{Cd(xi, ri) ∩ Cd−1(xi, si)}i∈I

of balls, where ri, si ≥ 0 and xi ∈ A whenever i ∈ I for which∩
i∈I

Cd(xi, ri) ∩ Cd−1(xi, si) ̸= ∅

it is the case that

A ∩
∩

i∈I
Cd(xi, ri) ∩ Cd−1(xi, si) ̸= ∅.

Proposition 4.2. Let (X, d) be a quasi-pseudometric space and A subset
of X.

(a) If A is 1-local retract of (X, d), then A is 1-local retract of (X, d−1).

(b) If A is 1-local retract of (X, d), then A is 1-local retract of the
metric space (X, ds).
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Proof. (a) The statement immediately follow from the definition.
(b) Suppose that A is 1-local retract of (X, d).

Let {Cds(xi, ri)}i∈I a family of balls with xi ∈ A, ri ≥ 0 whenever i ∈ I
such that ∩

i∈I
Cds(xi, ri) ̸= ∅.

It follows that ∅ ≠ A∩
∩

i∈ICd(xi, ri)∩Cd−1(xi, si) = A∩
∩

i∈ICds(xi, ri).
Hence A is 1-local retract of (X, ds). �

Theorem 4.3. Suppose (X, d) is a nonempty bounded T0-quasi-metric
space for which Aq(X) is compact and normal and let T : (X, d)→ (X, d)
be a nonexpansive map. Then the fixed point set Fix(T ) of T is a nonempty
1-local retract of (X, d). Moreover, Aq(Fix(T )) is compact and normal.

Proof. Note first that Fix(T ) ̸= ∅ by Theorem 3.4. To show that Fix(T )
is a 1-local retract of (X, d), let us consider a family of balls

{Cd(xi, ri) ∩ Cd−1(xi, si)}i∈I

where xi ∈ Fix(T ) and ri, si ≥ 0 whenever i ∈ I such that

S =
∩

i∈I
Cd(xi, ri) ∩ Cd−1(xi, si) ̸= ∅.

By nonexpansivity of T , we have that T : S → S and since S is q-
admissible implies that Aq(S) is compact and normal.

Furthermore, again by Theorem 3.4, T : S → S has a fixed point,
then Fix(T ) ∩ S ̸= ∅. Therefore, the fixed point set Fix(T ) is a 1-local
retract of (X, d). Moreover, the definition of a 1-local retract assures that
Aq(Fix(T )) is compact.

We have to show that Aq(Fix(T )) is normal. Let A ∈ Aq(Fix(T )).
From Proposition 2.5 (4) we have

diam(bicov(A)) = diam(A)

and
r(bicov(A)) = r(A)

by Lemma 3.3. Moreover, the normality of Aq(X) implies that

r(bicov(A)) < diam(bicov(A)).

Then, it follows that r(A) < diam(A). �

Theorem 4.4. Let (X, d) be a nonempty bounded T0-quasi-metric space
such that Aq(X) is compact and normal. Then any commuting family
of nonexpansive maps (Ti)i∈{1,··· ,n}, with Ti : (X, d) → (X, d), has a
nonempty common fixed point set. Moreover, the common fixed point set∩n

i=1Fix(Ti) is a 1-local retract of (X, d).
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Proof. We first show that
∩n

i=1Fix(Ti) ̸= ∅. For any i ∈ {1, · · · , n}, we
have Fix(Ti) ̸= ∅ by Theorem 4.3. Hence there is x ∈ X such that
Ti(x) = x whenever i ∈ {1, · · · , n}.

Since T1 and T2 commute. We show that T2(Fix(T1)) ⊆ Fix(T1): In-
deed, if for some x ∈ X, we have x = T1(x), then T2(x) = T2(T1(x)) =
T1(T2(x)). So T2(x) ∈ Fix(T1).

We Conclude that T2 : Fix(T1) → Fix(T1) has a fixed point y ∈
Fix(T1), which is a fixed point of T1 and T2. Hence by indiction for
each finite family (Ti)i∈{1,··· ,n} of nonexpansive self-maps on X the set of
common fixed point

∩n
i=1Fix(Ti) is nonempty.

Now, we need to show that
∩n

i=1Fix(Ti) is a 1-local retract of (X, d).
Let a family of balls {Cd(xj , rj) ∩ Cd−1(xj , sj)}j∈J where xj ∈

∩n
i=1Fix(Ti)

and rj , sj ≥ 0 whenever j ∈ J such that

U =
∩

j∈J
Cd(xj , rj) ∩ Cd−1(xj , sj) ̸= ∅.

For any i ∈ {1, · · · , n}, we have that Ti : U → U is a nonexpansive map.
Also, since U is q-admissible, Aq(U) is compact and normal. Therefore by
Theorem 3.4, Ti has a fixed point in U , that is, Fix(Ti)∩U ̸= ∅. Therefore∩n

i=1Fix(Ti)∩U ̸= ∅. This proves that
∩n

i=1Fix(Ti) is a 1-local retract of
(X, d). �
Theorem 4.5. Let (X, d) be a nonempty T0-quasi-metric space such that
Aq(X) is compact and normal. Suppose that (Hi)i∈I be a descending fam-
ily of 1-local retracts of (X, d), where we assume that I is totally ordered
such that i1, i2 ∈ I and i1 ≤ i2 holds if and only if Hi2 ⊆ Hi1 . Then∩

i∈IHi is nonempty and is a 1-local retract of (X, d).
Proof. We start by showing that

∩
i∈IHi ̸= ∅, since (X, ds) is a nonempty

metric space and (Hi)i∈I is a descending chain of 1-local retracts of (X, ds)
by Proposition 4.2. By the well-known result of Khamsi [4, Theorem 6],
we conclude that

∩
i∈IHi ̸= ∅.

We next show that H =
∩

i∈IHi is 1-local retract. Let a family of balls
{Cd(xj , rj) ∩ Cd−1(xj , sj)}j∈J , where rj , sj ≥ 0 and xj ∈ H whenever
j ∈ J for which ∩

j∈J
(Cd(xj , rj) ∩ Cd−1(xj , sj)) ̸= ∅.

Fix i ∈ I, since Hi is 1-local retract of (X, d) and since xj ∈ Hi whenever
j ∈ J , hence Di =

∩
j∈JCd(xj , rj) ∩ Cd−1(xj , sj) ∩Hi ̸= ∅. Therefore

∅ ̸=
∩

i∈I
Di =

∩
i∈I

[
∩

j∈J
(Cd(xj , rj) ∩ Cd−1(xj , sj)) ∩Hi] =

=
∩

j∈J
(Cd(xj , rj) ∩ Cd−1(xj , sj)) ∩

∩
i∈I

Hi,

since (Di)i∈I is descending. This proves that H =
∩

i∈IHi is 1-local
retract of (X, d). �
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Our next lemma is a consequence of Theorem 4.5 and an application
of Zorn’s lemma. It can be compared to [6, Lemma 1] and [1, Corollary
8].

Lemma 4.6. If (Hα)α∈S is family of 1-local retract of subsets of a non-
empty T0-quasi-metric space (X, d) such that

∩
α∈FHα is 1-local retract of

(X, d) whenever F ⊆ S is finite, then the intersection
∩

α∈SHα is 1-local
retract of (X, d).

Theorem 4.7. Let (X, d) be a nonempty T0-quasi-metric space such that
Aq(X) is compact and normal. Then any commuting family of nonexpan-
sive maps (Ti)i∈I , with Ti : (X, d) → (X, d), has a common fixed point.
Furthermore, the common fixed point set

∩
i∈IFix(Ti) is a 1-local retract

of (X, d).

Proof. Indeed, by nonexpansivity of Ti whenever i ∈ I, we have

d(Ti(x), Ti(y)) ≤ d(x, y) ≤ ds(x, y)

and
d(Ti(y), Ti(x)) ≤ d(y, x) ≤ ds(x, y)

whenever x, y ∈ X. Hence ds(Ti(x), Ti(y)) ≤ ds(x, y) whenever x, y ∈ X.
Moreover, we have that (X, ds) is a nonempty metric space and the map
Ti : (X, ds) → (X, ds) is nonexpansive whenever i ∈ I. Furthermore,
(Hi)i∈I is a descending chain of 1-local retracts of (X, ds) by Proposition
4.2. Therefore, by Theorem 3.4 each Ti has a fixed point. Hence there is
x ∈ X such that Ti(x) = x. We now show, given any j ∈ I, we have that
Tj(Fix(Ti)) ⊆ Fix(Ti). Then if for some x ∈ X, we have x = Ti(x), then
Tj(x) = Tj(Ti(x)) = Ti(Tj(x)). Hence Tj(x) ∈ Fix(Ti).

Therefore, the map Tj : Fix(Ti) → Fix(Ti) has a fixed point by Theo-
rem 3.4, which is the common fixed point of Ti and Tj . Moreover, the set
of common fixed points of Ti and Tj is 1-local retract by Theorem 4.3.
Thus by induction for each finite family (Ti)i∈F of nonexpansive self-maps
on (X, d) the set of common fixed points is 1-local retract of (X, d).

By Lemma 4.6, we conclude that
∩

i∈IFix(Ti) is a 1-local retract of
(X, d) since

∩
i∈FFix(Ti) is a 1-local retract of (X, d) whenever F is a

nonempty finite subset I. �
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