http://topology.auburn.edu/tp/

http://topology.nipissingu.ca/tp/

ON ONE-LOCAL RETRACT IN QUASI-METRIC SPACES

by

OLIVIER OLELA OTAFUDU

Electronically published on November 30, 2014

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124
~ ~ ~ ~ ~ ~ ~	

COPYRIGHT © by Topology Proceedings. All rights reserved.

ON ONE-LOCAL RETRACT IN QUASI-METRIC SPACES

OLIVIER OLELA OTAFUDU

ABSTRACT. We study a concept of 1-local retract in quasi-metric spaces. In this article, we generalize further known results about 1-local retract subsets from metric setting to quasi-metric point of view. In particular we show that any commuting family of nonexpansive self-mappings in a nonempty T_0 -quasi-metric space (X, d)for which $\mathcal{A}_q(X)$ is compact and normal has a common fixed point and the common fixed point set is a 1-local retract of (X, d).

1. INTRODUCTION

A subset A of a metric space (X, m) is said to be a 1-local retract of (X, m) if for every family $\{B_i; i \in I\}$ of closed balls centered in A with nonempty intersection, then $A \cap ((B_i)_{i \in I}) \neq \emptyset$ (see [3], compare [4]). In [4], Khamsi showed that any commutative family of nonexpansive self-mapping defined on a metric space with compact and normal convexity structure has a common fixed point. In this article, we study the concept of 1-local retract in asymmetric setting. Among other things in this paper we consider subspaces 1-local retracts of a nonempty T_0 -quasi-metric space and also present some fixed point theorems. In particular we prove that a nonexpansive self-mapping nonempty T_0 -quasi-metric space (X, d) for which the set of all q-admissible subsets of X is compact and normal has at least one fixed point.

The concept of 1-local retract is due to Pouzet [4, p.4] and it has been investigated in detail by Khamsi and others (see for instance [3] and [4]). Our investigations are done in parallel with the well-known metric theory of 1-local retract (see [4]) and they confirm the surprising fact that many classical results about 1-local retract in metric spaces do not make essential use of the symmetry of the metric and thus still hold in quasi-metric spaces.

Key words and phrases. Point, Normal structure, 1-local retract, q-admissible. ©2014 Topology Proceedings.

²⁰¹⁰ Mathematics Subject Classification. 54E15, 54E35, 54C15,47H10.

OLIVIER OLELA OTAFUDU

2. Basic definitions and results

We begin by recalling the most important definitions that we shall use in this article.

Definition 2.1. Let X be a set and let $d: X \times X \to [0, \infty)$ be a function mapping into the set $[0, \infty)$ of the nonnegative reals. Then, d is called a *quasi-pseudometric* on X if

(a) d(x, x) = 0 whenever $x \in X$,

(b) $d(x, z) \leq d(x, y) + d(y, z)$ whenever $x, y, z \in X$.

We shall say that d is a T_0 -quasi-metric provided that d also satisfies the following condition: For each $x, y \in X$,

d(x, y) = 0 = d(y, x) implies that x = y.

Remark 2.2. Let d be a quasi-pseudometric on a set X, then d^{-1} : $X \times X \to [0, \infty)$ defined by $d^{-1}(x, y) = d(y, x)$ whenever $x, y \in X$ is also a quasi-pseudometric, called the *conjugate quasi-pseudometric of d*. As usual, a quasi-pseudometric d on X such that $d = d^{-1}$ is called a *pseudometric*. Note that for any $(T_0$ -)quasi-pseudometric d, $d^s = \max\{d, d^{-1}\} = d \vee d^{-1}$ is a pseudometric (metric).

Let (X, d) be a quasi-pseudometric space. For each $x \in X$ and $\epsilon > 0$, $B_d(x, \epsilon) = \{y \in X : d(x, y) < \epsilon\}$ denotes the *open* ϵ -ball at x. The collection of all "open" balls yields a base for a topology $\tau(d)$. It is called the *topology induced by d* on X. Similarly we set for each $x \in X$ and $\epsilon \ge 0$, $C_d(x, \epsilon) = \{y \in X : d(x, y) \le \epsilon\}$. Note that this latter set is $\tau(d^t)$ -closed, but not $\tau(d)$ -closed in general.

If $a, b \in \mathbb{R}$, we shall put $\dot{a-b} = \max\{a-b, 0\}$. Note that $u(x, y) = \dot{x-y}$ with $x, y \in \mathbb{R}$ defines a T_0 quasi-metric on the set \mathbb{R} of the reals.

A map $f : (X, d) \to (Y, e)$ between two quasi-pseudometric spaces (X, d) and (Y, e) is called an *isometry* provided that e(f(x), f(y)) = d(x, y) whenever $x, y \in X$.

Two quasi-pseudometric spaces (X, d) and (Y, e) will be called *isometric* provided that there exists a bijective isometry $f : (X, d) \to (Y, e)$.

A map $f : (X, d) \to (Y, e)$ between two quasi-pseudometric spaces (X, d) and (Y, e) is called *nonexpansive* provided that $e(f(x), f(y)) \leq d(x, y)$ whenever $x, y \in X$.

Let (X, d) be a T_0 -quasi-metric space. For a nonempty bounded subspace A of X, we set:

 $r_x(A)_d := \sup\{d(x, y) : y \in A\}, \text{where} \quad x \in X$

and

$$r_x(A)_{d^{-1}} := \sup\{d^{-1}(x,y) : y \in A\}, \text{ where } x \in X.$$

Moreover, let

$$r_x(A) := r_x(A)_d \lor r_x(A)_{d^{-1}}$$
, where $x \in X$

 $\quad \text{and} \quad$

$$r(A) := \inf\{r_x(A) : x \in A\}.$$

Also, we set

$$\operatorname{diam}(A):=\sup\{d(x,y):x,y\in A\}.$$

Furthermore

$$C(A) := \{ x \in A : r_x(A) = r(A) \}.$$

Finally,

$$\operatorname{cov}(A)_d := \cap \{ C_d(x, r) : A \subseteq C_d(x, r), x \in X, r \ge 0 \}$$

and

$$cov(A)_{d^{-1}} := \cap \{ C_{d^{-1}}(x,s) : A \subseteq C_{d^{-1}}(x,s), x \in X, s \ge 0 \}$$

and

 $\operatorname{bicov}(A) := \operatorname{cov}(A)_d \cap \operatorname{cov}(A)_{d^{-1}}.$

Note that the values of diam(A), $r_x(A)$, r(A) and C(A) do not change when defined for the space (X, d^s) instead of (X, d).

Remark 2.3. ([7, Remark 4.1.1]) Let (X, d) be a T_0 -quasi-metric space. Let A be a nonempty bounded subset in X. Then

$$cov(A)_{d^s} = \cap \{ C_{d^s}(x, r) : A \subseteq C_{d^s}(x, r), x \in X, r \ge 0 \}.$$

Obviously we have $bicov(A) \subseteq cov(A)_{d^s}$.

Example 2.4. ([6, Example 1]) Let $X = [0,1] \times [\frac{1}{4}, \frac{3}{4}]$ be equipped with the T_0 -quasi-metric defined by $D((\alpha, \beta), (\alpha', \beta')) = (\alpha - \alpha') \vee (\beta - \beta')$ whenever $(\alpha, \beta), (\alpha', \beta') \in X$.

Consider $A = \{(0, \frac{1}{2}), (1, \frac{1}{2})\} \subseteq X$. Then bicov(A) is equal to the line segment from $x = (0, \frac{1}{2})$ to $y = (1, \frac{1}{2})$. This follows from the fact that for each $\epsilon \in [0, \frac{1}{4}], y \in C_D(x, \epsilon) = [0, 1] \times [\frac{1}{2} - \epsilon, \frac{3}{4}]$ and $x \in C_{D^{-1}}(y, \epsilon) =$ $[0, 1] \times [\frac{1}{4}, \frac{1}{2} + \epsilon]$ and that segment is a subset of any set of the form $C_D(a, r) \cap C_{D^{-1}}(b, s)$ for which $\{x, y\} \subseteq C_D(a, r) \cap C_{D^{-1}}(b, s)$. Indeed assume that z belongs to this segment. Then D(z, y) = 0 = D(x, z) and therefore $z \in C_D(a, r) \cap C_{D^{-1}}(b, s)$ by the triangle inequality.

On the other hand $\operatorname{cov}(A)_{d^s} = X$, since $\{x, y\} \subseteq C_{D^s}(z, \epsilon)$ with $z \in X$ implies that $\epsilon \leq \frac{1}{2}$. Indeed assume that z = (a, b). Then $a \leq D^s((a, b), (0, \frac{1}{2})) \leq \epsilon$ and $1 - a \leq D^s((a, b), (a, \frac{1}{2})) \leq \epsilon$. Thus $\epsilon \geq \max\{a, 1 - a\} \geq \frac{1}{2}$. It follows that $X \subseteq C_{D^s}(z, \epsilon)$, because the interval $[\frac{1}{4}, \frac{3}{4}]$ has length $\frac{1}{2}$. Therefore $\operatorname{cov}_{D^s}(A) = X$.

The following lemma should be compared with [3, Lemma 4.1].

Proposition 2.5. (Compare [7, Lemma 4.1.1]) Let A be a nonempty bounded subspace of a T_0 -quasi-metric space (X, d). Then:

(1) $bicov(A) = \bigcap_{x \in A} (C_d(x, r_x(A)_d) \cap C_{d^{-1}}(x, r_x(A)_{d^{-1}})).$

(2) $r_x(bicov(A)) = r_x(A)$, whenever $x \in X$.

(3) $r(bicov(A)) \leq r(A)$.

(4) diam(bicov(A)) = diam(A).

Proof. (1) Let $x \in X$. For $y \in A$, we have $d(x, y) \leq \sup\{d(x, y) : y \in X\}$. Then $d(x, y) \leq r_x(A)_d$ which implies $y \in C_d(x, r_x(A)_d)$. Hence $A \subseteq C_d(x, r_x(A)_d)$ whenever $x \in X$. It must therefore be the case that $\operatorname{cov}(A)_d \subseteq C_d(x, r_x(A)_d)$ whenever $x \in X$.

Similarly one can show that $A \subseteq C_{d^{-1}}(x, r_x(A)_{d^{-1}})$ whenever $x \in X$. We then have $\operatorname{cov}(A)_{d^{-1}} \subseteq C_{d^{-1}}(x, r_x(A)_{d^{-1}})$ whenever $x \in X$.

Then

(2.1)
$$\operatorname{bicov}(A) \subseteq \bigcap_{x \in X} (C_d(x, r_x(A)_d) \cap C_{d^{-1}}(x, r_x(A)_{d^{-1}})).$$

On the other hand, suppose that $A \subseteq C_d(x,r)$ and $A \subseteq C_{d^{-1}}(x,s)$ for some $x \in X$ and $r, s \geq 0$. For any $y \in A$, we have $d(x,y) \leq r$ and $d^{-1}(x,y) \leq s$ which implies $r_y(A)_d \leq r$ and $r_y(A)_{d^{-1}} \leq s$. Thus $C_d(x, r_x(A)_d) \subseteq C_d(x, r)$. Hence $C_d(x, r_x(A)_d) \subseteq \operatorname{cov}(A)_d$ whenever $x \in X$.

Similarly one can show that $C_d(x, r_x(A)_{d^{-1}}) \subseteq \operatorname{cov}(A)_{d^{-1}}$ whenever $x \in X$.

Hence $C_d(x, r_x(A)_d) \cap C_{d^{-1}}(x, r_x(A)_{d^{-1}}) \subseteq \text{bicov}(A)$ whenever $x \in X$. Furthermore

(2.2)
$$\bigcap_{x \in X} (C_d(x, r_x(A)_d) \cap C_{d^{-1}}(x, r_x(A)_{d^{-1}})) \subseteq \operatorname{bicov}(A).$$

Combination of (2.1) and (2.2) yields

bicov(A) =
$$\bigcap_{x \in X} (C_d(x, r_x(A)_d) \cap C_{d^{-1}}(x, r_x(A)_{d^{-1}})).$$

(2) By (1) we have that

$$r_x(\operatorname{bicov}(A)) = \sup\{d(x,y) : y \in \bigcap_{x \in X} (C_d(x, r_x(A)_d) \cap C_{d^{-1}}(x, r_x(A)_{d^{-1}})).$$

In particular, $y \in \text{bicov}(A)$ implies that $y \in C_d(x, r_x(A)_d)$ and $y \in C_{d^{-1}}(x, r_x(A)_{d^{-1}})$ whenever $x \in X$.

Hence $d(x,y) \leq r_x(A)_d$ and $d^{-1}(x,y) \leq r_x(A)_{d^{-1}}$, which implies

 $r_x(\operatorname{bicov}(A))_d \le r_x(A)_d \le r_x(A)$

and

$$r_x(\operatorname{bicov}(A))_{d^{-1}} \le r_x(A)_{d^{-1}} \le r_x(A).$$

Altogether we have $r_x(\operatorname{bicov}(A)) = r_x(\operatorname{bicov}(A))_d \vee r_x(\operatorname{bicov}(A))_{d^{-1}} \leq r_x(A)$. The reverse inequality is obvious since $A \subseteq \operatorname{bicov}(A)$.

(3) This is immediate from the definition of r and property (2).

The proof of (4) can be completed similarly as in the proof of [3, Lemma 4.1]. Moreover, diam(A) is a concept from symmetric topology. \Box

Let us mention that it has been proved in [7] that if (X, d) is a q-hyperconvex space in Proposition 2.5, the assertion (3) is an equality.

We next define a q-admissible subset of a T_0 -quasi-metric space similarly to [3, Definition 4.2].

Definition 2.6. ([7, Definition 4.1.1]) Let (X, d) be a T_0 -quasi-metric space. A nonempty bounded subset D of X is q-admissible if D = bicov(D).

The collection of all q-admissible subsets of a T_0 -quasi-metric space (X, d) will be denoted by $\mathcal{A}_q(X)$.

Remark 2.7. ([7, Remark 4.1.2]) Let (X, d) be a T_0 -quasi-metric space.

(a) Note that a subset of X is q-admissible if and only if it can be written as the intersection of a family of sets of the form $C_d(x,r) \cap C_{d^{-1}}(x,s)$ with $r,s \geq 0$ and $x \in X$. For this reason, the family $\mathcal{A}_q(X)$ is closed under nonempty intersection of nonempty families.

(b) For any $A \in \mathcal{A}_q(X)$ let $\delta = diam(A)$. We have that

$$C(A) = \bigcap_{a \in A} (C_d(a, \frac{\delta}{2}) \cap C_{d^{-1}}(a, \frac{\delta}{2})) \cap A \in \mathcal{A}_q(X).$$

Moreover, diam $(C(A)) \leq \text{diam}(A)/2$. So we have A = C(A) if and only if $A \in \mathcal{A}_q(X)$ and diam(A) = 0, i.e. A is reduced to one point.

3. Compactness and normal structure

The following definitions can be found in [3].

Definition 3.1. ([3, Definition 5.1]) Consider a T_0 -quasi-metric space (X, d). Then, $\mathcal{A}_q(X)$ is said to be *compact* if every descending chain of nonempty members of $\mathcal{A}_q(X)$ has nonempty intersection.

Definition 3.2. ([3, Definition 5.2]) Consider a T_0 -quasi-metric space (X, d). Then, $\mathcal{A}_q(X)$ is said to be *normal*(or *have normal structure*) if r(D) < diam(D) whenever $D \in \mathcal{A}_q(X)$ and diam(D) > 0.

The normality of $\mathcal{A}_q(X)$ is equivalent to saying that: If $D \in \mathcal{A}_q(X)$ and has more than one point then there exists two numbers r, s with r < diam(D) and s < diam(D) and a point $z \in D$ such that $D \subseteq C_d(z, r) \cap C_{d^{-1}}(z, s)$. **Lemma 3.3.** (Compare [3, Lemma 5.1]) Suppose (X, d) is a nonempty bounded T_0 -quasi-metric space for which $\mathcal{A}_q(X)$ is compact and normal. Let $A \subseteq X$ which is a 1-local retract of X. Then r(bicov(A)) = r(A) for each $A \in \mathcal{A}_q(A)$.

The following theorem gives a quasi-metric variant of [3, Theorem 5.1] (compare also [6, Theorem 1]).

Theorem 3.4. Suppose (X, d) is a nonempty bounded T_0 -quasi-metric space for which $\mathcal{A}_q(X)$ is compact and normal. Then every nonexpansive $T: (X, d) \to (X, d)$ has at least one fixed point.

Proof. Consider the following set $\mathcal{F} = \{D \in \mathcal{A}_q(X) : D \neq \emptyset \text{ and } T : D \to D\}$. We have that $X \in \mathcal{F}$, therefore $\mathcal{F} \neq \emptyset$. One can partially order \mathcal{F} by $A \leq B$ if and only if $B \subseteq A$ whenever $A, B \in \mathcal{F}$. We first observe that if \mathcal{C} is a chain in \mathcal{F} then $\bigcap \mathcal{C} \in \mathcal{A}_q(X)$. To show that $\bigcap \mathcal{C} \in \mathcal{F}$, it suffices to prove that $\bigcap \mathcal{C} \neq \emptyset$. Let $\mathcal{C} \in \mathcal{F}$, we say that $\mathcal{C} = \{C_\alpha\}_{\alpha \in A}$ where C_α can be written as the intersection of balls in X, say $C_\alpha = \bigcap_{i_\alpha \in I_\alpha} C_d(x_{i_\alpha}, r_{i_\alpha}) \cap C_{d^{-1}}(x_{i_\alpha}, s_{i_\alpha})$. Then, by compactness of $\mathcal{A}_q(X)$ we have

$$\bigcap_{\alpha \in A} C_{\alpha} = \bigcap_{\alpha \in A} (\bigcap_{i_{\alpha} \in I_{\alpha}} C_d(x_{i_{\alpha}}, r_{i_{\alpha}}) \cap C_{d^{-1}}(x_{i_{\alpha}}, s_{i_{\alpha}})) \neq \emptyset.$$

Moreover, $\bigcap_{\alpha \in A} C_{\alpha} \subseteq C_{\alpha}$ which means that \mathcal{F} is bounded above by $\bigcap_{\alpha \in A} C_{\alpha}$ then by Zorn's lemma \mathcal{F} has a maximal element. Let D be a maximal element of \mathcal{F} , then $D \neq \emptyset$ and $T: D \to D$.

From Lemma 2.5 (1) we have

$$\operatorname{bicov}(T(D)) = \bigcap_{x \in X} (C_d(x, r_x(T(D))_d) \cap C_{d^{-1}}(x, r_x(T(D))_{d^{-1}})).$$

Furthermore, since $r_x(T(D))_d \leq r_x(D)_d$ and $r_x(T(D))_{d^{-1}} \leq r_x(D)_{d^{-1}}$, it follows that

$$\operatorname{bicov}(T(D)) \subseteq \bigcap_{x \in X} (C_d(x, r_x(D)_d) \cap C_{d^{-1}}(x, r_x(D)_{d^{-1}})) = D$$

and T: bicov $(T(D)) \rightarrow$ bicov(T(D)). Then by minimality of D, we have D = bicov(T(D)).

Suppose that diam(D) > 0, then there exists r, s with r < diam(D)and s < diam(D) and $x \in D$ such that $D \subseteq C_d(x, r) \cap C_{d^{-1}}(x, s)$. Then the set

$$C = \{x \in D : D \subseteq C_d(x, r) \cap C_{d^{-1}}(x, s)\} \neq \emptyset.$$

Moreover, we have

$$C = \left(\bigcap_{x \in D} C_d(x, r) \cap C_{d^{-1}}(x, s)\right) \cap D,$$

which implies that $C \in \mathcal{A}_q(X)$. Consider $z \in C$, then if $x \in D$ we have $d(T(x), T(z)) \leq d(x, z) \leq r$

 $\quad \text{and} \quad$

$$d(T(z), T(x)) \le d(z, x) \le s$$

Therefore, $T(x) \in C_d(T(z), r)$ and $T(x) \in C_{d^{-1}}(T(z), s)$ whenever $x \in D$. Hence $T(D) \subseteq C_d(T(z), r)$ which implies that

$$\operatorname{cov}(T(D))_d \subseteq C_d(T(z), r).$$

Similarly we have

$$cov(T(D))_{d^{-1}} \subseteq C_{d^{-1}}(T(z), s).$$

Therefore

$$\operatorname{bicov}(T(D)) \subseteq C_d(x,r) \cap C_{d^{-1}}(x,s).$$

Since D = bicov(T(D)), we that $D \subseteq C_d(x,r) \cap C_{d^{-1}}(x,s)$ which implies that $T(z) \in C$. So $T: C \to C$.

Moreover, if $z, w \in C$ then $d(z, w) \leq r$ and $d^{-1}(z, w) \leq s$, so diam $(C) \leq r < \text{diam}(D)$ and diam $(C) \leq s < \text{diam}(D)$. This shows that C is a proper subset of D.

Since $C \in \mathcal{A}_q(X)$ and $T : C \to C$ this contradicts the minimality of D. We then conclude that $\operatorname{diam}(D) = 0$, therefore D is reduced to one point which must be a fixed point of T.

4. One-local retract in quasi-metric space

We next define 1-local retract subset of a T_0 -quasi-metric space and it can be compared with [4, p.7] or [3, p.103] in metric setting.

Definition 4.1. Let (X, d) be a T_0 -quasi-metric space. A subset A of X is said to be a 1-local retract of (X, d) if for each family

$$\{C_d(x_i, r_i) \cap C_{d^{-1}}(x_i, s_i)\}_{i \in \mathbb{N}}$$

of balls, where $r_i, s_i \ge 0$ and $x_i \in A$ whenever $i \in I$ for which

$$\bigcap_{i\in I} C_d(x_i,r_i) \cap C_{d^{-1}}(x_i,s_i) \neq \emptyset$$

it is the case that

$$A \cap \bigcap_{i \in I} C_d(x_i, r_i) \cap C_{d^{-1}}(x_i, s_i) \neq \emptyset.$$

Proposition 4.2. Let (X, d) be a quasi-pseudometric space and A subset of X.

(a) If A is 1-local retract of (X, d), then A is 1-local retract of (X, d^{-1}) .

(b) If A is 1-local retract of (X, d), then A is 1-local retract of the metric space (X, d^s) .

Proof. (a) The statement immediately follow from the definition.

(b) Suppose that A is 1-local retract of (X, d).

Let $\{C_{d^s}(x_i, r_i)\}_{i \in I}$ a family of balls with $x_i \in A, r_i \ge 0$ whenever $i \in I$ such that

$$\bigcap_{i\in I} C_{d^s}(x_i, r_i) \neq \emptyset.$$

It follows that $\emptyset \neq A \cap \bigcap_{i \in I} C_d(x_i, r_i) \cap C_{d^{-1}}(x_i, s_i) = A \cap \bigcap_{i \in I} C_{d^s}(x_i, r_i)$. Hence A is 1-local retract of (X, d^s) .

Theorem 4.3. Suppose (X, d) is a nonempty bounded T_0 -quasi-metric space for which $\mathcal{A}_q(X)$ is compact and normal and let $T: (X, d) \to (X, d)$ be a nonexpansive map. Then the fixed point set Fix(T) of T is a nonempty 1-local retract of (X, d). Moreover, $\mathcal{A}_q(Fix(T))$ is compact and normal.

Proof. Note first that $Fix(T) \neq \emptyset$ by Theorem 3.4. To show that Fix(T) is a 1-local retract of (X, d), let us consider a family of balls

$$\{C_d(x_i, r_i) \cap C_{d^{-1}}(x_i, s_i)\}_{i \in I}$$

where $x_i \in Fix(T)$ and $r_i, s_i \ge 0$ whenever $i \in I$ such that

$$S = \bigcap_{i \in I} C_d(x_i, r_i) \cap C_{d^{-1}}(x_i, s_i) \neq \emptyset.$$

By nonexpansivity of T, we have that $T : S \to S$ and since S is q-admissible implies that $\mathcal{A}_q(S)$ is compact and normal.

Furthermore, again by Theorem 3.4, $T : S \to S$ has a fixed point, then $\operatorname{Fix}(T) \cap S \neq \emptyset$. Therefore, the fixed point set $\operatorname{Fix}(T)$ is a 1-local retract of (X, d). Moreover, the definition of a 1-local retract assures that $\mathcal{A}_q(\operatorname{Fix}(T))$ is compact.

We have to show that $\mathcal{A}_q(\operatorname{Fix}(T))$ is normal. Let $A \in \mathcal{A}_q(\operatorname{Fix}(T))$. From Proposition 2.5 (4) we have

$$\operatorname{diam}(\operatorname{bicov}(A)) = \operatorname{diam}(A)$$

and

$$r(\operatorname{bicov}(A)) = r(A)$$

by Lemma 3.3. Moreover, the normality of $\mathcal{A}_q(X)$ implies that

 $r(\operatorname{bicov}(A)) < \operatorname{diam}(\operatorname{bicov}(A)).$

Then, it follows that $r(A) < \operatorname{diam}(A)$.

Theorem 4.4. Let (X, d) be a nonempty bounded T_0 -quasi-metric space such that $\mathcal{A}_q(X)$ is compact and normal. Then any commuting family of nonexpansive maps $(T_i)_{i \in \{1, \dots, n\}}$, with $T_i : (X, d) \to (X, d)$, has a nonempty common fixed point set. Moreover, the common fixed point set $\bigcap_{i=1}^{n} Fix(T_i)$ is a 1-local retract of (X, d).

Proof. We first show that $\bigcap_{i=1}^{n} \operatorname{Fix}(T_i) \neq \emptyset$. For any $i \in \{1, \dots, n\}$, we have $\operatorname{Fix}(T_i) \neq \emptyset$ by Theorem 4.3. Hence there is $x \in X$ such that $T_i(x) = x$ whenever $i \in \{1, \dots, n\}$.

Since T_1 and T_2 commute. We show that $T_2(\operatorname{Fix}(T_1)) \subseteq \operatorname{Fix}(T_1)$: Indeed, if for some $x \in X$, we have $x = T_1(x)$, then $T_2(x) = T_2(T_1(x)) = T_1(T_2(x))$. So $T_2(x) \in \operatorname{Fix}(T_1)$.

We Conclude that T_2 : Fix $(T_1) \to$ Fix (T_1) has a fixed point $y \in$ Fix (T_1) , which is a fixed point of T_1 and T_2 . Hence by indiction for each finite family $(T_i)_{i \in \{1, \dots, n\}}$ of nonexpansive self-maps on X the set of common fixed point $\bigcap_{i=1}^{n}$ Fix (T_i) is nonempty.

Now, we need to show that $\bigcap_{i=1}^{n} \operatorname{Fix}(T_{i})$ is a 1-local retract of (X, d). Let a family of balls $\{C_{d}(x_{j}, r_{j}) \cap C_{d^{-1}}(x_{j}, s_{j})\}_{j \in J}$ where $x_{j} \in \bigcap_{i=1}^{n} \operatorname{Fix}(T_{i})$ and $r_{j}, s_{j} \geq 0$ whenever $j \in J$ such that

$$U = \bigcap_{j \in J} C_d(x_j, r_j) \cap C_{d^{-1}}(x_j, s_j) \neq \emptyset.$$

For any $i \in \{1, \dots, n\}$, we have that $T_i : U \to U$ is a nonexpansive map. Also, since U is q-admissible, $\mathcal{A}_q(U)$ is compact and normal. Therefore by Theorem 3.4, T_i has a fixed point in U, that is, $\operatorname{Fix}(T_i) \cap U \neq \emptyset$. Therefore $\bigcap_{i=1}^n \operatorname{Fix}(T_i) \cap U \neq \emptyset$. This proves that $\bigcap_{i=1}^n \operatorname{Fix}(T_i)$ is a 1-local retract of (X, d).

Theorem 4.5. Let (X, d) be a nonempty T_0 -quasi-metric space such that $\mathcal{A}_q(X)$ is compact and normal. Suppose that $(H_i)_{i \in I}$ be a descending family of 1-local retracts of (X, d), where we assume that I is totally ordered such that $i_1, i_2 \in I$ and $i_1 \leq i_2$ holds if and only if $H_{i_2} \subseteq H_{i_1}$. Then $\bigcap_{i \in I} H_i$ is nonempty and is a 1-local retract of (X, d).

Proof. We start by showing that $\bigcap_{i \in I} H_i \neq \emptyset$, since (X, d^s) is a nonempty metric space and $(H_i)_{i \in I}$ is a descending chain of 1-local retracts of (X, d^s) by Proposition 4.2. By the well-known result of Khamsi [4, Theorem 6], we conclude that $\bigcap_{i \in I} H_i \neq \emptyset$.

We next show that $H = \bigcap_{i \in I} H_i$ is 1-local retract. Let a family of balls $\{C_d(x_j, r_j) \cap C_{d^{-1}}(x_j, s_j)\}_{j \in J}$, where $r_j, s_j \ge 0$ and $x_j \in H$ whenever $j \in J$ for which

$$\bigcap_{i \in J} (C_d(x_j, r_j) \cap C_{d^{-1}}(x_j, s_j)) \neq \emptyset.$$

Fix $i \in I$, since H_i is 1-local retract of (X, d) and since $x_j \in H_i$ whenever $j \in J$, hence $\mathcal{D}_i = \bigcap_{i \in J} C_d(x_j, r_j) \cap C_{d^{-1}}(x_j, s_j) \cap H_i \neq \emptyset$. Therefore

$$\emptyset \neq \bigcap_{i \in I} \mathcal{D}_i = \bigcap_{i \in I} [\bigcap_{j \in J} (C_d(x_j, r_j) \cap C_{d^{-1}}(x_j, s_j)) \cap H_i] =$$
$$= \bigcap_{j \in J} (C_d(x_j, r_j) \cap C_{d^{-1}}(x_j, s_j)) \cap \bigcap_{i \in I} H_i,$$

since $(\mathcal{D}_i)_{i \in I}$ is descending. This proves that $H = \bigcap_{i \in I} H_i$ is 1-local retract of (X, d).

Our next lemma is a consequence of Theorem 4.5 and an application of Zorn's lemma. It can be compared to [6, Lemma 1] and [1, Corollary 8].

Lemma 4.6. If $(H_{\alpha})_{\alpha \in S}$ is family of 1-local retract of subsets of a nonempty T_0 -quasi-metric space (X, d) such that $\bigcap_{\alpha \in F} H_{\alpha}$ is 1-local retract of (X, d) whenever $F \subseteq S$ is finite, then the intersection $\bigcap_{\alpha \in S} H_{\alpha}$ is 1-local retract of (X, d).

Theorem 4.7. Let (X, d) be a nonempty T_0 -quasi-metric space such that $\mathcal{A}_q(X)$ is compact and normal. Then any commuting family of nonexpansive maps $(T_i)_{i \in I}$, with $T_i : (X, d) \to (X, d)$, has a common fixed point. Furthermore, the common fixed point set $\bigcap_{i \in I} Fix(T_i)$ is a 1-local retract of (X, d).

Proof. Indeed, by nonexpansivity of T_i whenever $i \in I$, we have

 $d(T_i(x), T_i(y)) \le d(x, y) \le d^s(x, y)$

and

$$d(T_i(y), T_i(x)) \le d(y, x) \le d^s(x, y)$$

whenever $x, y \in X$. Hence $d^s(T_i(x), T_i(y)) \leq d^s(x, y)$ whenever $x, y \in X$. Moreover, we have that (X, d^s) is a nonempty metric space and the map $T_i : (X, d^s) \to (X, d^s)$ is nonexpansive whenever $i \in I$. Furthermore, $(H_i)_{i \in I}$ is a descending chain of 1-local retracts of (X, d^s) by Proposition 4.2. Therefore, by Theorem 3.4 each T_i has a fixed point. Hence there is $x \in X$ such that $T_i(x) = x$. We now show, given any $j \in I$, we have that $T_j(\operatorname{Fix}(T_i)) \subseteq \operatorname{Fix}(T_i)$. Then if for some $x \in X$, we have $x = T_i(x)$, then $T_j(x) = T_j(T_i(x)) = T_i(T_j(x))$. Hence $T_j(x) \in \operatorname{Fix}(T_i)$.

Therefore, the map T_j : Fix $(T_i) \to$ Fix (T_i) has a fixed point by Theorem 3.4, which is the common fixed point of T_i and T_j . Moreover, the set of common fixed points of T_i and T_j is 1-local retract by Theorem 4.3. Thus by induction for each finite family $(T_i)_{i \in F}$ of nonexpansive self-maps on (X, d) the set of common fixed points is 1-local retract of (X, d).

By Lemma 4.6, we conclude that $\bigcap_{i \in I} \operatorname{Fix}(T_i)$ is a 1-local retract of (X, d) since $\bigcap_{i \in F} \operatorname{Fix}(T_i)$ is a 1-local retract of (X, d) whenever F is a nonempty finite subset I.

References

- J.B. Baillon, Nonexpansive mappings and hyperconvex spaces, Contemporary Mathematics, 72 (1988), 11–19.
- [2] E.Kemajou, H.-P.A. Künzi and O. Olela Otafudu, The Isbell-hull of a di-space, Topology Appl. 159 (2012), 2463–2475.
- [3] M. A. Khamsi and W. A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory. John Wiley, New York, 2001.

- [4] M. A. Khamsi, One-local retract and common fixed point for commuting mappings in metric spaces, Nonlinear Anal. 27 (1996), 1307–1313.
- [5] H.-P.Künzi, An introduction to quasi-uniform spaces, Contemp. Math. 486 (2009), 239–304.
- [6] H.-P. Künzi and O. Olela Otafudu, q-hyperconvexity in quasi-pseudometric spaces and fixed point theorems, J. of Function Spaces and Applications, vol. 2012 (2012), Article ID 765903, 18 pages.
- [7] O. Olela Otafudu, *Convexity in quasi-metric space*, University of Cape Town, PhD thesis, 2012.

School of Mathematical Sciences; North-West University (Mafikeng campus); Mmabatho 2735.

E-mail address: olivier.olelaotafudu@nwu.ac.za