http://topology.auburn.edu/tp/

http://topology.nipissingu.ca/tp/

Convergence S-Completions

by

B. LOSERT AND G. RICHARDSON

Electronically published on March 28, 2014

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124
COPYRIGHT © by Topology Proceedings. All rights reserved.	

E-Published on March 28, 2014

CONVERGENCE S-COMPLETIONS

B. LOSERT AND G. RICHARDSON

ABSTRACT. A Cauchy semigroup acting continuously on a Cauchy space is investigated. In particular, the question as to when the action can be continuously extended to a completion of the Cauchy space is studied. Moreover, completions of generalized quotient spaces are considered.

1. INTRODUCTION

A topological group acting continuously on a topological space has been the subject of several research articles. Wayne R. Park [13], Nandita Rath [15], and H. Boustique et al. [2], [3] have studied this notion in the larger category of convergence spaces. A completion theory in this context is the main thrust of the present work and a convenient category for this study is the category of Cauchy spaces. Cauchy spaces date back to Hans-Joachim Kowalsky [7]. The formulation employed here was first defined by H. H. Keller [5]. Cauchy spaces have been found to be useful in several areas of research; for example, Kelly McKennon [10] used Cauchy spaces in the study of C^* -algebras and Richard N. Ball [1] found Cauchy space completions of lattice ordered groups.

In this paper, we generalize one of the results in [6] that says that, given a limit space (X, p) there is an isomorphism between the ordered set of precompact Cauchy structures on X that induce p and the ordered set of equivalence classes of strict regular compactifications (X, p). The generalization is done in the context of "S-spaces" and is given in Theorem 3.7. We also investigate the notion of a "generalized quotient space" from the Cauchy-space perspective. These spaces were introduced by Józef Burzyk

²⁰¹⁰ Mathematics Subject Classification. Primary 54A20; Secondary 54D35.

 $Key\ words\ and\ phrases.$ Cauchy continuous action, Cauchy semigroup, S -compactification, S -completion.

^{©2014} Topology Proceedings.

et al. [4] in the topological setting. P. Mikusiński ([12], [11]) used generalized quotient spaces to study generalized functions. A good reference on convergence spaces, Cauchy spaces, and categorical terminology is the book by Gerhard Preuss [14]. An excellent treatment of Cauchy spaces is the monograph of Eva Lowen-Colebunders [9].

2. Preliminaries

Let X be a set, let $\mathbf{P}(X)$ be the power set of X, and let $\mathbf{F}(X)$ be the set of filters on X. Given $x \in X$, we will use \dot{x} to denote the fixed ultrafilter on X generated by $\{\{x\}\}$. Given $\mathcal{F}, \mathcal{G} \in \mathbf{F}(X)$, we will write $\mathcal{F} \geq \mathcal{G}$ (read " \mathcal{F} is finer than \mathcal{G} ") if and only if $\mathcal{G} \subseteq \mathcal{F}$. The relation \geq is a partial order on $\mathbf{F}(X)$ and we will write $\mathcal{F} \vee \mathcal{G}$ for the least upper bound of $\mathcal{F}, \mathcal{G} \in \mathbf{F}(X)$ with respect to this partial order, which exists whenever $F \cap G \neq \emptyset$ for all $F \in \mathcal{F}$ and $G \in \mathcal{G}$.

The pair (X, p) is called a *limit space* and p is called a *limit structure* on X whenever X is a set and $p: \mathbf{F}(X) \to \mathbf{P}(X)$ satisfies the following conditions:

- (LS1) $x \in p(\dot{x})$.
- (LS2) $\mathcal{G} \geq \mathcal{F}$ implies $p(\mathcal{F}) \subseteq q(\mathcal{G})$.
- (LS3) $x \in p(\mathcal{F})$ and $x \in p(\mathcal{G})$ implies $x \in p(\mathcal{F} \cap \mathcal{G})$.

Conventions. The notation $x \in p(\mathcal{F})$ is read as " \mathcal{F} *p*-converges to x" or " \mathcal{F} converges to x in X" or " \mathcal{F} converges to x" and is usually written " $\mathcal{F} \xrightarrow{p} x$ " or " $\mathcal{F} \to x$ in X" or " $\mathcal{F} \to x$." When we do not need to make reference to the limit structure of a limit space (X, p), we will write the space as X.

A function $f: X \to Y$ between limit spaces is *continuous* provided that $f^{\to} \mathcal{F} \to f(x)$ in Y whenever $\mathcal{F} \to x$ in X. Here, $f^{\to} \mathcal{F}$ denotes the filter on Y generated by $\{f(F): F \in \mathcal{F}\}$. Given $\mathcal{G} \in \mathbf{F}(Y)$, we use $f^{\leftarrow} \mathcal{G}$ to denote the filter on X generated by $\{f^{-1}(G): G \in \mathcal{G}\}$ whenever the latter set does not contain \emptyset .

Let Lim denote the category of limit spaces and continuous functions and let X be an object in Lim. We say X is *reciprocal* if whenever a filter \mathcal{F} on X converges to two points $x, y \in X$, then x and y have the same convergent filters. We say that X is *Hausdorff* provided that each filter on X converges to at most one point. Note that every Hausdorff space is reciprocal. We say that X is *regular* if whenever $\mathcal{F} \to x$ in X, the filter $\operatorname{cl}_X \mathcal{F}$ generated by $\{\operatorname{cl}_X F : F \in \mathcal{F}\}$ converges to x. Here, cl_X denotes the closure operator on X. A point $x \in X$ is an *adherent point* of $\mathcal{F} \in \mathbf{F}(X)$ whenever there exists a $\mathcal{G} \geq \mathcal{F}$ such that $\mathcal{G} \to x$ in X. We use $\operatorname{adh}_X \mathcal{F}$ to denote the set of all adherent points of \mathcal{F} . The *neighborhood filter* of a point $x \in X$ is the intersection of all filters converging to x and is denoted $\mathcal{U}_X(x)$. We say X is *compact* provided that $\operatorname{adh}_X \mathfrak{F} \neq \emptyset$ for each $\mathfrak{F} \in \mathbf{F}(X)$ or, equivalently, if each ultrafilter on X converges. A *compactification* in Lim of X is a pair (Y, f) where Y is a compact Hausdorff limit space and $f: X \to Y$ is a dense embedding in Lim. Observe that *compactifications are required to be Hausdorff*. A compactification (Y, f) is called *regular* whenever Y is regular and *strict* if, whenever $\mathfrak{G} \to y$ in Y, there exists an $\mathfrak{F} \in \mathbf{F}(X)$ such that $\mathfrak{G} \geq \operatorname{cl}_Y f^{\to} \mathfrak{F}$.

The pair (X, \mathcal{C}) is called a *Cauchy space* and \mathcal{C} is called a *Cauchy struc*ture whenever X is a set and $\mathcal{C} \subseteq \mathbf{F}(X)$ satisfies the following conditions:

(CS1) $\dot{x} \in \mathcal{C}$ for all $x \in X$. (CS2) $\mathcal{G} \geq \mathcal{F} \in \mathcal{C}$ implies $\mathcal{G} \in \mathcal{C}$. (CS3) If $\mathcal{F}, \mathcal{G} \in \mathcal{C}$ and $\mathcal{F} \vee \mathcal{G}$ exists, then $\mathcal{F} \cap \mathcal{G} \in \mathcal{C}$.

Conventions. When we do not need to make reference to the Cauchy structure of a Cauchy space (X, \mathcal{C}) , we will write the space as X and call the filters in \mathcal{C} the *Cauchy filters* on X.

Given two Cauchy structures \mathcal{C} and \mathcal{D} on a set X, we write $\mathcal{C} \geq \mathcal{D}$ to mean $\mathcal{C} \subseteq \mathcal{D}$. Any collection of Cauchy structures on a set X is partially ordered by \geq and whenever we think of a collection of Cauchy structures on X as an ordered set, it will be with respect to \geq .

A function $f: X \to Y$ between Cauchy spaces is called *Cauchy continuous* if it maps Cauchy filters on X to Cauchy filters on Y. The category whose objects are Cauchy spaces and whose morphisms are Cauchy continuous functions is denoted Chy. It is well known that Chy is a topological and cartesian closed category ([9], [14]).

It is shown in Keller [5] that the category \lim_R of reciprocal limit spaces is coreflective in Chy. The \lim_R -coreflection of a Cauchy space (X, \mathcal{C}) is the reciprocal limit space $(X, p_{\mathcal{C}})$ where $p_{\mathcal{C}}$ is defined so that $\mathcal{F} \xrightarrow{p_{\mathcal{C}}} x$ if and only if $\mathcal{F} \cap \dot{x} \in \mathcal{C}$. Concepts such as convergence, adherent points, closure and denseness of filters, and subsets of a Cauchy space will be understood to be with respect to its \lim_R -coreflection.

A Cauchy space X is complete if every Cauchy filter on X converges, totally bounded if every ultrafilter on X is Cauchy, Hausdorff if its $\lim_{R} Coreflection$ is Hausdorff, and regular if $cl_X \mathcal{F}$ is Cauchy whenever $\mathcal{F} \in \mathbf{F}(X)$ is Cauchy. A completion of a Cauchy space X is a pair (Y, f) where Y is a complete Hausdorff Cauchy space and $f: X \to Y$ is a dense embedding in Chy. Observe that completions are required to be Hausdorff. A strict completion (Y, f) of a Cauchy space X is a completion that satisfies the following condition: If $\mathcal{G} \in \mathbf{F}(Y)$ is Cauchy, then there exists a Cauchy filter \mathcal{F} on X such that $\mathcal{G} \ge cl_Y f \to \mathcal{F}$. A totally bounded Cauchy space having a regular completion is called precompact. The category $\operatorname{\mathsf{Lim}}_R$ is isomorphic to the full subcategory of Chy whose objects are complete Cauchy spaces. The embedding is defined as follows: Given a reciprocal limit space (X, p), let (X, \mathcal{C}^p) be the complete Cauchy space where $\mathcal{C}^p = \{\mathcal{F} \in \mathbf{F}(X) : \mathcal{F} p$ -converges $\}$. In light of this, we will consider complete Cauchy spaces as reciprocal limit spaces and vice versa. The embedding of $\operatorname{\mathsf{Lim}}_R$ in Chy is also concretely coreflective (see [9]), which means that it preserves colimits and, in particular, quotients. For our purposes, this implies the following: If $f: X \to Y$ is a quotient map in $\operatorname{\mathsf{Lim}}_R$, then it is also a quotient map in Chy.

A monoid equipped with a limit structure making its binary operation continuous is called a *limit monoid*. A monoid equipped with a Cauchy structure making its binary operation Cauchy continuous is called a *Cauchy monoid*.

Conventions. All monoids will be multiplicative by default and their identity element will be denoted e.

Let S be monoid and let X be a set. An $action \ of \ S \ on \ X$ is a function $\lambda \colon X \times S \to X$ such that

(A1) $\lambda(x, e) = x$ for all $x \in X$ and

(A2) $\lambda(\lambda(x,s),t) = \lambda(x,st)$ for all $x \in X$ and $s,t \in S$.

If S is a limit monoid, X is a limit space, and λ is continuous, then λ is called a *continuous action of* S on X. If S is a Cauchy monoid, X is a Cauchy space, and λ is Cauchy continuous, then λ is called a *Cauchy continuous action of* S on X.

Let $\mathsf{CA}_{\mathsf{Lim}}$ denote the category whose objects consist of triples of the form (X, S, λ) where X is a limit space, S is a limit monoid, and λ is a continuous action of S on X, and whose morphisms are of the form

$$(f,g): (X,S,\lambda) \longrightarrow (Y,T,\mu)$$

where

(C1) $f: X \to Y$ is a continuous function,

(C2) $g: S \to T$ is a continuous homomorphism, and

(C3) $\mu \circ (f \times g) = f \circ \lambda$.

The category $\mathsf{CA}_{\mathsf{Chy}}$ is defined in an analogous manner. A *compactification* of an object (X, S, λ) in $\mathsf{CA}_{\mathsf{Lim}}$ is a pair $((Y, S, \mu), f)$ where

- (Y, S, μ) is an object in CA_{Lim},

-(Y, f) is a compactification in Lim of X, and

- (f, id_S) : $(X, S, \lambda) \to (Y, S, \mu)$ is a morphism in $\mathsf{CA}_{\mathsf{Lim}}$.

Completions of objects in CA_{Chy} are defined analogously.

Conventions. The objects of CA_{Lim} (CA_{Chy}, respectively) whose objects have S as the acting monoid will be called *limit S-spaces* (*Cauchy S-spaces*, respectively). To simplify notation, limit and Cauchy S-spaces will

usually be written as (X, λ) or X. Just as there is a \lim_{R} -coreflection of Chy, there is a $CA_{\lim_{R}}$ -coreflection of CA_{Chy} . (Here, $CA_{\lim_{R}}$ denotes the full subcategory of CA_{\lim} whose objects (X, S, λ) have the additional property that X is reciprocal.) And just like \lim_{R} is embedded in Chy, $CA_{\lim_{R}}$ is embedded in CA_{Chy}). Compactifications in CA_{\lim} of limit Sspaces will be called S-compactifications and completions in CA_{Chy} of Cauchy S-spaces will be called S-completions.

If $((Y,\mu), f)$ and $((Z,\nu), g)$ are two S-compactifications of a limit Sspace (X,λ) , we will write $((Y,\mu), f) \ge ((Z,\nu), g)$ or, more simply, $Y \ge Z$ whenever there exists a continuous function $h: Y \to Z$ such that $h \circ f = g$ and $h \circ \mu = \nu \circ (h \times id_S)$. If Y and Z are two S-compactifications of a limit S-space X and $Y \ge Z$ and $Z \ge Y$, then Y and Z are isomorphic objects in CA_{Lim} and we say that Y and Z are equivalent S-compactifications of X. By extending the relation \ge to the set of equivalence classes of equivalent S-compactifications of X, the relation \ge becomes a partial ordering. This is the ordering that we will be referring to when we say "ordered set of equivalence classes of equivalent S-compactifications."

A limit S-space (X, λ) is called *adherence restrictive* if, for each $\mathcal{F} \in \mathbf{F}(X)$ with no adherent points and every convergent filter \mathcal{G} on S, the filter $\lambda^{\rightarrow}(\mathcal{F} \times \mathcal{G})$ has no adherent points. Similarly, a Cauchy S-space (X, λ) is called *adherence restrictive* if, for every Cauchy filter \mathcal{F} on X with no adherent points and every convergent filter \mathcal{G} on S, the filter $\lambda^{\rightarrow}(\mathcal{F} \times \mathcal{G})$ has no adherence points.

An S-compactification or an S-completion $((Y, \mu), f)$ of an S-space (X, λ) will be called *remainder invariant* if $\mu((Y - f(X)) \times S) \subseteq Y - f(X)$.

3. CAUCHY S-SPACES

In this section, we will establish a relationship between the S-compactifications of a limit S-space X and the precompact Cauchy S-spaces whose CA_{Lim_R} -coreflections are equal to X. Before we do so, we will need some preliminary results.

A limit space is called *completely regular* if the limit space is regular and Hausdorff and agrees on ultrafilter convergence with a completely regular topological space. The *pretopological modification* πX of a limit space X is defined so that $\mathcal{F} \in \mathbf{F}(X)$ converges to x in πX if and only if $\mathcal{F} \geq \mathcal{U}_X(x)$ in X.

Theorem 3.1 ([17]). A regular Hausdorff limit space X has a strict regular compactification in Lim if and only if

- (1) X and its pretopological modification πX agree on ultrafilter convergence.
- (2) πX is a completely regular topological space.

It follows that a limit space X has a strict regular compactification in Lim if and only if it is completely regular. Moreover, if X is completely regular, then it has a largest strict regular compactification in Lim.

Lemma 3.2. Any limit S-space that has a regular S-compactification also has a strict regular S-compactification.

Proof. Let $((X,q),\lambda)$ be a limit S-space and let $(((Y,r),\mu), f)$ be a regular S-compactification of $((X,q),\lambda)$. Let t be a limit structure on Y defined so that $\mathcal{H} \xrightarrow{t} y$ if and only if $\mathcal{H} \geq \operatorname{cl}_r f^{\rightarrow} \mathcal{F}$ for some $\mathcal{F} \in \mathbf{F}(X)$ such that $f^{\rightarrow} \mathcal{F} \xrightarrow{r} y$. Note that r and t agree on ultrafilter convergence, which means that (Y,t) is a strict, regular compactification of (X,q). We now show that μ is a continuous action on (Y,t).

Suppose $\mathcal{H} \xrightarrow{t} y$ and $\mathcal{G} \to s$ in S. Then $\mathcal{H} \geq \operatorname{cl}_r f \xrightarrow{} \mathcal{F}$ for some $\mathcal{F} \in \mathbf{F}(X)$ such that $f \xrightarrow{} \mathcal{F} \xrightarrow{r} y$. Since μ is a continuous action on (Y, r), we have that $\mu \xrightarrow{} (f \xrightarrow{} \mathcal{F} \times \mathcal{G}) \xrightarrow{r} \mu(y, s)$. Since $\mu \xrightarrow{} (f \xrightarrow{} \mathcal{F} \times \mathcal{G}) = f \xrightarrow{} (\lambda \xrightarrow{} (\mathcal{F} \times \mathcal{G}))$ and

$$\mu^{\rightarrow}(\mathcal{H}\times\mathcal{G})\geq\mu^{\rightarrow}(\mathrm{cl}_r\,f^{\rightarrow}\mathcal{F}\times\mathcal{G})\geq\mathrm{cl}_r\,\mu^{\rightarrow}(f^{\rightarrow}\mathcal{F}\times\mathcal{G})=\mathrm{cl}_r\,f^{\rightarrow}(\lambda^{\rightarrow}(\mathcal{F}\times\mathcal{G}))$$

it follows that $\mu^{\rightarrow}(\mathcal{H} \times \mathcal{G}) \xrightarrow{t} \mu(y, s)$. This concludes the proof that μ is a continuous action on (Y, t), and it follows that $(((Y, r), \mu), f)$ is a strict regular S-compactification of $((X, q), \lambda)$.

This lemma, coupled with [8, Theorem 3.5], yields the following theorem.

Theorem 3.3. Let X be a completely regular limit space, let ((Y, r), f) be a strict regular compactification of X, and let C be the Cauchy structure on X defined so that $\mathcal{F} \in \mathcal{C}$ if and only if $f \rightarrow \mathcal{F}$ r-converges. If S is a complete Cauchy monoid and if λ is a continuous action of S on X making (X, S, λ) a limit S-space, then there is an action μ of S on Y such that $(((Y, r), \mu), f)$ is a strict regular S-compactification of (X, λ) if and only if λ is a Cauchy continuous action on (X, \mathcal{C}) . Moreover, when ((Y, r), f) is the largest regular compactification of X and the action on X is Cauchy continuous, then $(((Y, r), \mu), f)$ is the largest strict regular S-compactification of X.

Let X be a Hausdorff Cauchy space. Two Cauchy filters on X are equivalent if their intersection is Cauchy. Given a Cauchy filter \mathcal{F} on X, let $[\mathcal{F}]$ denote the equivalence class of Cauchy filters equivalent to \mathcal{F} and let \tilde{X} denote the set of all such equivalence classes. A completion (Y, f)of X is said to be in *standard form* if $Y = \tilde{X}$, $f: X \to Y$ is given by $f(x) = [\dot{x}]$ and $f^{\to} \mathcal{F} \to [\mathcal{F}]$ in Y for all Cauchy filters \mathcal{F} on X. **Theorem 3.4** ([16, Theorem 5]). Every completion of a Cauchy space is equivalent to one in standard form.

Given a subset A of X, let $\Sigma A \subseteq \tilde{X}$ be defined so that $[\mathcal{F}] \in \Sigma A$ if and only if $A \in \mathcal{G}$ for some $\mathcal{G} \in [\mathcal{F}]$. Given $\mathcal{F} \in \mathbf{F}(X)$, since $\Sigma(A \cap B) \subseteq$ $\Sigma A \cap \Sigma B$ for all $A, B \subseteq X$, $\{\Sigma F : F \in \mathcal{F}\}$ is a basis for a filter on \tilde{X} , which we denote $\Sigma \mathcal{F}$. Let \mathcal{C} be the Cauchy structure on X and let $\tilde{\mathcal{C}} = \{\mathcal{H} \in \mathbf{F}(\tilde{X}) : \mathcal{H} \geq \Sigma \mathcal{F} \text{ for some } \mathcal{F} \in \mathcal{C}\}$. In general, $\tilde{\mathcal{C}}$ fails to satisfy (CS3), so, in general, $\tilde{\mathcal{C}}$ is not a Cauchy structure on \tilde{X} . If $\tilde{\mathcal{C}}$ is a Cauchy structure, then $\mathcal{F} \in \mathcal{C}$ if and only if $f^{\rightarrow} \mathcal{F} \in \tilde{\mathcal{C}}$.

Conventions. Whenever we consider \tilde{X} as a Cauchy space, $\tilde{\mathbb{C}}$ will be its corresponding Cauchy structure, and whenever we consider \tilde{X} as a completion of X, it will be with respect to the embedding $x \mapsto [\dot{x}] \colon X \to \tilde{X}$, which we will call the *canonical embedding of* X *in* \tilde{X} .

Theorem 3.5 ([6, Corollary 1.6 and Theorem 2.2]). Let X be a Hausdorff Cauchy space. Then \tilde{X} is the only possible candidate for a strict regular completion of X in standard form. Moreover, if X is precompact, then \tilde{X} is a strict regular completion of X.

Lemma 3.6. Let X be a Cauchy S-space. If (Y, f) is a strict regular completion of X, then there exists a Cauchy continuous action of S on Y making Y a strict regular S-completion of X.

Proof. Let \mathcal{C} be the Cauchy structure on X and let λ be the Cauchy continuous action of S on X. According to theorems 3.4 and 3.5, we may assume without loss of generality that $Y = \tilde{X}$.

Define $\tilde{\lambda}: \tilde{X} \times S \to \tilde{X}$ by $\tilde{\lambda}([\mathcal{F}], s) = [\lambda^{\to}(\mathcal{F} \times \dot{s})]$. Note that $\tilde{\lambda}$ is well defined, for if $\mathcal{F}, \mathcal{G} \in \mathbb{C}$ are equivalent, then $\mathcal{F} \cap \mathcal{G} \in \mathbb{C}$ and $\lambda^{\to}(\mathcal{F} \times \dot{s}) \cap \lambda^{\to}(\mathcal{G} \times \dot{s}) = \lambda^{\to}((\mathcal{F} \cap \mathcal{G}) \times \dot{s}) \in \mathbb{C}$, which means $\lambda^{\to}(\mathcal{F} \times \dot{s})$ and $\lambda^{\to}(\mathcal{G} \times \dot{s})$ are equivalent, which means $\tilde{\lambda}([\mathcal{F}], s) = \tilde{\lambda}([\mathcal{G}], s)$. We now prove that $\tilde{\lambda}$ is an action on \tilde{X} : Let $\mathcal{F} \in \mathbb{C}$ and $s, t \in S$ be arbitrary. Then $\tilde{\lambda}([\mathcal{F}], e) = [\lambda^{\to}(\mathcal{F} \times \dot{e})] = [\mathcal{F}]$ and $\tilde{\lambda}(\tilde{\lambda}([\mathcal{F}], s), t) = \tilde{\lambda}([\lambda^{\to}(\mathcal{F} \times \dot{s})], t) = [\lambda^{\to}(\mathcal{F} \times \dot{s}t)] = \tilde{\lambda}([\mathcal{F}, st).$

Before we prove that λ is Cauchy continuous, we prove that $\lambda(\Sigma A \times B) \subseteq \Sigma\lambda(A \times B)$ for all $A \subseteq X$ and $B \subseteq S$: Suppose that $[\mathcal{F}] \in \Sigma A$ and $s \in B$. Then $A \in \mathcal{G}$ for some $\mathcal{G} \in \mathcal{C}$ equivalent to \mathcal{F} , hence $\lambda(A \times \{s\}) \in \lambda^{\rightarrow}(\mathcal{G} \times \dot{s})$, hence $\lambda^{\rightarrow}(\mathcal{G} \times \dot{s}) \in [\lambda^{\rightarrow}(\mathcal{F} \times \dot{s})] = \tilde{\lambda}([\mathcal{F}], s)$, hence $[\lambda^{\rightarrow}(\mathcal{F} \times \dot{s})] \in \Sigma\lambda(A \times B)$, hence $\tilde{\lambda}(\Sigma A \times B) \subseteq \Sigma\lambda(A \times B)$, as claimed.

Now we are ready to prove that $\tilde{\lambda}$ is Cauchy continuous: Let $\mathcal{H} \in \tilde{\mathbb{C}}$ and let \mathcal{G} be a Cauchy filter on S. Then $\mathcal{H} \geq \Sigma \mathcal{F}$ for some $\mathcal{F} \in \mathbb{C}$, hence $\tilde{\lambda}^{\rightarrow}(\mathcal{H} \times \mathcal{G}) \geq \tilde{\lambda}^{\rightarrow}(\Sigma \mathcal{F} \times \mathcal{G}) \geq \Sigma \lambda^{\rightarrow}(\mathcal{F} \times \mathcal{G}) \in \tilde{\mathbb{C}}$. Finally, letting f denote the canonical embedding of X in X, since $\tilde{\lambda} \circ (f \times id_S) = f \circ \lambda$, it follows that $((\tilde{X}, \tilde{\lambda}), f)$ is a strict regular S-completion of (X, λ) .

Conventions. Whenever we regard \tilde{X} as an S-completion of an S-space (X, λ) , the action on \tilde{X} will be the action $\tilde{\lambda}$ as defined in Theorem 3.5.

Theorem 3.7. Let X be a completely regular limit space, let S be a complete Cauchy monoid, and let λ be a continuous action of S on X. Then there is an isomorphism between the ordered set of all precompact Cauchy S-spaces whose CA_{Lim_R} -coreflections are isomorphic to X and the ordered set of all equivalence classes of strict regular S-compactifications of X.

Proof. Let λ be the action on X. For notational convenience, let \mathfrak{X} be the set of all precompact Cauchy S-spaces whose $\mathsf{CA}_{\mathsf{Lim}_R}$ -coreflections are isomorphic to X. Without loss of generality, we assume that the elements of \mathfrak{X} have the form $((X, \mathfrak{C}), \lambda)$. In this way, the ordering on \mathfrak{X} is given by the ordering of the precompact Cauchy structures of the elements of \mathfrak{X} ; i.e., $((X, \mathfrak{C}_1), \lambda) \geq ((X, \mathfrak{C}_2), \lambda)$ if and only if $\mathfrak{C}_1 \geq \mathfrak{C}_2$ if and only if $\mathfrak{C}_1 \subseteq \mathfrak{C}_2$. Also, we will let \mathfrak{K} denote a fixed but complete set of non-equivalent strict regular S-compactifications of X, ordered in the way as explained in §2. Here, \mathfrak{K} will play the role of the ordered set of all equivalence classes of strict regular S-compactifications of X.

Theorem 3.3 gives the necessary and sufficient conditions for the existence of a strict regular S-compactification of the limit S-space X. Let $X_0 \in \mathfrak{X}$. By Theorem 3.5 and Lemma 3.6, \tilde{X}_0 is a strict regular Scompletion of X_0 . Since X_0 is totally bounded, \tilde{X}_0 is a strict regular S-compactification of X. Define $\theta: \mathfrak{X} \to \mathfrak{K}$ so that $\theta(X_0) = \tilde{X}_0$.

Let us prove that θ is injective. Let $X_1, X_2 \in \mathfrak{X}$ and $((X, \mathcal{C}_2), \lambda)$ be two elements of \mathfrak{X} . For i = 1, 2, let $[\mathcal{F}]_i$ denote the equivalence class of Cauchy filters on X_i equivalent to the Cauchy filter \mathcal{F} on X_i , let f_i denote the canonical embedding of X_i in \tilde{X}_i , and let $\tilde{\lambda}_i$ be the action on \tilde{X}_i . Suppose \tilde{X}_1 and \tilde{X}_2 are equivalent S-compactifications of X. Then there is a homeomorphism $h \colon \tilde{X}_1 \to \tilde{X}_2$ such that $h \circ f_1 = f_2$ and $\tilde{\lambda}_2 \circ (h \times \mathrm{id}_S) = h \circ \tilde{\lambda}_1$. If \mathcal{F} is a Cauchy filter on X_1 , then $f_1^{\rightarrow} \mathcal{F} \to [\mathcal{F}]_1$ in \tilde{X}_1 , hence $(h \circ f_1)^{\rightarrow} \mathcal{F} = f_2^{\rightarrow} \mathcal{F} \to h([\mathcal{F}]_1)$ in \tilde{X}_2 , hence $f_2^{\rightarrow} \mathcal{F}$ is Cauchy filter on \tilde{X}_2 , hence \mathcal{F} is a Cauchy filter on X_2 . This proves that $X_1 \geq X_2$ and, since h is a homeomorphism, the same argument with X_1 and X_2 swapped proves that $X_2 \geq X_1$, which means $X_1 = X_2$.

Let us now prove that θ is surjective. Let $((Y, \mu), g)$ be an arbitrary strict regular remainder-invariant S-compactification of X, let \mathcal{C} be the collection of all filters $\mathcal{F} \in \mathbf{F}(X)$ such that $g^{\rightarrow}\mathcal{F}$ converges in Y, and

let \mathcal{D} be the collection of all convergent filters on Y. Then $g: (X, \mathcal{C}) \to (Y, \mathcal{D})$ is a dense embedding in Chy and, consequently, $((Y, \mathcal{D}), g)$ is a totally bounded regular completion of (X, \mathcal{C}) in Chy. Also, λ is a Cauchy continuous action of S on (X, \mathcal{C}) : Given $\mathcal{F} \in \mathcal{C}$ and a Cauchy filter \mathcal{G} on S, we have that $g^{\rightarrow} \mathcal{F} \to y$ in Y and $\mathcal{G} \to s$ for some $y \in Y$ and $s \in S$, and since $g \circ \lambda = \mu \circ (g \times \mathrm{id}_S)$, we have that $g^{\rightarrow} (\lambda^{\rightarrow} (\mathcal{F} \times \mathcal{G})) = \mu^{\rightarrow} (g^{\rightarrow} \mathcal{F} \times \mathcal{G}) \to \mu(y, s)$, hence $\lambda^{\rightarrow} (\mathcal{F} \times \mathcal{G}) \in \mathcal{C}$, hence $((X, \mathcal{C}), \lambda)$ is a precompact Cauchy S-space in \mathfrak{X} . Finally, note that θ maps (X, \mathcal{C}) to \tilde{X} and that \tilde{X} and Y are equivalent S-compactifications.

Lastly, we prove that θ is order preserving. Let $X_1, X_2 \in \mathfrak{X}$ and suppose $X_1 \geq X_2$. Define $h: \tilde{X}_1 \to \tilde{X}_2$ by $h([\mathcal{F}]_1) = [\mathcal{F}]_2$. Let Σ_i be the Σ operator for $\tilde{X}_i, i = 1, 2$. Since $h^{\to}(\Sigma_1 \mathcal{F}) \geq \Sigma_2 \mathcal{F}$, it follows that h is continuous. We also have that $h \circ f_1 = f_2$ and that $\tilde{\lambda}_2 \circ (h \times \mathrm{id}_S) = h \circ \tilde{\lambda}_1$, for if \mathcal{F} is Cauchy filter on X_1 and $s \in S$, then $\tilde{\lambda}_2 \circ (h \times \mathrm{id}_S) = h \circ \tilde{\lambda}_2([\mathcal{F}]_2, s) = [\lambda^{\to}(\mathcal{F} \times \dot{s})]_2 = h([\lambda^{\to}(\mathcal{F} \times \dot{s})]_1) = (h \circ \tilde{\lambda}_1)([\mathcal{F}]_1, s)$. Therefore, $\tilde{X}_1 \geq \tilde{X}_2$. Conversely, suppose that $\tilde{X}_1 \geq \tilde{X}_2$. Then there is a continuous function $h: \tilde{X}_1 \to \tilde{X}_2$ such that $h \circ f_1 = f_2$ and $\tilde{\lambda}_2 \circ (h \times \mathrm{id}_S) = h \circ \tilde{\lambda}_1$. If \mathcal{F} is a Cauchy filter on X_1 , then $f_1^{\to} \mathcal{F} \to [\mathcal{F}]_1$ in \tilde{X}_1 , hence $(h \circ f_1)^{\to} \mathcal{F} = f_2^{\to} \mathcal{F} \to h([\mathcal{F}]_1)$ in \tilde{X}_2 , hence $f_2^{\to} \mathcal{F}$ is a Cauchy filter on X_2 . This proves that $X_1 \geq X_2$.

4. Generalized Quotients

Generalized quotients in the topological setting were introduced by Burzyk et al. [4] for the purpose of studying generalized functions. Extensions to the category of convergence spaces can be found in Boustique et al. [2], [3]. In this section we investigate generalized quotients in the context of S-completions.

Let $\mathsf{GQ}_{\mathsf{Chy}}$ denote the full subcategory of $\mathsf{CA}_{\mathsf{Chy}}$ whose objects (X, S, λ) satisfy the following conditions:

(G1) S is a commutative monoid.

(G2) $\lambda(\cdot, s)$ is injective for each fixed $s \in S$.

The category GQ_{Lim} is defined analogously.

Let (X, S, λ) be an object in $\mathsf{GQ}_{\mathsf{Chy}}$. Define a relation \sim on $X \times S$ so that $(x, s) \sim (y, t)$ if and only if $\lambda(x, t) = \lambda(y, s)$. The relation \sim is an equivalence relation. Let $B(X, S) = (X \times S) / \sim$ and define $\theta_X : (X \times S) \to B(X, S)$ so that $\theta_X(x, s)$ is the equivalence class containing (x, s). Let \mathcal{C}_X be the structure of the Cauchy quotient on B(X, S) with respect to the canonical surjection θ_X . Note that \mathcal{C}_X is the finest Cauchy structure on B(X, S) making θ_X Cauchy continuous and that θ_X is a quotient map in Chy.

Define $\Lambda_X: (X \times S) \times S \to X \times S$ by $\Lambda_X((x, s), t) = (\lambda(x, t), s)$ and $\lambda_B: B(X, S) \times S \to B(X, S)$ by $\lambda_B(\theta_X(x, s), t) = \theta_X(\lambda(x, t), s)$. It is not hard to verify that these actions are valid and that the diagram below commutes.

$$(X \times S) \times S \xrightarrow{\Lambda_X} X \times S$$
$$\downarrow_{\theta_X \times \mathrm{id}_S} \qquad \qquad \downarrow_{\theta_X}$$
$$B(X, S) \times S \xrightarrow{\lambda_B} B(X, S)$$

Since λ is Cauchy-continuous, it follows that Λ_X is Cauchy continuous, and since θ_X is a quotient map in Chy and Chy is cartesian closed, $\theta_X \times \operatorname{id}_S$ is also a quotient map in Chy. It follows from the diagram above that λ_B is Cauchy continuous, thus proving that B(X,S) is a Cauchy S-space with Cauchy structure \mathcal{C}_X and action λ_B . We will call the B(X,S) the generalized quotient of (X, S, λ) .

Theorem 4.1. Let (X, S, λ) be a object in $\mathsf{GQ}_{\mathsf{Chy}}$ and let B(X, S) be its generalized quotient. Let $((Y, \mu), f)$ be a strict regular remainder-invariant S-completion of (X, λ) . If S is complete, then the generalized quotient (B(Y, S), h) is an S-completion of B(X, S), where $h: B(X, S) \to B(Y, S)$ is defined by $h \circ \theta_X = \theta_Y \circ (f \times \mathrm{id}_S)$.

Proof. Observe that h is well defined. Consider the following commutative diagram.

$$\begin{array}{c} X \times S \xrightarrow{\theta_X} B(X,S) \\ \downarrow^{f \times \mathrm{id}_S} & \downarrow^h \\ Y \times S \xrightarrow{\theta_Y} B(Y,S) \end{array}$$

We now prove that h is an injection. If $\theta_X(x_1, s_1) \neq \theta_X(x_2, s_2)$, then $\lambda(x_1, s_2) \neq \lambda(x_2, s_1)$, hence $\mu(f(x_1), s_2) = f(\lambda(x_1, s_2)) \neq f(\lambda(x_2, s_1)) = \mu(f(x_2), s_1)$, hence $(h \circ \theta_X)(x_1, s_1)) = \theta_Y(f(x_1), s_1) \neq \theta_Y(f(x_2), s_2) = (h \circ \theta_X)(x_2, s_2).$

Since θ_X is a quotient map in Chy and $\theta_Y \circ (f \times id_S) = h \circ \theta_X$ is Cauchy continuous, it follows that h is Cauchy continuous.

Next, we prove that h is an embedding in Chy. Since (Y, S, μ) is an object in $\mathsf{GQ}_{\mathsf{Lim}}$ and since Y is Hausdorff, it follows by [2, Theorem 4.1] that B(Y, S) is a Hausdorff limit space. Since S and Y are complete, $Y \times S$ is complete and can therefore be regarded as a reciprocal limit space. Since B(Y, S) is a Hausdorff (hence reciprocal) limit space and θ_Y is a quotient map in Lim (and hence in Lim_R), it follows that θ_Y is a quotient map in Chy. Moreover, this means that B(Y, S) is complete.

We now prove the following claim: If $(a, b) \in \theta_Y(f(x), s)$, then $a \in f(X)$. Since $\mu(a, s) = \mu(f(x), b) = f(\lambda(x, b)) \in f(X)$ and since Y is remainder invariant, $a \in f(X)$. This proves that $\theta_Y(f(x), s)$ is determined by f(X) and S.

Let \mathcal{H} be a filter on B(X,S) such that $h^{\rightarrow}\mathcal{H}$ is a Cauchy filter on B(Y,S). Since B(Y,S) is complete, $h^{\rightarrow}\mathcal{H} \rightarrow \theta_Y(y,s)$ in B(Y,S), so there exists a $\mathcal{K} \in \mathbf{F}(Y)$ and a $\mathcal{L} \in \mathbf{F}(S)$ and a $y_1 \in Y$ and an $s_1 \in S$ such that $\mathcal{K} \rightarrow y_1$ in Y and $\mathcal{L} \rightarrow s_1$ in S and $\theta_Y(y_1,s_1) = \theta_Y(y,s)$ and $h^{\rightarrow}\mathcal{H} \geq \theta_Y^{\rightarrow}(\mathcal{K} \times \mathcal{L})$. Since Y is a strict regular completion of X, there exists an $\mathcal{F} \in \mathbf{F}(X)$ such that $f^{\rightarrow}\mathcal{F} \rightarrow y_1$ in Y and $\mathcal{K} \geq \operatorname{cl}_Y f^{\rightarrow}\mathcal{F}$. Thus, $h^{\rightarrow}\mathcal{H} \geq \theta_Y^{\rightarrow}(\mathcal{K} \times \mathcal{L}) \geq \theta_Y^{\rightarrow}(\operatorname{cl}_Y f^{\rightarrow}\mathcal{F} \times \mathcal{L})$, and since $\theta_Y(f(X) \times S) \in h^{\rightarrow}\mathcal{H}$, it follows that $h^{\rightarrow}\mathcal{H} \geq \theta_Y^{\rightarrow}(f^{\rightarrow}(\operatorname{cl}_X \mathcal{F}) \times \mathcal{L}) = (\theta_Y \circ (f \times \operatorname{id}_S))^{\rightarrow}(\operatorname{cl}_X \mathcal{F} \times \mathcal{L}) = (h \times \theta_X)^{\rightarrow}(\operatorname{cl}_X \mathcal{F} \times \mathcal{L})$. However, since h is an injection, it follows that $\mathcal{H} \geq \theta_X^{\rightarrow}(\operatorname{cl}_X \mathcal{F} \times \mathcal{L}) \in \mathcal{C}_X$ since $\operatorname{cl}_X \mathcal{F}$ and \mathcal{L} are Cauchy. This concludes the proof that h is an embedding.

5. Conclusion

Let X be an adherence-restrictive limit S-space. Suppose X has a regular compactification in Lim. According to Theorem 3.1, there exists a largest strict regular compactification ((Y, r), f) of X. Let C be the Cauchy structure on X defined so that $\mathcal{F} \in \mathbb{C}$ if and only if $f^{\rightarrow}\mathcal{F}$ converges in Y, let S be a complete Cauchy monoid, and let λ be a continuous action of S on X making (X, S, λ) a limit S-space. By Theorem 3.3, there is an action μ of S on Y and a limit structure t on Y such that $(((Y, t), \mu), f)$ is the largest strict regular S-compactification of (X, λ) if and only if λ is a Cauchy continuous action on (X, \mathbb{C}) . By Theorem 3.7, there exists a largest precompact adherence-restrictive Cauchy S-space whose CA_{Lim_R} coreflection is isomorphic to (X, λ) .

In the other direction, it is shown in [8, Theorem 3.2] that if X is an completely regular adherence-restrictive limit S-space, then X has a one-point strict regular remainder-invariant S-compactification if and only if X is locally compact. By Theorem 3.7, it follows that if X is a locally compact completely regular adherence-restrictive limit S-space, then there exists a precompact Cauchy S-space with a one-point remainder-invariant completion whose CA_{Lim_R} -coreflection is isomorphic to X.

Regular S-completions were discussed in §3. Using a similar construction, S-completions can be constructed by relaxing regularity somewhat. Assume that (X, \mathbb{C}) is a Hausdorff Cauchy space and let η be the collection of equivalence classes $[\mathcal{F}]$ such that \mathcal{F} fails to converge. Define for each $A \subseteq X$, $\hat{A} = f(A) \cup (\Sigma A \cap \eta)$, where f is the canonical embedding of X in \tilde{X} . Note that $\widehat{A \cap B} \subseteq \widehat{A} \cap \widehat{B}$ and $\widehat{A \cup B} = \widehat{A} \cup \widehat{B}$ for all $A, B \subseteq X$. Given $\mathcal{F} \in \mathbf{F}(X)$, let $\hat{\mathcal{F}}$ denote the filter on \tilde{X} generated by $\{\hat{F}: F \in \mathcal{F}\}$. Note that $\hat{\mathcal{F}} \geq \Sigma \mathcal{F}$. Let us say that the Cauchy space X is *separated* if $\hat{\mathcal{K}} \vee \hat{L}$ fails to exist whenever $\mathcal{K} \vee \mathcal{L}$ fails to exist for every $\mathcal{K}, \mathcal{L} \in \mathbb{C}$. Suppose X is separated and let $\hat{\mathbb{C}}$ be the collection of filters \mathcal{H} on \tilde{X} such that $\mathcal{H} \geq \hat{\mathcal{F}}$ for some Cauchy filter \mathcal{F} on X. Then $\hat{X} = (\tilde{X}, \hat{\mathbb{C}})$ is a Hausdorff Cauchy space and we can conclude the following result.

Theorem 5.1. Let $((X, \mathcal{C}), \lambda)$ be a separated adherence-restrictive Cauchy S-space. Then

- (i) ((X, λ), f) is an S-completion of (X, λ), where f is the canonical embedding of X in X̃,
- (ii) \hat{X} is totally bounded whenever X is totally bounded,
- (iii) $\hat{\mathbb{C}} = \hat{\mathbb{C}}$ whenever X is regular, and
- (iv) $(B(\hat{X}, S), S, \mu_B)$ is an S-completion of $(B(X, S), S, \lambda_B)$ whenever (X, S, λ) is an object in $\mathsf{GQ}_{\mathsf{Chy}}$ and S is complete.

Proof. (i) Since X is separated, (\hat{X}, f) is a completion of X in Chy. We now prove that if $A \subseteq X$ and $G \subseteq S$, then $\tilde{\lambda}(\hat{A} \times G) \subseteq \lambda(\widehat{A \times G})$: If $[\mathcal{F}] \in \hat{A} \cap \eta$ and $s \in G$, then $A \in \mathcal{K}$ for some Cauchy filter \mathcal{K} equivalent to \mathcal{F} , hence $\lambda(A \times G) \in \lambda^{\rightarrow}(\mathcal{K} \times \dot{s})$. Since $\operatorname{adh}_X \mathcal{K} = \emptyset$ and X is adherence restrictive, $\operatorname{adh}_X \lambda^{\rightarrow}(\mathcal{K} \times \dot{s}) = \emptyset$, hence $[\lambda^{\rightarrow}(\mathcal{F} \times \dot{s})] = [\lambda^{\rightarrow}(\mathcal{K} \times \dot{s})] \in \tilde{X}$, hence $[\lambda^{\rightarrow}(\mathcal{F} \times \dot{s})] \in \lambda(\widehat{A} \times G)$, hence $\tilde{\lambda}(\hat{A} \times G) \subseteq \lambda(\widehat{A} \times G)$. Having proven this, it follows that $\tilde{\lambda}^{\rightarrow}(\hat{\mathcal{F}} \times \mathcal{G}) \geq \lambda^{\rightarrow}(\widehat{\mathcal{F}} \times \mathcal{G})$ for all Cauchy filters \mathcal{F} on X and \mathcal{G} on S, which proves that $\tilde{\lambda}$ is a Cauchy continuous action on \hat{X} and that $((\hat{X}, \tilde{\lambda}), f)$ is an S-completion of (X, λ) .

(ii) Let \mathcal{H} be an ultrafilter on \tilde{X} . For each $[\mathcal{F}] \in \eta$, choose an ultrafilter $\mathcal{U}_{[\mathcal{F}]} \in [\mathcal{F}]$ and define $A^{\sigma} = f(A) \cup \{[\mathcal{F}]: A \in \mathcal{U}_{[\mathcal{F}]}\}$ for each $A \subseteq X$. Since $A^{\sigma} \cap B^{\sigma} = (A \cap B)^{\sigma}$ and $(A \cup B)^{\sigma} = A^{\sigma} \cup B^{\sigma}$ for every $A, B \subseteq X$, $\mathcal{H}_{\sigma} := \{A \subseteq X: A^{\sigma} \in \mathcal{H}\}$ is an ultrafilter on X. Let $(\mathcal{H}_{\sigma})^{\sigma}$ denote the filter on \tilde{X} generated by $\{A^{\sigma}: A \in \mathcal{H}_{\sigma}\}$. Then $\mathcal{H} \geq (\mathcal{H}_{\sigma})^{\sigma} \geq \hat{\mathcal{H}}_{\sigma}$. Since X is totally bounded, \mathcal{H}_{σ} is a Cauchy filter on X and so $\hat{\mathcal{H}}_{\sigma}$ is a Cauchy filter on \hat{X} , which means \hat{X} is totally bounded.

(iii) Let \mathcal{H} be a Cauchy filter on \tilde{X} . Then $\mathcal{H} \geq \Sigma \mathcal{F}$ for some Cauchy filter \mathcal{F} on X. Observe that $f(\operatorname{cl}_X A) \cup \hat{A} = \Sigma A$ for each $A \subseteq X$, hence $\Sigma \mathcal{F} = f^{\rightarrow}(\operatorname{cl}_X \mathcal{F}) \cap \hat{\mathcal{F}}$; and since X is regular, $\Sigma \mathcal{F}$ is a Cauchy filter on \hat{X} , which proves that $\hat{\mathcal{C}} = \tilde{\mathcal{C}}$.

(iv) The argument here follows from the argument in the proof of Theorem 4.1. $\hfill \Box$

Acknowledgments. The authors are grateful to the referee for making suggestions leading to improvements in the original manuscript.

References

- Richard N. Ball, Convergence and Cauchy structures on lattice ordered groups, Trans. Amer. Math. Soc. 259 (1980), no. 2, 357–392.
- [2] H. Boustique, P. Mikusiński, and G. Richardson, Convergence semigroup actions: Generalized quotients, Appl. Gen. Topol. 10 (2009), no. 2, 173–186.
- [3] _____, Convergence semigroup categories, Appl. Gen. Topol. 11 (2010), no. 2, 67–88.
- [4] Józef Burzyk, Cezary Ferens, and Piotr Mikusiński, On the topology of generalized quotients, Appl. Gen. Topol. 9 (2008), no. 2, 205–212 (2009).
- [5] H. H. Keller, Die Limes-Uniformisierbarkeit der Limesräume, Math. Ann. 176 (1968), no. 4, 334–341.
- [6] D. C. Kent and G. D. Richardson, Regular completions of Cauchy spaces, Pacific J. Math. 51 (1974), no. 2, 483–490.
- [7] Hans-Joachim Kowalsky, Limesräume und Komplettierung, Math. Nachr. 12 (1954), no. 5-6, 301–340.
- [8] B. Losert and G. D. Richardson, Convergence S-compactifications. Submitted.
- [9] Eva Lowen-Colebunders, Function Classes of Cauchy Continuous Maps. Monographs and Textbooks in Pure and Applied Mathematics, 123. New York: Marcel Dekker, Inc., 1989.
- [10] Kelly McKennon, The strict topology and the Cauchy structure of the spectrum of a C*-algebra, General Topology and Appl. 5 (1975), no. 3, 249–262.
- [11] P. Mikusiński, Boehmians and generalized functions, Acta Math. Hungar. 51 (1988), no. 3-4, 271–281.
- [12] _____, Generalized quotients with applications in analysis, Methods Appl. Anal. 10 (2003), no. 3, 377–386.
- [13] Wayne R. Park, Convergence structures on homeomorphism groups, Math. Ann. 199 (1972), 45–54.
- [14] Gerhard Preuss, Foundations of Topology: An Approach to Convenient Topology. Dordrecht: Kluwer Academic Publishers, 2002.
- [15] Nandita Rath, Action of convergence groups, Topology Proc. 27 (2003), no. 2, 601–612.
- [16] Ellen E. Reed, Completions of uniform convergence spaces, Math. Ann. 194 (1971), 83–108.
- [17] G. D. Richardson and D. C. Kent, Regular compactifications of convergence spaces, Proc. Amer. Math. Soc. 31 (1972), 571–573.

(Losert) Department of Mathematics; University of Central Florida; Orlando, FL 32816

E-mail address: berndlosert@knights.ucf.edu

(Richardson) Department of Mathematics; University of Central Florida; Orlando, FL 32816

 $E\text{-}mail\ address: \verb"gary.richardson@ucf.edu"$