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CONVERGENCE S-COMPLETIONS

B. LOSERT AND G. RICHARDSON

Abstract. A Cauchy semigroup acting continuously on a Cauchy
space is investigated. In particular, the question as to when the
action can be continuously extended to a completion of the Cauchy
space is studied. Moreover, completions of generalized quotient
spaces are considered.

1. Introduction

A topological group acting continuously on a topological space has been
the subject of several research articles. Wayne R. Park [13], Nandita Rath
[15], and H. Boustique et al. [2], [3] have studied this notion in the larger
category of convergence spaces. A completion theory in this context is
the main thrust of the present work and a convenient category for this
study is the category of Cauchy spaces. Cauchy spaces date back to Hans-
Joachim Kowalsky [7]. The formulation employed here was first defined
by H. H. Keller [5]. Cauchy spaces have been found to be useful in several
areas of research; for example, Kelly McKennon [10] used Cauchy spaces
in the study of C∗-algebras and Richard N. Ball [1] found Cauchy space
completions of lattice ordered groups.

In this paper, we generalize one of the results in [6] that says that, given
a limit space (X, p) there is an isomorphism between the ordered set of
precompact Cauchy structures on X that induce p and the ordered set of
equivalence classes of strict regular compactifications (X, p). The gener-
alization is done in the context of “S-spaces” and is given in Theorem 3.7.
We also investigate the notion of a “generalized quotient space” from the
Cauchy-space perspective. These spaces were introduced by Józef Burzyk
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16 B. LOSERT AND G. RICHARDSON

et al. [4] in the topological setting. P. Mikusiński ([12], [11]) used gener-
alized quotient spaces to study generalized functions. A good reference
on convergence spaces, Cauchy spaces, and categorical terminology is the
book by Gerhard Preuss [14]. An excellent treatment of Cauchy spaces is
the monograph of Eva Lowen-Colebunders [9].

2. Preliminaries

Let X be a set, let P(X) be the power set of X, and let F(X) be
the set of filters on X. Given x ∈ X, we will use ẋ to denote the fixed
ultrafilter on X generated by {{x}}. Given F,G ∈ F(X), we will write
F ≥ G (read “F is finer than G”) if and only if G ⊆ F. The relation ≥ is a
partial order on F(X) and we will write F ∨ G for the least upper bound
of F,G ∈ F(X) with respect to this partial order, which exists whenever
F ∩G 6= ∅ for all F ∈ F and G ∈ G.

The pair (X, p) is called a limit space and p is called a limit structure
on X whenever X is a set and p : F(X) → P(X) satisfies the following
conditions:
(LS1) x ∈ p(ẋ).
(LS2) G ≥ F implies p(F) ⊆ q(G).
(LS3) x ∈ p(F) and x ∈ p(G) implies x ∈ p(F ∩ G).

Conventions. The notation x ∈ p(F) is read as “F p-converges to x” or “F
converges to x in X” or “F converges to x” and is usually written “F p−→ x”
or “F → x in X” or “F → x.” When we do not need to make reference to
the limit structure of a limit space (X, p), we will write the space as X.

A function f : X → Y between limit spaces is continuous provided that
f→F → f(x) in Y whenever F → x in X. Here, f→F denotes the filter on
Y generated by {f(F ) : F ∈ F}. Given G ∈ F(Y ), we use f←G to denote
the filter on X generated by {f−1(G) : G ∈ G} whenever the latter set
does not contain ∅.

Let Lim denote the category of limit spaces and continuous functions
and let X be an object in Lim. We say X is reciprocal if whenever a filter
F on X converges to two points x, y ∈ X, then x and y have the same
convergent filters. We say that X is Hausdorff provided that each filter
on X converges to at most one point. Note that every Hausdorff space is
reciprocal. We say that X is regular if whenever F → x in X, the filter
clX F generated by {clX F : F ∈ F} converges to x. Here, clX denotes the
closure operator on X. A point x ∈ X is an adherent point of F ∈ F(X)
whenever there exists a G ≥ F such that G → x in X. We use adhX F

to denote the set of all adherent points of F. The neighborhood filter of a
point x ∈ X is the intersection of all filters converging to x and is denoted
UX(x).
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We say X is compact provided that adhX F 6= ∅ for each F ∈ F(X)
or, equivalently, if each ultrafilter on X converges. A compactification in
Lim of X is a pair (Y, f) where Y is a compact Hausdorff limit space and
f : X → Y is a dense embedding in Lim. Observe that compactifications
are required to be Hausdorff. A compactification (Y, f) is called regular
whenever Y is regular and strict if, whenever G→ y in Y , there exists an
F ∈ F(X) such that G ≥ clY f

→F.
The pair (X,C) is called a Cauchy space and C is called a Cauchy struc-

ture whenever X is a set and C ⊆ F(X) satisfies the following conditions:

(CS1) ẋ ∈ C for all x ∈ X.
(CS2) G ≥ F ∈ C implies G ∈ C.
(CS3) If F,G ∈ C and F ∨ G exists, then F ∩ G ∈ C.

Conventions. When we do not need to make reference to the Cauchy
structure of a Cauchy space (X,C), we will write the space as X and call
the filters in C the Cauchy filters on X.

Given two Cauchy structures C and D on a set X, we write C ≥ D to
mean C ⊆ D. Any collection of Cauchy structures on a set X is partially
ordered by ≥ and whenever we think of a collection of Cauchy structures
on X as an ordered set, it will be with respect to ≥.

A function f : X → Y between Cauchy spaces is called Cauchy contin-
uous if it maps Cauchy filters on X to Cauchy filters on Y . The category
whose objects are Cauchy spaces and whose morphisms are Cauchy con-
tinuous functions is denoted Chy. It is well known that Chy is a topological
and cartesian closed category ([9], [14]).

It is shown in Keller [5] that the category LimR of reciprocal limit
spaces is coreflective in Chy. The LimR-coreflection of a Cauchy space
(X,C) is the reciprocal limit space (X, pC) where pC is defined so that
F

pC−−→ x if and only if F ∩ ẋ ∈ C. Concepts such as convergence, adherent
points, closure and denseness of filters, and subsets of a Cauchy space will
be understood to be with respect to its LimR-coreflection.

A Cauchy space X is complete if every Cauchy filter on X converges,
totally bounded if every ultrafilter on X is Cauchy, Hausdorff if its LimR-
coreflection is Hausdorff, and regular if clX F is Cauchy whenever F ∈
F(X) is Cauchy. A completion of a Cauchy space X is a pair (Y, f) where
Y is a complete Hausdorff Cauchy space and f : X → Y is a dense em-
bedding in Chy. Observe that completions are required to be Hausdorff.
A strict completion (Y, f) of a Cauchy space X is a completion that sat-
isfies the following condition: If G ∈ F(Y ) is Cauchy, then there exists a
Cauchy filter F on X such that G ≥ clY f

→F. A totally bounded Cauchy
space having a regular completion is called precompact.
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The category LimR is isomorphic to the full subcategory of Chy whose
objects are complete Cauchy spaces. The embedding is defined as follows:
Given a reciprocal limit space (X, p), let (X,Cp) be the complete Cauchy
space where Cp = {F ∈ F(X) : F p-converges }. In light of this, we
will consider complete Cauchy spaces as reciprocal limit spaces and vice
versa. The embedding of LimR in Chy is also concretely coreflective (see
[9]), which means that it preserves colimits and, in particular, quotients.
For our purposes, this implies the following: If f : X → Y is a quotient
map in LimR, then it is also a quotient map in Chy.

A monoid equipped with a limit structure making its binary opera-
tion continuous is called a limit monoid. A monoid equipped with a
Cauchy structure making its binary operation Cauchy continuous is called
a Cauchy monoid.
Conventions. All monoids will be multiplicative by default and their iden-
tity element will be denoted e.

Let S be monoid and let X be a set. An action of S on X is a function
λ : X × S → X such that
(A1) λ(x, e) = x for all x ∈ X and
(A2) λ(λ(x, s), t) = λ(x, st) for all x ∈ X and s, t ∈ S.

If S is a limit monoid, X is a limit space, and λ is continuous, then λ
is called a continuous action of S on X. If S is a Cauchy monoid, X is
a Cauchy space, and λ is Cauchy continuous, then λ is called a Cauchy
continuous action of S on X.

Let CALim denote the category whose objects consist of triples of the
form (X,S, λ) where X is a limit space, S is a limit monoid, and λ is a
continuous action of S on X, and whose morphisms are of the form

(f, g) : (X,S, λ) −→ (Y, T, µ)

where
(C1) f : X → Y is a continuous function,
(C2) g : S → T is a continuous homomorphism, and
(C3) µ ◦ (f × g) = f ◦ λ.

The category CAChy is defined in an analogous manner. A compactification
of an object (X,S, λ) in CALim is a pair ((Y, S, µ), f) where

– (Y, S, µ) is an object in CALim,
– (Y, f) is a compactification in Lim of X, and
– (f, idS) : (X,S, λ)→ (Y, S, µ) is a morphism in CALim.

Completions of objects in CAChy are defined analogously.
Conventions. The objects of CALim (CAChy, respectively) whose objects
have S as the acting monoid will be called limit S-spaces (Cauchy S-
spaces, respectively). To simplify notation, limit and Cauchy S-spaces will
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usually be written as (X,λ) or X. Just as there is a LimR-coreflection
of Chy, there is a CALimR

-coreflection of CAChy. (Here, CALimR
denotes

the full subcategory of CALim whose objects (X,S, λ) have the additional
property that X is reciprocal.) And just like LimR is embedded in Chy,
CALimR

is embedded in CAChy). Compactifications in CALim of limit S-
spaces will be called S-compactifications and completions in CAChy of
Cauchy S-spaces will be called S-completions.

If ((Y, µ), f) and ((Z, ν), g) are two S-compactifications of a limit S-
space (X,λ), we will write ((Y, µ), f) ≥ ((Z, ν), g) or, more simply, Y ≥ Z
whenever there exists a continuous function h : Y → Z such that h◦f = g
and h◦µ = ν ◦(h× idS). If Y and Z are two S-compactifications of a limit
S-space X and Y ≥ Z and Z ≥ Y , then Y and Z are isomorphic objects
in CALim and we say that Y and Z are equivalent S-compactifications ofX.
By extending the relation ≥ to the set of equivalence classes of equivalent
S-compactifications of X, the relation ≥ becomes a partial ordering. This
is the ordering that we will be referring to when we say “ordered set of
equivalence classes of equivalent S-compactifications.”

A limit S-space (X,λ) is called adherence restrictive if, for each F ∈
F(X) with no adherent points and every convergent filter G on S, the filter
λ→(F × G) has no adherent points. Similarly, a Cauchy S-space (X,λ)
is called adherence restrictive if, for every Cauchy filter F on X with no
adherent points and every convergent filter G on S, the filter λ→(F × G)
has no adherence points.

An S-compactification or an S-completion ((Y, µ), f) of an S-space
(X,λ) will be called remainder invariant if µ((Y −f(X))×S) ⊆ Y −f(X).

3. Cauchy S-spaces

In this section, we will establish a relationship between the S-compacti-
fications of a limit S-space X and the precompact Cauchy S-spaces whose
CALimR

-coreflections are equal to X. Before we do so, we will need some
preliminary results.

A limit space is called completely regular if the limit space is regular
and Hausdorff and agrees on ultrafilter convergence with a completely
regular topological space. The pretopological modification πX of a limit
space X is defined so that F ∈ F(X) converges to x in πX if and only if
F ≥ UX(x) in X.

Theorem 3.1 ([17]). A regular Hausdorff limit space X has a strict
regular compactification in Lim if and only if

(1) X and its pretopological modification πX agree on ultrafilter con-
vergence.

(2) πX is a completely regular topological space.
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It follows that a limit space X has a strict regular compactification in
Lim if and only if it is completely regular. Moreover, if X is completely
regular, then it has a largest strict regular compactification in Lim.

Lemma 3.2. Any limit S-space that has a regular S-compactification also
has a strict regular S-compactification.

Proof. Let ((X, q), λ) be a limit S-space and let (((Y, r), µ), f) be a regular
S-compactification of ((X, q), λ). Let t be a limit structure on Y defined
so that H

t−→ y if and only if H ≥ clr f
→F for some F ∈ F(X) such

that f→F
r−→ y. Note that r and t agree on ultrafilter convergence, which

means that (Y, t) is a strict, regular compactification of (X, q). We now
show that µ is a continuous action on (Y, t).

Suppose H
t−→ y and G → s in S. Then H ≥ clr f

→F for some F ∈
F(X) such that f→F

r−→ y. Since µ is a continuous action on (Y, r), we
have that µ→(f→F×G)

r−→ µ(y, s). Since µ→(f→F×G) = f→(λ→(F×G))
and

µ→(H×G) ≥ µ→(clr f
→F×G) ≥ clr µ

→(f→F×G) = clr f
→(λ→(F×G))

it follows that µ→(H × G)
t−→ µ(y, s). This concludes the proof that µ is

a continuous action on (Y, t), and it follows that (((Y, r), µ), f) is a strict
regular S-compactification of ((X, q), λ). �

This lemma, coupled with [8, Theorem 3.5], yields the following theo-
rem.

Theorem 3.3. Let X be a completely regular limit space, let ((Y, r), f) be
a strict regular compactification of X, and let C be the Cauchy structure
on X defined so that F ∈ C if and only if f→F r-converges. If S is
a complete Cauchy monoid and if λ is a continuous action of S on X
making (X,S, λ) a limit S-space, then there is an action µ of S on Y
such that (((Y, r), µ), f) is a strict regular S-compactification of (X,λ) if
and only if λ is a Cauchy continuous action on (X,C). Moreover, when
((Y, r), f) is the largest regular compactification of X and the action on
X is Cauchy continuous, then (((Y, r), µ), f) is the largest strict regular
S-compactification of X.

Let X be a Hausdorff Cauchy space. Two Cauchy filters on X are
equivalent if their intersection is Cauchy. Given a Cauchy filter F on X,
let [F] denote the equivalence class of Cauchy filters equivalent to F and
let X̃ denote the set of all such equivalence classes. A completion (Y, f)

of X is said to be in standard form if Y = X̃, f : X → Y is given by
f(x) = [ẋ] and f→F → [F] in Y for all Cauchy filters F on X.
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Theorem 3.4 ([16, Theorem 5]). Every completion of a Cauchy space is
equivalent to one in standard form.

Given a subset A of X, let ΣA ⊆ X̃ be defined so that [F] ∈ ΣA if
and only if A ∈ G for some G ∈ [F]. Given F ∈ F(X), since Σ(A ∩ B) ⊆
ΣA ∩ ΣB for all A,B ⊆ X, {ΣF : F ∈ F} is a basis for a filter on
X̃, which we denote ΣF. Let C be the Cauchy structure on X and let
C̃ = {H ∈ F(X̃) : H ≥ ΣF for some F ∈ C}. In general, C̃ fails to satisfy
(CS3), so, in general, C̃ is not a Cauchy structure on X̃. If C̃ is a Cauchy
structure, then F ∈ C if and only if f→F ∈ C̃.

Conventions. Whenever we consider X̃ as a Cauchy space, C̃ will be its
corresponding Cauchy structure, and whenever we consider X̃ as a com-
pletion of X, it will be with respect to the embedding x 7→ [ẋ] : X → X̃,
which we will call the canonical embedding of X in X̃.

Theorem 3.5 ([6, Corollary 1.6 and Theorem 2.2]). Let X be a Hausdorff
Cauchy space. Then X̃ is the only possible candidate for a strict regular
completion of X in standard form. Moreover, if X is precompact, then X̃
is a strict regular completion of X.

Lemma 3.6. Let X be a Cauchy S-space. If (Y, f) is a strict regular
completion of X, then there exists a Cauchy continuous action of S on Y
making Y a strict regular S-completion of X.

Proof. Let C be the Cauchy structure on X and let λ be the Cauchy
continuous action of S on X. According to theorems 3.4 and 3.5, we may
assume without loss of generality that Y = X̃.

Define λ̃ : X̃ × S → X̃ by λ̃([F], s) = [λ→(F × ṡ)]. Note that λ̃ is
well defined, for if F,G ∈ C are equivalent, then F ∩ G ∈ C and λ→(F ×
ṡ) ∩ λ→(G × ṡ) = λ→((F ∩ G) × ṡ) ∈ C, which means λ→(F × ṡ) and
λ→(G × ṡ) are equivalent, which means λ̃([F], s) = λ̃([G], s). We now
prove that λ̃ is an action on X̃: Let F ∈ C and s, t ∈ S be arbitrary. Then
λ̃([F], e) = [λ→(F × ė)] = [F] and λ̃(λ̃([F], s), t) = λ̃([λ→(F × ṡ)], t) =

[λ→(λ→(F × ṡ)× ṫ)] = [λ→(F × ṡt)] = λ̃([F], st).
Before we prove that λ̃ is Cauchy continuous, we prove that λ̃(ΣA ×

B) ⊆ Σλ(A × B) for all A ⊆ X and B ⊆ S: Suppose that [F] ∈ ΣA
and s ∈ B. Then A ∈ G for some G ∈ C equivalent to F, hence λ(A ×
{s}) ∈ λ→(G × ṡ), hence λ→(G × ṡ) ∈ [λ→(F × ṡ)] = λ̃([F], s), hence
[λ→(F × ṡ)] ∈ Σλ(A×B), hence λ̃(ΣA×B) ⊆ Σλ(A×B), as claimed.

Now we are ready to prove that λ̃ is Cauchy continuous: Let H ∈ C̃

and let G be a Cauchy filter on S. Then H ≥ ΣF for some F ∈ C, hence
λ̃→(H × G) ≥ λ̃→(ΣF × G) ≥ Σλ→(F × G) ∈ C̃.
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Finally, letting f denote the canonical embedding of X in X̃, since
λ̃ ◦ (f × idS) = f ◦ λ, it follows that ((X̃, λ̃), f) is a strict regular S-
completion of (X,λ). �

Conventions. Whenever we regard X̃ as an S-completion of an S-space
(X,λ), the action on X̃ will be the action λ̃ as defined in Theorem 3.5.

Theorem 3.7. Let X be a completely regular limit space, let S be a
complete Cauchy monoid, and let λ be a continuous action of S on X.
Then there is an isomorphism between the ordered set of all precompact
Cauchy S-spaces whose CALimR

-coreflections are isomorphic to X and the
ordered set of all equivalence classes of strict regular S-compactifications
of X.

Proof. Let λ be the action on X. For notational convenience, let X be
the set of all precompact Cauchy S-spaces whose CALimR

-coreflections are
isomorphic to X. Without loss of generality, we assume that the elements
of X have the form ((X,C), λ). In this way, the ordering on X is given by
the ordering of the precompact Cauchy structures of the elements of X;
i.e., ((X,C1), λ) ≥ ((X,C2), λ) if and only if C1 ≥ C2 if and only if C1 ⊆ C2.
Also, we will let K denote a fixed but complete set of non-equivalent strict
regular S-compactifications of X, ordered in the way as explained in §2.
Here, K will play the role of the ordered set of all equivalence classes of
strict regular S-compactifications of X.

Theorem 3.3 gives the necessary and sufficient conditions for the exis-
tence of a strict regular S-compactification of the limit S-space X. Let
X0 ∈ X. By Theorem 3.5 and Lemma 3.6, X̃0 is a strict regular S-
completion of X0. Since X0 is totally bounded, X̃0 is a strict regular
S-compactification of X. Define θ : X→ K so that θ(X0) = X̃0.

Let us prove that θ is injective. Let X1, X2 ∈ X and ((X,C2), λ) be
two elements of X. For i = 1, 2, let [F]i denote the equivalence class
of Cauchy filters on Xi equivalent to the Cauchy filter F on Xi, let fi
denote the canonical embedding of Xi in X̃i, and let λ̃i be the action
on X̃i. Suppose X̃1 and X̃2 are equivalent S-compactifications of X.
Then there is a homeomorphism h : X̃1 → X̃2 such that h ◦ f1 = f2 and
λ̃2 ◦ (h × idS) = h ◦ λ̃1. If F is a Cauchy filter on X1, then f→1 F → [F]1
in X̃1, hence (h ◦ f1)

→
F = f→2 F → h([F]1) in X̃2, hence f→2 F is Cauchy

filter on X̃2, hence F is a Cauchy filter on X2. This proves that X1 ≥ X2

and, since h is a homeomorphism, the same argument with X1 and X2

swapped proves that X2 ≥ X1, which means X1 = X2.
Let us now prove that θ is surjective. Let ((Y, µ), g) be an arbitrary

strict regular remainder-invariant S-compactification of X, let C be the
collection of all filters F ∈ F(X) such that g→F converges in Y , and



CONVERGENCE S-COMPLETIONS 23

let D be the collection of all convergent filters on Y . Then g : (X,C) →
(Y,D) is a dense embedding in Chy and, consequently, ((Y,D), g) is a
totally bounded regular completion of (X,C) in Chy. Also, λ is a Cauchy
continuous action of S on (X,C): Given F ∈ C and a Cauchy filter G on
S, we have that g→F → y in Y and G→ s for some y ∈ Y and s ∈ S, and
since g◦λ = µ◦(g× idS), we have that g→(λ→(F×G)) = µ→(g→F×G)→
µ(y, s), hence λ→(F × G) ∈ C, hence ((X,C), λ) is a precompact Cauchy
S-space in X. Finally, note that θ maps (X,C) to X̃ and that X̃ and Y
are equivalent S-compactifications.

Lastly, we prove that θ is order preserving. LetX1, X2 ∈ X and suppose
X1 ≥ X2. Define h : X̃1 → X̃2 by h([F]1) = [F]2. Let Σi be the Σ operator
for X̃i, i = 1, 2. Since h→(Σ1F) ≥ Σ2F, it follows that h is continuous.
We also have that h ◦ f1 = f2 and that λ̃2 ◦ (h× idS) = h ◦ λ̃1, for if F is
Cauchy filter on X1 and s ∈ S, then λ̃2 ◦ (h× idS)([F]1, s) = λ̃2([F]2, s) =

[λ→(F × ṡ)]2 = h([λ→(F × ṡ)]1) = (h ◦ λ̃1)([F]1, s). Therefore, X̃1 ≥ X̃2.
Conversely, suppose that X̃1 ≥ X̃2. Then there is a continuous function
h : X̃1 → X̃2 such that h ◦ f1 = f2 and λ̃2 ◦ (h × idS) = h ◦ λ̃1. If F
is a Cauchy filter on X1, then f→1 F → [F]1 in X̃1, hence (h ◦ f1)

→
F =

f→2 F → h([F]1) in X̃2, hence f→2 F is a Cauchy filter on X̃2, hence F is a
Cauchy filter on X2. This proves that X1 ≥ X2. �

4. Generalized Quotients

Generalized quotients in the topological setting were introduced by
Burzyk et al. [4] for the purpose of studying generalized functions. Ex-
tensions to the category of convergence spaces can be found in Boustique
et al. [2], [3]. In this section we investigate generalized quotients in the
context of S-completions.

Let GQChy denote the full subcategory of CAChy whose objects (X,S, λ)
satisfy the following conditions:

(G1) S is a commutative monoid.
(G2) λ(·, s) is injective for each fixed s ∈ S.

The category GQLim is defined analogously.
Let (X,S, λ) be an object in GQChy. Define a relation ∼ on X × S so

that (x, s) ∼ (y, t) if and only if λ(x, t) = λ(y, s). The relation ∼ is an
equivalence relation. Let B(X,S) = (X×S)/ ∼ and define θX : (X×S)→
B(X,S) so that θX(x, s) is the equivalence class containing (x, s). Let CX
be the structure of the Cauchy quotient on B(X,S) with respect to the
canonical surjection θX . Note that CX is the finest Cauchy structure on
B(X,S) making θX Cauchy continuous and that θX is a quotient map in
Chy.
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Define ΛX : (X × S) × S → X × S by ΛX((x, s), t) = (λ(x, t), s) and
λB : B(X,S)× S → B(X,S) by λB(θX(x, s), t) = θX(λ(x, t), s). It is not
hard to verify that these actions are valid and that the diagram below
commutes.

(X × S)× S X × S

B(X,S)× S B(X,S)

θX×idS

ΛX

θX

λB

Since λ is Cauchy-continuous, it follows that ΛX is Cauchy continuous,
and since θX is a quotient map in Chy and Chy is cartesian closed, θX×idS
is also a quotient map in Chy. It follows from the diagram above that λB
is Cauchy continuous, thus proving that B(X,S) is a Cauchy S-space
with Cauchy structure CX and action λB . We will call the B(X,S) the
generalized quotient of (X,S, λ).

Theorem 4.1. Let (X,S, λ) be a object in GQChy and let B(X,S) be its
generalized quotient. Let ((Y, µ), f) be a strict regular remainder-invariant
S-completion of (X,λ). If S is complete, then the generalized quotient
(B(Y, S), h) is an S-completion of B(X,S), where h : B(X,S)→ B(Y, S)
is defined by h ◦ θX = θY ◦ (f × idS).

Proof. Observe that h is well defined. Consider the following commutative
diagram.

X × S B(X,S)

Y × S B(Y, S)

f×idS

θX

h

θY

We now prove that h is an injection. If θX(x1, s1) 6= θX(x2, s2), then
λ(x1, s2) 6= λ(x2, s1), hence µ(f(x1), s2) = f(λ(x1, s2)) 6= f(λ(x2, s1)) =
µ(f(x2), s1), hence (h ◦ θX)(x1, s1)) = θY (f(x1), s1) 6= θY (f(x2), s2) =
(h ◦ θX)(x2, s2).

Since θX is a quotient map in Chy and θY ◦(f× idS) = h◦θX is Cauchy
continuous, it follows that h is Cauchy continuous.

Next, we prove that h is an embedding in Chy. Since (Y, S, µ) is an
object in GQLim and since Y is Hausdorff, it follows by [2, Theorem 4.1]
that B(Y, S) is a Hausdorff limit space. Since S and Y are complete,
Y × S is complete and can therefore be regarded as a reciprocal limit
space. Since B(Y, S) is a Hausdorff (hence reciprocal) limit space and
θY is a quotient map in Lim (and hence in LimR), it follows that θY is a
quotient map in Chy. Moreover, this means that B(Y, S) is complete.
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We now prove the following claim: If (a, b) ∈ θY (f(x), s), then a ∈
f(X). Since µ(a, s) = µ(f(x), b) = f(λ(x, b)) ∈ f(X) and since Y is
remainder invariant, a ∈ f(X). This proves that θY (f(x), s) is determined
by f(X) and S.

Let H be a filter on B(X,S) such that h→H is a Cauchy filter on
B(Y, S). Since B(Y, S) is complete, h→H→ θY (y, s) in B(Y, S), so there
exists a K ∈ F(Y ) and a L ∈ F(S) and a y1 ∈ Y and an s1 ∈ S such that
K → y1 in Y and L → s1 in S and θY (y1, s1) = θY (y, s) and h→H ≥
θY
→(K×L). Since Y is a strict regular completion of X, there exists an

F ∈ F(X) such that f→F → y1 in Y and K ≥ clY f
→F. Thus, h→H ≥

θY
→(K × L) ≥ θY

→(clY f
→F × L), and since θY (f(X) × S) ∈ h→H, it

follows that h→H ≥ θY
→(f→(clX F) × L) = (θY ◦ (f × idS))

→
(clX F ×

L) = (h× θX)
→

(clX F × L). However, since h is an injection, it follows
that H ≥ θX

→(clX F × L) ∈ CX since clX F and L are Cauchy. This
concludes the proof that h is an embedding. �

5. Conclusion

Let X be an adherence-restrictive limit S-space. Suppose X has a
regular compactification in Lim. According to Theorem 3.1, there exists
a largest strict regular compactification ((Y, r), f) of X. Let C be the
Cauchy structure on X defined so that F ∈ C if and only if f→F converges
in Y , let S be a complete Cauchy monoid, and let λ be a continuous action
of S on X making (X,S, λ) a limit S-space. By Theorem 3.3, there is an
action µ of S on Y and a limit structure t on Y such that (((Y, t), µ), f)
is the largest strict regular S-compactification of (X,λ) if and only if λ
is a Cauchy continuous action on (X,C). By Theorem 3.7, there exists a
largest precompact adherence-restrictive Cauchy S-space whose CALimR

-
coreflection is isomorphic to (X,λ).

In the other direction, it is shown in [8, Theorem 3.2] that if X is an
completely regular adherence-restrictive limit S-space, then X has a one-
point strict regular remainder-invariant S-compactification if and only if
X is locally compact. By Theorem 3.7, it follows that ifX is a locally com-
pact completely regular adherence-restrictive limit S-space, then there ex-
ists a precompact Cauchy S-space with a one-point remainder-invariant
completion whose CALimR

-coreflection is isomorphic to X.
Regular S-completions were discussed in §3. Using a similar construc-

tion, S-completions can be constructed by relaxing regularity somewhat.
Assume that (X,C) is a Hausdorff Cauchy space and let η be the collection
of equivalence classes [F] such that F fails to converge. Define for each
A ⊆ X, Â = f(A)∪ (ΣA∩η), where f is the canonical embedding of X in
X̃. Note that Â ∩B ⊆ Â∩ B̂ and Â ∪B = Â∪ B̂ for all A,B ⊆ X. Given
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F ∈ F(X), let F̂ denote the filter on X̃ generated by {F̂ : F ∈ F}. Note
that F̂ ≥ ΣF. Let us say that the Cauchy space X is separated if K̂ ∨ L̂
fails to exist whenever K∨L fails to exist for every K,L ∈ C. Suppose X
is separated and let Ĉ be the collection of filters H on X̃ such that H ≥ F̂

for some Cauchy filter F on X. Then X̂ = (X̃, Ĉ) is a Hausdorff Cauchy
space and we can conclude the following result.

Theorem 5.1. Let ((X,C), λ) be a separated adherence-restrictive Cauchy
S-space. Then

(i) ((X̂, λ̃), f) is an S-completion of (X,λ), where f is the canonical
embedding of X in X̃,

(ii) X̂ is totally bounded whenever X is totally bounded,
(iii) Ĉ = C̃ whenever X is regular, and
(iv) (B(X̂, S), S, µB) is an S-completion of (B(X,S), S, λB) whenever

(X,S, λ) is an object in GQChy and S is complete.

Proof. (i) Since X is separated, (X̂, f) is a completion of X in Chy. We
now prove that if A ⊆ X and G ⊆ S, then λ̃(Â × G) ⊆ ̂λ(A×G): If
[F] ∈ Â∩η and s ∈ G, then A ∈ K for some Cauchy filter K equivalent to
F, hence λ(A×G) ∈ λ→(K× ṡ). Since adhX K = ∅ and X is adherence
restrictive, adhX λ

→(K× ṡ) = ∅, hence [λ→(F × ṡ)] = [λ→(K× ṡ)] ∈ X̃,
hence [λ→(F × ṡ)] ∈ ̂λ(A×G), hence λ̃(Â × G) ⊆ ̂λ(A×G). Having
proven this, it follows that λ̃→(F̂× G) ≥ ̂λ→(F × G) for all Cauchy filters
F on X and G on S, which proves that λ̃ is a Cauchy continuous action
on X̂ and that ((X̂, λ̃), f) is an S-completion of (X,λ).

(ii) Let H be an ultrafilter on X̃. For each [F] ∈ η, choose an ultrafilter
U[F] ∈ [F] and define Aσ = f(A)∪{[F] : A ∈ U[F]} for each A ⊆ X. Since
Aσ ∩ Bσ = (A ∩ B)σ and (A ∪ B)σ = Aσ ∪ Bσ for every A,B ⊆ X,
Hσ := {A ⊆ X : Aσ ∈ H} is an ultrafilter on X. Let (Hσ)σ denote the
filter on X̃ generated by {Aσ : A ∈ Hσ}. Then H ≥ (Hσ)σ ≥ Ĥσ. Since
X is totally bounded, Hσ is a Cauchy filter on X and so Ĥσ is a Cauchy
filter on X̂, which means H is a Cauchy filter on X̂, which means X̂ is
totally bounded.

(iii) Let H be a Cauchy filter on X̃. Then H ≥ ΣF for some Cauchy
filter F on X. Observe that f(clX A) ∪ Â = ΣA for each A ⊆ X, hence
ΣF = f→(clX F)∩ F̂; and since X is regular, ΣF is a Cauchy filter on X̂,
which proves that Ĉ = C̃.

(iv) The argument here follows from the argument in the proof of
Theorem 4.1. �
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