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POLYNOMIAL SPLITTINGS OF

OZSVÁTH AND SZABÓ’S d-INVARIANT

YUANYUAN BAO

Abstract. For any rational homology 3-sphere and one of its
spinc-structures, Peter Ozsváth and Zoltán Szabó defined a topo-
logical invariant, called d-invariant. Given a knot in the 3-sphere,
the d-invariants associated with the prime-power-fold branched cov-
ers of the knot obstruct the smooth sliceness of the knot. These
invariants bear some structural resemblances to Casson-Gordon in-
variants, which obstruct the topological sliceness of a knot. Se-Goo
Kim found a polynomial splitting property for Casson-Gordon in-
variants. In this paper, we show a similar result for Ozsváth and
Szabó’s d-invariants. We give an application of the result.

1. Introduction

We work in the smooth category, and all manifolds are supposed to be
smooth unless stated otherwise. An oriented knot K in the 3-sphere S3

is said to be slice if there is a smoothly embedded 2-disk ∆ in the 4-ball
B4 satisfying ∂(B4,∆) = (S3,K). Here ∆ is called a slice disk of K.
A pair of knots K1 and K2 are said to be smoothly concordant (denoted
by K1 ∼ K2) if K1♯(−K2) is slice where −K2 is the mirror image of K2

with reversed orientation. Smooth concordance is an equivalence relation
among knots and the set of equivalence classes becomes an abelian group
under the operation of connected sum. The group is called the knot
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concordance group and denoted by C. Slice knots represent the zero
element in C.

A knot K is said to be ribbon if K bounds a smoothly immersed 2-disc
in S3 which has the property that the pre-image of each component of
self-intersection consists of a properly embedded arc in the disc and an
arc embedded in the interior of the disc. It is obvious that each ribbon
knot is smoothly slice.

To study the group structure of C, there are two basic questions to
consider. First, given a knot, we need to figure out what the order of
the knot is in C. Second, given several knots K1,K2, · · ·Kn, we want to
know if they are linearly independent or not in C. Finite order elements
in C are called torsion elements. As for the first question, the only known
torsion in C is 2-torsion, which comes from negative amphicheiral knots.
Some invariants, such as signature, Rasmussen’s invariant, and Ozsváth
and Szabó’s τ -invariant, induce homomorphisms from C to the group of
integers. If a knot is a torsion element, it has vanishing value on such
invariants.

For the independence problem in C, there is a systematic way to study
it by considering the relative primeness of the Alexander polynomials.
J. Levine [9] first showed that if the connected sum of two knots with
relatively prime Alexander polynomials has vanishing Levine obstructions,
then so do both knots. Se-Goo Kim [7] showed that the Casson-Gordon-
Gilmer obstruction splits in the same manner. In [8], a similar splitting
property was proved for von Neumann ρ invariants associated with certain
metabelian representations.

In this paper, we study a similar splitting property for Ozsváth and
Szabó’s d-invariants and apply this property to study the independence
problem in C.

Given a 3-manifold Y and one of its torsion spinc-structures s, the d-
invariant d(Y, s) is defined for (Y, s) by Peter Ozsváth and Zoltán Szabó
[11]. Let K be a knot in S3 and let Σn(K) be the n-fold cyclic branched
cover of S3 along K with n = qr for some prime number q. Then Σn(K) is
a rational homology 3-sphere. Therefore, we can consider the d-invariant
of Σn(K) for any of its spinc-structures.

If K is a slice knot, let Wn(∆) be the n-fold branched cover of B4

along a slice disk ∆ of K. It is known that Wn(∆) is a rational homology
4-ball whose boundary is Σn(K). As studied in [11] and reformulated in
many papers such as [3] and [5], many of the d-invariants for Σn(K) must
vanish (see Theorem 2.2).

For any spinc-structure s over Σn(K), define

d̄(Σn(K), s) = d(Σn(K), s)− d(Σn(K), s0),



POLYNOMIAL SPLITTINGS OF OZSVÁTH AND SZABÓ’S d-INVARIANT 311

where s0 is a special spinc-structure as discussed in section 2. The first
homology group H1(Σ

n(K);Z) acts freely and transitively on the set of
spinc-structures Spinc(Σn(K)). Given an element s ∈ Spinc(Σn(K)) and
an element a ∈ H1(Σ

n(K);Z), let s+a denote the resulting element under
the group action. We prove the following theorem.

Theorem 1.1. Let K1 and K2 be two knots whose Alexander polynomials
are relatively prime in Q[t, t−1]. Suppose further that at least one of K1

and K2 has non-singular Seifert form. Then the following hold.

(i) If K1♯K2 is slice, then for all but finitely many prime numbers
q there exists a subgroup Mi < H1(Σ

n(Ki);Z) satisfying |Mi|
2 =

|H1(Σ
n(Ki))| such that d̄(Σn(Ki), s0 +mi) = 0 for any mi ∈ Mi

and i = 1, 2, where n can be any power of q.
(ii) If K1♯K2 is ribbon, the conclusion holds for any prime number q.

For the τ -invariant defined in [3], analogous properties can be proved
by using the same argument. Furthermore, for invariants T n

p (K) and
Dn

p (K) which are defined similarly as Tp(K) and Dp(K) in [3], we have
Theorem 2.7.

As an application of the results above, we show the following property,
which is known [7].

Proposition 1.2. Let Tk be the k-twist knot. Excluding the unknot, T1

(which is the figure-eight knot) and T2 (which is Stevedore’s knot), no
non-trivial linear combinations of twist knots are ribbon knots.

2. Proof of Theorem 1.1

2.1. Alexander polynomial, Seifert form, and

d-invariant.

In this subsection, we review some background needed in the proof of
Theorem 1.1. Let K be a knot in S3 with a Seifert surface F of genus
g. Define the Seifert form θ : H1(F ;Z) × H1(F ;Z) → Z as θ(x, y) :=
lk(i+(x), y) for any simple closed curves x and y representing elements in
H1(F ;Z), where i+ denotes the map that pushes a class off in the positive
normal direction. Fix a basis {a1, a2, · · · , a2g} for H1(F ;Z) and let A be
the Seifert matrix associated with this basis.

A Seifert form θ on H1(F ;Z) is said to be null-concordant if there exists

a direct summand Z of H1(F ;Z) so that rank(Z) =
1

2
rank(H1(F ;Z)) and

θ(Z,Z) = 0. Such a direct summand Z is called a metabolizer of θ.
A knot which has a null-concordant Seifert form is called algebraically

slice. Two knots K1 and K2 are said to be algebraically concordant if
K1♯(−K2) is algebraically slice. The set of the equivalence classes of knots
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under this relation becomes a group as well, called algebraic concordance
group, and we denote it Calg.

The following lemma is Lemma 3.1 in [7], which was refined from [6,
Proposition 3]. Note that the definition of null-concordance of a Seifert
form in [7] is different from the one we are using, but the two definitions
are equivalent.

Lemma 2.1 (Kervaire, Kim). Given two knots K1 and K2, let Fi be
a Seifert surface of Ki and let θi be the Seifert form on H1(Fi;Z) for
i = 1, 2. Suppose the Alexander polynomials of K1 and K2 are relatively
prime in Q[t−1, t] and either θ1 or θ2 is non-singular. Then if θ1 ⊕ θ2
is null-concordant with a metabolizer Z, then θi is null-concordant with
metabolizer Zi = Z ∩H1(Fi;Z) for i = 1, 2.

From this lemma we see that, with the assumption in this lemma, if
K1♯K2 is algebraically slice, so are both K1 and K2.

Let Σn(K) be defined as before for a given knot K and a prime power
n. The homology group H1(Σ

n(K);Z) acts freely and transitively on the
set Spinc(Σn(K)). So a choice of one spinc-structure gives a bijection
between Spinc(Σn(K)) and H1(Σ

n(K);Z). As discussed in [3, §2], there
exists a canonical spinc-structure s0 ∈ Spinc(Σn(K)), which is uniquely
characterized by K and n. For more details about the definition, please
refer to [3] and [4]. If H1(Σ

n(K);Z) has no 2-torsion, then s0 is the unique
spin-structure over Σn(K). Under this s0, we can identify H1(Σ

n(K)) and
spinc(Σn(K)), by sending m ∈ H1(Σ

n(K);Z) to s0 +m ∈ Spinc(Σn(K)).
One nice property of s0 is that it is compatible with the connected sum
of knots. Namely,

s0(K1♯K2) = s0(K1)♯s0(K2)

for two given knots K1 and K2, where s0(K) denotes the spinc-structure
s0 of Σn(K).

If the knot K is slice, as before let Wn(∆) be the n-fold branched
cover of B4 along a slice disk ∆ of K. Consider the homomorphism
ζ : H1(Σ

n(K);Z) → H1(W
n(∆);Z) induced by the inclusion map. Then

it is known that a spinc-structure over Σn(K) can be extended to Wn(∆)
if and only if s has the form s = s0 + m for some m ∈ Ker(ζ). As an
application of the results in [11], the following theorem is known (see also
[3]).

Theorem 2.2 (Ozsváth and Szabó). If K is slice, then d(Σn(K), s0 +
m) = 0 for any m ∈ Ker(ζ).
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2.2. Proof of Theorem 1.1.

The order of H1(Σ
n(K);Z) is determined by the Alexander polynomial

∆K(t) of K. Precisely, we have Fox’s formula

∣∣H1(Σ
n(K);Z)

∣∣ =

∣∣∣∣∣∣

n∏

j=0

∆K(exp(2πj/n))

∣∣∣∣∣∣
.

We prove the following lemma.

Lemma 2.3. Given a knot K and a prime number p ≥ 2, let Sp,K be
the set of prime numbers with the property that if q ∈ Sp,K , then there is

a certain integer r such that p divides the order of H1(Σ
qr (K);Z). Then

Sp,K is a finite set.

Proof. Given a prime power n, consider the resultant of ∆K(t) and tn−1
over the field of complex numbers C. Then we have

Res(∆K(t), tn − 1) = an∆

n∏

j=0

∆K(exp(2πj/n)),

where a∆ is the leading coefficient of ∆K(t). If p divides the order of
H1(Σ

n(K);Z), then p divides Res(∆K(t), tn − 1). Therefore, Res(∆K(t),
tn−1) = 0 in the field Fp, which means ∆K(t) and tn−1 = (t−1)(tn−1+
tn−2 + · · ·+ 1) have a common root in the algebraic closure of Fp. Since
1 is never a root of ∆K(t), we see that ∆K(t) and tn−1 + tn−2 + · · ·+ 1
have a common root in the algebraic closure of Fp.

Since p ≥ 2, we have 1 /∈ Sp,K . We assume that the set Sp,K is an
infinite set. Since ∆K(t) has only finitely many roots in the algebraic
closure of Fp, there must be two elements q1 and q2 in Sp,K such that

tq
r1
1

−1 + tq
r1
1

−2 + · · ·+1 and tq
r2
2

−1 + tq
r2
2

−2 + · · ·+1 have a common root
in the algebraic closure of Fp for some positive integers r1 and r2. This
contradicts Lemma 2.4. Therefore, opposed to our assumption, the set
Sp,K is a finite set. �

Lemma 2.4. If m and n are relatively prime integers greater than or
equal to two, then tm−1 + tm−2 + · · · + 1 and tn−1 + tn−2 + · · · + 1 can
never have a common root in the algebraic closure of Fp.

Proof. It is enough to check that Res(tm−1+ tm−2+ · · ·+1, tn−1+ tn−2+
· · · + 1) = ±1, which is non-zero in the algebraic closure of Fp. In fact,
we have

Res(tm−1 + tm−2 + · · ·+ 1, tn−1 + tn−2 + · · ·+ 1)

= det(A(m,n)) = ±1,
(†)
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where

A(m,n) =




1 1 1 · · · 0 0 0
0 1 1 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 1 1 0
0 0 0 · · · 1 1 1
1 1 1 · · · 0 0 0
0 1 1 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 1 1 0
0 0 0 · · · 1 1 1












n− 1 rows,
with m 1’s on each row;

m− 1 rows,
with n 1’s on each row.

The first equation in (†) is a basic property of the resultant of two
polynomials. We prove the second equation by induction on |m − n|. If
|m−n| = 1, we assume that n = m+1 and subtract the j’s row from the
n+ j − 1’s row in A(m,n), where 1 ≤ j ≤ m− 1. Then we have

det(A(m,n)) =




1 1 1 · · ·
1 1 · · · ∗

. . .

0 1
1

1

0
. . .

1




= 1.

If |m − n| ≥ 2, assume n > m and subtract the j’s row from the
n+ j − 1’s row, where 1 ≤ j ≤ m− 1. The resulting matrix is




1 1 1 · · ·
1 1 · · · ∗

. . .

0 1

0 A(m,n−m)




.

Therefore, det(A(m,n)) = det(A(m,n−m)).

(1) If |m−(n−m)| < n−m, it follows from our induction that det(A(m,n)) =
det(A(m,n−m)) = ±1.
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(2) If |m − (n − m)| ≥ n − m, then 2m − n ≥ n − m ≥ 2, which im-
plies 2n/3 ≤ m < n. Let k be the integer for which kn/(k + 1) ≤ m <
(k + 1)n/(k + 2) for k ≥ 2. Then we have

det(A(m,n)) = det(A(m,n−m)) = ± det(A(n−m, 2m− n))

= ± det(A(n−m, 3m− 2n)) = · · ·

= ± det(A(n−m, km− (k − 1)n)).

The condition kn/(k+1) ≤ m < (k+1)n/(k+2) implies that km− (k−
1)n ≥ n−m and [km− (k−1)n− (n−m)] < (n−m). It follows from our
induction that det(A(m,n)) = ± det(A(n−m, km− (k− 1)n)) = ±1. �

Proof of Theorem 1.1. (i) Choose a Seifert surface Fi for the knot Ki for
i = 1, 2. Let K = K1♯K2 and F = F1♯F2. Then F is a Seifert surface of
K. Suppose K is a slice knot. Then F ∪∆ bounds a 3-manifold in B4,
denoted by R, where ∆ is a slice disk of K in the 4-ball B4. Consider the
map ι : H1(F ;Z) → H1(R;Z)/Tor induced by inclusion where Tor is the
torsion part of H1(R;Z), and let Z = ker(ι). Then Z is a metabolizer of
the Seifert form θ associated with F . See [10, theorems 3.1.1 and 3.1.2]
for detailed discussion.

Let Y denote S3 sliced along F and let X denote D4 sliced along R.
Considering the construction of Σn(K) and Wn(∆), we have the following
commutative diagram.

⊕
16i6n H1(F ;Z)

⊕
16i6n H1(Y ;Z) H1(Σ

n(K);Z) 0

⊕
16i6n H1(R;Z)

⊕
16i6n H1(X ;Z) H1(W

n(∆);Z) 0

j

The map j and the maps in the vertical direction are induced by the
inclusion maps. We have the following isomorphisms.

H1(Y ;Z) ∼= H1(S
3 − F ;Z) ∼= H1(F ;Z) ∼= Hom(H1(F ;Z),Z) ∼= H1(F ;Z).

The second isomorphism follows from Alexander duality. In the same
vein, we can establish the isomorphism H1(X ;Z) ∼= H1(R;Z). So we can
replace the previous commutative diagram with the following diagram.
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⊕
16i6n

H1(F ;Z)
⊕

16i6n
H1(F ;Z) H1(Σ

n(K);Z) 0

(∗)

⊕
16i6n

H1(R;Z)
⊕

16i6n
H1(R;Z) H1(W

n(∆);Z) 0

f g

h

⊕
16i6n

ῑ ζ

The maps ῑ and ζ are induced by the inclusion maps.
We fix a basis {a1, a2, · · · , a2g} for H1(F ;Z) and let A be the Seifert

matrix of θ associated with this basis. Now we see there is a basis of⊕
16i6n H1(F ;Z) which is naturally induced by {a1, a2, · · · , a2g}. Under

this basis, the map f is represented by the matrix

f =




G I −G 0 0 · · · 0
0 G I −G 0 · · · 0
0 0 G I −G · · · 0

...
...

I −G 0 0 0 · · · G




,

where G = (At − A)−1At. (See discussion before [2, Lemma 1] or [10,
Theorem 6.2.2].) Here we abuse f to denote both the map and the matrix.
It is known that f is a presentation matrix of H1(Σ

q(K);Z). Define f1
and f2 for K1 and K2, respectively. Then f = f1 ⊕ f2.

Remember Z is the kernel of the map ι : H1(F ;Z) → H1(R;Z)/Tor.
Let M = g(

⊕
16i6n Z). By Lemma 2.5, the order of M is the square

root of the order of H1(Σ
n(K);Z). By Lemma 2.1, the metaboizer Z has

a splitting Z = Z1 ⊕ Z2 where Zi is a metabolizer of the Seifert form θi
associated with Fi for i = 1, 2. Then M has a splitting M = M1 ⊕ M2

where Mi = g(
⊕

16i6n Zi) for i = 1, 2. By Lemma 2.5, the order of Mi

is the square root of the order of H1(Σ
n(Ki);Z) for i = 1, 2.

Since H1(R;Z) is finitely generated, there are only finitely many prime
numbers dividing the order of Tor, say they are elements in {p1, p2, · · · , ps}.
We let S =

⋃s

j=1 Spj ,K where Spj ,K is the set described in Lemma 2.3,
and then S is again a finite set.

Remember that n = qr for some prime number q and positive integer
r. Suppose the prime number q is not in the set S. In this case, we claim
that

h(
⊕

16i6n

ῑ(
⊕

16i6n

Z)) = h(
⊕

16i6n

(ῑ(Z))) = 0.

Since Z is the kernel of the map ι : H1(F ;Z) → H1(R;Z)/Tor, then ῑ(Z)
belongs to the torsion part Tor of H1(R;Z). Given x ∈

⊕
16i6n Z, let y =⊕

16i6n ῑ(x). Then the order of y divides the order of Tor. On the other
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hand, the order of g(x) divides the order of H1(Σ
n(K);Z). By the commu-

tativity of diagram (*) above, ζ(g(x)) = h(y). If ζ(g(x)) = h(y) 6= 0, the
order of h(y) divides both the orders of Tor and H1(Σ

n(K);Z). So there
exists an element p ∈ {p1, p2, · · · , ps} dividing the order of H1(Σ

n(K);Z).
This conflicts with the choice of q. Therefore, ζ(g(x)) = h(y) = 0, and
our claim is proved.

By the commutativity of diagram (*), we have M ⊂ Ker(ζ). Note
that since K is slice, the order of Ker(ζ) is the square root of the order
of H1(Σ

n(K);Z) by [1, Lemma 3]. Therefore, M and Ker(ζ) have the
same order as finite groups, so M = Ker(ζ). The d-invariants defined on
M = Ker(ζ) are zero by Theorem 2.2.

We now show that the d̄-invariants of Σn(Ki) defined on Mi are zero for
both i = 1, 2. For any element m1 ∈ M1, the element (m1, 0) is included
in M , so by the additivity of d-invariant we have

d(Σn(K), s0 + (m1, 0)) = d(Σn(K1), s0 +m1) + d(Σn(K2), s0) = 0.

Here we abuse s0 to denote the unique spinc-structures discussed in §2.1
over Σn(K1), Σn(K2), or Σn(K). The value d(Σn(K1), s0 + m1) =
−d(Σn(K2), s0) does not depend on the choice of m1, so we have

d̄(Σn(K1), s0 +m1) = d(Σn(K1), s0 +m1)− d(Σn(K1), s0) = 0

for any m1 ∈ M1. The same fact can be proved for K2.

(ii) If K is a ribbon knot, we can choose R to be a handlebody, in which
case H1(R;Z) is torsion free. Then the set S is an empty set. Therefore,
the conclusion in (i) holds for any prime power n. �

In the rest of this section, we give a proof of the following lemma, which
we cannot find a good reference for.

Lemma 2.5. Suppose Z is a metabolizer of the Seifert form θ for a Seifert
surface F of the knot K. The order of M = g(

⊕
16i6n Z) is the square

root of the order of H1(Σ
n(K);Z) for any prime power n.

H. Seifert [12] proved that Gn − (G− I)n is a presentation matrix for
H1(Σ

n(K);Z) with the set of generators {a1, a2, · · · , a2g}. Namely, we
have an exact sequence

0 → H1(F ;Z)
f̂ :=Gn

−(G−I)n

−−−−−−−−−−→ H1(F ;Z)
ĝ
−→ H1(Σ

n(K);Z) → 0.

The map ĝ induces an isomorphism H1(Σ
n(K);Z) ∼= H1(F ;Z)/Im(f̂) and

ĝ(Z) is isomorphic to Z/(Im(f̂) ∩ Z).

We prove that the order of Z/(Im(f̂) ∩ Z) is a square root of that

of H1(F ;Z)/Im(f̂). The proof is similar to that of [2, Lemma 2]. As
stated there, we may extend a basis {x1, x2, · · · , xg} of Z to a basis
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{x1, x2, · · · , xg, y1, y2, · · · , yg} of H1(F ;Z). Under this basis, the matrices

A, G, and f̂ have the forms

A =

(
0 C + I
C′ E

)
, G =

(
C′ + I E′

0 −C

)
, and f̂ =

(
C′

n ∗
0 Cn

)
,

where Cn = Cn−(C−I)n. By the invertibility of Cn, we have Im(f̂)∩Z ∼=

C′
n(Z). Therefore, the order of Z/(Im(f̂)∩Z) is | det(C′

n)|, while the order

of H1(F ;Z)/Im(f̂) is | det(f̂)| = | det(C′
n)|

2.

Proof of Lemma 2.5. We show that Z/(Im(f̂) ∩ Z) is isomorphic to
(
⊕

16i6n Z)/(Im(f) ∩
⊕

16i6n Z), which is isomorphic to g(
⊕

16i6n Z).

Following [2, Lemma 1], there are integral determinant ±1 2gn×2gn ma-
trices R and C which can be written as block matrices whose blocks are
polynomials in G, such that f+ = RfC has the form

f+ =




I ∗ · · · ∗ ∗
0 I · · · ∗ ∗
...

. . .
...

...
0 0 · · · I ∗

0 0 · · · 0 f̂




,

where the stars mean some unspecified polynomials in G. It is very easy

to check that (
⊕

16i6n Z)/(Im(f+)∩
⊕

16i6n Z) ∼= Z/(Im(f̂)∩Z) by the

forms of f+ and f̂ .
Next we show that

(
⊕

16i6n

Z)/(Im(f+) ∩
⊕

16i6n

Z) ∼= (
⊕

16i6n

Z)/(Im(f) ∩
⊕

16i6n

Z)

by using the properties of R and C. Remember that R and C are au-
tomorphisms of

⊕
16i6n H1(F ;Z), so Im(f+) = Im(RfC) = Im(Rf).

Now we only need to show that R induces an isomorphism between
(
⊕

16i6n Z)/(Im(f)∩
⊕

16i6n Z) and (
⊕

16i6n Z)/(Im(Rf)∩
⊕

16i6n Z).
We show that

R(
⊕

16i6n

Z) =
⊕

16i6n

Z, and

R(Im(f) ∩
⊕

16i6n

Z) ∼= Im(Rf) ∩
⊕

16i6n

Z.
(‡)

Choose an order for the elements in the basis of
⊕

16i6n H1(F ;Z) so

that the elements in
⊕

16i6n Z take the first ng positions. Remember
that the blocks of R are polynomials in G. The form of G tells us that
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under the reordered basis, the matrix R and its inverse are 2ng × 2ng
matrices with the form (

∗ ∗
0 ∗

)
,

where stars are ng × ng matrices. Since R and its inverse are automor-
phisms, it is now easy to check that relations (‡) hold. �

2.3. τ-invariant, T n
p (K), and Dn

p (K).

Let K̃ be the pre-image of K in Σn(K). Considering K̃ as a knot in
Σn(K), J. Elisenda Grigsby, Daniel Ruberman, and Sasǒ Strle [3] defined

the τ -invariant τ(K̃, s) for K̃ and s ∈ Spinc(Σn(K)). This invariant
satisfies the following property.

Theorem 2.6 (Grigsby, Ruberman, and Strle). If K is slice, then τ(K̃, s0+
m) = 0 for any m ∈ Ker(ζ).

Note that the proof of Theorem 1.1 only depends on the algebraic in-
formation carried on Ker(ζ) and Theorem 2.2, while it does not depend
on the definition of d-invariant. By replacing Theorem 2.2 with Theo-
rem 2.6, we can prove exactly the same fact for the τ -invariant as we did
for the d-invariant in Theorem 1.1.

Grigsby, Ruberman, and Strle [3] also defined invariants Dp(K) and
Tp(K) associated with the double branched cyclic cover of the knot K.
We can extend their definition naturally to the case of any n-branched
cyclic cover with n a prime power.

Suppose φ : E → Q is a function on a finite abelian group E and H < E
is a subgroup. Following [3], we let SH(φ) =

∑
h∈H(φ(h)). Given a prime

number p, let Gp be the set of all order p subgroups of H1(Σ
n(K);Z).

Then we can define

T n
p (K) =





min






∣∣∣
∑

H∈Gp
nHSH(τ(K̃, ·))

∣∣∣

∣∣∣∣∣
nH ∈ Z>0 & at least

one is non-zero






; if p divides |H1(Σ
n(K);Z)|

0 ; otherwise

and

Dn
p (K) =






min




∣∣∣
∑

H∈Gp
nHSH(d(Σn(K), ·))

∣∣∣
∣∣∣∣∣
nH ∈ Z>0 & at least

one is non-zero





; if p divides |H1(Σ
n(K);Z)|

0 ; otherwise.
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Here we regard τ(K̃, ·) and d(Σn(K), ·) as functions from H1(Σ
n(K);Z)

to Q.
Given a function φ : E → Q, we define φ̄ : E → Q by sending e ∈ E to

φ(e) − φ(0). Let T
n

p (K) and D
n

p (K) be the invariants defined by taking

τ̄ and d̄. We prove the following theorem.

Theorem 2.7. Let p be a positive prime number or 1. Suppose the
Alexander polynomials of K1 and K2 are relatively prime in Q[t, t−1].
Suppose further that at least one of K1 and K2 has non-singular Seifert
form.

(i) If n1K1♯n2K2 is a slice knot for some non-zero n1 and n2, then

for all but finitely many primes q, the following holds: T
n

p (Ki) =

D
n

p (Ki) = 0 for i = 1, 2, where n is a power of q.
(ii) If n1K1♯n2K2 is a ribbon knot for some non-zero n1 and n2, the

conclusions above hold for any prime power n.

Proof. The proof is a combination of the proof of Theorem 1.1, the proof
of Theorem 1.2 in [3], [3, Proposition 3.4], Theorem 2.2, and Theorem 2.6.

�

3. Application

It is known [9, Corollary 23] that the twist knot Tk is

• of infinite order in the algebraic concordance group Calg if k < 0;
• algebraically slice if k ≥ 0 and 4k + 1 is a square;
• of finite order in Calg otherwise.

..........

2k crossings

twist knot Tk

Figure 1

Proof of Proposition 1.2. The Alexander polynomial of Tk is

∆Tk
(t) = −kt2 + (2k + 1)t− k.

It is easy to check that for any two non-trivial twist knots, their Alexander
polynomials are relatively prime in Q[t−1, t].

Note that each non-trival twist knot has non-singular Seifert form. Ex-
cluding the unknot, 1-twist knot, and 2-twist knot, suppose that there
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are two sets of positive integers {ki}
l
i=1 and {ni}

l
i=1 for which K =

♯li=1(niTki
) is a ribbon knot. Then

• by Lemma 2.1, each niTki
is algebraically slice;

• by our Theorem 2.7, each Tki
has vanishing D̄q

p and T̄ q
p for any

prime number p and prime number q.

We consider the case when q = 2, namely the double branched covers
of the twist knots.

Recall that Tk has infinite order in the algebraic concordance group
Calg if k < 0. So each ki for 1 ≤ i ≤ l is a positive integer.

Let Lk be the 3-manifold Σ2(Tk) = L(4k + 1, 2). Assume that k ≥ 0
and let p be a prime number dividing 4k + 1. Then

D
2

p(Tk) =

∣∣∣∣∣∣

p−1∑

j=0

d̄(Lk, s0 + j)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

p−1∑

j=0

(d(Lk, s0 + j)− d(Lk, s0))

∣∣∣∣∣∣
.

Ozsváth and Szabó [11] provided a formula of the d-invariants for lens
spaces, by which we have

d(Lk, s0 + j) =
1

4
−

j2

8k + 2
+






1

4
if j is odd;

−1

4
if j is even,

for 0 ≤ j ≤ 2k.
By calculation, we have d(Lk, s0) = 0. So

D
2

p(Tk) =

∣∣∣∣∣∣

p−1∑

j=0

d(Lk, s0 + j)

∣∣∣∣∣∣
= D2

p(Tk).

In [3, Proposition 5.1], the authors discussed D2
p(Tk) for k > 0 and

showed that

D2
p(Tk) > 0

except for the cases k = 0, 1, 2. Therefore, those Tki
which make D̄2

p

vanish are restricted to T0, T1 and T2. This completes the proof. �

Acknowledgments. I would like to thank Charles Livingston and Se-
Goo Kim for helpful discussion. My special thanks are due to Livingston
for proposing to me the question concerning Lemma 2.3 and for telling me
a concise proof that one can choose a slice disk for a ribbon knot which
bounds a handlebody in the 4-ball.



322 Y. BAO

References

[1] A. J. Casson and C. McA. Gordon, Cobordism of classical knots, with an appendix
by P. M. Gilmer in Á la Recherche de la Topologie Perdue. Ed. Lucien Guillou
and Alexis Marin. Progress in Mathematics, 62. Boston, MA: Birkhäuser Boston,
1986. 181–199.

[2] Patrick Gilmer, Classical knot and link concordance, Comment. Math. Helv. 68

(1993), no. 1, 1–19.

[3] J. Elisenda Grigsby, Daniel Ruberman, and Sašo Strle, Knot concordance and
Heegaard Floer homology invariants in branched covers, Geom. Topol. 12 (2008),
no. 4, 2249–2275.

[4] Stanislav Jabuka, Concordance invariants from higher order covers, Topology
Appl. 159 (2012), no. 10-11, 2694–2710.

[5] Stanislav Jabuka and Swatee Naik, Order in the concordance group and Heegaard
Floer homology, Geom. Topol. 11 (2007), 979–994.

[6] Michel A. Kervaire, Knot cobordism in codimension two in Manifolds - Amsterdam
1970: Proceedings of the Nuffic Summer School on Manifolds Amsterdam, August
17 - 29, 1970. Ed. N. H. Kuiper. Lecture Notes in Mathematics, Vol. 197. Berlin:
Springer, 1971. 83–105.

[7] Se-Goo Kim, Polynomial splittings of Casson-Gordon invariants, Math. Proc.
Cambridge Philos. Soc. 138 (2005), no. 1, 59–78.

[8] Se-Goo Kim and Taehee Kim, Polynomial splittings of metabelian von Neumann
rho-invariants of knots, Proc. Amer. Math. Soc. 136 (2008), no. 11, 4079–4087.

[9] J. Levine, Invariants of knot cobordism, Invent. Math. 8 (1969), 98–110; adden-
dum, 355.

[10] Charles Livingston and Swatee Naik, Introduction to knot concordance. Preprint
(available at http://wolfweb.unr.edu/homepage/naik/ConcordanceBook.pdf)

[11] Peter Ozsváth and Zoltán Szabó, Absolutely graded Floer homologies and inter-
section forms for four-manifolds with boundary, Adv. Math. 173 (2003), no. 2,
179–261.

[12] H. Seifert Über das geschlecht von knoten, Math. Ann. 110 (1935), no. 1, 571–592.

Institute for Biology and Mathematics of Dynamical Cell Processes
(iBMath); Interdisciplinary Center for Mathematical Sciences; Graduate
School of Mathematical Sciences; University of Tokyo; 3-8-1 Komaba;
Tokyo 153-8914, Japan

E-mail address: bao@ms.u-tokyo.ac.jp




