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APPROXIMATIONS FOR
p-ADIC TRANSITIVE ISOMETRIES

JOANNA FURNO

Abstract. For a fixed prime p, we give periodic approximations
of p-adic transitive isometries to prove results on spectrum and
entropy with respect to Haar measure. For translation by a p-
adic rational number, these periodic approximations converge in
the strong topology if and only if the rational number is an integer.
Finally, we describe labeling algorithms for digraph representations
of translations by p-adic rational numbers. These algorithms illumi-
nate the p-adic expansion of rational numbers in the p-adic integers
and connections to number theory.

1. Introduction

The p-adic numbers began as a tool in number theory and have spread
to other fields, including dynamical systems and ergodic theory. For a few
examples of some of the first appearances of p-adic numbers in dynamical
systems and ergodic theory, see [15], [11], [6], [14], and [19]. A trans-
formation is transitive modulo pn if iterates of the transformation cycle
through all balls of radius p−n. A transformation is a p-adic transitive
isometry if it is an isometry that is transitive modulo pn for all n ∈ N.
V. Anashin studied p-adic transitive isometries in [1] and [2]. Quotient-
preserving maps on profinite groups, a generalization of p-adic transitive
isometries, are studied in [13], [3], and [4]. Translation by a unit in Zp
is an example of a p-adic transitive isometry. The ergodic properties of
translations are studied in [2], [5], [8], and [9].

In section 2, we give approximations of p-adic transitive isometries and
show that they are cyclic approximations by periodic transformations.
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324 J. FURNO

A. B. Katok and A. M. Stepin study transformations admitting approx-
imations by periodic transformations in [12]. Generalizations of Katok
and Stepin’s results include papers by T. Schwartzbauer [17] and [16] and
by Richard J. Turek [18]. Using the results of Katok and Stepin in [12],
we give results in Theorem 2.6 for spectrum and entropy with respect to
Haar measure.

A sequence of transformations Sn on a measure space (X,A, µ) con-
verges in the strong topology on the set of transformations to a transfor-
mation T on (X,A, µ) if

µ {x ∈ X : Sn(x) 6= T (x)} → 0 as n→∞.
In section 3, we show by example that our approximations do not always
converge in the strong topology. Theorem 3.2 states that the approxima-
tions converge to translation by a ∈ Zp in the strong topology if and only
if a ∈ Z×p is an integer in Z.

Hansheng Diao and Cesar E. Silva defined digraph representations of
locally 1-Lipschitz p-adic rational functions in [7]. In section 4, we discuss
the digraph representations for translations by rational numbers in the p-
adic integers. Labeling Algorithm 4.1 and Labeling Algorithm 4.3 give
methods for labeling the vertices of the digraph representation of transla-
tion by a rational number, using the digraph representation of translation
by 1. Labeling Algorithm 4.3 gives a connection between the dynamics
and number theory, since it serves the same purpose as the Euclidean
algorithm. This connection is given explicitly in Theorem 4.5.

The results in section 3 and section 4 are part of the author’s Ph.D. dis-
sertation [10], completed under Jane Hawkins at the University of North
Carolina at Chapel Hill.

1.1. Definitions.

For a fixed prime p, the set of p-adic integers is the set of formal power
series in p,

Zp =

{ ∞∑
i=0

aip
i : ai ∈ Z and 0 ≤ ai ≤ p− 1

}
.

By listing the coefficients of the series
∑
aip

i as a sequence (ai), the set Zp
can be identified with the one-sided product space on p symbols. However,
Zp has an additional ring structure, where addition and multiplication are
defined componentwise with carries. The set of units in Zp is

Z×p =
{
a ∈ Zp : a−1 ∈ Zp

}
.

Then a ∈ Z×p if and only if |a|p = 1 (where |a|p denotes the p-adic absolute
value, as defined below), which holds if and only if the first coordinate is
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nonzero. Moreover, the p-adic integers Zp contain a copy of the integers Z,
which appear as series that end in repeating 0’s for nonnegative integers
or repeating p− 1’s for negative integers. More generally, the elements of
Zp that end in repeating coefficients can be identified as rational numbers.

We define an order on Zp by

ordp

( ∞∑
i=0

aip
i

)
= min {i : ai 6= 0} .

This order induces the p-adic absolute value on Zp by

|a|p =

{
0 if a = 0,

p− ordp(a) if a 6= 0.

The p-adic absolute value induces a metric, for which positive distances
are always powers of p. The metric induces a totally disconnected topol-
ogy, so all balls are both open and closed. The topology has a basis
consisting of balls

Bp−n(a) =
{
x ∈ Zp : |x− a|p ≤ p−n

}
,

where n is a nonnegative integer and a ∈ Zp. For a locally-compact
abelian group, Haar measure is the translation-invariant measure that is
unique up to scalar multiplication. For normalized Haar measure γ on
the Borel sets B of Zp, the measure of a ball is equal to its radius. If
a ∈ Zp, let ai be the integers such that 0 ≤ ai ≤ p − 1 and a =

∑
aip

i.
For a, b ∈ Zp and n ∈ N, we say that a ≡ b mod pn if ai = bi for
0 ≤ i ≤ n − 1. Then a ≡ b mod pn if and only if |a − b|p ≤ p−n. For
n ∈ N, we say that

∑∞
i=n aip

i is the n-tail of a ∈ Zp.
A transformation T : Zp → Zp is an isometry if |T (x)−T (y)|p = |x−y|p

for all x, y ∈ Zp. Let Fpn =
{

0, 1, . . . , pn−1
}

be the finite field with
pn elements. If T is an isometry, then we define the transformation T
mod pn on Fpn by (T mod pn)(x) = T (x) mod pn =

∑n−1
i=0 (T (x))ip

i. If
x ≡ y mod pn, then |x − y|p ≤ p−n. If T is an isometry, |x − y|≤p−n
implies that |T (x) − T (y)|p ≤ p−n, so T (x) ≡ T (y) mod pn. Hence,
T mod pn is well defined. The function T is transitive modulo pn if T
mod pn is transitive, so T permutes balls of radius p−n in a single cycle.

2. Ergodic Properties of Transitive Isometries

In this section, we recall the classical definition by Katok and Stepin
[12] of a measure-preserving transformation that admits an approxima-
tion by periodic transformations with speed f(n). For a p-adic transitive
isometry and any speed f(n), we give a cyclic approximation by periodic
transformations. After reviewing some definitions of ergodic properties,
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we use the approximations and results of Katok and Stepin [12] to give the
spectral and ergodic properties that hold for p-adic transitive isometries
with respect to Haar measure.

Let T be a transformation from a measure space (X,B, µ) to itself.
The transformation T is measurable with respect to µ if T−1A ∈ B for
all A ∈ B. A measurable transformation T is measure-preserving with
respect to µ if µ(T−1A) = µ(A) for all A ∈ B.

Let (X,B, µ) be a measure space. Then ξ = {A1, A2, . . . , An} is a
partition of X if Ai ∩ Aj = ∅ for i 6= j and X =

⋃
Ai, up to sets of

measure zero. For a sequence of partitions ξn, we write ξn → ε as n→∞
if for all A ∈ B and for each n ∈ N there exists A(ξn), a union of elements
in ξn, such that limn→∞ µ(A∆A(ξn)) = 0, where ∆ is the symmetric
difference.

Let T be an invertible, measure-preserving transformation on a mea-
sure space (X,B, µ). Let f(n) be a sequence of positive real numbers.
Then T admits a cyclic approximation by periodic transformations (cyclic
a.p.t.) with speed f(n) if there exist partitions

ξn = {Ci(n) : i = 1, 2, . . . , q(n)}
and a sequence of transformations Sn such that

(1) ξn → ε as n→∞,
(2) Sn(Ci(n)) = Ci+1(n) for 1 ≤ i < q(n) and Sn(Cq(n)(n)) = C0(n),

and

(1)
q(n)∑
i=1

µ(TCi(n)∆SnCi(n)) < f(q(n)).

In Theorem 2.1, we define approximations Sn for a p-adic transitive
isometry T : Zp → Zp. For n ∈ N, the approximation Sn(x) agrees with
T (x) for the first n coefficients and fixes the n-tail of x.

Theorem 2.1. Let T : (Zp,B, γ) → (Zp,B, γ) be a p-adic transitive
isometry on Zp with Haar measure. Let f(n) be a sequence of positive real
numbers. For n ∈ N, define an approximation Sn : (Zp,B, γ)→ (Zp,B, γ)
by

(2.1) (Sn(x))i =

{
(T (x))i if 0 ≤ i < n

xi if i ≥ n.

Then the sequence of transformations Sn is a cyclic a.p.t. with speed f(n).

Proof. Let f(n) be a sequence of positive real numbers. Let T : Zp → Zp
be a p-adic transitive isometry. As announced by Anashin in [1] and
proved in [2], if T is a p-adic transitive isometry, then T preserves Haar
measure. Let Ci(n) = Bp−n(T i(0)) for 1 ≤ i ≤ pn. Since T is transitive
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mod pn, ξn = {Ci(n) : i = 1, 2, . . . , q(n)} is a partition of Zp and q(n) =
pn. Define periodic Sn by (2.1). Since iterates of T travel through balls of
radius p−n in a cycle, we have Sn(Ci(n)) = Ci+1(n) for 1 ≤ i < q(n) and
Sn(Cq(n)(n)) = C0(n). Since Sn and T agree for the first n coefficients,
we have TCi(n) = SnCi(n), so

pn∑
i=1

µ(TCi(n)∆SnCi(n)) = 0 < f(pn).

Therefore, T admits an approximation by a cyclic a.p.t. with speed f(n).
�

Example 2.2. Translation by a ∈ Zp is defined by

Ta : Zp → Zp

x 7→ x+ a.

If a ∈ Z×p , then Ta is an example of a p-adic transitive isometry. For
x, y ∈ Zp,

|Ta(x)− Ta(y)|p = |x+ a− y − a|p = |x− y|p,

so Ta is an isometry. Since a ∈ Z×p , the translation Ta is minimal (see
[5, Theorem 6.1]). Since the translation Ta is a minimal isometry, it is
transitive mod pn for all n ∈ N (see [7, Theorem 3.2]).

In Proposition 2.3 and Proposition 2.4, we give further properties of
the transformations Sn. A sequence of transformations Sn(x) on a metric
space (X, d) converges to T (x) uniformly in x if, for all ε > 0, there exists
N ∈ N such that d(Sn(x), T (x)) < ε for all n ≥ N and for all x ∈ X.

Proposition 2.3. Let T be a transformation on Zp. For each n ∈ N,
define Sn by (2.1). Then the sequence Sn(x) on (Zp, | · |p) converges
uniformly in x to T (x).

Proof. Let ε > 0. Take N ∈ N such that p−N < ε. By the definition of
Sn, we have (Sn(x))i = (T (x))i for 0 ≤ i < n and for all x ∈ Zp. Thus, if
n ≥ N , then

|Sn(x)− T (x)|p ≤ p−n < ε

for all x ∈ Zp. Therefore, the sequence of periodic transformations Sn(x)
converges uniformly in x to the transformation T (x). �

Proposition 2.4. Let T be an isometry on Zp. Let n ∈ N and define Sn
by (2.1). Then Sn is an isometry on Zp.
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Proof. Let x, y ∈ Zp. Let k be the nonnegative integer such that |x−y|p =
p−k. Then xi = yi for 0 ≤ i < k and xk 6= yk. Since T is an isometry,
(Tx)i = (Ty)i for 0 ≤ i < k and (Tx)k 6= (Ty)k. We break the proof into
two cases.

For the first case, suppose that k < n. Then (Snx)i = (Tx)i = (Ty)i =
(Sny)i for 0 ≤ i < k. Since (Tx)k 6= (Ty)k and k < n, it follows that
(Snx)k 6= (Sny)k. Thus, |Sn(x)− Sn(y)|p = p−k.

For the second case, suppose that k ≥ n. Then (Snx)i = (Tx)i =
(Ty)i = (Sny)i for 0 ≤ i < n and (Snx)i = xi = yi = (Sny)i for
n ≤ i < k. Since xk 6= yk and k ≥ n, it follows that (Snx)k 6= (Sny)k.
Thus, |Sn(x)− Sn(y)|p = p−k.

In either case, |Sn(x) − Sn(y)|p = |x − y|p, so Sn is an isometry on
Zp. �

To discuss the spectral and ergodic properties of transitive isometries
on Zp, we need some further definitions. For a transformation T , define
a unitary operator UT on L2(X) by UT f(x) = f(Tx). Then f ∈ L2(X)
is an eigenfunction with eigenvalue λ if UT f = λf . If all of the eigen-
values of UT are simple eigenvalues, then T has simple spectrum. If the
eigenfunctions of UT span L2(X), then T has discrete spectrum.

A measure-preserving transformation T is ergodic with respect to µ if
for all A ∈ B with T−1A = A either µ(A) = 0 or µ(X\A) = 0. Suppose T
is a measure-preserving transformation on a finite measure space (X,B, µ).
The entropy of a partition ξ = {A1, A2, . . . , Ak} is

H(ξ) = −
k∑
i=1

µ(Ai) log2(µ(Ai)),

where 0 log2(0) is defined to be 0. The refinement ∨n−1i=0 T
−iξ is the

partition consisting of the sets ∩n−1i=0 T
−iAji , where 0 ≤ ji ≤ k for all

0 ≤ i ≤ n− 1. Then the entropy of T with respect to ξ is

h(T, ξ) = lim
n→∞

1

n
H

(
n−1∨
i=0

T−iξ

)
and the entropy of T is the supremum over finite partitions,

h(T ) = sup
ξ
h(T, ξ).

In [12, Theorem 3.1, Theorem 3.5 and Corollary 4.2], Katok and Stepin
prove the following about the ergodic properties of invertible, measure-
preserving transformations admitting a cyclic approximation by periodic
transformations.
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Theorem 2.5. If an invertible, measure-preserving transformation T ad-
mits a cyclic a.p.t.

(1) with speed θ/n for θ < 1/2, then T has simple spectrum.
(2) with speed f(n) for any speed f(n), then T has a discrete spectrum

and all its eigenvalues are roots of unity.
(3) with speed o(1/ log2 n), then T has zero entropy.

Next, we apply Theorem 2.5 to give spectral and ergodic properties of
p-adic transitive isometries in Theorem 2.6.

Theorem 2.6. Let T : (Zp,B, γ) → (Zp,B, γ) be a p-adic transitive
isometry on Zp with Haar measure. With respect to Haar measure, T has
simple spectrum, has discrete spectrum where all eigenvalues are roots of
unity, and has zero entropy.

Proof. Let T be a p-adic transitive isometry on Zp. By Theorem 2.1, T
admits a cyclic a.p.t. with speed f(n), for any speed f(n). Since T is an
invertible transformation that preserves Haar measure, the properties in
Theorem 2.6 follow from the results for the corresponding properties in
Theorem 2.5. �

3. Strong Convergence Properties

If a ∈ Z×p , then Ta is a p-adic transitive isometry by Example 2.2, so Ta
admits a cyclic a.p.t. by Theorem 2.1. For the translation Ta and n ∈ N,
let Sn be the approximation defined by (2.1). Then Proposition 2.3 states
that Sn(x) converges uniformly in x to Ta. However, the sequence Sn does
not always converge to T in the strong topology. Theorem 3.2 states that
the sequence Sn converges to Ta with respect to the strong topology if
and only if a is an integer. Before proving Theorem 3.2, we prove Lemma
3.1 to describe which Ta fix the n-tail of an element x ∈ Zp.

Lemma 3.1. If there exist x ∈ Zp and n ∈ N such that (Ta(x))i = xi for
all i ≥ n, then a ∈ Z ⊂ Zp.

Proof. Suppose there exists x ∈ Zp and n ∈ N such that (x+ a)i = xi for
all i ≥ n. This equality can occur in one of two ways.

First, suppose that
n−1∑
i=0

xip
i +

n−1∑
i=0

aip
i < pn.

In this case, addition of x and a does not result in a carry to the nth
coordinate. Then (x+ a)n = xn + an, which is equal to xn if and only if
an = 0. If an = 0, then xn + an < p, so there is no carry to the n + 1th
coordinate. As an induction hypothesis, suppose that xi+ai < p for some
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i ≥ n. Then (x+ a)i+1 = xi+1 + ai+1, which is equal to xi+1 if and only
if ai+1 = 0. Moreover, if ai+1 = 0, then xi+1 + ai+1 < p. It follows by
induction that ai = 0 for all i ≥ n, so a is a nonnegative integer.

Second, suppose that
n−1∑
i=0

xip
i +

n−1∑
i=0

aip
i ≥ pn.

In this case, addition of x and a does result in a carry to the nth coordi-
nate. Then (x+a)n = xn+an+1, which is equal to xn mod p if and only
if an = p−1. If an = p−1, then xn+an+1 ≥ p, so there is a carry to the
n+ 1th coordinate. As an induction hypothesis, suppose that xi + ai ≥ p
for some i ≥ n. Then (x+ a)i+1 = xi+1 + ai+1 + 1, which is equal to xi+1

modulo p if and only if ai+1 = p − 1. Moreover, if ai+1 = p − 1, then
xi+1 + ai+1 + 1 ≥ p. It follows by induction that ai = p− 1 for all i ≥ n,
so a is a negative integer.

In either case, a is an integer, considered as an element of Zp. �

In Theorem 3.2, we consider probability measures on Zp beyond Haar
measure. Since Zp can be identified with the one-sided product space on
p symbols, we can consider Zp with respect to i.i.d. Bernoulli measures,
which are invariant under Bernoulli shifts. Let ~q = (q0, q1, . . . , qp−1) be
a probability vector with qi > 0 for 0 ≤ i < p. Then the i.i.d. Bernoulli
measure µ defined by ~q gives balls of radius p−n measure by

µ
(
Bp−n(

∑
aip

i)
)

=

n−1∏
i=0

qai .

Standard constructions extend this definition to the Borel σ-algebra B.
Haar measure is the i.i.d. Bernoulli measure defined by the probability
vector with all weights equal to 1/p.

The convergence behavior of the sequence Sn in the strong topology
distinguishes between integer and non-integer elements of Zp. For this
reason, we break the proof into cases based on whether a ∈ Zp is a
positive integer, a negative integer, or not an integer.

Theorem 3.2. Let a ∈ Z×p and let µ be an i.i.d. Bernoulli measure. For
n ∈ N, define Sn by (2.1). Then Sn converges in the strong topology to
Ta if and only if a ∈ Z ⊂ Zp.

Proof. Let µ be an i.i.d. Bernoulli measure defined by a probability vector
(q0, . . . , qp−1). Let Q = max0≤i<p qi be the maximal weight.

First, suppose that a ∈ Z×p is a positive integer. Let n ∈ N such that
n > logp(a). Since 0 < a < pn, we have ai = 0 for all i ≥ n. Let
x ∈ ∪p

n−a−1
k=0 Bp−n(k). Then x ≡ k mod pn for some 0 ≤ k < pn − a, so
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i=0 xip

i + a < pn. Thus, adding a to x does not result in a carry to
the nth coordinate. For all i ≥ n, this implies that

(x+ a)i = xi + ai

= xi,

so Ta(x) = Sn(x). Similarly, if x ∈ ∪p
n−1
k=pn−aBp−n(k), then adding a to x

does result in a carry to the nth coordinate. Since (x+ a)n = xn + 1, we
have Ta(x) 6= Sn(x). Then

dµ(Ta, Sn) = µ ({x ∈ Zp : Ta(x) 6= Sn(x)})

= µ

 pn−1⋃
k=pn−a

Bp−n(k)

 ≤ aQn.
Since Q < 1, the sequence of real numbers aQn converges to 0 as n goes
to infinity. Therefore, Sn converges to Ta in the strong topology.

Next, suppose that a ∈ Z×p is a negative integer. Let n ∈ N such
that n > logp(|a|). Since −pn < a < 0, we have ai = p − 1 for all
i ≥ n. Moreover,

∑n−1
i=0 aip

i = pn + a > 0. Let x ∈ ∪p
n−1
|a| Bp−n(k).

Then x ≡ k mod pn for some |a| ≤ k < pn, so
∑n−1
i=0 xip

i +
∑n−1
i=0 aip

i =∑n−1
i=0 xip

i + pn + a ≥ pn. Thus, adding a to x does result in a carry to
the nth coefficient. For all i ≥ n, this implies that

(x+ a)i = 1 + xi + ai

= xi + p ≡ xi mod p,

so Ta(x) = Sn(x). Similarly, if x ∈ ∪|a|−1k=0 Bp−n(k), then adding a to x does
not result in a carry to the nth coordinate. Since (x+ a)n = xn + p− 1,
we have Ta(x) 6= Sn(x). Then

dµ(Ta, Sn) = µ

|a|−1⋃
k=0

Bp−n(k)

 ≤ |a|Qn.
Since Q < 1, the sequence of real numbers |a|Qn converges to 0 as n goes
to infinity. Therefore, Sn converges to Ta in the strong topology.

Finally, suppose that a ∈ Z×p is not an integer. Let n ∈ N. Then
Lemma 3.1 implies that Ta(x) 6= Sn(x) for all x ∈ Zp. If µ is an i.i.d.
product measure, then

dµ(Ta, Sn) = µ(Zp) = 1.

Since this equality holds for all n ∈ N, the sequence Sn does not converge
to Ta in the strong topology. �
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4. Translations and the Euclidean Algorithm

Let T be an isometry on Zp and let n ∈ N. We recall the definition
of the digraph G(T, pn) from Diao and Silva [7]. Let the vertex set be
V (G) = {0, 1, . . . , pn − 1}. Then the edge set E(G) contains the directed
edge (i, j) if and only if T (Bp−n(i)) = Bp−n(j). This digraph representa-
tion of an isometry illustrates the action of an isometry on balls of radius
p−n.

Let a ∈ Z×p and n ∈ N. For the translation Ta, define the approx-
imation Sn by (2.1). By Example 2.2 and Proposition 2.4, Ta and Sn
are isometries on Zp. Moreover, Ta(x) ≡ Sn(x) mod pn for all x ∈ Zp.
Hence, iterates of Ta and Sn cycle through balls of radius p−n in the same
order and G(Ta, p

n) = G(Sn, p
n). As examples, Figure 1 and Figure 2

give the digraph representations G(T1, 3
1) and G(T1, 3

2), respectively.

0 

1 

2 

Figure 1. The di-
graph G(T1, 3

1).

0 + 0·3 

1 + 0·3 

2 + 0·3 

0 + 2·3 

0 + 1·3 

1 + 1·3 

2 + 1·3 

1 + 2·3 

2 + 2·3 

Figure 2. The
digraph
G(T1, 3

2).

The vertices of G(T1, p
n) are easy to label because the labels are the

integers from 0 to pn − 1 in counting order. In Labeling Algorithm 4.1
and Labeling Algorithm 4.3, we use G(T1, p

n) to label G(Ta, p
n), where

a ∈ Zp is a positive integer or rational number. These algorithms reveal
the p-adic expansions of these numbers and connections to number theory.

We can tell whether a p-adic integer is an integer or rational number
based on its expansion. If k ∈ N, then k is expressed as an element of Zp
by a series that ends in repeating 0’s. Similarly, the series representation
of −k in Zp ends in repeating p− 1’s. If k ∈ Z is not divisible by p, then
1/k has a series representation in Zp. The coefficients of this series can
be found using the Euclidean algorithm.
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Let a and b be two natural numbers such that gcd(a, b) = d. It is a
basic result of number theory that there exist integers x and y such that
xa+yb = d. The Euclidean algorithm is a method to find these integers x
and y. Let n ∈ N. If k is not divisible by p, then gcd(k, pn) = 1. Thus, the
Euclidean algorithm finds integers xn and yn such that xnk + ynp

n = 1.
This linear combination implies that xnk ≡ 1 mod pn, so 1/k ≡ xn
mod pn. If 1/k has the series representation

∑∞
i=0 aip

i in Zp, then xn ≡∑n−1
i=0 aip

i mod pn. In this manner, the Euclidean algorithm can be used
to find the first n coefficients of the series expansion of 1/k.

For a = k and b = pn such that gcd(k, pn) = 1, Labeling Algorithm
4.3 also yields integers x and y that satisfy xk + ypn = 1, as given in
Theorem 4.5. Hence, Labeling Algorithm 4.3 serves the same purpose as
the Euclidean algorithm in finding an inverse of k in Zp.

Let k be a positive integer that is not divisible by p. Labeling Algorithm
4.1 uses the fact that Tk = T k1 to label the digraph G(Tk, p

n) from the
labels on the digraph G(T1, p

n).

Labeling Algorithm 4.1. Let k ∈ N such that p does not divide k. The
digraph G(Tk, p

n) has pn vertices in a cycle with labels as follows:
(1) Label any vertex as 0 in G(Tk, p

n). In G(T1, p
n), begin at the

vertex labeled 0.
(2) Travel along k edges in G(T1, p

n) and 1 edge in G(Tk, p
n). Give

the final vertex in G(Tk, p
n) the same label as the final vertex in

G(T1, p
n).

(3) Repeat step (2) until all vertices in G(Tk, p
n) are labeled.

Example 4.2. Let p = 3, n = 2, and k = 5 in Labeling Algorithm 4.1.
The digraph G(T5, 3

2) has 9 vertices. We pick one to label 0. Then the
consecutive vertices in G(T5, 3

2) are given the label from every fifth vertex
in G(T1, 3

2), starting from the vertex labeled 0. Figure 3 and Figure 4
show the digraph G(T1, 3

2) and the first two iterations of step (2) in
Labeling Algorithm 4.1, with the traveled edges in black and the other
edges in grey. Figure 5 shows the final result—the digraph G(T5, 3

2) with
all of the vertices labeled.

Let k be a positive integer that is not divisible by p. Labeling Algorithm
4.3 uses the fact that T1 = T k1/k to label the digraph G(T1/k, p

n) from the
labels on the digraph G(T1, p

n).

Labeling Algorithm 4.3. Let k ∈ N such that p does not divide k.
The digraph G(T1/k, p

n) has pn vertices in a cycle with labels from Fpn
as follows:

(1) Label any vertex as 0 in G(T1/k, p
n). In G(T1, p

n), begin at the
vertex labeled 0.
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0 + 0·3 

1 + 0·3 

2 + 0·3 

0 + 2·3 

0 + 1·3 

1 + 1·3 

2 + 1·3 

1 + 2·3 

2 + 2·3 

G(T1, 9) 

0 + 0·3 

2 + 1·3 

G(T5, 9) 

Figure 3. The first itera-
tion of step (2) in Labeling
Algorithm for p = 3, n = 2,
and k = 5.

0 + 0·3 

1 + 0·3 

2 + 0·3 

0 + 2·3 

0 + 1·3 

1 + 1·3 

2 + 1·3 

1 + 2·3 

2 + 2·3 

G(T1, 9) 

0 + 0·3 

2 + 1·3 

G(T5, 9) 

1 + 0·3 

Figure 4. The second
iteration of step (2) in
Labeling Algorithm 4.1
for p = 3, n = 2, and
k = 5.

0 + 0·3 

2 + 1·3 

1 + 0·3 

0 + 1·3 

0 + 2·3 

2 + 0·3 

1 + 2·3 

2 + 2·3 

1 + 1·3 

Figure 5. The digraph G(T5, 3
2).

(2) Travel along 1 edge in G(T1, p
n) and k edges in G(T1/k, p

n). Give
the final vertex in G(T1/k, p

n) the same label as the final vertex
in G(T1, p

n).
(3) Repeat step (2) until all vertices in G(T1/k, p

n) are labeled.

Example 4.4. Let p = 3, n = 2, and k = 4 in Labeling Algorithm 4.3.
The digraph G(T1/4, 3

2) has 9 vertices. We pick one to label 0. Then every
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fourth vertex in G(T1/4, 3
2) is given the label from consecutive vertices in

G(T1, 3
2), starting from the vertex labeled 0. Figure 6 shows the digraph

G(T1, 3
2) and the third iteration of step (2) in Labeling Algorithm 4.3,

with the traveled edges in black and the other edges in grey. Figure 7
shows the digraph G(T1/4, 3

2) with all of the vertices labeled.

0 + 0·3 

2 + 0·3 

G(T1/4, 9) 

1 + 0·3 

0 + 1·3 

0 + 0·3 

1 + 0·3 

2 + 0·3 

0 + 2·3 

0 + 1·3 

1 + 1·3 

2 + 1·3 

1 + 2·3 

2 + 2·3 

G(T1, 9) 

Figure 6. The third iter-
ation of step (2) in Label-
ing Algorithm 4.3 for p = 3,
n = 2, and 1/k = 1/4.

0 + 0·3 

1 + 2·3 

2 + 1·3 

0 + 2·3 

0 + 1·3 

1 + 0·3 

2 + 2·3 

1 + 1·3 

2 + 0·3 

Figure 7. The di-
graph G(T1/4, 3

2).

Next, Theorem 4.5 gives a connection between p-adic dynamics and
number theory through Labeling Algorithm 4.3, which serves the same
purpose as the Euclidean algorithm.

Theorem 4.5. Let k ∈ N such that p does not divide k. Fix n ∈ N and
consider G(T1/k, p

n). Let xn ∈ {0, 1, . . . , pn − 1} be the integer such that
(0, xn) ∈ E(G). Let yn be the number of times that we cycle completely
through G(T1/k, p

n) in Labeling Algorithm 4.3 before we label the vertex
xn. Then xn and yn are nonnegative integers that satisfy xnk = 1+ynp

n.

Proof. We give a combinatorial proof of Theorem 4.5 by counting edges in
two different ways. Consider the digraph representation for T1/k on balls
of radius p−n. In Labeling Algorithm 4.3, every kth vertex in G(T1/k, p

n)
is labeled with consecutive integers. Hence, we label the first vertex after
0 when we reach a multiple of k that is congruent to 1 modulo pn. There
are two ways to count how many edges in G(T1/k, p

n) are traveled to reach
this vertex.
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First, let xn ∈ Fpn be the integer such that (0, xn) ∈ E(G). In other
words, xn is the label of the vertex after 0 in G(T1/k, p

n). Since we are
assigning labels with consecutive integers, xn is also the number of times
we have traveled k edges to reach the first vertex after 0. Thus, we have
traveled through xnk edges to reach the first vertex after 0.

Second, let yn count the number of times that we cycle completely
through G(T1/k, p

n) before we label the vertex xn. Thus, we have traveled
though 1 + ynp

n edges to reach the first vertex after 0. Therefore, xn and
yn are integers such that xnk = 1 + ynp

n. �

Example 4.6. Using the Labeling Algorithm 4.3 to label the vertices of
G(T1/4, 3

2), we label a vertex 0 and then label every fourth vertex with
consecutive integers. The first vertex after 0 is eventually labeled with a
7 = 1 + 2 · 3. By the time that we reach the first vertex after 0, we have
cycled 3 times through the 32 edges of G(T1/4, 3

2). Since 7 · 4 = 1 + 3 · 32,
we conclude that 7 = 1 + 2 · 3 ≡ 1/4 mod 32.

Labeling Algorithm 4.1 and Labeling Algorithm 4.3 can be generalized
to label the vertices of G(Ta, p

n) for any rational number a ∈ Z×p . Suppose
j/k is a rational number in reduced form, with j ∈ Z and k ∈ N. Then
j/k ∈ Z×p if and only if both j and k are not divisible by p. Since T kj/k =

T j1 , step (2) is modified so that we travel along k edges in G(Tj/k, p
n) and

j edges in G(T1, p
n). If j is negative, then we travel the edges of G(T1, p

n)
in the opposite direction; that is, we travel the edges ofG(T−1, p

n). Again,
the label of the vertex after 0 in G(Tj/k, p

n) is the expansion of j/k in Zp
modulo pn.

Theorem 4.7. Let j ∈ Z and k ∈ N such that j, k, and p are pair-
wise relatively prime. Fix n ∈ N and consider G(Tj/k, p

n). Let xn ∈
{0, 1, . . . , pn − 1} be the integer such that (0, xn) ∈ E(G). Then xn is
a nonnegative integer such that xnk ≡ j mod pn. That is, the p-adic
expansion of j/k agrees with the p-adic expansion of xn in the first n
coefficients.

Example 4.8. For an example with a negative rational number, consider
G(T−4/3, 5

1). Since T 3
−4/3 = T 4

−1 on Z5, traveling 3 edges in G(T−4/3, 5
1)

corresponds to traveling 4 edges in G(T−1, 5
1). Moreover, G(T−1, 5

1)
has the same edges as G(T1, 5

1), but in the opposite direction. Figure
8 shows the first step in labeling G(T−4/3, 5

1) and Figure 9 gives the
completed graph. The vertex after 0 in Figure 9 is labeled 2. Hence, 2 is
a nonnegative integer such that 3 · 2 ≡ −4 mod 5. In other words, 2 is
the first coefficient in the 5-adic expansion of −4/3.

To conclude, we discuss generalization of the results to Zg. For a fixed
composite number g ∈ N, the g-adic integers have definition similar to
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G(T-4/3, 5) 

1 

0 

2 

1 

3 

G(T-1, 5) 

4 

0 

Figure 8. The first step in
labeling G(T−4/3, 5).

G(T-4/3, 5) 

1 

0 

4 

2 

3 

Figure 9. The di-
graph G(T−4/3, 5).

that of the p-adic integers. The results and proofs in this paper can be
generalized to the g-adic integers by modifying notation and changing “p
does not divide k” to “g and k are relatively prime.”
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