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ON EVENTUAL COLORING NUMBERS

YUKI IKEGAMI, HISAO KATO, AND AKIHIDE UEDA

ABsTRACT. In [6], for each natural number p we defined eventual
colorings within p of homeomorphisms which are generalizations of
colorings of fixed-point free homeomorphisms, and we investigated
the eventual coloring number C(f,p) of a fixed-point free homeo-
morphism f : X — X with zero-dimensional set of periodic points.
In [6], we constructed two indices ¢, (k) and 7, (k) for evaluating
the eventual coloring number C(f,p). The purpose of this paper
is to construct a new index %y, (k) which is more appropriate than
the indices pn (k) and 7 (k).

1. INTRODUCTION

In this paper, we assume that all spaces are separable metric spaces
and all maps are continuous functions. Let N be the set of all natural
numbers, i.e., N = {1,2,3,...}. For a separable metric space X, dim X
denotes the covering dimension of X. For each map f: X — X, let P(f)
be the set of all periodic points of f, i.e.,

P(f) = {r € X| f/(z) = x for some j € N}.

For a subset K of X, cl(K), int(K) and bd(K) denote the closure, interior
and the boundary of K in X, respectively. Let C be a family of subsets of
X. For each z € X, ord,(C) denotes the number of elements of C which
contain z, i.e.,

ord,(C) =|{C eC|zeC}.
By a swelling of a family {As}scs of subsets of a space X, we mean any
family {B;}ses of subsets of X such that Ay C B (s € S) and for every
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finite set of indices s1, So, ..., 8y, € S,

() A, # ¢ if and only if (7] Bs, # ¢.

i=1 =1
Conversely, for any cover {Bs}ses of X, a cover {A;}ses of X is a shrink-
ing of {Bs}ses if As C Bs (s € S). A finite cover C of X is a closed par-
tition of X provided that each element C of C is closed in X, int(C) # 0
and C N C’" = bd(C) Nbd(C’) for C,C" € C with C # C’. Let B be a
collection of subsets of a space X with dim X = n < co. The collection B
is in general position in X provided that if S C B with |S| < n+ 1, then
dim(N{S] S € §}) < n —|S|. We need the following lemma of general
position (see [6]).

Lemma 1.1. ([6, Lemma 2.2]) Suppose that f : X — X is a fized-point
free homeomorphism of a separable metric space X such that dim X =
n < oo and dim P(f) < 0. Let C = {C;| 1 <i < m} (m € N) be an open
cover of X and let B={B;| 1 <i < m} be a closed shrinking of C. Then
for any k € N there is an open shrinking C' = {C}| 1 <i <m} of C such
that

(0) B; C C7,

(1) {fA(bd(C")| C" € C",—k < j < k} is in general position,

(2) bd(C"YNP(f) =0 for each C" € C'.

Let f : X — X be a fixed-point free map of a separable metric space X,
ie., f(z) # x for each z € X. A subset C of X is called a color (see [11])
of fif f(C)NC = 0. Note that f(C)NC = 0 if and only if CNf~1(C) = 0.
We say that a cover C of X is a coloring of f if each element C of C is
a color of f. The minimal cardinality C(f) of closed (or open) colorings
of f is the coloring number of f (see [11]). The following is an important
theorem of coloring numbers.

Theorem 1.2. ([1, Aarts, Fokkink and Vermeer|) If f : X — X is a fized-
point free homeomorphism of a separable metric space X with dim X =
n < oo, then C(f) <n+3.

Let f: X — X be a fixed-point free map of a separable metric space
X and p € N. A subset C of X is eventually colored within p of f ([6]) if

P_o J7H(C) = 0. Note that C'is a color of f if and only if C is eventually
colored within 1.

Proposition 1.3. (|6, Proposition 1.4]) Let f : X — X be a fized-point
free map of a separable metric space X and p € N. Then a subset C of X
is eventually colored within p of f if and only if each point x € C' wanders
off C within p, i.e., for each v € C, f'(x) ¢ C with some i < p.
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In [6], we defined the eventual coloring number C(f,p) of f as follows.
A cover C of X is called an eventual coloring of f within p if each element
C' € C is eventually colored of f within p. The minimal cardinality C(f,p)
of all closed (or open) eventual colorings of f within p is called the eventual
coloring number of f within p. Note that C(f,1) = C(f). The coloring
number C(f) has been investigated by many mathematicians (e.g., see
[1-5], [7] and [9-11]). In [6], we constructed two indices ¢y, (k) and 7, (k)
to evaluate the eventual coloring number C(f,p). In this paper, we will
construct a new index ), (k) which is more appropriate than the indices
on(k) and 7, (k).

2. THE INDEX v, (k)

In [6], we constructed two indices ¢, (k) and 7, (k). For each n € NU{0}
and k = 0,1,2,....,n + 1, we defined the index ¢, (k) as follows. Put
©n(0) =1 (k = 0). For each k = 1,2,...,n 4+ 1, by induction on k we
defined the index ¢, (k) by

eulk) = 20u(k 1) + [ ] (eulk = 1) +1),
where [z] = max{m € NU{0}| m < z} for z € [0,00). Also, for each
n e NU{0} and £k =0,1,2,...,n + 1, we defined the index 7, (k) by
(k) = k(2n +1) + L.
In [6], we proved the following theorem.

Theorem 2.1. ([6, Theorems 2.3 and 2.6]) Let f : X — X be a fized-point
free homeomorphism of a separable metric space X with dim X = n < oco.
If dim P(f) <0, then

C(f,min{p,(k),7m(k)}) <n+3—k
for each k=0,1,2,....,n+ 1.

In general, we have the following problem of eventual coloring numbers
([6, Problem 2.5]).

Problem 2.2. For each n € NU {0} and 1 < k < n+ 1, determine the
minimum m(n, k) of natural numbers p satisfying the following conditions;
if f: X — X is any fixed-point free homeomorphism of a separable metric
space X such that dim X = n and dim P(f) <0, then C(f,p) <n+3—k.

Now, we will construct a new index ¢, (k). Let n € NU {0} and
0<k<n+1l Put Rnk) =n—(n+2—k)[;5=] Note that
n is divided by (n + 2 — k) with the remainder R(n,k). First, we put
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¥, (0) =1 (k = 0). Next we consider the following two cases R(<) and
R

R(<) R(n, k) <n+1—k.
R(=) R(n,k) =n+1—k.
For each 1 < k < n+ 1, we define the index 1, (k) by
o (k) = {k(2[n+gk] -1)+2 (1f R(n,k) <n+1—k),
kRl + 1) +1 (if R(n,k) =n+1—k).
For actual values of the indices ¢, (k), 7,(k) and v, (k), see the tables

below. Then we have the following proposition.

Proposition 2.3. For the indices ¢, (k), (k) and 1, (k), the following
inequalities hold.

(1) For eachn e NU{0} and 0 <k <n+1,

Pn(k) < minfepn (K), 7 (k) }-
(2) For eachn >2 and 2 <k < n,

Pn (k) < minfepn (k), 7 () }-
(3) Moreover, for each n € NU {0},

¥n(0) = @n(0) = 70 (0) = 1, ¥n(1) = @n(1) = 2, Yn(n+1) = Ta(n +1).

Proof. Let n € NU {0}. First, we will show 9, (k) < p,(k). If k =
0, then by definitions, ¥,(0) = ¢,(0) =1 (n > 0). If & = 1, then
R(n,k) = R(n,1) = n (= n+1—k), and hence the case R(=) holds.
Then (1) = (2[;7] + 1) + 1 = 2. Hence ¢, (1) = 2 = ,(1) for each
n > 0. Note that for k > 1,

k(2] |—1)+2 < k(2 J+1)+1

_n _"n
n+2—k n+2—k
and hence in both of the cases R(<) and R(=),
Un(k) < k(2]
It suffices to prove that
kQ2[———
)k k( [n+ 5 %

We proceed by induction on k = 1,...,n+ 1. If £ = 1, then the both sides
are 2 by the above argument. Let 2 < k <n+ 1. We assume that (x)g_;
holds, i.e.,

n
o s AR R NUERY

[+ 1) +1 < pu(k) (k> 1),

n

(k= 1)(2[n+2— (k—1)

]+ 1) +1<@,(k—1).
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For simplicity, put a = [n+2+(k_1)] and b = [ﬁ] By the definition of

©n (k) and the above assumption, we have the following inequality ()g:
n
n(k) =20,k —1 —— ] (on(k=1)+1
(k) = 2p0(h = 1) + [0 (pnlk = )+ 1)

>2{(k—1)(2a+ 1)+ 1} +b{(k —1)(2a+ 1) + 2}

= k(2ab+ 1) + k + (k+1)b+ 2a(2k — b — 2)

n 1 n |+ ) +k+(E+1)] n

= k(2] ]

n+2—(k—1)""n+2—k n+2-k
n n
2/l——— | (2k — |[———] — 2).
R by ey g YLl ey )
If £ = 2, then [n+2_"(k_1)] = [n+2_”(2_1)] = 0. By the inequality (),
Pn(2) > 2+2+(2+1)[ﬁ} =T7= 2(2[m]+1)+1 > Yn(2) (n > 1).

Moreover, we see that ¢,(2) =7 (n > 1) and ¢,,(2) = 4 (n > 2) because
that the condition R(<) R(n,2) =0 < n+1—2 (n > 2) is satisfied.
Hence ¢, (2) > ¥, (2) (n > 2).

Now, let us consider the case k > 3. Note that n > kK —1 > 2 and
[n+2+(k_1)} > 1. Also, we see that k > [—5—] for each 3 <k <n+ 1.
In fact, suppose, on the contrary, that k& < [m-%} Then

n > k(n+2—k) =nk + 2k — k?
= k?>n(k—1)+ 2k

Since k <n+1,

E2>nk—1)+2k> (k—1)2+2k=k* +1.

This is a contradiction. By (xx)g,

enlh) 2 K2l =l =
+(k+1)[n+2*k]+2[
> k@l + ) +k

D5 TR T2
J+1) +1 (> ¢nk) B<k<n+1).

|+1)+k

n n

n+2f(k—1)](2k_[n+2—k]_2)

J+2{(k -]
n
> k(2[—————
( [n +2—-k
Consequently we see that 1, (k) < ¢, (k).
Next, we will show that 1, (k) < 7,(k). If K =0, then ¢, (0) = 7,(0) =
1. For k > 1, it suffices to show that

k(Q[ﬁ] F1) 41 < 1o(k).
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If 1 <k <mn,then | < n. Hence

n
n+2—k]

(k) < k(2] +1)+1<k@n+1)+1=7,(k)

L]
n+2—k

for 1 <k <n Ifk=n+1(n2>0), then [,-5—] = n. Since the case
R(=) R(n,k) =0=n+1— k holds, we see that

n+2—(n+1)
=n+1)2n+1)4+1=m,(n+1)

Yp(n+1)=(n+1)(2[ |+ ) +1=(Mnm+1)2n]+1)+1

for n > 0. Finally we can conclude that all conditions in Proposition 2.3
are satisfied. O

Tables of three indices ¢, (k), 7, (k) and ¥, (k)

on (k)
k
0112 3 4 5 6
n
0 T[20-1-1 -1 -1 -
1 127 -] - - N
2 1127130 - - -
3 1127122113 - -
4 1127122 90 | 544 -
5 1127122 69 | 278 | 1951
7 (k)
k
0112|345 ]|6
n
0 12 -1-1-1-]-
1 11417 - - - -
2 116 [11]16]| - - -
3 1| 8 [15(122]29]| - -
4 11101928 |37 |46 | -
5 1112123 (34|45 | 56 | 67
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G (k)
k

. 0(1(2]| 3 4 5 6
0 112]-] - - - -

1 11271 - - - -

2 1121416 - - -

3 1121411029 - -

4 112114 5 |14 (46| -
5 112|4] 5 |13]26]67

3. MAIN THEOREM

In this section, we prove the following theorem which is the main
result of this paper. The proof is a modification of [6, Theorems 2.3 and
2.6], but we need more precise arguments.

Theorem 3.1. Let f: X — X be a fixed-point free homeomorphism of a
separable metric space X with dim X =n < oo. If dim P(f) <0, then

C(fihn(k)) <n+3—k
for each k=0,1,2,--- n+1.

Proof. Let n € NU {0} and 0 < k < n + 1. First, we will define the
following index 1, 1 (1) for each I =0, 1,2, ..., k. If | = 0, we put 1, x(0) =
1. Next, if 1 <[ < k, then we define the index ¢, 5 (1) by

o a(l) = 25— -1 +2 (fR(<) R(n,k) <n+1-—k holds),
PP llelE ]+ ) + 1 (i R(=) R(n,k) = n+ 1 — k holds).
Note that ¢, (k) = ¥ (k).

We will show that for each 0 < [ < k, there is an open cover C; =
{C1:] 1 <i<n+3-1}of X satistying following conditions:
(0); cl(C};) is eventually colored within 1, (1) for 1 <i <n+3 —k,
(1); cl(Cyy;) is colored forn +3 —k <i<n+3—1.

We proceed by induction on I. By Theorem 1.2, there is an open
coloring Cp = {Cp ;| 1 <1i < n+3} of f. Since ¥y, x(0) = 1, we may assume
that Cy satisfies the conditions (0)y and (1)g. Now we assume that [ > 1
and there is an open cover C;_1 ={Ci_1,;] 1 <i<n+3—-(1-1)} (1 >1)
of X satisfying the conditions (0);—1 and (1);—;. By Lemma 1.1, we may
assume that

{7 (bd(C))] C€Cr,~1 <5 <2 J+1}

_n
n+2—k
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is in general position. Let K; = cl(Cj_1,;) for 1 <i<n+3—-(I—1). We
put

Li=Kq, L; = CI(KZ\(Kl UKyU---U Ki,1)) (Z > 2)
Then the collection £ = {L;| 1 <i<n+3—(l—1)}is a closed partition
of X. Note that

bd(Lil) N bd(Lzz) NN bd(Lz ) C bd(Ch) n bd(Cw) n---N bd(C’imfl)

for 1 <iy <ig < - <im <n+3—(l—1). Then we see that for x € X,
(A) ord,(£) — 1 < ord,{bd(C)| C € C;_1}.

Now, we will repaint L, 3__1) by use of eventual colors L; (1 < i <
n+ 3 — k). To this end, let © € L, 43__1). For the point z, we put

prs—q-n(@)={jl1<j< 2[m] +1and f/(2) & Lyis—-1)}-
Since Ly, 13_(—1) is a color of f,
n
> 1.
| Jnt3—q-1) ()| = [n—i— 5 k] +

For each j € J,,13_—1)(x), we put
1(G) ={i € {1,2,--- ,n+3 -k} f/(x) € Li}.
We will show that there is j € J,,43__1)(z) such that [I(j)| <n+3—k.

Suppose, on the contrary, that [I(j)| =n+3—Fk for all j € Jy,13_—1)(2).

Then
n+3—k n+2—k

fx) e ﬂ L; C ﬂ bd(C}).

Since {f7(bd(C)| C € C1-1,0 < j < 2[;=5—] + 1} is in general position,
we see that

n
—]+1 2—k)<n.
(5= + D +2- k) <n
However, we have
n
—]+1 2—k)> 1.
(g + D +2- k) 2 n+

This is a contradiction. Hence there is j € J,43_q—1)(x) such that
I(7)] <n+3—k.
We put
j(@) = mingj € Juraqn (@) G)| <n+3—k}.

Now, we have to consider two cases R(<) R(n,k) < n+1—k and
R(=) R(n,k)=n+1—k.
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Case R(<): R(n,k) <n+1—k.
Note that in this case R(<), k >1>1and k > 2. Let z € Ln+37(171)-

First, we will choose an open neighborhood U(x) of z in X as follows. To
this end, we will consider the following two cases (x) and (%x):

n

] <2l——

() ) <212 —]

n

j > 2l—

() 3(2) 2 2]
Note that the two cases (x) and (xx) depend on the point x € L, 3__1)-
First, we consider the case () j(z) < 2[;75—]- In this case, we choose

Li(z) (1 <i(z) < n+3—k) such that f7(*)(z) ¢ L;(,). Then we can choose
an open neighborhood U(x) of x in X such that
() (7O (AU ())) N (Lgs—a-1) U Liga)) = 0.

Next, we consider the case (xx) j(z) > 2[;75=]. To choose U(x), we

will show that the following conditions (1) and (2) hold.

(D) {j € Jngs—a-1)(@)| 7 < i@} = [755=)
(2) There is i(z) such that 1 < i(z) < n+3 —k, f/@(2) ¢ L;,) and
7M@) ¢ Li().

We will show that (1) holds. Since {f7(bd(C)| C € C;—1,0 < j <
+ 1} is in general position,

1 € Turs—aon(@)] § < J@(n+2 k) <n.

Hence [{j € Jui3-q-1)(®)] j < j(x)}| < [75=%]- Suppose, on the con-
trary, that

2[5

15 € Tt @) § < @)} < [—5—]

Since Ly13_(—1) is a color of f and x € L,43_(—1), by the above in-
equality we see that
n n

i@ <Al -V =2

This is a contradiction to the case (xx). Hence (1) is true.

-1

- 1L

We will show that (2) holds. Suppose, on the contrary, that (2) is
not true. We assume that for each 1 < i <n+ 3 —k, fj(””) (x) € L; or
f~Y(x) € L;. Hence

n+3— k S Ordfj(m)(z) ([,) + Ordf—l(m)(ﬁ).
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Note that {f7(bd(C))| C € Ci—1,—1 < j < 2[5—] + 1} is in general
position. Then

ordfj(z)(m)8C1_1 + Ordf—1(m)8Cl_1 + Ejerrdfj(x)o”'Cl_l <n,
where 0C;_1 = {bd(C)| C € Ci_1} and A = {j € Jq5_-n(x)] j <
j(x)}. Also, by (1),

Sjeaord s ()3C_1 > (n+2 — k)| —

n+2-— k]

Then by the inequality (A),

(Ordfj(m)(aj) (E)*I)Jr(ordffuz) (E)fl) S ordfj(w>(w)8cl_1+ordf71(m)8cl_1
n

gn—(n+2—k)[m]

=R(n,k)<n+1—k.
Hence
n+3—k <ordgie) () (L) + ordp-1) (L) <n+3—k.

This is a contradiction. Therefore (2) is true.

In the case (%), by (2) we can choose an open neighborhood U(z) of
2 in X such that

(o) 17 (l(U (@) (Lpg3—1-1)ULi(z)) = D and £~ (cl(U (2)))NLia) = 0.
Consequently, in both of the cases (x) and (xx), we have a desired open
neighborhood U(x) of each x (€ Ly,43_(—1)) in X.
Now we consider the following family
U= {U(l‘) T e Ln+37(l71)}'

Take a locally finite closed refinement W of U such that [ JW = L, 15_(—1).
Note that for each W € W, we can choose x € L, 3_(_1) such that
W C U(z). Then we define a function A : W — {1,2,...,n+ 3 — k} by
A(W) =i(x). For each 1 <i <n+3—k, we put

B = J{w e w| x(W) =i}
and
FF=L,UE;, (1<i<n+3-k).

Since W is locally finite, E; and F; are closed in X for each .
Foreach1<i<n+4+3—kandz€ L; , put

pi(z) =min{s| 1 < s <, (I — 1), f°(2) ¢ L;}.
Also, foreach 1 <i<n+4+3—kandy € F; , put

¢i(y) = min{s| 1§5§2[n |+ 1,f(y) ¢ EsUL; = F;}.

_n
+2—k
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Now we will show the following Claim.

Claim. If y € E; with f~1(y) € L; (1 <i < n+3—k), then ¢;(y) <
2ol - 1

Suppose, on the contrary, that ¢;(y) > Z[ﬁ] By the construction

of Ej, there is x € Ly, y3_(—1) such that y € U(z) € U and i(z) = 4. Since

F@ (U ()N (Lypts—q-1)ULi) =10
in both of the cases (x) and (sx), we see that j(z) > ¢;(y) > 2[; 5]
Hence the point x satisfies the case (xx). By the choice of U(x) in the
case (%x), we see that f~1(cl(U(x))) N L; = 0, and hence f~1(y) ¢ L;.

This is a contradiction. Thus ¢;(y) < 2[; 5] — 1.

Now, we will show that F; is eventually colored within
Ifwe E;,
n n
(w) < 2 ———— S —
ww) <205 P
Hence f9(")(w) ¢ F;. If w € L;, then
pl(w) S wn,k(l - 1) S wn,k(l)

If f7:(W)(w) ¢ B;, then fPi(W)(w) ¢ F;. If fr«(W)(w) € E;, by fP)=1(w)e
L; and the above claim,

]+1:(2[ 71)+2:¢n,k(1) Swn,k(l)

n

gi(f71 ) (w)) < 2[m] - L
Then
pilw) + (70 () < ol = 1)+ @[]~ 1)
< zmﬁ]— 1)+ 2 = (1) (k>2,k >1>1).

Then f(pi(w)J”h(f”(w)(w)))(w) ¢ F;. Therefore, F; is eventually colored
within ¢ k(D) (= 12[755=] —1) +2) (1 = 1).
If we choose a small open swelling of the closed cover

of X, we obtain a desired open cover C; = {C}; : 1 <i<n+3—1}of X
satisfying the conditions (0); and (1);.

Next, we consider the remaining case R(=) R(n,k) =n+1— k.
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Case R(=): R(n,k)=n+1—k.

Let © € Ly43-(—1). Recall the definition of j(x). In the case R(=),
we choose L;(;) (1 <i(x) <n+ 3 — k) such that 1@ () ¢ L;(zy and we
choose an open neighborhood U(z) of z in X such that f7®)(cl(U(z)) N
(Lpys—@—1) U Lizy) = 0. Consider the collection U = {U(z)| = €
Ly y3-q-1)} and take a locally finite closed refinement W of U such that
UW = Lyt3-(-1)- For each W € W, we can choose U(z) such that
W C U(z). Also, we define a function A : W — {1,2,...,n+3 — k} by
A(W) =i(z). For each 1 <i <n+3—k, put

Ei = J{Wew|jW)=i}, F=LUE; 1 <i<n+3-k).
We will show that F; is eventually colored within ¢y, (1) (= (2[5, 75=7]+
1)+1)(I>1).Foreach1 <i<n+4+3—kand z€L;, put
pi(z) =min{s| 1 < s <, (1 — 1), f°(2) ¢ L;}.
Also, foreach 1 <i<n+3—kandy € E; , put

. n S
Let w € F;(= L; UE;). If w € E;, then
n
i L2l————] 4+ 1 < Y, (D).
() 2t 1< k()

Then f%(")(w) ¢ F;. If w € L;, then
n
i(w) < Y rp(l—1) = (1= 1)(2[———
pi(w) < Y p(l—1) = (I —1)( [n+2_k]
If f7i0) (w) ¢ E;, then fPil*)(w) ¢ Fy. If fr(*)(w) € E;,

¢ (7 (w)) < 2

+ 1)+ 1 < Y i(l).

_ 1.
n+2—k]+

Hence
pi(w) + g (f7 ) (w)) < (1 = 1)(2

:Z(2[n+27k

Then f(pi(w)”i(fpi(w)(w)))(w) ¢ F;. Therefore, F; is eventually colored
within ¢, (7). Similarly, we obtain a desired open cover C; = {Cj;| 1 <
i <n+3—1} of X satisfying the conditions (0); and (1);.

Consequently, in both of the cases R(<) R(n,k) < n+1—k and
R(=) R(n,k) = n+ 1 — k, we have a desired open cover C; = {C;;| 1 <
i <n+3—1} of X satisfying the conditions (0); and (1);. This implies that
C(f, Ynix()) < n+3—I. If we take | = k, then C(f, Yn(k)) < n+3—k. O

+1)+1+(2] ]+1)

L] _n
n+2—%k n+2-—k

1+1)+1=.().
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Corollary 3.2. If f : X — X is any homeomorphism of a separable
metric space X with dim X = n < oo, then

CUfIY, ¢n(k)) <n+3—k

foreachk=0,1,2,--- ;n+1, whereY =X — P(f) and flY : Y =Y is
the restriction of f.

For the case that f is a map of a compact metric space, by Theorem
3.1 and [6, Theorem 3.1] we have the following result.

Corollary 3.3. Let f : X — X be a fixed-point free map of a compact
metric space X with dim X =n < oo. If dim P(f) <0, then

C(f,n(k) <n+3—k
for each k=0,1,2,....,n+ 1.

Remark. The constructions of the three indices ¥, (k), ¢, (k) and 7, (k)
are similar. We repaint one domain stage by stage. The different points
are the numbers of eventual colors which are used for repainting one do-
main. For ¢, (k), we use eventual colors as many as possible for repainting
one domain. For 7,(k), we use only two eventual colors. For ¢, (k), we
use (n + 3 — k) eventual colors.

Acknowledgment. The authors would like to thank the referee for help-
ful comments.

REFERENCES

[1] J. M. Aarts, R. J. Fokkink and H. Vermeer, Variations on a theorem of Lusternik
and Schnirelmann, Topology 35 (1996), 1051-1056.

[2] J. M. Aarts, R. J. Fokkink and H. Vermeer, Coloring maps of period three, Pacific
J. Math. 202, No.2 (2002), 257-266.

[3] Y. Akaike, N. Chinen and K. Tomoyasu, Colorings of Periodic Homeomorphisms,
Bull. Polon. Acad. Sci. Ser. Math. 57, No.1 (2009), 63-74.

[4] A. Blaszczyk and D. Y. Kim, A topological vertion of a combinatorial theorem of
Katetov, Comm. Math. Univ. Carolinae 29 (1988), 657-663.

[5] E. K. van Douwen, 8X and fized-point free map, Top. Appl. 51 (1993), 191-195.

[6] Y. Ikegami, H. Kato and A. Ueda, Eventual colorings of homeomorphisms, J.
Math. Soc. Japan 65 (2013), 375-387.

[7] A. Krawczyk and J. Steprans, Continuous colourings of closed graphs, Topology
Appl. 51 (1993), 13—-26.

[8] J. Kulesza, Zero-dimensional covers of finite dimensional dynamical systems, Er-
god. Th. Dynam. Sys. 15 (1995), 939-950.

[9] L. Lusternik and L. Schnirelman, Topological methods in variational calcu-
lus (Russian), Moscow, 1930.

[10] J. van Mill, Easier proofs of coloring theorems, Top. Appl. 97 (1999), 155-163.



14 YUKI IKEGAMI, HISAO KATO, AND AKIHIDE UEDA

[11] J.van Mill, The Infinite-Dimensional Topology of Function Spaces, North-Holland
publishing Co., Amsterdam, 2001.
E-mail address, Kato: hkato@math.tsukuba.ac.jp

(Ikegami, Kato and Ueda) INSTITUTE OF MATHEMATICS, UNIVERSITY OF TSUKUBA,
IBARAKI 305-8571, JAPAN



