TOPOLOGY PROCEEDINGS Volume 47, 2016 Pages 1–14

http://topology.nipissingu.ca/tp/

ON EVENTUAL COLORING NUMBERS

by

YUKI IKEGAMI, HISAO KATO AND AKIHIDE UEDA

Electronically published on February 5, 2015

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

E-Published on February 5, 2015

ON EVENTUAL COLORING NUMBERS

YUKI IKEGAMI, HISAO KATO, AND AKIHIDE UEDA

ABSTRACT. In [6], for each natural number p we defined eventual colorings within p of homeomorphisms which are generalizations of colorings of fixed-point free homeomorphisms, and we investigated the eventual coloring number C(f,p) of a fixed-point free homeomorphism $f:X\to X$ with zero-dimensional set of periodic points. In [6], we constructed two indices $\varphi_n(k)$ and $\tau_n(k)$ for evaluating the eventual coloring number C(f,p). The purpose of this paper is to construct a new index $\psi_n(k)$ which is more appropriate than the indices $\varphi_n(k)$ and $\tau_n(k)$.

1. Introduction

In this paper, we assume that all spaces are separable metric spaces and all maps are continuous functions. Let $\mathbb N$ be the set of all natural numbers, i.e., $\mathbb N=\{1,2,3,\ldots\}$. For a separable metric space X, $\dim X$ denotes the covering dimension of X. For each map $f:X\to X$, let P(f) be the set of all periodic points of f, i.e.,

$$P(f) = \{x \in X | f^j(x) = x \text{ for some } j \in \mathbb{N}\}.$$

For a subset K of X, $\operatorname{cl}(K)$, $\operatorname{int}(K)$ and $\operatorname{bd}(K)$ denote the closure, interior and the boundary of K in X, respectively. Let \mathcal{C} be a family of subsets of X. For each $x \in X$, $\operatorname{ord}_x(\mathcal{C})$ denotes the number of elements of \mathcal{C} which contain x, i.e.,

$$\operatorname{ord}_x(\mathcal{C}) = |\{C \in \mathcal{C} \mid x \in C\}|.$$

By a *swelling* of a family $\{A_s\}_{s\in S}$ of subsets of a space X, we mean any family $\{B_s\}_{s\in S}$ of subsets of X such that $A_s\subset B_s$ $(s\in S)$ and for every

²⁰¹⁰ Mathematics Subject Classification. Primary 54F45, 54H20; Secondary 55M10, 55M30, 54C05.

 $Key\ words\ and\ phrases.$ Fixed-point free homeomorphism, periodic point, coloring, eventual coloring, dimension, general position .

^{©2015} Topology Proceedings.

finite set of indices $s_1, s_2, ..., s_m \in S$,

$$\bigcap_{i=1}^{m} A_{s_i} \neq \phi \text{ if and only if } \bigcap_{i=1}^{m} B_{s_i} \neq \phi.$$

Conversely, for any cover $\{B_s\}_{s\in S}$ of X, a cover $\{A_s\}_{s\in S}$ of X is a shrinking of $\{B_s\}_{s\in S}$ if $A_s\subset B_s$ ($s\in S$). A finite cover $\mathcal C$ of X is a closed partition of X provided that each element C of $\mathcal C$ is closed in X, $\operatorname{int}(C)\neq\emptyset$ and $C\cap C'=\operatorname{bd}(C)\cap\operatorname{bd}(C')$ for $C,C'\in\mathcal C$ with $C\neq C'$. Let $\mathcal B$ be a collection of subsets of a space X with $\dim X=n<\infty$. The collection $\mathcal B$ is in general position in X provided that if $\mathcal S\subset\mathcal B$ with $|\mathcal S|\leq n+1$, then $\dim(\bigcap\{S\mid S\in\mathcal S\})\leq n-|\mathcal S|$. We need the following lemma of general position (see [6]).

Lemma 1.1. ([6, Lemma 2.2]) Suppose that $f: X \to X$ is a fixed-point free homeomorphism of a separable metric space X such that $\dim X = n < \infty$ and $\dim P(f) \le 0$. Let $C = \{C_i | 1 \le i \le m\}$ $(m \in \mathbb{N})$ be an open cover of X and let $\mathcal{B} = \{B_i | 1 \le i \le m\}$ be a closed shrinking of C. Then for any $k \in \mathbb{N}$ there is an open shrinking $C' = \{C'_i | 1 \le i \le m\}$ of C such that

- (0) $B_i \subset C'_i$,
- (1) $\{f^j(\mathrm{bd}(C'))|\ C'\in\mathcal{C}', -k\leq j\leq k\}$ is in general position,
- (2) $\operatorname{bd}(C') \cap P(f) = \emptyset$ for each $C' \in \mathcal{C}'$.

Let $f: X \to X$ be a fixed-point free map of a separable metric space X, i.e., $f(x) \neq x$ for each $x \in X$. A subset C of X is called a color (see [11]) of f if $f(C) \cap C = \emptyset$. Note that $f(C) \cap C = \emptyset$ if and only if $C \cap f^{-1}(C) = \emptyset$. We say that a cover C of X is a coloring of f if each element C of C is a color of f. The minimal cardinality C(f) of closed (or open) colorings of f is the coloring number of f (see [11]). The following is an important theorem of coloring numbers.

Theorem 1.2. ([1, Aarts, Fokkink and Vermeer]) If $f: X \to X$ is a fixed-point free homeomorphism of a separable metric space X with dim $X = n < \infty$, then $C(f) \le n + 3$.

Let $f: X \to X$ be a fixed-point free map of a separable metric space X and $p \in \mathbb{N}$. A subset C of X is eventually colored within p of f ([6]) if $\bigcap_{i=0}^p f^{-i}(C) = \emptyset$. Note that C is a color of f if and only if C is eventually colored within 1.

Proposition 1.3. ([6, Proposition 1.4]) Let $f: X \to X$ be a fixed-point free map of a separable metric space X and $p \in \mathbb{N}$. Then a subset C of X is eventually colored within p of f if and only if each point $x \in C$ wanders off C within p, i.e., for each $x \in C$, $f^i(x) \notin C$ with some $i \leq p$.

In [6], we defined the eventual coloring number C(f,p) of f as follows. A cover \mathcal{C} of X is called an *eventual coloring* of f within p if each element $C \in \mathcal{C}$ is eventually colored of f within p. The minimal cardinality C(f,p) of all closed (or open) eventual colorings of f within p is called the *eventual coloring number* of f within p. Note that C(f,1) = C(f). The coloring number C(f) has been investigated by many mathematicians (e.g., see [1-5], [7] and [9-11]). In [6], we constructed two indices $\varphi_n(k)$ and $\tau_n(k)$ to evaluate the eventual coloring number C(f,p). In this paper, we will construct a new index $\psi_n(k)$ which is more appropriate than the indices $\varphi_n(k)$ and $\tau_n(k)$.

2. The index $\psi_n(k)$

In [6], we constructed two indices $\varphi_n(k)$ and $\tau_n(k)$. For each $n \in \mathbb{N} \cup \{0\}$ and k = 0, 1, 2, ..., n + 1, we defined the index $\varphi_n(k)$ as follows. Put $\varphi_n(0) = 1$ (k = 0). For each k = 1, 2, ..., n + 1, by induction on k we defined the index $\varphi_n(k)$ by

$$\varphi_n(k) = 2\varphi_n(k-1) + \left[\frac{n}{n+2-k}\right] \cdot (\varphi_n(k-1) + 1),$$

where $[x] = \max\{m \in \mathbb{N} \cup \{0\} | m \le x\}$ for $x \in [0, \infty)$. Also, for each $n \in \mathbb{N} \cup \{0\}$ and k = 0, 1, 2, ..., n + 1, we defined the index $\tau_n(k)$ by

$$\tau_n(k) = k(2n+1) + 1.$$

In [6], we proved the following theorem.

Theorem 2.1. ([6, Theorems 2.3 and 2.6]) Let $f: X \to X$ be a fixed-point free homeomorphism of a separable metric space X with dim $X = n < \infty$. If dim $P(f) \leq 0$, then

$$C(f, \min\{\varphi_n(k), \tau_n(k)\}) \le n + 3 - k$$

for each k = 0, 1, 2, ..., n + 1.

In general, we have the following problem of eventual coloring numbers ([6, Problem 2.5]).

Problem 2.2. For each $n \in \mathbb{N} \cup \{0\}$ and $1 \le k \le n+1$, determine the minimum m(n,k) of natural numbers p satisfying the following conditions; if $f: X \to X$ is any fixed-point free homeomorphism of a separable metric space X such that $\dim X = n$ and $\dim P(f) \le 0$, then $C(f,p) \le n+3-k$.

Now, we will construct a new index $\psi_n(k)$. Let $n \in \mathbb{N} \cup \{0\}$ and $0 \le k \le n+1$. Put $R(n,k) = n - (n+2-k)[\frac{n}{n+2-k}]$. Note that n is divided by (n+2-k) with the remainder R(n,k). First, we put

 $\psi_n(0) = 1$ (k = 0). Next we consider the following two cases R(<) and R(=):

$$R(<) R(n,k) < n+1-k.$$

$$R(=) R(n,k) = n + 1 - k.$$

For each $1 \le k \le n+1$, we define the index $\psi_n(k)$ by

$$\psi_n(k) = \begin{cases} k(2[\frac{n}{n+2-k}] - 1) + 2 & \text{(if } R(n,k) < n+1-k), \\ k(2[\frac{n}{n+2-k}] + 1) + 1 & \text{(if } R(n,k) = n+1-k). \end{cases}$$

For actual values of the indices $\varphi_n(k)$, $\tau_n(k)$ and $\psi_n(k)$, see the tables below. Then we have the following proposition.

Proposition 2.3. For the indices $\varphi_n(k)$, $\tau_n(k)$ and $\psi_n(k)$, the following inequalities hold.

(1) For each $n \in \mathbb{N} \cup \{0\}$ and $0 \le k \le n+1$,

$$\psi_n(k) \le \min\{\varphi_n(k), \tau_n(k)\}.$$

(2) For each n > 2 and 2 < k < n,

$$\psi_n(k) < \min\{\varphi_n(k), \tau_n(k)\}.$$

(3) Moreover, for each $n \in \mathbb{N} \cup \{0\}$,

$$\psi_n(0) = \varphi_n(0) = \tau_n(0) = 1, \ \psi_n(1) = \varphi_n(1) = 2, \ \psi_n(n+1) = \tau_n(n+1).$$

Proof. Let $n \in \mathbb{N} \cup \{0\}$. First, we will show $\psi_n(k) \leq \varphi_n(k)$. If k = 0, then by definitions, $\psi_n(0) = \varphi_n(0) = 1$ $(n \geq 0)$. If k = 1, then R(n,k) = R(n,1) = n (= n+1-k), and hence the case R(=) holds. Then $\psi_n(1) = (2[\frac{n}{n+1}]+1)+1=2$. Hence $\varphi_n(1) = 2 = \psi_n(1)$ for each $n \geq 0$. Note that for $k \geq 1$,

$$k(2[\frac{n}{n+2-k}]-1)+2 < k(2[\frac{n}{n+2-k}]+1)+1$$

and hence in both of the cases R(<) and R(=),

$$\psi_n(k) \le k(2\left[\frac{n}{n+2-k}\right]+1)+1 \ (k \ge 1).$$

It suffices to prove that

$$(*)_k k(2[\frac{n}{n+2-k}]+1)+1 \le \varphi_n(k) (k \ge 1).$$

We proceed by induction on k=1,...,n+1. If k=1, then the both sides are 2 by the above argument. Let $2 \le k \le n+1$. We assume that $(*)_{k-1}$ holds, i.e.,

$$(k-1)(2[\frac{n}{n+2-(k-1)}]+1)+1 \le \varphi_n(k-1).$$

For simplicity, put $a = \left[\frac{n}{n+2-(k-1)}\right]$ and $b = \left[\frac{n}{n+2-k}\right]$. By the definition of $\varphi_n(k)$ and the above assumption, we have the following inequality $(**)_k$:

$$\begin{split} \varphi_n(k) &= 2\varphi_n(k-1) + \big[\frac{n}{n+2-k}\big] \cdot \big(\varphi_n(k-1)+1\big) \\ &\geq 2\{(k-1)(2a+1)+1\} + b\{(k-1)(2a+1)+2\} \\ &= k(2ab+1) + k + (k+1)b + 2a(2k-b-2) \\ &= k(2\big[\frac{n}{n+2-(k-1)}\big]\big[\frac{n}{n+2-k}\big] + 1\big) + k + (k+1)\big[\frac{n}{n+2-k}\big] \\ &+ 2\big[\frac{n}{n+2-(k-1)}\big](2k-\big[\frac{n}{n+2-k}\big] - 2\big). \end{split}$$

If k=2, then $\left[\frac{n}{n+2-(k-1)}\right] = \left[\frac{n}{n+2-(2-1)}\right] = 0$. By the inequality $(**)_2$,

$$\varphi_n(2) \ge 2 + 2 + (2+1)\left[\frac{n}{n+2-2}\right] = 7 = 2\left(2\left[\frac{n}{n+2-2}\right] + 1\right) + 1 \ge \psi_n(2) \ (n \ge 1).$$

Moreover, we see that $\varphi_n(2) = 7$ $(n \ge 1)$ and $\psi_n(2) = 4$ $(n \ge 2)$ because that the condition R(<) R(n,2) = 0 < n+1-2 $(n \ge 2)$ is satisfied. Hence $\varphi_n(2) > \psi_n(2)$ $(n \ge 2)$.

Now, let us consider the case $k \geq 3$. Note that $n \geq k-1 \geq 2$ and $\left[\frac{n}{n+2-(k-1)}\right] \geq 1$. Also, we see that $k > \left[\frac{n}{n+2-k}\right]$ for each $3 \leq k \leq n+1$. In fact, suppose, on the contrary, that $k \leq \left[\frac{n}{n+2-k}\right]$. Then

$$n \ge k(n+2-k) = nk + 2k - k^2$$

 $\Rightarrow k^2 \ge n(k-1) + 2k.$

Since $k \leq n+1$,

$$k^2 \ge n(k-1) + 2k \ge (k-1)^2 + 2k = k^2 + 1.$$

This is a contradiction. By $(**)_k$,

$$\begin{split} \varphi_n(k) & \geq k (2[\frac{n}{n+2-(k-1)}][\frac{n}{n+2-k}]+1) + k \\ & + (k+1)[\frac{n}{n+2-k}] + 2[\frac{n}{n+2-(k-1)}](2k-[\frac{n}{n+2-k}]-2) \\ & \geq k (2[\frac{n}{n+2-k}]+1) + k \\ & + (k+1)[\frac{n}{n+2-k}] + 2\{(k-[\frac{n}{n+2-k}]) + (k-2)\} \\ & > k (2[\frac{n}{n+2-k}]+1) + 1 \ (\geq \psi_n(k)) \ (3 \leq k \leq n+1). \end{split}$$

Consequently we see that $\psi_n(k) \leq \varphi_n(k)$.

Next, we will show that $\psi_n(k) \le \tau_n(k)$. If k = 0, then $\psi_n(0) = \tau_n(0) = 1$. For $k \ge 1$, it suffices to show that

$$k(2[\frac{n}{n+2-k}]+1)+1 \le \tau_n(k).$$

If $1 \le k \le n$, then $\left[\frac{n}{n+2-k}\right] < n$. Hence

$$\psi_n(k) \le k(2[\frac{n}{n+2-k}]+1)+1 < k(2n+1)+1 = \tau_n(k)$$

for $1 \le k \le n$. If k=n+1 $(n\ge 0)$, then $[\frac{n}{n+2-k}]=n$. Since the case $\mathbf{R}(=)$ R(n,k)=0=n+1-k holds, we see that

$$\psi_n(n+1) = (n+1)(2\left[\frac{n}{n+2-(n+1)}\right]+1)+1 = (n+1)(2[n]+1)+1$$
$$= (n+1)(2n+1)+1 = \tau_n(n+1)$$

for $n \geq 0$. Finally we can conclude that all conditions in Proposition 2.3 are satisfied. \Box

Tables of three indices $\varphi_n(k), \tau_n(k)$ and $\psi_n(k)$

	1	7	1
ω_n	(κ)
1 10	1		/

$\frac{\varphi n(n)}{(n-1)}$							
n k	0	1	2	3	4	5	6
0	1	2	-	-	-	-	-
1	1	2	7	-	-	-	-
2	1	2	7	30	-	-	-
3	1	2	7	22	113	-	-
4	1	2	7	22	90	544	-
5	1	2	7	22	69	278	1951

 $\tau_n(k)$

n k	0	1	2	3	4	5	6
0	1	2	-	-	-	-	-
1	1	4	7	-	-	-	-
2	1	6	11	16	-	-	-
3	1	8	15	22	29	-	-
4	1	10	19	28	37	46	-
5	1	12	23	34	45	56	67

$\psi_n(k)$							
n k	0	1	2	3	4	5	6
0	1	2	-	-	-	-	-
1	1	2	7	-	-	-	-
2	1	2	4	16	-	-	-
3	1	2	4	10	29	-	-
4	1	2	4	5	14	46	-
5	1	2	4	5	13	26	67

3. Main theorem

In this section, we prove the following theorem which is the main result of this paper. The proof is a modification of [6, Theorems 2.3 and 2.6], but we need more precise arguments.

Theorem 3.1. Let $f: X \to X$ be a fixed-point free homeomorphism of a separable metric space X with dim $X = n < \infty$. If dim $P(f) \le 0$, then

$$C(f, \psi_n(k)) \le n + 3 - k$$

for each $k = 0, 1, 2, \dots, n + 1$.

Proof. Let $n \in \mathbb{N} \cup \{0\}$ and $0 \le k \le n+1$. First, we will define the following index $\psi_{n,k}(l)$ for each l=0,1,2,...,k. If l=0, we put $\psi_{n,k}(0)=1$. Next, if $1 \le l \le k$, then we define the index $\psi_{n,k}(l)$ by

$$\psi_{n,k}(l) = \begin{cases} l(2\left[\frac{n}{n+2-k}\right] - 1) + 2 & \text{(if R(<) } R(n,k) < n+1-k \text{ holds),} \\ l(2\left[\frac{n}{n+2-k}\right] + 1) + 1 & \text{(if R(=) } R(n,k) = n+1-k \text{ holds).} \end{cases}$$

Note that $\psi_{n,k}(k) = \psi_n(k)$.

We will show that for each $0 \le l \le k$, there is an open cover $C_l = \{C_{l,i} | 1 \le i \le n+3-l\}$ of X satisfying following conditions: $(0)_l \quad \operatorname{cl}(C_{l,i})$ is eventually colored within $\psi_{n,k}(l)$ for $1 \le i \le n+3-k$, $(1)_l \quad \operatorname{cl}(C_{l,i})$ is colored for $n+3-k < i \le n+3-l$.

We proceed by induction on l. By Theorem 1.2, there is an open coloring $\mathcal{C}_0 = \{C_{0,i} | 1 \leq i \leq n+3\}$ of f. Since $\psi_{n,k}(0) = 1$, we may assume that \mathcal{C}_0 satisfies the conditions $(0)_0$ and $(1)_0$. Now we assume that $l \geq 1$ and there is an open cover $\mathcal{C}_{l-1} = \{C_{l-1,i} | 1 \leq i \leq n+3-(l-1)\}$ $(l \geq 1)$ of X satisfying the conditions $(0)_{l-1}$ and $(1)_{l-1}$. By Lemma 1.1, we may assume that

$$\{f^j(\mathrm{bd}(C))|\ C \in \mathcal{C}_{l-1}, -1 \le j \le 2\left[\frac{n}{n+2-k}\right]+1\}$$

is in general position. Let $K_i = \operatorname{cl}(C_{l-1,i})$ for $1 \leq i \leq n+3-(l-1)$. We put

$$L_1 = K_1, L_i = \text{cl}(K_i \setminus (K_1 \cup K_2 \cup \cdots \cup K_{i-1})) (i \ge 2).$$

Then the collection $\mathcal{L} = \{L_i | 1 \le i \le n+3-(l-1)\}$ is a closed partition of X. Note that

$$\operatorname{bd}(L_{i_1}) \cap \operatorname{bd}(L_{i_2}) \cap \cdots \cap \operatorname{bd}(L_{i_m}) \subset \operatorname{bd}(C_{i_1}) \cap \operatorname{bd}(C_{i_2}) \cap \cdots \cap \operatorname{bd}(C_{i_{m-1}})$$

for $1 \leq i_1 < i_2 < \cdots < i_m \leq n+3-(l-1)$. Then we see that for $x \in X$,
$$(\Delta) \operatorname{ord}_x(\mathcal{L}) - 1 \leq \operatorname{ord}_x\{\operatorname{bd}(C) | C \in \mathcal{C}_{l-1}\}.$$

Now, we will repaint $L_{n+3-(l-1)}$ by use of eventual colors L_i $(1 \le i \le n+3-k)$. To this end, let $x \in L_{n+3-(l-1)}$. For the point x, we put

$$J_{n+3-(l-1)}(x) = \{j | 1 \le j \le 2\left[\frac{n}{n+2-k}\right] + 1 \text{ and } f^j(x) \notin L_{n+3-(l-1)}\}.$$

Since $L_{n+3-(l-1)}$ is a color of f,

$$|J_{n+3-(l-1)}(x)| \ge \left[\frac{n}{n+2-k}\right] + 1.$$

For each $j \in J_{n+3-(l-1)}(x)$, we put

$$I(j) = \{i \in \{1, 2, \dots, n+3-k\} | f^j(x) \in L_i\}.$$

We will show that there is $j \in J_{n+3-(l-1)}(x)$ such that |I(j)| < n+3-k. Suppose, on the contrary, that |I(j)| = n+3-k for all $j \in J_{n+3-(l-1)}(x)$. Then

$$f^j(x) \in \bigcap_{i=1}^{n+3-k} L_i \subset \bigcap_{i=1}^{n+2-k} \operatorname{bd}(C_i).$$

Since $\{f^j(\mathrm{bd}(C)|\ C\in\mathcal{C}_{l-1}, 0\leq j\leq 2[\frac{n}{n+2-k}]+1\}$ is in general position, we see that

$$(\left[\frac{n}{n+2-k}\right]+1)(n+2-k) \le n.$$

However, we have

$$([\frac{n}{n+2-k}]+1)(n+2-k) \ge n+1.$$

This is a contradiction. Hence there is $j \in J_{n+3-(l-1)}(x)$ such that |I(j)| < n+3-k.

We put

$$j(x) = \min\{j \in J_{n+3-(l-1)}(x) | |I(j)| < n+3-k\}.$$

Now, we have to consider two cases R(<) R(n,k) < n+1-k and R(=) R(n,k) = n+1-k.

Case R(<): R(n,k) < n+1-k.

Note that in this case R(<), $k \ge l \ge 1$ and $k \ge 2$. Let $x \in L_{n+3-(l-1)}$. First, we will choose an open neighborhood U(x) of x in X as follows. To this end, we will consider the following two cases (\star) and $(\star\star)$:

$$(\star) \ j(x) < 2\left[\frac{n}{n+2-k}\right]$$

$$(\star\star)\ j(x) \ge 2\left[\frac{n}{n+2-k}\right]$$

Note that the two cases (\star) and $(\star\star)$ depend on the point $x \in L_{n+3-(l-1)}$. First, we consider the case (\star) $j(x) < 2[\frac{n}{n+2-k}]$. In this case, we choose $L_{i(x)}$ $(1 \le i(x) \le n+3-k)$ such that $f^{j(x)}(x) \notin L_{i(x)}$. Then we can choose an open neighborhood U(x) of x in X such that

$$(\star) (f^{j(x)}(cl(U(x))) \cap (L_{n+3-(l-1)} \cup L_{i(x)}) = \emptyset.$$

Next, we consider the case $(\star\star)$ $j(x) \geq 2[\frac{n}{n+2-k}]$. To choose U(x), we will show that the following conditions (1) and (2) hold.

- (1) $|\{j \in J_{n+3-(l-1)}(x)| \ j < j(x)\}| = \left[\frac{n}{n+2-k}\right],$
- (2) There is i(x) such that $1 \leq i(x) \leq n+3-k$, $f^{j(x)}(x) \notin L_{i(x)}$ and $f^{-1}(x) \notin L_{i(x)}$.

We will show that (1) holds. Since $\{f^j(\mathrm{bd}(C)|\ C\in\mathcal{C}_{l-1}, 0\leq j\leq 2[\frac{n}{n+2-k}]+1\}$ is in general position,

$$|\{j \in J_{n+3-(l-1)}(x)| \ j < j(x)\}|(n+2-k) \le n.$$

Hence $|\{j \in J_{n+3-(l-1)}(x)| \ j < j(x)\}| \le [\frac{n}{n+2-k}]$. Suppose, on the contrary, that

$$|\{j \in J_{n+3-(l-1)}(x)| \ j < j(x)\}| \le \left[\frac{n}{n+2-k}\right] - 1.$$

Since $L_{n+3-(l-1)}$ is a color of f and $x \in L_{n+3-(l-1)}$, by the above inequality we see that

$$j(x) \leq 2([\frac{n}{n+2-k}]-1)+1 = 2[\frac{n}{n+2-k}]-1.$$

This is a contradiction to the case $(\star\star)$. Hence (1) is true.

We will show that (2) holds. Suppose, on the contrary, that (2) is not true. We assume that for each $1 \le i \le n+3-k$, $f^{j(x)}(x) \in L_i$ or $f^{-1}(x) \in L_i$. Hence

$$n+3-k \le \operatorname{ord}_{f^{j(x)}(x)}(\mathcal{L}) + \operatorname{ord}_{f^{-1}(x)}(\mathcal{L}).$$

Note that $\{f^j(\mathrm{bd}(C))|\ C\in\mathcal{C}_{l-1}, -1\leq j\leq 2[\frac{n}{n+2-k}]+1\}$ is in general position. Then

$$\operatorname{ord}_{f^{j(x)}(x)} \partial \mathcal{C}_{l-1} + \operatorname{ord}_{f^{-1}(x)} \partial \mathcal{C}_{l-1} + \sum_{j \in A} \operatorname{ord}_{f^{j}(x)} \partial \mathcal{C}_{l-1} \leq n,$$

where $\partial C_{l-1} = \{ \operatorname{bd}(C) | C \in C_{l-1} \}$ and $A = \{ j \in J_{n+3-(l-1)}(x) | j < j(x) \}$. Also, by (1),

$$\Sigma_{j \in A} \operatorname{ord}_{f^{j}(x)} \partial \mathcal{C}_{l-1} \ge (n+2-k) \left[\frac{n}{n+2-k} \right].$$

Then by the inequality (Δ) ,

$$(\operatorname{ord}_{f^{j(x)}(x)}(\mathcal{L})-1)+(\operatorname{ord}_{f^{-1}(x)}(\mathcal{L})-1)\leq \operatorname{ord}_{f^{j(x)}(x)}\partial \mathcal{C}_{l-1}+\operatorname{ord}_{f^{-1}(x)}\partial \mathcal{C}_{l-1}$$

$$\leq n - (n+2-k)\left[\frac{n}{n+2-k}\right] = R(n,k) < n+1-k.$$

Hence

$$n+3-k \le \operatorname{ord}_{f^{j(x)}(x)}(\mathcal{L}) + \operatorname{ord}_{f^{-1}(x)}(\mathcal{L}) < n+3-k.$$

This is a contradiction. Therefore (2) is true.

In the case $(\star\star)$, by (2) we can choose an open neighborhood U(x) of x in X such that

$$(\star\star) f^{j(x)}(\operatorname{cl}(U(x))) \cap (L_{n+3-(l-1)} \cup L_{i(x)}) = \emptyset \text{ and } f^{-1}(\operatorname{cl}(U(x))) \cap L_{i(x)} = \emptyset.$$

Consequently, in both of the cases (\star) and $(\star\star)$, we have a desired open neighborhood U(x) of each $x \in L_{n+3-(l-1)}$ in X.

Now we consider the following family

$$\mathcal{U} = \{ U(x) : x \in L_{n+3-(l-1)} \}.$$

Take a locally finite closed refinement W of U such that $\bigcup W = L_{n+3-(l-1)}$. Note that for each $W \in W$, we can choose $x \in L_{n+3-(l-1)}$ such that $W \subset U(x)$. Then we define a function $\lambda : W \to \{1, 2, ..., n+3-k\}$ by $\lambda(W) = i(x)$. For each $1 \le i \le n+3-k$, we put

$$E_i = \bigcup \{ W \in \mathcal{W} | \ \lambda(W) = i \}$$

and

$$F_i = L_i \cup E_i \ (1 \le i \le n + 3 - k).$$

Since W is locally finite, E_i and F_i are closed in X for each i.

For each $1 \le i \le n+3-k$ and $z \in L_i$, put

$$p_i(z) = \min\{s | 1 \le s \le \psi_{n,k}(l-1), f^s(z) \notin L_i\}.$$

Also, for each $1 \le i \le n+3-k$ and $y \in E_i$, put

$$q_i(y) = \min\{s | 1 \le s \le 2\left[\frac{n}{n+2-k}\right] + 1, f^s(y) \notin E_i \cup L_i = F_i\}.$$

Now we will show the following Claim.

Claim. If $y \in E_i$ with $f^{-1}(y) \in L_i$ $(1 \le i \le n+3-k)$, then $q_i(y) \le i$ $2\left[\frac{n}{n+2-k}\right]-1.$

Suppose, on the contrary, that $q_i(y) \geq 2\left[\frac{n}{n+2-k}\right]$. By the construction of E_i , there is $x \in L_{n+3-(l-1)}$ such that $y \in U(x) \in \mathcal{U}$ and i(x) = i. Since

$$f^{j(x)}(cl(U(x))) \cap (L_{n+3-(l-1)} \cup L_i) = \emptyset$$

in both of the cases (\star) and $(\star\star)$, we see that $j(x) \geq q_i(y) \geq 2\left[\frac{n}{n+2-k}\right]$. Hence the point x satisfies the case $(\star\star)$. By the choice of U(x) in the case $(\star\star)$, we see that $f^{-1}(\operatorname{cl}(U(x))) \cap L_i = \emptyset$, and hence $f^{-1}(y) \notin L_i$. This is a contradiction. Thus $q_i(y) \leq 2\left[\frac{n}{n+2-k}\right] - 1$.

Now, we will show that F_i is eventually colored within $\psi_{n,k}(l) (= l(2[\frac{n}{n+2-k}]-1)+2) \ (k \ge 2, k \ge l \ge 1).$ Let $w \in F_i (= L_i \cup E_i).$ If $w \in E_i$,

$$q_i(w) \le 2\left[\frac{n}{n+2-k}\right] + 1 = \left(2\left[\frac{n}{n+2-k}\right] - 1\right) + 2 = \psi_{n,k}(1) \le \psi_{n,k}(l).$$

Hence $f^{q_i(w)}(w) \notin F_i$. If $w \in L_i$, then

$$p_i(w) \le \psi_{n,k}(l-1) \le \psi_{n,k}(l).$$

If $f^{p_i(w)}(w) \notin E_i$, then $f^{p_i(w)}(w) \notin F_i$. If $f^{p_i(w)}(w) \in E_i$, by $f^{p_i(w)-1}(w) \in E_i$ L_i and the above claim,

$$q_i(f^{p_i(w)}(w)) \le 2\left[\frac{n}{n+2-k}\right] - 1.$$

Then

$$p_i(w) + q_i(f^{p_i(w)}(w)) \le \psi_{n,k}(l-1) + (2\left[\frac{n}{n+2-k}\right] - 1)$$

$$\le l(2\left[\frac{n}{n+2-k}\right] - 1) + 2 = \psi_{n,k}(l) \ (k \ge 2, k \ge l \ge 1).$$

Then $f^{(p_i(w)+q_i(f^{p_i(w)}(w)))}(w) \notin F_i$. Therefore, F_i is eventually colored within $\psi_{n,k}(l) (= l(2[\frac{n}{n+2-k}] - 1) + 2)$ $(l \ge 1)$. If we choose a small open swelling of the closed cover

$${F_i \mid 1 \le i \le n+3-k} \cup {L_i \mid n+4-k \le j \le n+3-l}$$

of X, we obtain a desired open cover $C_l = \{C_{l,i} : 1 \le i \le n+3-l\}$ of X satisfying the conditions $(0)_l$ and $(1)_l$.

Next, we consider the remaining case R(=) R(n,k) = n+1-k.

Case R(=):
$$R(n,k) = n + 1 - k$$
.

Let $x \in L_{n+3-(l-1)}$. Recall the definition of j(x). In the case R(=), we choose $L_{i(x)}$ $(1 \le i(x) \le n+3-k)$ such that $f^{j(x)}(x) \notin L_{i(x)}$ and we choose an open neighborhood U(x) of x in X such that $f^{j(x)}(\operatorname{cl}(U(x)) \cap (L_{n+3-(l-1)} \cup L_{i(x)}) = \emptyset$. Consider the collection $\mathcal{U} = \{U(x) | x \in L_{n+3-(l-1)}\}$ and take a locally finite closed refinement \mathcal{W} of \mathcal{U} such that $\bigcup \mathcal{W} = L_{n+3-(l-1)}$. For each $W \in \mathcal{W}$, we can choose U(x) such that $W \subset U(x)$. Also, we define a function $\lambda : \mathcal{W} \to \{1, 2, ..., n+3-k\}$ by $\lambda(W) = i(x)$. For each $1 \le i \le n+3-k$, put

$$E_i = \bigcup \{ W \in \mathcal{W} | j(W) = i \}, \ F_i = L_i \cup E_i \ (1 \le i \le n + 3 - k).$$

We will show that F_i is eventually colored within $\psi_{n,k}(l) (= l(2[\frac{n}{n+2-k}]+1)+1)$ $(l \ge 1)$. For each $1 \le i \le n+3-k$ and $z \in L_i$, put

$$p_i(z) = \min\{s | 1 \le s \le \psi_{n,k}(l-1), f^s(z) \notin L_i\}.$$

Also, for each $1 \le i \le n+3-k$ and $y \in E_i$, put

$$q_i(y) = \min\{s | 1 \le s \le 2[\frac{n}{n+2-k}] + 1, f^s(y) \notin E_i \cup L_i = F_i\}.$$

Let $w \in F_i (= L_i \cup E_i)$. If $w \in E_i$, then

$$q_i(w) \le 2\left[\frac{n}{n+2-k}\right] + 1 \le \psi_{n,k}(l).$$

Then $f^{q_i(w)}(w) \notin F_i$. If $w \in L_i$, then

$$p_i(w) \le \psi_{n,k}(l-1) = (l-1)(2[\frac{n}{n+2-k}]+1) + 1 \le \psi_{n,k}(l).$$

If $f^{p_i(w)}(w) \notin E_i$, then $f^{p_i(w)}(w) \notin F_i$. If $f^{p_i(w)}(w) \in E_i$,

$$q_i(f^{p_i(w)}(w)) \le 2\left[\frac{n}{n+2-k}\right] + 1.$$

Hence

$$p_i(w) + q_i(f^{p_i(w)}(w)) \le (l-1)(2\left[\frac{n}{n+2-k}\right]+1) + 1 + \left(2\left[\frac{n}{n+2-k}\right]+1\right)$$
$$= l(2\left[\frac{n}{n+2-k}\right]+1) + 1 = \psi_{n,k}(l).$$

Then $f^{(p_i(w)+q_i(f^{p_i(w)}(w)))}(w) \notin F_i$. Therefore, F_i is eventually colored within $\psi_{n,k}(l)$. Similarly, we obtain a desired open cover $\mathcal{C}_l = \{C_{l,i} | 1 \le i \le n+3-l\}$ of X satisfying the conditions $(0)_l$ and $(1)_l$.

Consequently, in both of the cases R(<) R(n,k) < n+1-k and R(=) R(n,k) = n+1-k, we have a desired open cover $C_l = \{C_{l,i} | 1 \le i \le n+3-l\}$ of X satisfying the conditions $(0)_l$ and $(1)_l$. This implies that $C(f,\psi_{n,k}(l)) \le n+3-l$. If we take l=k, then $C(f,\psi_n(k)) \le n+3-k$. \square

Corollary 3.2. If $f: X \to X$ is any homeomorphism of a separable metric space X with $\dim X = n < \infty$, then

$$C(f|Y, \psi_n(k)) \le n + 3 - k$$

for each $k = 0, 1, 2, \dots, n + 1$, where Y = X - P(f) and $f|Y: Y \to Y$ is the restriction of f.

For the case that f is a map of a compact metric space, by Theorem 3.1 and [6, Theorem 3.1] we have the following result.

Corollary 3.3. Let $f: X \to X$ be a fixed-point free map of a compact metric space X with $\dim X = n < \infty$. If $\dim P(f) \le 0$, then

$$C(f, \psi_n(k)) \le n + 3 - k$$

for each k = 0, 1, 2, ..., n + 1.

Remark. The constructions of the three indices $\psi_n(k)$, $\varphi_n(k)$ and $\tau_n(k)$ are similar. We repaint one domain stage by stage. The different points are the numbers of eventual colors which are used for repainting one domain. For $\varphi_n(k)$, we use eventual colors as many as possible for repainting one domain. For $\tau_n(k)$, we use only two eventual colors. For $\psi_n(k)$, we use (n+3-k) eventual colors.

Acknowledgment. The authors would like to thank the referee for helpful comments.

References

- J. M. Aarts, R. J. Fokkink and H. Vermeer, Variations on a theorem of Lusternik and Schnirelmann, Topology 35 (1996), 1051–1056.
- [2] J. M. Aarts, R. J. Fokkink and H. Vermeer, Coloring maps of period three, Pacific J. Math. 202, No.2 (2002), 257–266.
- [3] Y. Akaike, N. Chinen and K. Tomoyasu, Colorings of Periodic Homeomorphisms, Bull. Polon. Acad. Sci. Ser. Math. 57, No.1 (2009), 63–74.
- [4] A. Blaszczyk and D. Y. Kim, A topological vertion of a combinatorial theorem of Katetov, Comm. Math. Univ. Carolinae 29 (1988), 657–663.
- [5] E. K. van Douwen, βX and fixed-point free map, Top. Appl. **51** (1993), 191–195.
- [6] Y. Ikegami, H. Kato and A. Ueda, Eventual colorings of homeomorphisms, J. Math. Soc. Japan 65 (2013), 375–387.
- [7] A. Krawczyk and J. Steprāns, Continuous colourings of closed graphs, Topology Appl. 51 (1993), 13–26.
- [8] J. Kulesza, Zero-dimensional covers of finite dimensional dynamical systems, Ergod. Th. Dynam. Sys. 15 (1995), 939–950.
- [9] L. Lusternik and L. Schnirelman, Topological methods in variational calculus (Russian), Moscow, 1930.
- [10] J. van Mill, Easier proofs of coloring theorems, Top. Appl. 97 (1999), 155–163.

[11] J. van Mill, The Infinite-Dimensional Topology of Function Spaces, North-Holland publishing Co., Amsterdam, 2001.

 $E ext{-}mail\ address,\ \mathrm{Kato:}\ \mathtt{hkato@math.tsukuba.ac.jp}$

(Ikegami, Kato and Ueda) Institute of Mathematics, University of Tsukuba, Ibaraki 305-8571, Japan