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ON EVENTUAL COLORING NUMBERS

YUKI IKEGAMI, HISAO KATO, AND AKIHIDE UEDA

Abstract. In [6], for each natural number p we defined eventual
colorings within p of homeomorphisms which are generalizations of
colorings of fixed-point free homeomorphisms, and we investigated
the eventual coloring number C(f, p) of a fixed-point free homeo-
morphism f : X → X with zero-dimensional set of periodic points.
In [6], we constructed two indices ϕn(k) and τn(k) for evaluating
the eventual coloring number C(f, p). The purpose of this paper
is to construct a new index ψn(k) which is more appropriate than
the indices ϕn(k) and τn(k).

1. Introduction

In this paper, we assume that all spaces are separable metric spaces
and all maps are continuous functions. Let N be the set of all natural
numbers, i.e., N = {1, 2, 3, ...}. For a separable metric space X, dimX
denotes the covering dimension of X. For each map f : X → X, let P (f)
be the set of all periodic points of f , i.e.,

P (f) = {x ∈ X| f j(x) = x for some j ∈ N}.
For a subset K of X, cl(K), int(K) and bd(K) denote the closure, interior
and the boundary of K in X, respectively. Let C be a family of subsets of
X. For each x ∈ X, ordx(C) denotes the number of elements of C which
contain x, i.e.,

ordx(C) = |{C ∈ C | x ∈ C}|.
By a swelling of a family {As}s∈S of subsets of a space X, we mean any
family {Bs}s∈S of subsets of X such that As ⊂ Bs (s ∈ S) and for every
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finite set of indices s1, s2, ..., sm ∈ S,
m⋂
i=1

Asi 6= φ if and only if
m⋂
i=1

Bsi 6= φ.

Conversely, for any cover {Bs}s∈S of X, a cover {As}s∈S of X is a shrink-
ing of {Bs}s∈S if As ⊂ Bs (s ∈ S). A finite cover C of X is a closed par-
tition of X provided that each element C of C is closed in X, int(C) 6= ∅
and C ∩ C ′ = bd(C) ∩ bd(C ′) for C,C ′ ∈ C with C 6= C ′. Let B be a
collection of subsets of a space X with dimX = n <∞. The collection B
is in general position in X provided that if S ⊂ B with |S| ≤ n+ 1, then
dim(

⋂
{S| S ∈ S}) ≤ n − |S|. We need the following lemma of general

position (see [6]).

Lemma 1.1. ([6, Lemma 2.2]) Suppose that f : X → X is a fixed-point
free homeomorphism of a separable metric space X such that dimX =
n <∞ and dimP (f) ≤ 0. Let C = {Ci| 1 ≤ i ≤ m} (m ∈ N) be an open
cover of X and let B = {Bi| 1 ≤ i ≤ m} be a closed shrinking of C. Then
for any k ∈ N there is an open shrinking C′ = {C ′i| 1 ≤ i ≤ m} of C such
that
(0) Bi ⊂ C ′i,
(1) {f j(bd(C ′))| C ′ ∈ C′,−k ≤ j ≤ k} is in general position,
(2) bd(C ′) ∩ P (f) = ∅ for each C ′ ∈ C′.

Let f : X → X be a fixed-point free map of a separable metric spaceX,
i.e., f(x) 6= x for each x ∈ X. A subset C of X is called a color (see [11])
of f if f(C)∩C = ∅. Note that f(C)∩C = ∅ if and only if C∩f−1(C) = ∅.
We say that a cover C of X is a coloring of f if each element C of C is
a color of f . The minimal cardinality C(f) of closed (or open) colorings
of f is the coloring number of f (see [11]). The following is an important
theorem of coloring numbers.

Theorem 1.2. ([1, Aarts, Fokkink and Vermeer]) If f : X → X is a fixed-
point free homeomorphism of a separable metric space X with dimX =
n <∞, then C(f) ≤ n+ 3.

Let f : X → X be a fixed-point free map of a separable metric space
X and p ∈ N. A subset C of X is eventually colored within p of f ([6]) if⋂p

i=0 f
−i(C) = ∅. Note that C is a color of f if and only if C is eventually

colored within 1.

Proposition 1.3. ([6, Proposition 1.4]) Let f : X → X be a fixed-point
free map of a separable metric space X and p ∈ N. Then a subset C of X
is eventually colored within p of f if and only if each point x ∈ C wanders
off C within p, i.e., for each x ∈ C, f i(x) /∈ C with some i ≤ p.
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In [6], we defined the eventual coloring number C(f, p) of f as follows.
A cover C of X is called an eventual coloring of f within p if each element
C ∈ C is eventually colored of f within p. The minimal cardinality C(f, p)
of all closed (or open) eventual colorings of f within p is called the eventual
coloring number of f within p. Note that C(f, 1) = C(f). The coloring
number C(f) has been investigated by many mathematicians (e.g., see
[1-5], [7] and [9-11]). In [6], we constructed two indices ϕn(k) and τn(k)
to evaluate the eventual coloring number C(f, p). In this paper, we will
construct a new index ψn(k) which is more appropriate than the indices
ϕn(k) and τn(k).

2. The index ψn(k)

In [6], we constructed two indices ϕn(k) and τn(k). For each n ∈ N∪{0}
and k = 0, 1, 2, ..., n + 1, we defined the index ϕn(k) as follows. Put
ϕn(0) = 1 (k = 0). For each k = 1, 2, ..., n + 1, by induction on k we
defined the index ϕn(k) by

ϕn(k) = 2ϕn(k − 1) + [
n

n+ 2− k
] · (ϕn(k − 1) + 1),

where [x] = max{m ∈ N ∪ {0}| m ≤ x} for x ∈ [0,∞). Also, for each
n ∈ N ∪ {0} and k = 0, 1, 2, ..., n+ 1, we defined the index τn(k) by

τn(k) = k(2n+ 1) + 1.

In [6], we proved the following theorem.

Theorem 2.1. ([6, Theorems 2.3 and 2.6]) Let f : X → X be a fixed-point
free homeomorphism of a separable metric space X with dimX = n <∞.
If dimP (f) ≤ 0, then

C(f,min{ϕn(k), τn(k)}) ≤ n+ 3− k

for each k = 0, 1, 2, ..., n+ 1.

In general, we have the following problem of eventual coloring numbers
([6, Problem 2.5]).

Problem 2.2. For each n ∈ N ∪ {0} and 1 ≤ k ≤ n + 1, determine the
minimumm(n, k) of natural numbers p satisfying the following conditions;
if f : X → X is any fixed-point free homeomorphism of a separable metric
space X such that dimX = n and dimP (f) ≤ 0, then C(f, p) ≤ n+3−k.

Now, we will construct a new index ψn(k). Let n ∈ N ∪ {0} and
0 ≤ k ≤ n + 1. Put R(n, k) = n − (n + 2 − k)[ n

n+2−k ]. Note that
n is divided by (n + 2 − k) with the remainder R(n, k). First, we put
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ψn(0) = 1 (k = 0). Next we consider the following two cases R(<) and
R(=):

R(<) R(n, k) < n+ 1− k.
R(=) R(n, k) = n+ 1− k.

For each 1 ≤ k ≤ n+ 1, we define the index ψn(k) by

ψn(k) =

{
k(2[ n

n+2−k ]− 1) + 2 (if R(n, k) < n+ 1− k),

k(2[ n
n+2−k ] + 1) + 1 (if R(n, k) = n+ 1− k).

For actual values of the indices ϕn(k), τn(k) and ψn(k), see the tables
below. Then we have the following proposition.

Proposition 2.3. For the indices ϕn(k), τn(k) and ψn(k), the following
inequalities hold.

(1) For each n ∈ N ∪ {0} and 0 ≤ k ≤ n+ 1,

ψn(k) ≤ min{ϕn(k), τn(k)}.

(2) For each n ≥ 2 and 2 ≤ k ≤ n,

ψn(k) < min{ϕn(k), τn(k)}.

(3) Moreover, for each n ∈ N ∪ {0},

ψn(0) = ϕn(0) = τn(0) = 1, ψn(1) = ϕn(1) = 2, ψn(n+ 1) = τn(n+ 1).

Proof. Let n ∈ N ∪ {0}. First, we will show ψn(k) ≤ ϕn(k). If k =
0, then by definitions, ψn(0) = ϕn(0) = 1 (n ≥ 0). If k = 1, then
R(n, k) = R(n, 1) = n (= n + 1 − k), and hence the case R(=) holds.
Then ψn(1) = (2[ n

n+1 ] + 1) + 1 = 2. Hence ϕn(1) = 2 = ψn(1) for each
n ≥ 0. Note that for k ≥ 1,

k(2[
n

n+ 2− k
]− 1) + 2 < k(2[

n

n+ 2− k
] + 1) + 1

and hence in both of the cases R(<) and R(=),

ψn(k) ≤ k(2[
n

n+ 2− k
] + 1) + 1 (k ≥ 1).

It suffices to prove that

(∗)k k(2[
n

n+ 2− k
] + 1) + 1 ≤ ϕn(k) (k ≥ 1).

We proceed by induction on k = 1, ..., n+ 1. If k = 1, then the both sides
are 2 by the above argument. Let 2 ≤ k ≤ n+ 1. We assume that (∗)k−1
holds, i.e.,

(k − 1)(2[
n

n+ 2− (k − 1)
] + 1) + 1 ≤ ϕn(k − 1).
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For simplicity, put a = [ n
n+2−(k−1) ] and b = [ n

n+2−k ]. By the definition of
ϕn(k) and the above assumption, we have the following inequality (∗∗)k:

ϕn(k) = 2ϕn(k − 1) + [
n

n+ 2− k
] · (ϕn(k − 1) + 1)

≥ 2{(k − 1)(2a+ 1) + 1}+ b{(k − 1)(2a+ 1) + 2}
= k(2ab+ 1) + k + (k + 1)b+ 2a(2k − b− 2)

= k(2[
n

n+ 2− (k − 1)
][

n

n+ 2− k
] + 1) + k + (k + 1)[

n

n+ 2− k
]

+2[
n

n+ 2− (k − 1)
](2k − [

n

n+ 2− k
]− 2).

If k = 2, then [ n
n+2−(k−1) ] = [ n

n+2−(2−1) ] = 0. By the inequality (∗∗)2,

ϕn(2) ≥ 2+2+(2+1)[
n

n+ 2− 2
] = 7 = 2(2[

n

n+ 2− 2
]+1)+1 ≥ ψn(2) (n ≥ 1).

Moreover, we see that ϕn(2) = 7 (n ≥ 1) and ψn(2) = 4 (n ≥ 2) because
that the condition R(<) R(n, 2) = 0 < n + 1 − 2 (n ≥ 2) is satisfied.
Hence ϕn(2) > ψn(2) (n ≥ 2).

Now, let us consider the case k ≥ 3. Note that n ≥ k − 1 ≥ 2 and
[ n
n+2−(k−1) ] ≥ 1. Also, we see that k > [ n

n+2−k ] for each 3 ≤ k ≤ n + 1.
In fact, suppose, on the contrary, that k ≤ [ n

n+2−k ]. Then

n ≥ k(n+ 2− k) = nk + 2k − k2

⇒ k2 ≥ n(k − 1) + 2k.

Since k ≤ n+ 1,

k2 ≥ n(k − 1) + 2k ≥ (k − 1)2 + 2k = k2 + 1.

This is a contradiction. By (∗∗)k,

ϕn(k) ≥ k(2[
n

n+ 2− (k − 1)
][

n

n+ 2− k
] + 1) + k

+ (k + 1)[
n

n+ 2− k
]+ 2[

n

n+ 2− (k − 1)
](2k− [

n

n+ 2− k
]− 2)

≥ k(2[
n

n+ 2− k
] + 1) + k

+ (k + 1)[
n

n+ 2− k
] + 2{(k − [

n

n+ 2− k
]) + (k − 2)}

> k(2[
n

n+ 2− k
] + 1) + 1 (≥ ψn(k)) (3 ≤ k ≤ n+ 1).

Consequently we see that ψn(k) ≤ ϕn(k).
Next, we will show that ψn(k) ≤ τn(k). If k = 0, then ψn(0) = τn(0) =

1. For k ≥ 1, it suffices to show that

k(2[
n

n+ 2− k
] + 1) + 1 ≤ τn(k).
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If 1 ≤ k ≤ n, then [ n
n+2−k ] < n. Hence

ψn(k) ≤ k(2[
n

n+ 2− k
] + 1) + 1 < k(2n+ 1) + 1 = τn(k)

for 1 ≤ k ≤ n. If k = n + 1 (n ≥ 0), then [ n
n+2−k ] = n. Since the case

R(=) R(n, k) = 0 = n+ 1− k holds, we see that

ψn(n+ 1) = (n+ 1)(2[
n

n+ 2− (n+ 1)
] + 1) + 1 = (n+ 1)(2[n] + 1) + 1

= (n+ 1)(2n+ 1) + 1 = τn(n+ 1)

for n ≥ 0. Finally we can conclude that all conditions in Proposition 2.3
are satisfied. �

Tables of three indices ϕn(k), τn(k) and ψn(k)

ϕn(k)
H
HHHHn

k 0 1 2 3 4 5 6

0 1 2 - - - - -
1 1 2 7 - - - -
2 1 2 7 30 - - -
3 1 2 7 22 113 - -
4 1 2 7 22 90 544 -
5 1 2 7 22 69 278 1951

τn(k)
HHH

HHn
k 0 1 2 3 4 5 6

0 1 2 - - - - -
1 1 4 7 - - - -
2 1 6 11 16 - - -
3 1 8 15 22 29 - -
4 1 10 19 28 37 46 -
5 1 12 23 34 45 56 67



ON EVENTUAL COLORING NUMBERS 7

ψn(k)
HHH

HHn
k 0 1 2 3 4 5 6

0 1 2 - - - - -
1 1 2 7 - - - -
2 1 2 4 16 - - -
3 1 2 4 10 29 - -
4 1 2 4 5 14 46 -
5 1 2 4 5 13 26 67

3. Main theorem

In this section, we prove the following theorem which is the main
result of this paper. The proof is a modification of [6, Theorems 2.3 and
2.6], but we need more precise arguments.

Theorem 3.1. Let f : X → X be a fixed-point free homeomorphism of a
separable metric space X with dimX = n <∞. If dimP (f) ≤ 0, then

C(f, ψn(k)) ≤ n+ 3− k

for each k = 0, 1, 2, · · · , n+ 1.

Proof. Let n ∈ N ∪ {0} and 0 ≤ k ≤ n + 1. First, we will define the
following index ψn,k(l) for each l = 0, 1, 2, ..., k. If l = 0, we put ψn,k(0) =
1. Next, if 1 ≤ l ≤ k, then we define the index ψn,k(l) by

ψn,k(l) =

{
l(2[ n

n+2−k ]− 1) + 2 (if R(<) R(n, k) < n+ 1− k holds),
l(2[ n

n+2−k ] + 1) + 1 (if R(=) R(n, k) = n+ 1− k holds).

Note that ψn,k(k) = ψn(k).
We will show that for each 0 ≤ l ≤ k, there is an open cover Cl =

{Cl,i| 1 ≤ i ≤ n+ 3− l} of X satisfying following conditions:
(0)l cl(Cl,i) is eventually colored within ψn,k(l) for 1 ≤ i ≤ n+ 3− k,
(1)l cl(Cl,i) is colored for n+ 3− k < i ≤ n+ 3− l.

We proceed by induction on l. By Theorem 1.2, there is an open
coloring C0 = {C0,i| 1 ≤ i ≤ n+3} of f . Since ψn,k(0) = 1, we may assume
that C0 satisfies the conditions (0)0 and (1)0. Now we assume that l ≥ 1
and there is an open cover Cl−1 = {Cl−1,i| 1 ≤ i ≤ n+ 3− (l− 1)} (l ≥ 1)
of X satisfying the conditions (0)l−1 and (1)l−1. By Lemma 1.1, we may
assume that

{f j(bd(C))| C ∈ Cl−1,−1 ≤ j ≤ 2[
n

n+ 2− k
] + 1}
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is in general position. Let Ki = cl(Cl−1,i) for 1 ≤ i ≤ n+ 3− (l− 1). We
put

L1 = K1, Li = cl(Ki\(K1 ∪K2 ∪ · · · ∪Ki−1)) (i ≥ 2).

Then the collection L = {Li| 1 ≤ i ≤ n+ 3− (l− 1)} is a closed partition
of X. Note that

bd(Li1) ∩ bd(Li2) ∩ · · · ∩ bd(Lim) ⊂ bd(Ci1) ∩ bd(Ci2) ∩ · · · ∩ bd(Cim−1
)

for 1 ≤ i1 < i2 < · · · < im ≤ n+ 3− (l− 1). Then we see that for x ∈ X,

(∆) ordx(L)− 1 ≤ ordx{bd(C)| C ∈ Cl−1}.
Now, we will repaint Ln+3−(l−1) by use of eventual colors Li (1 ≤ i ≤
n+ 3− k). To this end, let x ∈ Ln+3−(l−1). For the point x, we put

Jn+3−(l−1)(x) = {j| 1 ≤ j ≤ 2[
n

n+ 2− k
] + 1 and f j(x) /∈ Ln+3−(l−1)}.

Since Ln+3−(l−1) is a color of f ,

|Jn+3−(l−1)(x)| ≥ [
n

n+ 2− k
] + 1.

For each j ∈ Jn+3−(l−1)(x), we put

I(j) = {i ∈ {1, 2, · · · , n+ 3− k}| f j(x) ∈ Li}.
We will show that there is j ∈ Jn+3−(l−1)(x) such that |I(j)| < n+ 3− k.
Suppose, on the contrary, that |I(j)| = n+3−k for all j ∈ Jn+3−(l−1)(x).
Then

f j(x) ∈
n+3−k⋂
i=1

Li ⊂
n+2−k⋂
i=1

bd(Ci).

Since {f j(bd(C)| C ∈ Cl−1, 0 ≤ j ≤ 2[ n
n+2−k ] + 1} is in general position,

we see that
([

n

n+ 2− k
] + 1)(n+ 2− k) ≤ n.

However, we have

([
n

n+ 2− k
] + 1)(n+ 2− k) ≥ n+ 1.

This is a contradiction. Hence there is j ∈ Jn+3−(l−1)(x) such that
|I(j)| < n+ 3− k.

We put

j(x) = min{j ∈ Jn+3−(l−1)(x)| |I(j)| < n+ 3− k}.
Now, we have to consider two cases R(<) R(n, k) < n + 1 − k and
R(=) R(n, k) = n+ 1− k.
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Case R(<): R(n, k) < n+ 1− k.

Note that in this case R(<), k ≥ l ≥ 1 and k ≥ 2. Let x ∈ Ln+3−(l−1).
First, we will choose an open neighborhood U(x) of x in X as follows. To
this end, we will consider the following two cases (?) and (??):

(?) j(x) < 2[
n

n+ 2− k
]

(??) j(x) ≥ 2[
n

n+ 2− k
]

Note that the two cases (?) and (??) depend on the point x ∈ Ln+3−(l−1).
First, we consider the case (?) j(x) < 2[ n

n+2−k ]. In this case, we choose
Li(x) (1 ≤ i(x) ≤ n+3−k) such that f j(x)(x) /∈ Li(x). Then we can choose
an open neighborhood U(x) of x in X such that

(?) (f j(x)(cl(U(x))) ∩ (Ln+3−(l−1) ∪ Li(x)) = ∅.
Next, we consider the case (??) j(x) ≥ 2[ n

n+2−k ]. To choose U(x), we
will show that the following conditions (1) and (2) hold.

(1) |{j ∈ Jn+3−(l−1)(x)| j < j(x)}| = [ n
n+2−k ],

(2) There is i(x) such that 1 ≤ i(x) ≤ n + 3 − k, f j(x)(x) /∈ Li(x) and
f−1(x) /∈ Li(x).

We will show that (1) holds. Since {f j(bd(C)| C ∈ Cl−1, 0 ≤ j ≤
2[ n

n+2−k ] + 1} is in general position,

|{j ∈ Jn+3−(l−1)(x)| j < j(x)}|(n+ 2− k) ≤ n.
Hence |{j ∈ Jn+3−(l−1)(x)| j < j(x)}| ≤ [ n

n+2−k ]. Suppose, on the con-
trary, that

|{j ∈ Jn+3−(l−1)(x)| j < j(x)}| ≤ [
n

n+ 2− k
]− 1.

Since Ln+3−(l−1) is a color of f and x ∈ Ln+3−(l−1), by the above in-
equality we see that

j(x) ≤ 2([
n

n+ 2− k
]− 1) + 1 = 2[

n

n+ 2− k
]− 1.

This is a contradiction to the case (??). Hence (1) is true.

We will show that (2) holds. Suppose, on the contrary, that (2) is
not true. We assume that for each 1 ≤ i ≤ n + 3 − k, f j(x)(x) ∈ Li or
f−1(x) ∈ Li. Hence

n+ 3− k ≤ ordfj(x)(x)(L) + ordf−1(x)(L).
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Note that {f j(bd(C))| C ∈ Cl−1,−1 ≤ j ≤ 2[ n
n+2−k ] + 1} is in general

position. Then

ordfj(x)(x)∂Cl−1 + ordf−1(x)∂Cl−1 + Σj∈Aordfj(x)∂Cl−1 ≤ n,

where ∂Cl−1 = {bd(C)| C ∈ Cl−1} and A = {j ∈ Jn+3−(l−1)(x)| j <
j(x)}. Also, by (1),

Σj∈Aordfj(x)∂Cl−1 ≥ (n+ 2− k)[
n

n+ 2− k
].

Then by the inequality (∆),

(ordfj(x)(x)(L)−1)+(ordf−1(x)(L)−1) ≤ ordfj(x)(x)∂Cl−1+ordf−1(x)∂Cl−1

≤ n− (n+ 2− k)[
n

n+ 2− k
] = R(n, k) < n+ 1− k.

Hence

n+ 3− k ≤ ordfj(x)(x)(L) + ordf−1(x)(L) < n+ 3− k.

This is a contradiction. Therefore (2) is true.

In the case (??), by (2) we can choose an open neighborhood U(x) of
x in X such that

(??) f j(x)(cl(U(x)))∩(Ln+3−(l−1)∪Li(x)) = ∅ and f−1(cl(U(x)))∩Li(x) = ∅.

Consequently, in both of the cases (?) and (??), we have a desired open
neighborhood U(x) of each x (∈ Ln+3−(l−1)) in X.

Now we consider the following family

U = {U(x) : x ∈ Ln+3−(l−1)}.

Take a locally finite closed refinementW of U such that
⋃
W = Ln+3−(l−1).

Note that for each W ∈ W, we can choose x ∈ Ln+3−(l−1) such that
W ⊂ U(x). Then we define a function λ : W → {1, 2, ..., n + 3 − k} by
λ(W ) = i(x). For each 1 ≤ i ≤ n+ 3− k, we put

Ei =
⋃
{W ∈ W| λ(W ) = i}

and
Fi = Li ∪ Ei (1 ≤ i ≤ n+ 3− k).

Since W is locally finite, Ei and Fi are closed in X for each i.
For each 1 ≤ i ≤ n+ 3− k and z ∈ Li , put

pi(z) = min{s| 1 ≤ s ≤ ψn,k(l − 1), fs(z) /∈ Li}.

Also, for each 1 ≤ i ≤ n+ 3− k and y ∈ Ei , put

qi(y) = min{s| 1 ≤ s ≤ 2[
n

n+ 2− k
] + 1, fs(y) /∈ Ei ∪ Li = Fi}.
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Now we will show the following Claim.

Claim. If y ∈ Ei with f−1(y) ∈ Li (1 ≤ i ≤ n + 3 − k), then qi(y) ≤
2[ n

n+2−k ]− 1.

Suppose, on the contrary, that qi(y) ≥ 2[ n
n+2−k ]. By the construction

of Ei, there is x ∈ Ln+3−(l−1) such that y ∈ U(x) ∈ U and i(x) = i. Since

f j(x)(cl(U(x))) ∩ (Ln+3−(l−1) ∪ Li) = ∅
in both of the cases (?) and (??), we see that j(x) ≥ qi(y) ≥ 2[ n

n+2−k ].
Hence the point x satisfies the case (??). By the choice of U(x) in the
case (??), we see that f−1(cl(U(x))) ∩ Li = ∅, and hence f−1(y) /∈ Li.
This is a contradiction. Thus qi(y) ≤ 2[ n

n+2−k ]− 1.

Now, we will show that Fi is eventually colored within
ψn,k(l)(= l(2[ n

n+2−k ]− 1) + 2) (k ≥ 2, k ≥ l ≥ 1). Let w ∈ Fi(= Li ∪Ei).
If w ∈ Ei,

qi(w) ≤ 2[
n

n+ 2− k
] + 1 = (2[

n

n+ 2− k
]− 1) + 2 = ψn,k(1) ≤ ψn,k(l).

Hence fqi(w)(w) /∈ Fi. If w ∈ Li, then

pi(w) ≤ ψn,k(l − 1) ≤ ψn,k(l).

If fpi(w)(w) /∈ Ei, then fpi(w)(w) /∈ Fi. If fpi(w)(w) ∈ Ei, by fpi(w)−1(w)∈
Li and the above claim,

qi(f
pi(w)(w)) ≤ 2[

n

n+ 2− k
]− 1.

Then

pi(w) + qi(f
pi(w)(w)) ≤ ψn,k(l − 1) + (2[

n

n+ 2− k
]− 1)

≤ l(2[
n

n+ 2− k
]− 1)+ 2 =ψn,k(l) (k ≥2, k ≥ l ≥1).

Then f (pi(w)+qi(f
pi(w)(w)))(w) /∈ Fi. Therefore, Fi is eventually colored

within ψn,k(l)(= l(2[ n
n+2−k ]− 1) + 2) (l ≥ 1).

If we choose a small open swelling of the closed cover

{Fi| 1 ≤ i ≤ n+ 3− k} ∪ {Lj | n+ 4− k ≤ j ≤ n+ 3− l}
of X, we obtain a desired open cover Cl = {Cl,i : 1 ≤ i ≤ n+ 3− l} of X
satisfying the conditions (0)l and (1)l.

Next, we consider the remaining case R(=) R(n, k) = n+ 1− k.
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Case R(=): R(n, k) = n+ 1− k.
Let x ∈ Ln+3−(l−1). Recall the definition of j(x). In the case R(=),

we choose Li(x) (1 ≤ i(x) ≤ n+ 3− k) such that f j(x)(x) /∈ Li(x) and we
choose an open neighborhood U(x) of x in X such that f j(x)(cl(U(x)) ∩
(Ln+3−(l−1) ∪ Li(x)) = ∅. Consider the collection U = {U(x)| x ∈
Ln+3−(l−1)} and take a locally finite closed refinement W of U such that⋃
W = Ln+3−(l−1). For each W ∈ W, we can choose U(x) such that

W ⊂ U(x). Also, we define a function λ : W → {1, 2, ..., n + 3 − k} by
λ(W ) = i(x). For each 1 ≤ i ≤ n+ 3− k, put

Ei =
⋃
{W ∈ W| j(W ) = i}, Fi = Li ∪ Ei (1 ≤ i ≤ n+ 3− k).

We will show that Fi is eventually colored within ψn,k(l)(= l(2[ n
n+2−k ]+

1) + 1) (l ≥ 1). For each 1 ≤ i ≤ n+ 3− k and z ∈ Li , put

pi(z) = min{s| 1 ≤ s ≤ ψn,k(l − 1), fs(z) /∈ Li}.
Also, for each 1 ≤ i ≤ n+ 3− k and y ∈ Ei , put

qi(y) = min{s| 1 ≤ s ≤ 2[
n

n+ 2− k
] + 1, fs(y) /∈ Ei ∪ Li = Fi}.

Let w ∈ Fi(= Li ∪ Ei). If w ∈ Ei, then

qi(w) ≤ 2[
n

n+ 2− k
] + 1 ≤ ψn,k(l).

Then fqi(w)(w) /∈ Fi. If w ∈ Li, then

pi(w) ≤ ψn,k(l − 1) = (l − 1)(2[
n

n+ 2− k
] + 1) + 1 ≤ ψn,k(l).

If fpi(w)(w) /∈ Ei, then fpi(w)(w) /∈ Fi. If fpi(w)(w) ∈ Ei,

qi(f
pi(w)(w)) ≤ 2[

n

n+ 2− k
] + 1.

Hence

pi(w) + qi(f
pi(w)(w)) ≤ (l − 1)(2[

n

n+ 2− k
] + 1) + 1 + (2[

n

n+ 2− k
]+1)

= l(2[
n

n+ 2− k
] + 1) + 1 = ψn,k(l).

Then f (pi(w)+qi(f
pi(w)(w)))(w) /∈ Fi. Therefore, Fi is eventually colored

within ψn,k(l). Similarly, we obtain a desired open cover Cl = {Cl,i| 1 ≤
i ≤ n+ 3− l} of X satisfying the conditions (0)l and (1)l.

Consequently, in both of the cases R(<) R(n, k) < n + 1 − k and
R(=) R(n, k) = n + 1 − k, we have a desired open cover Cl = {Cl,i| 1 ≤
i ≤ n+3−l} ofX satisfying the conditions (0)l and (1)l. This implies that
C(f, ψn,k(l)) ≤ n+3−l. If we take l = k, then C(f, ψn(k)) ≤ n+3−k. �
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Corollary 3.2. If f : X → X is any homeomorphism of a separable
metric space X with dimX = n <∞, then

C(f |Y, ψn(k)) ≤ n+ 3− k
for each k = 0, 1, 2, · · · , n+ 1, where Y = X − P (f) and f |Y : Y → Y is
the restriction of f .

For the case that f is a map of a compact metric space, by Theorem
3.1 and [6, Theorem 3.1] we have the following result.

Corollary 3.3. Let f : X → X be a fixed-point free map of a compact
metric space X with dimX = n <∞. If dimP (f) ≤ 0, then

C(f, ψn(k)) ≤ n+ 3− k
for each k = 0, 1, 2, ..., n+ 1.

Remark. The constructions of the three indices ψn(k), ϕn(k) and τn(k)
are similar. We repaint one domain stage by stage. The different points
are the numbers of eventual colors which are used for repainting one do-
main. For ϕn(k), we use eventual colors as many as possible for repainting
one domain. For τn(k), we use only two eventual colors. For ψn(k), we
use (n+ 3− k) eventual colors.
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