http://topology.auburn.edu/tp/

TOPOLOGY PROCEEDINGS

Volume 47, 2016
Pages 1-14
http://topology.nipissingu.ca/tp/

On eventual coloring numbers
 by
 Yuki Ikegami, Hisao Kato and Akihide Ueda

Electronically published on February 5, 2015

Topology	Proceedings
Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics \& Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	$0146-4124$

COPYRIGHT © by Topology Proceedings. All rights reserved.
http://topology.auburn.edu/tp/
http://topology.nipissingu.ca/tp/

TOPOLOGY

PROCEEDINGS
Volume 47 (2016)
Pages 1-14
E-Published on February 5, 2015

ON EVENTUAL COLORING NUMBERS

YUKI IKEGAMI, HISAO KATO, AND AKIHIDE UEDA

Abstract

In [6], for each natural number p we defined eventual colorings within p of homeomorphisms which are generalizations of colorings of fixed-point free homeomorphisms, and we investigated the eventual coloring number $C(f, p)$ of a fixed-point free homeomorphism $f: X \rightarrow X$ with zero-dimensional set of periodic points. In [6], we constructed two indices $\varphi_{n}(k)$ and $\tau_{n}(k)$ for evaluating the eventual coloring number $C(f, p)$. The purpose of this paper is to construct a new index $\psi_{n}(k)$ which is more appropriate than the indices $\varphi_{n}(k)$ and $\tau_{n}(k)$.

1. Introduction

In this paper, we assume that all spaces are separable metric spaces and all maps are continuous functions. Let \mathbb{N} be the set of all natural numbers, i.e., $\mathbb{N}=\{1,2,3, \ldots\}$. For a separable metric space $X, \operatorname{dim} X$ denotes the covering dimension of X. For each map $f: X \rightarrow X$, let $P(f)$ be the set of all periodic points of f, i.e.,

$$
P(f)=\left\{x \in X \mid f^{j}(x)=x \text { for some } j \in \mathbb{N}\right\}
$$

For a subset K of $X, \operatorname{cl}(K), \operatorname{int}(K)$ and $\operatorname{bd}(K)$ denote the closure, interior and the boundary of K in X, respectively. Let \mathcal{C} be a family of subsets of X. For each $x \in X, \operatorname{ord}_{x}(\mathcal{C})$ denotes the number of elements of \mathcal{C} which contain x, i.e.,

$$
\operatorname{ord}_{x}(\mathcal{C})=|\{C \in \mathcal{C} \mid x \in C\}|
$$

By a swelling of a family $\left\{A_{s}\right\}_{s \in S}$ of subsets of a space X, we mean any family $\left\{B_{s}\right\}_{s \in S}$ of subsets of X such that $A_{s} \subset B_{s}(s \in S)$ and for every

[^0]finite set of indices $s_{1}, s_{2}, \ldots, s_{m} \in S$,
$$
\bigcap_{i=1}^{m} A_{s_{i}} \neq \phi \text { if and only if } \bigcap_{i=1}^{m} B_{s_{i}} \neq \phi
$$

Conversely, for any cover $\left\{B_{s}\right\}_{s \in S}$ of X, a cover $\left\{A_{s}\right\}_{s \in S}$ of X is a shrinking of $\left\{B_{s}\right\}_{s \in S}$ if $A_{s} \subset B_{s}(s \in S)$. A finite cover \mathcal{C} of X is a closed partition of X provided that each element C of \mathcal{C} is closed in $X, \operatorname{int}(C) \neq \emptyset$ and $C \cap C^{\prime}=\operatorname{bd}(C) \cap \operatorname{bd}\left(C^{\prime}\right)$ for $C, C^{\prime} \in \mathcal{C}$ with $C \neq C^{\prime}$. Let \mathcal{B} be a collection of subsets of a space X with $\operatorname{dim} X=n<\infty$. The collection \mathcal{B} is in general position in X provided that if $\mathcal{S} \subset \mathcal{B}$ with $|\mathcal{S}| \leq n+1$, then $\operatorname{dim}(\bigcap\{S \mid S \in \mathcal{S}\}) \leq n-|\mathcal{S}|$. We need the following lemma of general position (see [6]).

Lemma 1.1. ([6, Lemma 2.2]) Suppose that $f: X \rightarrow X$ is a fixed-point free homeomorphism of a separable metric space X such that $\operatorname{dim} X=$ $n<\infty$ and $\operatorname{dim} P(f) \leq 0$. Let $\mathcal{C}=\left\{C_{i} \mid 1 \leq i \leq m\right\}(m \in \mathbb{N})$ be an open cover of X and let $\mathcal{B}=\left\{B_{i} \mid 1 \leq i \leq m\right\}$ be a closed shrinking of \mathcal{C}. Then for any $k \in \mathbb{N}$ there is an open shrinking $\mathcal{C}^{\prime}=\left\{C_{i}^{\prime} \mid 1 \leq i \leq m\right\}$ of \mathcal{C} such that
(0) $B_{i} \subset C_{i}^{\prime}$,
(1) $\left\{f^{j}\left(\operatorname{bd}\left(C^{\prime}\right)\right) \mid C^{\prime} \in \mathcal{C}^{\prime},-k \leq j \leq k\right\}$ is in general position,
(2) $\operatorname{bd}\left(C^{\prime}\right) \cap P(f)=\emptyset$ for each $C^{\prime} \in \mathcal{C}^{\prime}$.

Let $f: X \rightarrow X$ be a fixed-point free map of a separable metric space X, i.e., $f(x) \neq x$ for each $x \in X$. A subset C of X is called a color (see [11]) of f if $f(C) \cap C=\emptyset$. Note that $f(C) \cap C=\emptyset$ if and only if $C \cap f^{-1}(C)=\emptyset$. We say that a cover \mathcal{C} of X is a coloring of f if each element C of \mathcal{C} is a color of f. The minimal cardinality $C(f)$ of closed (or open) colorings of f is the coloring number of f (see [11]). The following is an important theorem of coloring numbers.

Theorem 1.2. ([1, Aarts, Fokkink and Vermeer]) If $f: X \rightarrow X$ is a fixedpoint free homeomorphism of a separable metric space X with $\operatorname{dim} X=$ $n<\infty$, then $C(f) \leq n+3$.

Let $f: X \rightarrow X$ be a fixed-point free map of a separable metric space X and $p \in \mathbb{N}$. A subset C of X is eventually colored within p of $f([6])$ if $\bigcap_{i=0}^{p} f^{-i}(C)=\emptyset$. Note that C is a color of f if and only if C is eventually colored within 1.

Proposition 1.3. ([6, Proposition 1.4]) Let $f: X \rightarrow X$ be a fixed-point free map of a separable metric space X and $p \in \mathbb{N}$. Then a subset C of X is eventually colored within p of f if and only if each point $x \in C$ wanders off C within p, i.e., for each $x \in C, f^{i}(x) \notin C$ with some $i \leq p$.

In [6], we defined the eventual coloring number $C(f, p)$ of f as follows. A cover \mathcal{C} of X is called an eventual coloring of f within p if each element $C \in \mathcal{C}$ is eventually colored of f within p. The minimal cardinality $C(f, p)$ of all closed (or open) eventual colorings of f within p is called the eventual coloring number of f within p. Note that $C(f, 1)=C(f)$. The coloring number $C(f)$ has been investigated by many mathematicians (e.g., see [1-5], [7] and [9-11]). In [6], we constructed two indices $\varphi_{n}(k)$ and $\tau_{n}(k)$ to evaluate the eventual coloring number $C(f, p)$. In this paper, we will construct a new index $\psi_{n}(k)$ which is more appropriate than the indices $\varphi_{n}(k)$ and $\tau_{n}(k)$.

2. The index $\psi_{n}(k)$

In [6], we constructed two indices $\varphi_{n}(k)$ and $\tau_{n}(k)$. For each $n \in \mathbb{N} \cup\{0\}$ and $k=0,1,2, \ldots, n+1$, we defined the index $\varphi_{n}(k)$ as follows. Put $\varphi_{n}(0)=1(k=0)$. For each $k=1,2, \ldots, n+1$, by induction on k we defined the index $\varphi_{n}(k)$ by

$$
\varphi_{n}(k)=2 \varphi_{n}(k-1)+\left[\frac{n}{n+2-k}\right] \cdot\left(\varphi_{n}(k-1)+1\right)
$$

where $[x]=\max \{m \in \mathbb{N} \cup\{0\} \mid m \leq x\}$ for $x \in[0, \infty)$. Also, for each $n \in \mathbb{N} \cup\{0\}$ and $k=0,1,2, \ldots, n+1$, we defined the index $\tau_{n}(k)$ by

$$
\tau_{n}(k)=k(2 n+1)+1
$$

In [6], we proved the following theorem.
Theorem 2.1. ([6, Theorems 2.3 and 2.6]) Let $f: X \rightarrow X$ be a fixed-point free homeomorphism of a separable metric space X with $\operatorname{dim} X=n<\infty$. If $\operatorname{dim} P(f) \leq 0$, then

$$
C\left(f, \min \left\{\varphi_{n}(k), \tau_{n}(k)\right\}\right) \leq n+3-k
$$

for each $k=0,1,2, \ldots, n+1$.
In general, we have the following problem of eventual coloring numbers ([6, Problem 2.5]).
Problem 2.2. For each $n \in \mathbb{N} \cup\{0\}$ and $1 \leq k \leq n+1$, determine the minimum $m(n, k)$ of natural numbers p satisfying the following conditions; if $f: X \rightarrow X$ is any fixed-point free homeomorphism of a separable metric space X such that $\operatorname{dim} X=n$ and $\operatorname{dim} P(f) \leq 0$, then $C(f, p) \leq n+3-k$.

Now, we will construct a new index $\psi_{n}(k)$. Let $n \in \mathbb{N} \cup\{0\}$ and $0 \leq k \leq n+1$. Put $R(n, k)=n-(n+2-k)\left[\frac{n}{n+2-k}\right]$. Note that n is divided by $(n+2-k)$ with the remainder $R(n, k)$. First, we put
$\psi_{n}(0)=1(k=0)$. Next we consider the following two cases $\mathrm{R}(<)$ and $R(=)$:

$$
\begin{aligned}
& \mathrm{R}(<) R(n, k)<n+1-k . \\
& \mathrm{R}(=) R(n, k)=n+1-k .
\end{aligned}
$$

For each $1 \leq k \leq n+1$, we define the index $\psi_{n}(k)$ by

$$
\psi_{n}(k)= \begin{cases}k\left(2\left[\frac{n}{n+2-k}\right]-1\right)+2 & (\text { if } R(n, k)<n+1-k) \\ k\left(2\left[\frac{n}{n+2-k}\right]+1\right)+1 & (\text { if } R(n, k)=n+1-k)\end{cases}
$$

For actual values of the indices $\varphi_{n}(k), \tau_{n}(k)$ and $\psi_{n}(k)$, see the tables below. Then we have the following proposition.

Proposition 2.3. For the indices $\varphi_{n}(k), \tau_{n}(k)$ and $\psi_{n}(k)$, the following inequalities hold.
(1) For each $n \in \mathbb{N} \cup\{0\}$ and $0 \leq k \leq n+1$,

$$
\psi_{n}(k) \leq \min \left\{\varphi_{n}(k), \tau_{n}(k)\right\} .
$$

(2) For each $n \geq 2$ and $2 \leq k \leq n$,

$$
\psi_{n}(k)<\min \left\{\varphi_{n}(k), \tau_{n}(k)\right\} .
$$

(3) Moreover, for each $n \in \mathbb{N} \cup\{0\}$,
$\psi_{n}(0)=\varphi_{n}(0)=\tau_{n}(0)=1, \psi_{n}(1)=\varphi_{n}(1)=2, \psi_{n}(n+1)=\tau_{n}(n+1)$.
Proof. Let $n \in \mathbb{N} \cup\{0\}$. First, we will show $\psi_{n}(k) \leq \varphi_{n}(k)$. If $k=$ 0 , then by definitions, $\psi_{n}(0)=\varphi_{n}(0)=1(n \geq 0)$. If $k=1$, then $R(n, k)=R(n, 1)=n(=n+1-k)$, and hence the case $\mathrm{R}(=)$ holds. Then $\psi_{n}(1)=\left(2\left[\frac{n}{n+1}\right]+1\right)+1=2$. Hence $\varphi_{n}(1)=2=\psi_{n}(1)$ for each $n \geq 0$. Note that for $k \geq 1$,

$$
k\left(2\left[\frac{n}{n+2-k}\right]-1\right)+2<k\left(2\left[\frac{n}{n+2-k}\right]+1\right)+1
$$

and hence in both of the cases $\mathrm{R}(<)$ and $\mathrm{R}(=)$,

$$
\psi_{n}(k) \leq k\left(2\left[\frac{n}{n+2-k}\right]+1\right)+1(k \geq 1)
$$

It suffices to prove that

$$
(*)_{k} k\left(2\left[\frac{n}{n+2-k}\right]+1\right)+1 \leq \varphi_{n}(k)(k \geq 1) .
$$

We proceed by induction on $k=1, \ldots, n+1$. If $k=1$, then the both sides are 2 by the above argument. Let $2 \leq k \leq n+1$. We assume that $(*)_{k-1}$ holds, i.e.,

$$
(k-1)\left(2\left[\frac{n}{n+2-(k-1)}\right]+1\right)+1 \leq \varphi_{n}(k-1) .
$$

For simplicity, put $a=\left[\frac{n}{n+2-(k-1)}\right]$ and $b=\left[\frac{n}{n+2-k}\right]$. By the definition of $\varphi_{n}(k)$ and the above assumption, we have the following inequality $(* *)_{k}$:

$$
\begin{gathered}
\varphi_{n}(k)=2 \varphi_{n}(k-1)+\left[\frac{n}{n+2-k}\right] \cdot\left(\varphi_{n}(k-1)+1\right) \\
\geq 2\{(k-1)(2 a+1)+1\}+b\{(k-1)(2 a+1)+2\} \\
=k(2 a b+1)+k+(k+1) b+2 a(2 k-b-2) \\
=k\left(2\left[\frac{n}{n+2-(k-1)}\right]\left[\frac{n}{n+2-k}\right]+1\right)+k+(k+1)\left[\frac{n}{n+2-k}\right] \\
\quad+2\left[\frac{n}{n+2-(k-1)}\right]\left(2 k-\left[\frac{n}{n+2-k}\right]-2\right) .
\end{gathered}
$$

If $k=2$, then $\left[\frac{n}{n+2-(k-1)}\right]=\left[\frac{n}{n+2-(2-1)}\right]=0$. By the inequality $(* *)_{2}$, $\varphi_{n}(2) \geq 2+2+(2+1)\left[\frac{n}{n+2-2}\right]=7=2\left(2\left[\frac{n}{n+2-2}\right]+1\right)+1 \geq \psi_{n}(2)(n \geq 1)$.
Moreover, we see that $\varphi_{n}(2)=7(n \geq 1)$ and $\psi_{n}(2)=4(n \geq 2)$ because that the condition $\mathrm{R}(<) R(n, 2)=0<n+1-2(n \geq 2)$ is satisfied. Hence $\varphi_{n}(2)>\psi_{n}(2)(n \geq 2)$.

Now, let us consider the case $k \geq 3$. Note that $n \geq k-1 \geq 2$ and $\left[\frac{n}{n+2-(k-1)}\right] \geq 1$. Also, we see that $k>\left[\frac{n}{n+2-k}\right]$ for each $3 \leq k \leq n+1$. In fact, suppose, on the contrary, that $k \leq\left[\frac{n}{n+2-k}\right]$. Then

$$
\begin{aligned}
n & \geq k(n+2-k)=n k+2 k-k^{2} \\
\Rightarrow k^{2} & \geq n(k-1)+2 k .
\end{aligned}
$$

Since $k \leq n+1$,

$$
k^{2} \geq n(k-1)+2 k \geq(k-1)^{2}+2 k=k^{2}+1 .
$$

This is a contradiction. By $(* *)_{k}$,

$$
\begin{aligned}
\varphi_{n}(k) \geq & k\left(2\left[\frac{n}{n+2-(k-1)}\right]\left[\frac{n}{n+2-k}\right]+1\right)+k \\
& +(k+1)\left[\frac{n}{n+2-k}\right]+2\left[\frac{n}{n+2-(k-1)}\right]\left(2 k-\left[\frac{n}{n+2-k}\right]-2\right) \\
\geq & k\left(2\left[\frac{n}{n+2-k}\right]+1\right)+k \\
& +(k+1)\left[\frac{n}{n+2-k}\right]+2\left\{\left(k-\left[\frac{n}{n+2-k}\right]\right)+(k-2)\right\} \\
> & k\left(2\left[\frac{n}{n+2-k}\right]+1\right)+1\left(\geq \psi_{n}(k)\right)(3 \leq k \leq n+1) .
\end{aligned}
$$

Consequently we see that $\psi_{n}(k) \leq \varphi_{n}(k)$.
Next, we will show that $\psi_{n}(k) \leq \tau_{n}(k)$. If $k=0$, then $\psi_{n}(0)=\tau_{n}(0)=$
1 . For $k \geq 1$, it suffices to show that

$$
k\left(2\left[\frac{n}{n+2-k}\right]+1\right)+1 \leq \tau_{n}(k)
$$

If $1 \leq k \leq n$, then $\left[\frac{n}{n+2-k}\right]<n$. Hence

$$
\psi_{n}(k) \leq k\left(2\left[\frac{n}{n+2-k}\right]+1\right)+1<k(2 n+1)+1=\tau_{n}(k)
$$

for $1 \leq k \leq n$. If $k=n+1(n \geq 0)$, then $\left[\frac{n}{n+2-k}\right]=n$. Since the case $\mathrm{R}(=) R(n, k)=0=n+1-k$ holds, we see that

$$
\begin{aligned}
\psi_{n}(n+1) & =(n+1)\left(2\left[\frac{n}{n+2-(n+1)}\right]+1\right)+1=(n+1)(2[n]+1)+1 \\
& =(n+1)(2 n+1)+1=\tau_{n}(n+1)
\end{aligned}
$$

for $n \geq 0$. Finally we can conclude that all conditions in Proposition 2.3 are satisfied.

Tables of three indices $\varphi_{n}(k), \tau_{n}(k)$ and $\psi_{n}(k)$

$\varphi_{n}(k)$							
	0	1	2	3	4	5	6
0	1	2	-	-	-	-	-
1	1	2	7	-	-	-	-
2	1	2	7	30	-	-	-
3	1	2	7	22	113	-	-
4	1	2	7	22	90	544	-
5	1	2	7	22	69	278	1951

$\tau_{n}(k)$
0

$\psi_{n}(k)$

2							
n	k	0	1	2	3	4	5
0	1	2	-	-	-	-	-
1	1	2	7	-	-	-	-
2	1	2	4	16	-	-	-
3	1	2	4	10	29	-	-
4	1	2	4	5	14	46	-
5	1	2	4	5	13	26	67

3. MAIN theorem

In this section, we prove the following theorem which is the main result of this paper. The proof is a modification of $[6$, Theorems 2.3 and 2.6], but we need more precise arguments.

Theorem 3.1. Let $f: X \rightarrow X$ be a fixed-point free homeomorphism of a separable metric space X with $\operatorname{dim} X=n<\infty$. If $\operatorname{dim} P(f) \leq 0$, then

$$
C\left(f, \psi_{n}(k)\right) \leq n+3-k
$$

for each $k=0,1,2, \cdots, n+1$.
Proof. Let $n \in \mathbb{N} \cup\{0\}$ and $0 \leq k \leq n+1$. First, we will define the following index $\psi_{n, k}(l)$ for each $l=0,1,2, \ldots, k$. If $l=0$, we put $\psi_{n, k}(0)=$ 1. Next, if $1 \leq l \leq k$, then we define the index $\psi_{n, k}(l)$ by

$$
\psi_{n, k}(l)= \begin{cases}l\left(2\left[\frac{n}{n+2-k}\right]-1\right)+2 & (\text { if } \mathrm{R}(<) R(n, k)<n+1-k \text { holds }) \\ l\left(2\left[\frac{n}{n+2-k}\right]+1\right)+1 & (\text { if } \mathrm{R}(=) R(n, k)=n+1-k \text { holds })\end{cases}
$$

Note that $\psi_{n, k}(k)=\psi_{n}(k)$.
We will show that for each $0 \leq l \leq k$, there is an open cover $\mathcal{C}_{l}=$ $\left\{C_{l, i} \mid 1 \leq i \leq n+3-l\right\}$ of X satisfying following conditions:
(0) $l_{l} \operatorname{cl}\left(C_{l, i}\right)$ is eventually colored within $\psi_{n, k}(l)$ for $1 \leq i \leq n+3-k$,
(1) $l_{l} \operatorname{cl}\left(C_{l, i}\right)$ is colored for $n+3-k<i \leq n+3-l$.

We proceed by induction on l. By Theorem 1.2, there is an open coloring $\mathcal{C}_{0}=\left\{C_{0, i} \mid 1 \leq i \leq n+3\right\}$ of f. Since $\psi_{n, k}(0)=1$, we may assume that \mathcal{C}_{0} satisfies the conditions $(0)_{0}$ and $(1)_{0}$. Now we assume that $l \geq 1$ and there is an open cover $\mathcal{C}_{l-1}=\left\{C_{l-1, i} \mid 1 \leq i \leq n+3-(l-1)\right\}(l \geq 1)$ of X satisfying the conditions $(0)_{l-1}$ and $(1)_{l-1}$. By Lemma 1.1, we may assume that

$$
\left\{f^{j}(\operatorname{bd}(C)) \mid C \in \mathcal{C}_{l-1},-1 \leq j \leq 2\left[\frac{n}{n+2-k}\right]+1\right\}
$$

is in general position. Let $K_{i}=\operatorname{cl}\left(C_{l-1, i}\right)$ for $1 \leq i \leq n+3-(l-1)$. We put

$$
L_{1}=K_{1}, L_{i}=\operatorname{cl}\left(K_{i} \backslash\left(K_{1} \cup K_{2} \cup \cdots \cup K_{i-1}\right)\right)(i \geq 2)
$$

Then the collection $\mathcal{L}=\left\{L_{i} \mid 1 \leq i \leq n+3-(l-1)\right\}$ is a closed partition of X. Note that
$\operatorname{bd}\left(L_{i_{1}}\right) \cap \operatorname{bd}\left(L_{i_{2}}\right) \cap \cdots \cap \operatorname{bd}\left(L_{i_{m}}\right) \subset \operatorname{bd}\left(C_{i_{1}}\right) \cap \operatorname{bd}\left(C_{i_{2}}\right) \cap \cdots \cap \operatorname{bd}\left(C_{i_{m-1}}\right)$ for $1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq n+3-(l-1)$. Then we see that for $x \in X$,

$$
(\Delta) \operatorname{ord}_{x}(\mathcal{L})-1 \leq \operatorname{ord}_{x}\left\{\operatorname{bd}(C) \mid C \in \mathcal{C}_{l-1}\right\}
$$

Now, we will repaint $L_{n+3-(l-1)}$ by use of eventual colors $L_{i}(1 \leq i \leq$ $n+3-k)$. To this end, let $x \in L_{n+3-(l-1)}$. For the point x, we put

$$
J_{n+3-(l-1)}(x)=\left\{j \left\lvert\, 1 \leq j \leq 2\left[\frac{n}{n+2-k}\right]+1\right. \text { and } f^{j}(x) \notin L_{n+3-(l-1)}\right\}
$$

Since $L_{n+3-(l-1)}$ is a color of f,

$$
\left|J_{n+3-(l-1)}(x)\right| \geq\left[\frac{n}{n+2-k}\right]+1
$$

For each $j \in J_{n+3-(l-1)}(x)$, we put

$$
I(j)=\left\{i \in\{1,2, \cdots, n+3-k\} \mid f^{j}(x) \in L_{i}\right\}
$$

We will show that there is $j \in J_{n+3-(l-1)}(x)$ such that $|I(j)|<n+3-k$. Suppose, on the contrary, that $|I(j)|=n+3-k$ for all $j \in J_{n+3-(l-1)}(x)$. Then

$$
f^{j}(x) \in \bigcap_{i=1}^{n+3-k} L_{i} \subset \bigcap_{i=1}^{n+2-k} \operatorname{bd}\left(C_{i}\right) .
$$

Since $\left\{f^{j}\left(\operatorname{bd}(C) \mid C \in \mathcal{C}_{l-1}, 0 \leq j \leq 2\left[\frac{n}{n+2-k}\right]+1\right\}\right.$ is in general position, we see that

$$
\left(\left[\frac{n}{n+2-k}\right]+1\right)(n+2-k) \leq n .
$$

However, we have

$$
\left(\left[\frac{n}{n+2-k}\right]+1\right)(n+2-k) \geq n+1
$$

This is a contradiction. Hence there is $j \in J_{n+3-(l-1)}(x)$ such that $|I(j)|<n+3-k$.

We put

$$
j(x)=\min \left\{j \in J_{n+3-(l-1)}(x)| | I(j) \mid<n+3-k\right\} .
$$

Now, we have to consider two cases $\mathrm{R}(<) R(n, k)<n+1-k$ and $\mathrm{R}(=) R(n, k)=n+1-k$.

Case $\mathbf{R}(<): R(n, k)<n+1-k$.
Note that in this case $\mathrm{R}(<), k \geq l \geq 1$ and $k \geq 2$. Let $x \in L_{n+3-(l-1)}$. First, we will choose an open neighborhood $U(x)$ of x in X as follows. To this end, we will consider the following two cases (\star) and $(\star \star)$:

$$
\begin{aligned}
& (\star) j(x)<2\left[\frac{n}{n+2-k}\right] \\
& (\star \star) j(x) \geq 2\left[\frac{n}{n+2-k}\right]
\end{aligned}
$$

Note that the two cases (\star) and $(* *)$ depend on the point $x \in L_{n+3-(l-1)}$.
First, we consider the case $(\star) j(x)<2\left[\frac{n}{n+2-k}\right]$. In this case, we choose $L_{i(x)}(1 \leq i(x) \leq n+3-k)$ such that $f^{j(x)}(x) \notin L_{i(x)}$. Then we can choose an open neighborhood $U(x)$ of x in X such that

$$
(\star)\left(f^{j(x)}(\operatorname{cl}(U(x))) \cap\left(L_{n+3-(l-1)} \cup L_{i(x)}\right)=\emptyset\right.
$$

Next, we consider the case $(\star \star) j(x) \geq 2\left[\frac{n}{n+2-k}\right]$. To choose $U(x)$, we will show that the following conditions (1) and (2) hold.
(1) $\left|\left\{j \in J_{n+3-(l-1)}(x) \mid j<j(x)\right\}\right|=\left[\frac{n}{n+2-k}\right]$,
(2) There is $i(x)$ such that $1 \leq i(x) \leq n+3-k, f^{j(x)}(x) \notin L_{i(x)}$ and $f^{-1}(x) \notin L_{i(x)}$.

We will show that (1) holds. Since $\left\{f^{j}\left(\operatorname{bd}(C) \mid C \in \mathcal{C}_{l-1}, 0 \leq j \leq\right.\right.$ $\left.2\left[\frac{n}{n+2-k}\right]+1\right\}$ is in general position,

$$
\left|\left\{j \in J_{n+3-(l-1)}(x) \mid j<j(x)\right\}\right|(n+2-k) \leq n .
$$

Hence $\left|\left\{j \in J_{n+3-(l-1)}(x) \mid j<j(x)\right\}\right| \leq\left[\frac{n}{n+2-k}\right]$. Suppose, on the contrary, that

$$
\left|\left\{j \in J_{n+3-(l-1)}(x) \mid j<j(x)\right\}\right| \leq\left[\frac{n}{n+2-k}\right]-1
$$

Since $L_{n+3-(l-1)}$ is a color of f and $x \in L_{n+3-(l-1)}$, by the above inequality we see that

$$
j(x) \leq 2\left(\left[\frac{n}{n+2-k}\right]-1\right)+1=2\left[\frac{n}{n+2-k}\right]-1
$$

This is a contradiction to the case $(\star \star)$. Hence (1) is true.

We will show that (2) holds. Suppose, on the contrary, that (2) is not true. We assume that for each $1 \leq i \leq n+3-k, f^{j(x)}(x) \in L_{i}$ or $f^{-1}(x) \in L_{i}$. Hence

$$
n+3-k \leq \operatorname{ord}_{f^{j(x)}(x)}(\mathcal{L})+\operatorname{ord}_{f^{-1}(x)}(\mathcal{L})
$$

Note that $\left\{f^{j}(\operatorname{bd}(C)) \mid C \in \mathcal{C}_{l-1},-1 \leq j \leq 2\left[\frac{n}{n+2-k}\right]+1\right\}$ is in general position. Then

$$
\operatorname{ord}_{f^{j(x)}(x)} \partial \mathcal{C}_{l-1}+\operatorname{ord}_{f^{-1}(x)} \partial \mathcal{C}_{l-1}+\Sigma_{j \in A} \operatorname{ord}_{f^{j}(x)} \partial \mathcal{C}_{l-1} \leq n,
$$

where $\partial \mathcal{C}_{l-1}=\left\{\operatorname{bd}(C) \mid C \in \mathcal{C}_{l-1}\right\}$ and $A=\left\{j \in J_{n+3-(l-1)}(x) \mid j<\right.$ $j(x)\}$. Also, by (1),

$$
\Sigma_{j \in A} \operatorname{ord}_{f^{j}(x)} \partial \mathcal{C}_{l-1} \geq(n+2-k)\left[\frac{n}{n+2-k}\right]
$$

Then by the inequality (Δ),

$$
\begin{gathered}
\left.\operatorname{ord}_{f^{j(x)}(x)}(\mathcal{L})-1\right)+\left(\operatorname{ord}_{f^{-1}(x)}(\mathcal{L})-1\right) \leq \operatorname{ord}_{f^{j(x)}(x)} \partial \mathcal{C}_{l-1}+\operatorname{ord}_{f^{-1}(x)} \partial \mathcal{C}_{l-1} \\
\leq n-(n+2-k)\left[\frac{n}{n+2-k}\right]=R(n, k)<n+1-k
\end{gathered}
$$

Hence

$$
n+3-k \leq \operatorname{ord}_{f^{j(x)}(x)}(\mathcal{L})+\operatorname{ord}_{f^{-1}(x)}(\mathcal{L})<n+3-k .
$$

This is a contradiction. Therefore (2) is true.
In the case ($\star \star$), by (2) we can choose an open neighborhood $U(x)$ of x in X such that
$(\star \star) f^{j(x)}(\operatorname{cl}(U(x))) \cap\left(L_{n+3-(l-1)} \cup L_{i(x)}\right)=\emptyset$ and $f^{-1}(\operatorname{cl}(U(x))) \cap L_{i(x)}=\emptyset$.
Consequently, in both of the cases (\star) and $(\star \star)$, we have a desired open neighborhood $U(x)$ of each $x\left(\in L_{n+3-(l-1)}\right)$ in X.

Now we consider the following family

$$
\mathcal{U}=\left\{U(x): x \in L_{n+3-(l-1)}\right\} .
$$

Take a locally finite closed refinement \mathcal{W} of \mathcal{U} such that $\bigcup \mathcal{W}=L_{n+3-(l-1)}$. Note that for each $W \in \mathcal{W}$, we can choose $x \in L_{n+3-(l-1)}$ such that $W \subset U(x)$. Then we define a function $\lambda: \mathcal{W} \rightarrow\{1,2, \ldots, n+3-k\}$ by $\lambda(W)=i(x)$. For each $1 \leq i \leq n+3-k$, we put

$$
E_{i}=\bigcup\{W \in \mathcal{W} \mid \lambda(W)=i\}
$$

and

$$
F_{i}=L_{i} \cup E_{i}(1 \leq i \leq n+3-k) .
$$

Since \mathcal{W} is locally finite, E_{i} and F_{i} are closed in X for each i.
For each $1 \leq i \leq n+3-k$ and $z \in L_{i}$, put

$$
p_{i}(z)=\min \left\{s \mid 1 \leq s \leq \psi_{n, k}(l-1), f^{s}(z) \notin L_{i}\right\} .
$$

Also, for each $1 \leq i \leq n+3-k$ and $y \in E_{i}$, put

$$
q_{i}(y)=\min \left\{s \left\lvert\, 1 \leq s \leq 2\left[\frac{n}{n+2-k}\right]+1\right., f^{s}(y) \notin E_{i} \cup L_{i}=F_{i}\right\} .
$$

Now we will show the following Claim.
Claim. If $y \in E_{i}$ with $f^{-1}(y) \in L_{i}(1 \leq i \leq n+3-k)$, then $q_{i}(y) \leq$ $2\left[\frac{n}{n+2-k}\right]-1$.

Suppose, on the contrary, that $q_{i}(y) \geq 2\left[\frac{n}{n+2-k}\right]$. By the construction of E_{i}, there is $x \in L_{n+3-(l-1)}$ such that $y \in U(x) \in \mathcal{U}$ and $i(x)=i$. Since

$$
f^{j(x)}(\operatorname{cl}(U(x))) \cap\left(L_{n+3-(l-1)} \cup L_{i}\right)=\emptyset
$$

in both of the cases (\star) and $(\star \star)$, we see that $j(x) \geq q_{i}(y) \geq 2\left[\frac{n}{n+2-k}\right]$. Hence the point x satisfies the case ($\star \star$). By the choice of $U(x)$ in the case $(\star \star)$, we see that $f^{-1}(\operatorname{cl}(U(x))) \cap L_{i}=\emptyset$, and hence $f^{-1}(y) \notin L_{i}$. This is a contradiction. Thus $q_{i}(y) \leq 2\left[\frac{n}{n+2-k}\right]-1$.

Now, we will show that F_{i} is eventually colored within
$\psi_{n, k}(l)\left(=l\left(2\left[\frac{n}{n+2-k}\right]-1\right)+2\right)(k \geq 2, k \geq l \geq 1)$. Let $w \in F_{i}\left(=L_{i} \cup E_{i}\right)$. If $w \in E_{i}$,

$$
q_{i}(w) \leq 2\left[\frac{n}{n+2-k}\right]+1=\left(2\left[\frac{n}{n+2-k}\right]-1\right)+2=\psi_{n, k}(1) \leq \psi_{n, k}(l)
$$

Hence $f^{q_{i}(w)}(w) \notin F_{i}$. If $w \in L_{i}$, then

$$
p_{i}(w) \leq \psi_{n, k}(l-1) \leq \psi_{n, k}(l)
$$

If $f^{p_{i}(w)}(w) \notin E_{i}$, then $f^{p_{i}(w)}(w) \notin F_{i}$. If $f^{p_{i}(w)}(w) \in E_{i}$, by $f^{p_{i}(w)-1}(w) \in$ L_{i} and the above claim,

$$
q_{i}\left(f^{p_{i}(w)}(w)\right) \leq 2\left[\frac{n}{n+2-k}\right]-1
$$

Then

$$
\begin{aligned}
p_{i}(w)+q_{i}\left(f^{p_{i}(w)}(w)\right) & \leq \psi_{n, k}(l-1)+\left(2\left[\frac{n}{n+2-k}\right]-1\right) \\
& \leq l\left(2\left[\frac{n}{n+2-k}\right]-1\right)+2=\psi_{n, k}(l)(k \geq 2, k \geq l \geq 1)
\end{aligned}
$$

Then $f^{\left(p_{i}(w)+q_{i}\left(f^{p_{i}(w)}(w)\right)\right)}(w) \notin F_{i}$. Therefore, F_{i} is eventually colored within $\psi_{n, k}(l)\left(=l\left(2\left[\frac{n}{n+2-k}\right]-1\right)+2\right)(l \geq 1)$.

If we choose a small open swelling of the closed cover

$$
\left\{F_{i} \mid 1 \leq i \leq n+3-k\right\} \cup\left\{L_{j} \mid n+4-k \leq j \leq n+3-l\right\}
$$

of X, we obtain a desired open cover $\mathcal{C}_{l}=\left\{C_{l, i}: 1 \leq i \leq n+3-l\right\}$ of X satisfying the conditions $(0)_{l}$ and $(1)_{l}$.

Next, we consider the remaining case $\mathrm{R}(=) R(n, k)=n+1-k$.

Case R(=): $R(n, k)=n+1-k$.
Let $x \in L_{n+3-(l-1)}$. Recall the definition of $j(x)$. In the case $\mathrm{R}(=)$, we choose $L_{i(x)}(1 \leq i(x) \leq n+3-k)$ such that $f^{j(x)}(x) \notin L_{i(x)}$ and we choose an open neighborhood $U(x)$ of x in X such that $f^{j(x)}(\operatorname{cl}(U(x)) \cap$ $\left(L_{n+3-(l-1)} \cup L_{i(x)}\right)=\emptyset$. Consider the collection $\mathcal{U}=\{U(x) \mid x \in$ $\left.L_{n+3-(l-1)}\right\}$ and take a locally finite closed refinement \mathcal{W} of \mathcal{U} such that $\bigcup \mathcal{W}=L_{n+3-(l-1)}$. For each $W \in \mathcal{W}$, we can choose $U(x)$ such that $W \subset U(x)$. Also, we define a function $\lambda: \mathcal{W} \rightarrow\{1,2, \ldots, n+3-k\}$ by $\lambda(W)=i(x)$. For each $1 \leq i \leq n+3-k$, put

$$
E_{i}=\bigcup\{W \in \mathcal{W} \mid j(W)=i\}, F_{i}=L_{i} \cup E_{i}(1 \leq i \leq n+3-k)
$$

We will show that F_{i} is eventually colored within $\psi_{n, k}(l)\left(=l\left(2\left[\frac{n}{n+2-k}\right]+\right.\right.$ $1)+1)(l \geq 1)$. For each $1 \leq i \leq n+3-k$ and $z \in L_{i}$, put

$$
p_{i}(z)=\min \left\{s \mid 1 \leq s \leq \psi_{n, k}(l-1), f^{s}(z) \notin L_{i}\right\} .
$$

Also, for each $1 \leq i \leq n+3-k$ and $y \in E_{i}$, put

$$
q_{i}(y)=\min \left\{s \left\lvert\, 1 \leq s \leq 2\left[\frac{n}{n+2-k}\right]+1\right., f^{s}(y) \notin E_{i} \cup L_{i}=F_{i}\right\}
$$

Let $w \in F_{i}\left(=L_{i} \cup E_{i}\right)$. If $w \in E_{i}$, then

$$
q_{i}(w) \leq 2\left[\frac{n}{n+2-k}\right]+1 \leq \psi_{n, k}(l)
$$

Then $f^{q_{i}(w)}(w) \notin F_{i}$. If $w \in L_{i}$, then

$$
p_{i}(w) \leq \psi_{n, k}(l-1)=(l-1)\left(2\left[\frac{n}{n+2-k}\right]+1\right)+1 \leq \psi_{n, k}(l)
$$

If $f^{p_{i}(w)}(w) \notin E_{i}$, then $f^{p_{i}(w)}(w) \notin F_{i}$. If $f^{p_{i}(w)}(w) \in E_{i}$,

$$
q_{i}\left(f^{p_{i}(w)}(w)\right) \leq 2\left[\frac{n}{n+2-k}\right]+1
$$

Hence

$$
\begin{aligned}
p_{i}(w)+q_{i}\left(f^{p_{i}(w)}(w)\right) & \leq(l-1)\left(2\left[\frac{n}{n+2-k}\right]+1\right)+1+\left(2\left[\frac{n}{n+2-k}\right]+1\right) \\
& =l\left(2\left[\frac{n}{n+2-k}\right]+1\right)+1=\psi_{n, k}(l) .
\end{aligned}
$$

Then $f^{\left(p_{i}(w)+q_{i}\left(f^{p_{i}(w)}(w)\right)\right)}(w) \notin F_{i}$. Therefore, F_{i} is eventually colored within $\psi_{n, k}(l)$. Similarly, we obtain a desired open cover $\mathcal{C}_{l}=\left\{C_{l, i} \mid 1 \leq\right.$ $i \leq n+3-l\}$ of X satisfying the conditions $(0)_{l}$ and $(1)_{l}$.

Consequently, in both of the cases $\mathrm{R}(<) R(n, k)<n+1-k$ and $\mathrm{R}(=) R(n, k)=n+1-k$, we have a desired open cover $\mathcal{C}_{l}=\left\{C_{l, i} \mid 1 \leq\right.$ $i \leq n+3-l\}$ of X satisfying the conditions $(0)_{l}$ and (1) ${ }_{l}$. This implies that $C\left(f, \psi_{n, k}(l)\right) \leq n+3-l$. If we take $l=k$, then $C\left(f, \psi_{n}(k)\right) \leq n+3-k$.

Corollary 3.2. If $f: X \rightarrow X$ is any homeomorphism of a separable metric space X with $\operatorname{dim} X=n<\infty$, then

$$
C\left(f \mid Y, \psi_{n}(k)\right) \leq n+3-k
$$

for each $k=0,1,2, \cdots, n+1$, where $Y=X-P(f)$ and $f \mid Y: Y \rightarrow Y$ is the restriction of f.

For the case that f is a map of a compact metric space, by Theorem 3.1 and [6, Theorem 3.1] we have the following result.

Corollary 3.3. Let $f: X \rightarrow X$ be a fixed-point free map of a compact metric space X with $\operatorname{dim} X=n<\infty$. If $\operatorname{dim} P(f) \leq 0$, then

$$
C\left(f, \psi_{n}(k)\right) \leq n+3-k
$$

for each $k=0,1,2, \ldots, n+1$.
Remark. The constructions of the three indices $\psi_{n}(k), \varphi_{n}(k)$ and $\tau_{n}(k)$ are similar. We repaint one domain stage by stage. The different points are the numbers of eventual colors which are used for repainting one domain. For $\varphi_{n}(k)$, we use eventual colors as many as possible for repainting one domain. For $\tau_{n}(k)$, we use only two eventual colors. For $\psi_{n}(k)$, we use $(n+3-k)$ eventual colors.

Acknowledgment. The authors would like to thank the referee for helpful comments.

References

[1] J. M. Aarts, R. J. Fokkink and H. Vermeer, Variations on a theorem of Lusternik and Schnirelmann, Topology 35 (1996), 1051-1056.
[2] J. M. Aarts, R. J. Fokkink and H. Vermeer, Coloring maps of period three, Pacific J. Math. 202, No. 2 (2002), 257-266.
[3] Y. Akaike, N. Chinen and K. Tomoyasu, Colorings of Periodic Homeomorphisms, Bull. Polon. Acad. Sci. Ser. Math. 57, No. 1 (2009), 63-74.
[4] A. Blaszczyk and D. Y. Kim, A topological vertion of a combinatorial theorem of Katetov, Comm. Math. Univ. Carolinae 29 (1988), 657-663.
[5] E. K. van Douwen, βX and fixed-point free map, Top. Appl. 51 (1993), 191-195.
[6] Y. Ikegami, H. Kato and A. Ueda, Eventual colorings of homeomorphisms, J. Math. Soc. Japan 65 (2013), 375-387.
[7] A. Krawczyk and J. Steprāns, Continuous colourings of closed graphs, Topology Appl. 51 (1993), 13-26.
[8] J. Kulesza, Zero-dimensional covers of finite dimensional dynamical systems, Ergod. Th. Dynam. Sys. 15 (1995), 939-950.
[9] L. Lusternik and L. Schnirelman, Topological methods in variational calculus (Russian), Moscow, 1930.
[10] J. van Mill, Easier proofs of coloring theorems, Top. Appl. 97 (1999), 155-163.
[11] J. van Mill, The Infinite-Dimensional Topology of Function Spaces, North-Holland publishing Co., Amsterdam, 2001.

E-mail address, Kato: hkato@math.tsukuba.ac.jp
(Ikegami, Kato and Ueda) Institute of Mathematics, University of Tsukuba, Ibaraki 305-8571, Japan

[^0]: 2010 Mathematics Subject Classification. Primary 54F45, 54H20; Secondary $55 \mathrm{M} 10,55 \mathrm{M} 30,54 \mathrm{C} 05$.

 Key words and phrases. Fixed-point free homeomorphism, periodic point, coloring, eventual coloring, dimension, general position.
 (C)2015 Topology Proceedings.

