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CLOSED SUBSETS OF EUCLIDEAN SPACES
CONTAINED IN PSEUDO-ARCS

ALEJANDRO ILLANES

ABsTRrRACT. In this paper we prove that if K is a compact subset
of the Euclidean space R* (k > 3) with the property that every
nondegenerate component of K is a pseudo-arc, then there exists
a pseudo-arc P with K C P C R*.

1. INTRODUCTION

J. R. Kline and R. L. Moore proved [7] that, in the plane, a compact
set M is a subset of an arc if and only if every component of M is either a
one-point set or an arc « such that no point of «, except its end points, is a
limit point of M —«. In his dissertation, published in [3], H. Cook studied
the corresponding problem for the pseudo-arc and proved that if K is a
compact plane set, then there exists a pseudo-arc P with K C P C R? if
and only if each of the nondegenerate components of K is a pseudo-arc.
H. Cook has conjectured that this result is also true for R* if k > 3. This
conjecture was stated in the paper by David P. Bellamy in [1].

In this paper we prove Cook’s conjecture by showing that, if & > 3
and K is a compact subset of the Euclidean space R*, then there exists
a pseudo-arc P such that K ¢ P C R” if and only if each nondegenerate
component of K is a pseudo-arc.
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2. CHAINS

The proof of the main theorem of this paper depends on making a
careful and technical surgery with chains. In this section we develop the
tools to cut and paste the appropiate chains.

A continuum is a compact connected nondegenerate metric space. A
continuum is indecomposable if it is not the union of two of its proper
subcontinua. Given a metric space X, a chain in X is a collection of open
sets C = {C1,...,Cy} such that C; N C; # 0 if and only if |i — j| < 1,
C1 € clx(Cy) and C), € clx(Cp_1). Each of the elements C; is a link
of C. If p € C; and ¢q € C,, then C is said to be a chain from p to g.
The chain C is taut if it satisfies the additional condition that clx (C;)N
clx(C;) # 0 if and only if | — j| < 1. The mesh of C is the maximuum
of the diameters of the sets C;. Given a subset A of X, we say that the
chain C covers A provided that A C C; U...UC,, and C properly covers
Aif (ANCy)— clx(Cy) #0 # (ANCy)— clx(Cp_1). Given € > 0, an
e-chain is a chain C such that mesh(C) < e.

The continuum X is chainable provided that for each € > 0 there exists
a taut e-chain whose links cover X. Given a family A of subsets of X,
UA denotes the union of the elements of A.

Recall that a pseudo-arc is a hereditarily indecomposable chainable
continuum (up to homeomorphisms, there is only one pseudo-arc, see [2,
Theorem 1].

The strategy for proving the main result in this paper is as follows.

1. We take a compact subset K of R¥ (k > 3) such that every nonde-
generate component of K is a pseudo-arc.

2. We construct a sequence {U,.}2; of chains in R* such that for each
r €N, K C Uy, Ur41 is “crooked enough” in U, and lim mesh(i,.) = 0.
In this way, P = N{clgs (Ul4,.) : 7 € N} is the desired pseudo-arc. Of
course, the difficult part is the construction of the chains U,.

3. The expression “crooked enough” means that U, 11 is crooked in the
chain 72(U,.), this is the chain constructed by taking the union of the first
72 links of U,., then the union of the next 72 links of i,- and so on. This
helps to make the construction of U, 11 easier, but some technical details
are needed to handle chains of the form s(i,); the first section (Lemmas
2.1 to 2.8) are essentially devoted to this end.

4. The difference between the case proved in this paper (kK > 3)
and the theorem proved by H. Cook (k = 2) is that we have “more space”
in which we can work. We work with rectangular boxes in R* so
we can dig channels in these boxes without disconnecting them.
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This is the reason for which we need to construct our chains with links
that are finite connected unions of boxes. The basic facts about boxes
and street arcs are developed in 4.1 to 4.4.

5. The chains U, are constructed inductively. Supposing that U, has
been constructed we proceed as follows. Given a component Q of K, since
(Q is either a one-point set or a pseudo-arc, we know that it is possible to
construct an appropriate chain covering @) that is crooked in U,.. Lemmas
3.1, 5.1 and 5.3, and Theorems 3.2 and 5.2 are useful to extend the chains
covering the components of K to a finite union of pairwise disjoint chains
covering K.

6. Finally, once we can cover K by a finite number of appropriate
pairwise disjoint chains crooked in U,., we need to extend these chains to
an appropiate single chain, this is made in Theorem 5.5.

The following lemma is easy to prove.

Lemma 2.1. Let X be a continuum, A a subcontinuum of X, U =
{U1,...,U,} a taut chain that properly covers A and V = {V1,...,V,}
a sequence of open sets such that A C UV and V; C U; for each i €
{1,...,n}. ThenV is a taut chain that properly covers A.

Let D ={D1,...,Dp}and C = {C1,...,C,} be chains in a continuum.
The chain D refines C if the closure of every link of D is contained in one
link of C. The chain D is crooked in the chain C if D refines C and, for
any indices k, [, ¢ and j with D, C C;, D; C C; and i + 2 < j, there
exist indices r and s, with either £k < r < s <lork >1r > s > I
such that D, C Cj_; and Dy, C Cjy1. Given s € N, if n = sk +r and
r € {0,...,s—1}, the s-chain of C is the chain s(C) = {C1U...UCs; Cs41U
U C(k72)s+1 U.. ~U0(k71)s; C(k,1)5+1 U...UCksU.. ~U0k:s+'r'}-
Notice that each link of s(C) is the union of at least s links of C. We
denote by D x C the sequence {Dq,..., Dy, C1,...,C,}, the operation x*
is extended to a finite family of chains in the natural way. Given 1 < i <
j <n,let C(4,j) denote the subchain {C;,...,C;} of C.

The following lemma can be easily proved.

Lemma 2.2. For every s,t € N and each chain C in a continuum X,

#(s(C)) = ts(C).

Lemma 2.3. Suppose that X is a continuum and there exist s € N, points
p # q in X and a sequence {Uy}72 | of taut chains in X such that for each
keN,

(a) Uy, is a chain from p to q,

(b) Uit is crooked in s(Uy) and

(c) mesh(Uy,) < +.

Let P = N{clx(UUy) : k € N}. Then P is a pseudo-arc.
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Proof. Clearly, P is a chainable continuum. Using a standard argument
(see for example [6, p. 39]) it is possible to show that P is hereditarily
indecomposable. Thus, P is a pseudo-arc (see [2, Theorem 1]). O

Lemma 2.4. LetU = {Ur,...,U,} and V = {Vi,...,V;,} be chains in
a continuum X such that V refinesUd. Let 1 <i < j<n . Then

(a) if there exist 1 < a < b < m such that Vo, C U; and V}, C U;
(or Vo, C U; and V, C Uj), then for each k € {i,...,j}, there exists
c€{a,...,b} such that V. C Uy,

(b) if there exist 1 < a <b<m such that Vo\U; # 0 and V, NU; # 0
(or Vi NU; # 0 and V, NU; # 0), then for each i < k < j, there exists
c€{a,...,b} such that V. C Uy,

(c)ifa € {l,....,m} and V, C U; U...UUj, then there exists k €
{i,...,j} such that V, C Uy, and

(d)ifr,s € {1,...,m} are such thatr < s, V., C Uy and Vs C U, then
for every 1 < c < e < n, there exist r < a < b < s such that V, C U,
Vi C Ue and UV(a,b) C UU(c,e).

Proof. We prove (a). The proof of (b) is similar. Suppose that V, C U;
and V, C Uj, the other case is similar. Suppose also that no V. (¢ €
{a,...,b}) is contained in Ug. Then ¢ < k < j. Since V refines U, V, U
UV, € (U . UUE—1)U(Ug41U. . .UU,). Let e = max{g € {a,...,b}:
Vy CULU...UUg_1}. Notice that e < band Veyy C Ui U...UU,. So,
Ve NVey1 =0, a contradiction.

(c) and (d) are easy to prove. O

Lemmas 2.5 and 2.6 can be proved by applying Lemma 2.4.

Lemma 2.5. Let U and V be chains in a continuum X such that V is
crooked in U. Then V is crooked in s(U) for each s € N.

Lemma 2.6. Let X be a continuum and let U = {Uy,...,U,}, V =
Vi, .., Vin} and W = {W1q,..., Wy} be chains in X such that V is
crooked in U and W; C V; for eachi € {1,...,m}. Then W is crooked in
s(U) for each s > 2.

Lemma 2.7. LetU = {Ur,...,U,} and V = {Vi,...,V;,} be chains in
a continuum X such that V is crooked in U. Let a € {1,...,m — 1}.
Let Wi,..., Wy, Yo_1,...,Y1 be open subsets of X such that the family
Z=AY1,.... Yo 1, W1, ..., Way1,Vaso,...,Vin} is a chain and satisfies:

(a) for each i € {1,...,a+ 1}, W; CV; and

(b) for eachie€{l,...,a—1},Y; CVa_iq1.

Then Y is crooked in 2(U).
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PT’OOf. Let Q(Z/{) = {Rl,...,Rk}. Let Zl = Yl, ey Za—l = Ya—h Za =
Wl, ceny Log = at+1s Z2a+1 = Va+2, ey Za+m71 = Vin. Let i,] €
{1,...,k} and h,l € {1,...,a+m — 1} be such that i + 2 < j, Z, C R;
and Z; C R;. Since Z refines U, Lemma 2.4 (c) implies that there exist
i0,J0 € {1,...,n} such that Z, C U;, C R; and Z; C U;, C R;. Notice
that 79 +4 < jo.

Let u,v € {1,...,m} be defined as

u:{ah+1, ifl<h<a-1, and

h—a+1, if a < h,
Ja—-1l+41, f1<I<a-1,
{l—a—i—l, ifa <.

Then Z, C V, and Z; C V,. Let i1,51 € {1,...,n} be such that
V., C Uil and V, C Uj1'

Since Ui1 N U’Lg }é @ and Ujl M Ujo 7§ @, we have il +2< jl-

Let i, € {1,...,k} be such that U;, 11 C Ry and Uj,_1 C Rjs. Since
U, NU;y, # 0 and U;, C R;, we have i1 + 1 € {ig,ip + 1,79 + 2} and
i' € {i,i+ 1}. Similarly, j' € {j — 1,J}.

We analyze the case that h < [. The case | < h is similar.

We claim that there exist h < ro < sg < such that Z,, C U;,_; and
Zgsy, C Uiy 41. We analyze 6 cases.

Casel. 1<h<l<a-1.

In this case Vo_pt1 = Vo C U;, and Vyoypq =V, C Uj,. Since V is
crooked in U, there exist a—Il+1 <r < s < a—h+1such that V,. C U;, 41
and Vy C Uj,—1. Since h < a—s+1 <a—r+1 <1, Zy_s41 =Yq_s41 C Vs
and Zy_py1 =Y4 1 CV,, wedefinerg=a—s+1and so =a—1r+1.

The following two cases are similar to Case 1 and the existence of rg
and sg is a consequence of the crookedness of V in U.

Case 2. a<h << 2a.

Case 3. 2a+1<h<l<a+m-—1.

Case 4. 1<h<ag—1anda<l<2a.

Inthiscaseu=a—h+1l,v=1—a+1, Z, =Y, 1 <l—a+1<a+1,
Va7h+1 =V, C Uilv Wl,aJrl = Z; and Vz,aJrl =V, C Ujl' Since
i1+ 2 <j1, Vo CU;, and V,, C Uy, we have u # v. So, we only have to
consider two subcases.

Subcase 4.1. a —h+1<l—a+1.

Since V is crooked in U, there exist a —h+1<r < s <l—a+ 1 such
that V. C Uj,—1 and Vs C Uj;41. Since h <a<2a—-—h<r4+a-1<
s+a—-1<1<2a, Zpjq-1 =W, CV,and Zs;4,-1 = Wy C Vs, we can
definerg =r+a—1and so =s+a—1.
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Subcase 4.2. | —a+1<a—h+1.

Since V is crooked in U, there exist a—h+1 > r > s > [—a+1 such that
V., CUj,—1and Vy C Uj 41. Sincel <h=a—(a—h+1)+1<a—-r+1<
a—s+l<a—(l—a+l)+1=2a-1<a<l,Z4yry1 =Yy ry1 CV,and
Zg—s41 = Yq—s+1 C Vg, we can define ro =a —r+1and so =a — s+ 1.

Case 5. a<h<2sand 2a+1<Il<a-+m-—1.

Inthiscaseu=h—a+1l,v=01—a+1, Zp =Wh_41, Zt = Vi—g+1,
Vh—a+1 C Ui, and Vi_q41 C Uj,. Since V is crooked in U, there exist
h—a+1<r<s<l—a+1suchthat V., C U; _; and Vi C U; 41.
Notice that h <r+a—1<s+a—1<1, Z,1q—1 C V, (in both cases,
when Z, 4,1 = W, and when Z,,,_1 =V,) and Zsy,_1 C V5. Thus, we
can define ro =r+a—1and so =s+a — 1.

Case 6. 1<h<a—land2a¢+1<Ii<a+m-1.

In this case Zp, =Yy, u=a—-h+1, Z; =V_q41 and Vo_py1 C U;, .
Sinceh<a—1<2a—h<2a+1<land Zog_p =Wa_p41 C Vaept1 =
V., we can apply Case 5 to Zs,_p and Z; to obtain rg,sp such that
h<2a—h<rg<sy<l, Zr, CUj—1 and Zy, C U 41.

This completes the proof of the existence of r¢ and sq.

Since Zro C Uj1,1 C Rj/, ZSO C Ui1+1 C Ry, V€ {i,i—l— 1} and
j € {j—1,;}, applying Lemma 2.4 (a), we obtain that there exist rq <
r1 < s1 < 5o such that Z,, C R;_; and Z,, C R;;1. Therefore, Z is
crooked in 2(U). O

Lemma 2.8. LetU = {Uy,...,Up} and V = {Vq,...,V,} be chains in a
continuum X such thatV is crooked inU. Suppose that there exists a finite
sequence ko, ..., kopry1 such that 1 = ko, kory1 = m, k1 < ko, ks < k4,
...,kgr_l < k27’) ko +2 < kl, ko +2 < kg, cey kor +2 < k2T+1, there
exist two subsets {i1,...,i,} and {j1,...,j-} of {1,...,n}, and a family
{W1, ..., W,} of chains crooked inU, where for eacha € {1,...,7r}, W, =
{Wl(a), el Ws(f)}, moreover the following holds for each a € {1,...,1}:

(a) ta < Ja,

(b) W AV, £ 0 if and only if ¢ = koq—1 — 1 and W NV, £ 0 if
and only if ¢ = kog + 1,

(¢) W Ui, | CU;, and W UVi,, C U;.,

(d) (UW)U (Vigy, , U...UVi,, ) CU;, U...UTj,,

(e) Wi U .UW )N (ViU...UVy) =0 and

(f) UWy,...,UW, are pairwise disjoint.

Let

y:V(l,kl —1)*W1*V(k2+1,k3—1)*W2*...*V(]{32(T,1) +
17 kgrfl — 1) * Wr * V(er + 17 k2r+1)-

Then Y is a chain that is crooked in 3(U).
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Proof. Tt is easy to show that ) is a chain that refines ¢ (and then it
refines 3(U)). Let 3(U) = {Z1,...,Zs}, Y = {Y1,...,Ye} and )y =
V(l, ki — 1) U V(kQ + 1, k3 — 1) u...u V(k’Qr +1, k2T+1).

In order to see that ) is crooked in 3(U), suppose that i,5 € {1,..., f}
and h,l € {1,...,e} aresuch that i +2 < 4, Y, C Z; and ¥; C Z;. We
may assume that h < [. The other case is similar.

By Lemma 2.4 (c), there exist links Uy, and U, of U such that Y, C U, C
Z; and Y; C U, C Z;. In the case that Y, € W, for some a € {1,...,7},
Y, CUW, C U;,U...UU,,. By Lemma 2.4 (c), b can be chosen in the set
{%a,---,Ja}. Similarly, in the case that ¥; € W, for some a € {1,...,7},
¢ can be chosen in the set {iq,..., 7.}

Since each Z, contains at least three links of &/ and 2 < j — i, we have
that 7 <c—b.

We choose s,t € {1,...,m} in the following way.

In the case that Y € ), there exists s € {1,...,m} such that Y}, =
Vs. In the case that Y}, ¢ ), there exists a(h) € {1,...,r} such that
Y € Wamy, s0 Yy, C Uy and b € {iqgp),---,Jamn)}. By Lemma 2.4 (a),
there exists s € {Kkaq(n)—1,---;K2a(n)} such that Vi C Up. In any case,
Vi C Up. Similarly, when Y; € )y, there exists t € {1,...,m} such that
Y, = V;. In the case that Y} ¢ ), there exists a(l) € {1,...,7} such that
Y, € Wy, so there exists t € {kaqq)—1,.--,k20)} such that Vi C U,
(and ¢ € {iqys- - -, Ja@)})- In any case, V; C U.

Since V is crooked in U, there exist u,v € {1,...,m} such that V,, C
Uc.—1,V, CUpyi and either s<u <v <t ort <v<u<s. Wesuppose
that s < u < v < t. The case that ¢t < v < u < s is similar. We analyze 2
cases.

Case 1. There is no a € {1,...,r} such that V(koy_1, k2,) contains
two elements of the set {Vi, V,,, Vi, Vi }.

Notice that the chain V can be divided in the following sequence of
subchains:

V(l, ki — 1), V(k‘l, kz), V(kz +1,k3 — 1), V(kg, k4),. R
V(kgr—1) + 1, kop—1 — 1), V(kor_1, kar), V(kor + 1, k2ry1).

Our assumption in this case says that no two elements of {V;, V,,, V,,, V; }

belong to the same of the following subchains of V:
V(ky,ka), V(ks, ka), .., V(k2r—1, kar).

For each w € {u,v}, we will choose z(w) € {1,...,e} according to the
following. If Vi, & V(kq, ka)UV(ks, ka)U. . .UV (kar_1, k2, ), by construction
of Y, there exists z(w) € {1,...,e} such that V,, = Yy(,). If V, €
V(k2a(w)—15 k2a(w)), for some a(w) € {1,...,r}, by Lemma 2.4 (c), there
exists b(w) € {ia(w),---»Ja(w)} such that Vi, C Upy. By Lemma 2.4
(a), there exists z(w) € {1,...,54(w)} such that WZ(?S;))) C Up(w). Let

z(w) € {1,...,e} be such that Y, () = waw),

z(w)
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We claim that z(u) < z(v). We consider the possible cases.

If Vu7 Vv ¢ V(kl, kz) U V(]fg, k4) U...uJ V(kgrfl, k2r); then Vu = Ym(u)
and V, = Y, (,). By definition of the operator *, the elements of ) that
belong to V(1,k1 —1)UV(ka +1,k3 —1)U.. . UV(ky(p1y + 1, kop1 — 1)U
V(kor + 1,kor41), preserve their original order as in the chain V. Since
u < v, we conclude that z(u) < z(v).

In the case that V,,,V, € V(k1, ko) U ... UV (kayr—1, ko), we have V,, €
V(k2a(u)—15 k2a(u)) and Vi, € V(k2a(v)—1, k2a(v)). Notice that our assump-
tion for this case implies that Vi, ¢ V(kaq(u)—1, k24(u)) and, since u < v,
the chain V(k2q(u)—1, F24(u)) Precedes the chain V(kaq(v)—1; k2a(v)) (in V),
so a(u) < a(v). Thus, in Y, the subchain W,(,) precedes the subchain
Wa(v)- Hence, the link Y,y = Wz(?f;)) precedes the link Yy (,,) = Wz(?lf;)))
Therefore, x(u) < z(v).

The last two cases,

Vi € V(k1,ka)U. . .UV(kar—1,kar), Vi & V(k1, ko) U. ..UV (kay—1, kar)
and

Vu ¢ V(k‘l, kg) U... UV(kQT_l, k‘gr), V, € V(k‘l, k‘g) U... UV(kQT_l, k‘gr),
can be treated in a similar way.

This ends the proof that z(u) < z(v).

Using similar arguments we can prove that h < z(u) and z(v) <.

In the case that Y., = W;Elu(;‘)), we have Y,y UV, C Uyy). Since
Vi C Ue—1, we conclude that b(u) € {c —2,c—1,c}, so Yy, is contained
in one of the links U._2, U.—1 or U.. The other possibility is that Y, =
Vi CUc—1. Thus, in any case Y, () is contained in one of the links U._»,
Ue—1 or U.. Since Y}, C Uy, b+ 7 < ¢ and Y refines U, by Lemma 2.4 (a),
there exists h < hy < z(u) such that Y}, C U._3 C Z;_1.

Similarly, there exists z(v) < l; <[ such that Y}, C Upys C Z;y1.

Therefore, Y3, Ya,, Yi, and Y] satisfy the condition that defines crooked-
ness.

Case 2. There exist a € {1,...,r} and two elements of the set
{Vs, Vu, Vi, Vi } that belong to V(kag_1, kaa)-

Let wy,wy € {1,...,e} be such that Y, = Wl(a) and Y, = Ws(f)
Then wey — w1 = 84 — 1 and wy = w1 + S, — 1.

Subcase 2.1. Y3,,Y; e W, C ).

By Lemma 2.5, W, is crooked in 3(U/). Thus, it is possible to find
elements in W, C Y that satisfy the condition that defines crookedness
of Y in 3(U).

Subcase 2.2. Y, ¢ W,.

In this subcase, we claim that h < w;y.

In this case (2), there exists x € {u,v,t} such that V,, € V(kaq—1, k2a)-
Thus, k‘ga_l <x< k‘ga.
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If Y, € Yy, by definition V; = Y},. In the order of the chain Y, Y}, is
before or after the subchain W,. Since the chain ) does not have any
of the elements of V(kaq—1,k2q), we have s < kaq_1 or kog < s. We are
assuming that s < u < v < t. Hence, s < koq_1. Therefore, in the order
of the chain Y, Y}, is before the subchain W,. Since Y,,, = Wl(a) € W,
we conclude that h < w;.

Now, we analyze the case Y}, ¢ )y. By definition Y;, € Wy(,) and s €
{k‘Qa(h)fla RN k‘ga(h)}. Notice that a(h) # a. Since k2a(h)71 <s< k2a(h)7
koa—1 < x < koo and s < x, we obtain that a(h) < a. Hence, in the chain
Y, the subchain Wy is before the subchain W,. Thus, h < wy.

This completes the proof of the inequality h < w;.

By the hypothesis for Case 2, we conclude that either {V,,V,} C
V(k/’ga,h kga), {Vv, ‘/t} C V(l{iga,l, k/’za) or {Vu, ‘/}/} C V(k’ga,l, I{iza). Since
u < v < t, we have that either {V,,V,} C V(kaa—1,kaq) or {V,,Vi} C
V(kaq—1,koq). Thus, V,, € V(kaq—1, kos) and there exists y € {u,t} such
that Vy € V(kQa_l, kga).

By Lemma 2.4 (c), V, C U, for some z € {i(a),...,j(a)}. Since
Vi C Upt1, we have z € {b,b+ 1,b+ 2}. Thus, i(a) < b+ 2.

By Lemma 2.4 (c), V, C U, for some z; € {i(a),...,j(a)}. Since
either V, C U._q or V, C U, we have z; € {¢ —2,c¢—1,¢,c+ 1}. Thus,
c—2<j(a).

We divide Subcase 2.2. in two subsubcases.

Subsubcase 2.2.1. V; € V(kag_1, k2a).

In this subsubcase t € {k2g—1,...,k2.}. By the way we choose V;,
since V; ¢ Yo, we have YV, # V; and V) ¢ )o. Then Y} € Wy,
t € {kaa@)—1,-- > k2ay}s Vi € Uc and ¢ € {iqq),-..,Jaq)}. Since t €
{k2a(l)717 RN k'2a(l)} N {k‘ga_l, ceey k‘ga}, we have a = a(l)

Let ¢; € {1,...,8,} be such that ¥; = Wc(f) Since Y,,, = VVl(a)7 the
definition of the operator * implies that wy < [I. So, h < wy; < [. Since
i(a) <b+2and 7 < ¢—b, we have i(a) +5 < ¢. Since Yy, = W\ C Uy
and Wc(la ) = Y, C U, the crookedness of W, in U, implies that there
exist ca,c3 € {1,...,c1} such that 1 < ¢ < ¢3 < ¢q, Wc(,f) C U._1 and
WC(;) C Uj(a)+1- By Lemma 2.4 (a), there exist cs € {1,...,c2} and
¢s € {cs3,...,c1} such that Wc(f) Cc Uq._3 and Wc(f) C Upys. Notice that
Wc(f) =Yy, fes—1, Wc(:?) =Yuites—1, h<wy Swi+es—1<wi+ep—1<
w1 tes—1<w+e—-1=1Y,CU,CZ, Yw1+c471 cU..3C ijl,
leJrCS,l C Ub+3 C Zi+1 and Y; C Z] Thus, Y, Yw1+04717 Yw1+c571
and Y] satisfy the condition that defines crookedness (of ) in 3(U)).

Subsubcase 2.2.2. V; ¢ V(kag—1, k24)-
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Proceeding as in the proof that h < wi, it can be shown that wy < I.
Since i(a) < b+2 < c—2 < j(a), by Lemma 2.4 (a), there exist ¢z, c3 €
{1,...,54} such that ¢y < c3, ij) C Upyo and Wc(:) C U._5. Since b+
5 < ¢ — 2, crookedness of W, implies that there exist c4,c5 € {ca,...,c5}
such that ¢; < ¢y < ¢5 < c3, Wc(f) C U.—_3 and Wc(oa) C Up+3. Notice that
h<w <wit+ec—1<wi+es—1<wi+s,—1=ws <I,Y, CUp, C Z;,
Yurter1 =W CUes C Zj 1, Yuntes1 = W C Upys C Ziys and
Y, C Z;. Thus, Yy, Y, 4ci—15 Ywi+es—1 and Y] satisfy the condition that
defines crookedness (of ) in 3(U)).

Subcase 2.3. Y; ¢ W,,.

This subcase is similar to Subcase 2.2. O

3. CovERING COMPACT SETS

Given a continuum X, let 2% and C(X) be the respective hyperspaces
of nonempty closed subsets and of subcontinua of X, endowed with the
Hausdorff metric [5, Theorem 2.2]. We will use that 2¥ and C(X) are
compact [5, Theorem 3.5 and Corollary 3.7]. Given a subset B of X, let
(By ={A € C(X) : Ac B}. It is well known that if B is open in X,
then (B) is open in C(X).

Lemma 3.1. Let X be a continuum. Let K be a closed subset of X,
Ui, ..., U, open subsets of X and C1,...,C,, pairwise distinct components
of K such that Cv C Uy, ...,C, C U, and each component of K 1is
contained in some U;. Then there exist pairwise disjoint closed subsets
Ki,...,K, of X such that for each i € {1,...,n}, C; C K; C U; and
K=K/ U...UK,.

Proof. We proceed by induction. If n =1, define K; = K.

Suppose that the claim in the lemma is valid for some n > 1 and let
K, Uy,...,Upy1 and C4,...,Cp41 be as in the hypothesis.

Let U = Uy U...UU,. Consider the sets P = (K —Up4+1)UC1U...UC,
and Q@ = (K —U)UCpy1 U (U{D : D is a component of K and D is not
contained in any U; with ¢ € {1,...,n}}). Notice that PUQ C K.

We see that @ is closed in X. Let p € K be such that p = limp,,,
where for each m € N, p,,, € D,,,, D,, is a component of K and D,, is not
contained in any U; with ¢ € {1,...,n}. By the compactness of C(X),
we may assume that lim D,, = Dy for some Dy € C(X). Notice that
Dy C K. Let D be the component of K such that p € D. Since p € Dy,
we have Dy C D. If there exists ¢ € {1,...,n} such that D C U;, then
Dy C U; and there exists m € N such that D,, C U;, a contradiction.
This shows that D C Q and p € Q. Therefore, @ is closed in X.
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Suppose that there exists a component D of K such that DN P # ()
and D N Q # 0. By hypothesis, there exists i € {1,...,n + 1} such that
D cCU. Ifi =n+1, since DN P # (), we have that D = C; for some
j€{l,...,n}. Thus, D C U. Since DNQ # 0 and D C U;, we conclude
that D = Cj,41, a contradiction. In the case that i € {1,...,n}, we have
D Cc U; Cc U. Since DNQ # 0, we obtain that D = Cp41 C Upy1.
Since D N P # (), we conclude that D = C; for some j € {1,...,n},
which is also a contradiction. We have shown that no component D of
K intersects both sets P and Q. By [5, Theorem 12.9], there exist closed
disjoint subsets Ky and K, 41 of K such that K = Ky U K, 11, P C K
and Q C Kn+1-

Notice that Ky is compact and C1,...,C, are pairwise different com-
ponents of Ky such that C; C Uy, ...,C, C U,. Given a component D of
Ky, D is a component of K. Since DN Q = (, there exists i € {1,...,n}
such that D C U;.

We have shown that Ky, Uy,...,U, and C4,...,C, satisfy the in-
ductive hypothesis. Hence, there exist pairwise disjoint closed subsets
Ky,...,K, of X such that for each i € {1,...,n}, C; C K; C U; and
Ko =KjU...UK,. It is easy to show that the sets K1, ..., K, 41 satisfy
the required properties. O

Theorem 3.2. Let X be a continuum and By a basis of open subsets
of X such that By is closed under finite unions and under finite inter-
sections. Suppose that K is a compact subspace of X such that each of
its components is chainable. Then for each € > 0, there exist n € N,
components C1,...,C, of K and taut e-chains Uy, ..., U, of X such that
clx (Uly), ... ,clx (WUy,) are pairwise disjoint, K C (Uly) U ... U (Uly),
U U...UU, C By and for each i € {1,...,n}, U; properly covers C;.

Proof. Given a component C of K, by the chainability of C it follows
that there exists a family Do = {DY{, ..., DS(C)} of closed subsets of X
such that for each i € {1,...,n(C)}, diameter(D{) < e, D N DY #
if and only if [i —j| <1, C = DY U...U DS, Df — D§ # 0 and
DS(C) — DS(C)_l # (). By the normality of X, there exists a taut e-chain
U = {UFC,. .., US(C)} of elements of By such that D C US for each
i€{l,...,n(C)}, and in the case that n(C) > 1, we assume that D} —
clx (US) # 0 and Dg(c)f ch(Uf(C)_l) # (.

Let C = clg(x)({C : C is a component of K}).

Since Cp = {D € C(X) : D C K} is a closed subset of C(X), Co
contains C. Since each D € (g is contained in some component C' of K, we

obtain that D C C C UU¢. Then W ={(Ulc): C is a component of K}
is an open cover of Cy and then it is an open cover of the compact set C.
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Thus, there exist n € N and C, ..., C, (pairwise distinct) components of
K such that C C (Wg,) U...U{UWlUc,).

Given a component C of K, C belongs to C, so there exists i €
{1,...,n} such that C C WU, .

Thus, we can apply Lemma 3.1 to K, UlUc,,...,UUc, and Cy,...,C)
and obtain that there exist pairwise disjoint closed subsets Ki,..., K,
of X such that, for each ¢ € {1,...,n}, C; C K; C W¢c, and K =
KiU...UK,.

For each i € {1,...,n}, choose an element V; € B; such that K; C V; C
Wlc,. We also assume that clx (V4),...,clx(V,,) are pairwise disjoint.

For each i € {1,...,n}, let Uy = {V;NU",.. -’W“Uﬁm}- Given j €

{1,....n(Cy)—1},0 £ DS DS, € (VinUS)N(V;NUS,). Thus, U is a
taut e-chain in X that properly covers C;. Clearly, clx (Ulf), ... clx (UlUy,)

are pairwise disjoint and K C (Ul)U...U (UU,) . O

4., STREET ARCS AND BOXES

Given a subset A of RF and § > 0, let N (A, §) be the union of é-balls in
R¥ centered in points of A. A street arc is an arc « in R¥ such that there
exists a finite collection of arcs a4, ..., a, such that « = oy U...Uq,, and
each q; is a convex segment parallel to one of the axis in R, that is, a; is
of the form o; = {&1} x ... x {xj_1} x [a,b] x {zj41} x ... x {zk}, where
je{l,...;k},a<band (z1,...,Tj_1,Tj41,...,7k) € RFL We will use
the basis for the topology in R¥ that is defined as the collection of all finite
unions of boxes, that is, we define B as the family of subsets of R* that
are finite unions of elements of By, where By = {(a1,b1) x ... x (ak,br) C
R* : a; < b; for each i € {1,...,n}}. The elements of By are k-bozes.

The following two lemmas are easy to prove.

Lemma 4.1. The family B satisfies the following properties.
(a) B is closed under finite intersections,
(b) if U,V € B, then U— clpr(V) € B,
(c) the components of an element of B belong to B.

Lemma 4.2. Let k > 3. Let U be an open connected subset of R* and
let p and q be distinct points in U.

(a) Suppose that ay,...,an are pairwise disjoint subcontinua of R”
such that a1 U ... Ua, C U and each «; is either a street arc or a one-
point set, with end points a; and b; (a; = b; when oy is degenerate). Then
there exists a street arc o in U, joining p and q, such that a1 U. . .U, C a,
and in the natural order of o, p < a1 < by < as <by <...<a, <b, <q.

(b) Suppose that « is a street arc with one end point q in U and let
p € U — a. Then there exists a street arc B C U such that B joins p to q
and aN B ={q}.
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Lemma 4.3. Let k > 3, G C B be a finite set such that each W € G 1is
connected and let o be a street arc in RF. Then for each § > 0 there exists
V € B such that V is connected, « CV C N(a,9d) and for each W € G,
W— clge (V) is nonempty and connected.

Proof. Let D = {Dy,...,D,} C By be a family of boxes such that each
element of G is union of elements of D, where for each i € {1,...,n},
D; = (agi),bgi)) X ... X (a,(f),b,(f)). Let @« = a1 U... U ay,, where each o
is a convex segment in R¥, parallel to one of the canonical axis of R¥.

For each j € {1,...,k}, let m; : R¥ — R be the projection on the j*i-
coordinate. Then for every i € {1,...,m} and j € {1,...,k}, there exist
c(i,j) < e(t,7) such that m;(a;) = [e(4,]), e(4, j)], where c(i,j) = e(,])
for all but at most one j.

For each | € {1,...,k}, let F; = {a{” :i e {1,....n}}U{b{"” i e
{1,...,n}yud{e(i,l) s i e {1,... ,m}yuU{e(i,l) :i € {1,...,m}}. Arrange
the elements of F} in an increasing sequence fl(l) < < fﬁll ).

Thus, for each i € {1,...,n} the family & = {D; N (] &)jﬁ)ﬂ] X

S X [fﬁf),filzll]) tuy, € {1,...,7, — 1} for each v € {1,...,k}} is a
subdivision of D; in closed (in D;) boxes, some of them having their
complete boundary and some of them having a part (or nothing) of their
boundary. Notice that a can touch only some portions of the edges of the
boxes in &;. In particular, @ does not touch the interior of any box in &;.
Moreover, notice that the following property holds:

(a) if p, ¢ € D; and they do not belong to the same element of &;, then
there exists a finite sequence {Ej,..., E,} of elements in &; such that
p € E1, q € Ey, and for each j € {1,...,w—1}, E; N E;4 is a common
(k — 1)-dimensional face of E; and Ej 4.

Let € = imin({fﬁil — e {1,...,k}anduw e {1,...,r; —1}} U
{6}). Then no (k — 1)-dimensional face of an element of & U...UE,, can
be covered by N(a,e).
For each j € {1,...,m}, let V; = (min(m (rj)) — €, max(m (o)) +¢€) X
. X (min(mg (e )) — e, max(mg(j)) + ¢). Then V; is a 2e-box covering
ay.

Let V=VU...UV.

Notice that V' € B, V is connected and o C V C N(a,¢).

Giveni € {1,...,n} and F € &, since clgr (V) N E is either the empty
set or a union of 2e-boxes covering some convex segments contained in
the edges of E, we have that E— clgx (V') is connected.

Given ¢ € {1,...,n}, we show that D;,— clgs(V) is connected. Take
two points p,q € D;— clgr (V') such that they do not belong to the same
element of &;, then there exists a finite sequence {E1, ..., E,} of elements
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in & such that p € Ey, ¢ € E,, and E; N E;4; is a common (k — 1)-
dimensional face of E; and Ej;; for each j € {1,...,w — 1}. By the
choice of ¢, for each j € {1,...,w — 1}, E; N Ej 11— clge (V) # 0. Since
E1— clge(V), ..., Ey— clge (V) are connected, (E1— clgs (V))U...U(E,,—
clpr (V) is a connected subset of D;— clgx (V') containing p and gq.

Finally, we prove that if W € G, then W— clgs (V) is nonempty
and connected. By definition of D, there exists iy € {1,...,n} such
that D;, C W. Then, there exists Eyw € &, such that Eyw C D,,,.
Hence, Ew — clgr (V) is a nonempty subset of W. Thus, W— clgx (V) is
nonempty.

Take two elements p,q € W— clgx (V). Since D is an open cover of
W, there exist s € N and 41,...,is € {1,...,n} such that p € D,
q € D;, and D;; N Dy, ., # 0 for each j € {1,...,s —1}. Given j €
{1,...,s — 1}, by the choice of the sets [}, there exists £ € &, N&;,,,
such that £ C D;; N D;,,,. Thus, D;; N Dy, ,— clgx(V) is nonemtpy.
Therefore, (D;, — clgs(V))U. ..U (D;, — clge (V) is a connected subset of
W— clgpr (V) containing p and q. a

Applying induction to Lemma 4.3, we obtain the following.

Corollary 4.4. Let k > 3, D C B be a finite set such that each W € D 1s
connected and let a1, ..., o, be pairwise disjoint street arcs in RF. Then
for each § > 0 there exist Vi, ...,V € B such that for eachi € {1,...,n},
V; is connected, a; C V; C N(ow, ) and for each W € D, W— clr (V4 U
...UV,) is nonempty and connected.

5. MAIN RESULT

Given two nonempty compact disjoint subsets A and B of R¥, let
dist(A, B) = min{|jla — b|| : @« € A and b € B}.
The first part of the following lemma can be proved by using [4, Theo-
rem VI 4]. The second part follows from [4, Corollary to Theorem IV .4].

Lemma 5.1. Suppose that K is a compact metric space such that each
of its nondegenerate components is chainable. Then dim(K) = 1. In
particular, if K C R¥ for some k >3 and U is an open connected subset
of R, then U — K is nonempty and connected.

In the next theorem, we will see that the open links obtained in Theo-
rem 3.2 can be constructed to be connected when we work in R¥ (k > 3).

Theorem 5.2. Suppose that K is a compact subspace of RF, with k > 3,
such that each nondegenerate component of K is chainable. Then for each
e > 0, there exist n € N, components C1,...,Cp of K and taut e-chains
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of connected subsets Uy, ...,U, of R¥ such that clgr(UU), . .. clpr (UU,)
are pairwise disjoint, K C (UUy)U... U (UUy,), Uy U...UU, C B (where
B is the collection of finite unions of boxes in R*, defined in the previous
section) and for each i € {1,...,n}, U; properly covers C;.

Proof. Let ¢ > 0 and let X be a k-cell such that N(K, &) C intgs(Xp).
Let d be the usual metric for R¥. By Lemma 5.1, dim(K) < 1. By
Theorem 3.2, there exist n € N, components C1, ..., (), of K and taut e-
chains of open subsets Vi, ..., V, of X such that clgs (UV1),. .. clgs (UVy)
are pairwise disjoint, K C (UV;)U...U (UV,), V1 U...UV, C B and for
each i € {1,...,n}, V; properly covers C;.

We want to prove that we can choose the taut chains V; in such a way
that their links are connected.

Let V=V, U...UV,. Given V € V, we have that V intersects K and
V has diameter less than &, so V' is an open subset of X, contained in
intgx (Xo). Thus, V is open in R¥.

Suppose that there exists V' € V such that V is not connected. Let R;
and Ry be components of V. Fix points 1 € Ry — K and 25 € Ry — K.
Let 3 be the convex segment in R* joining ; and x5. Since d(x1,z2) < €
and diameter(V) < e, we have diameter(V U ) < ¢, so there exists § > 0
such that diameter(V U N(8,4d)) < e. Since N(f,9) is homeomorphic to
R* and dim(K) < 1, N(3,8) N K does not separate N(3,0), so there
exists a street arc « C N(3,0) — K, joining x; and z5. Let §; > 0 be such
that N(«a,d1) C N(5,0).

Let D = {D C R*¥ : D is a component of U for some U € V}. By
Lemma 4.1 (¢), D C B. Since each element of B has a finite number of
components, D is finite.

By Lemma 4.3, there exists T} € B such that 7} is connected, o C T} C
clgr (Th) C N(a,61) — K and for each W € D, W— clgx (T1) is nonempty
and connected, and there exists T' € B such that T is connected, o C
T C clge(T) C Ty and for each W € D, W— clgx(T) is nonempty and
connected.

We may assume that V € V.

We construct chains Vi,..., V! in the following way. First we replace
the chain V; by the chain Vi, by changing the link V' by V U T and each
link R in V; — {V'} is replaced by R— clgx(T1). For the rest of the chains
V; (i € {2,...,n}) we simply replace each link R by V; by R— clgx (T1).

It is easy to check that the chains Vi, ..., V) have the same properties
as those we mentioned for Vy,...,V, in the first paragraph of the proof
of this theorem. Moreover, if D' = {D C R* : D is a component of U for
some U € V] U... UV}, then the number of elements of D’ is equal to
the number of elements of D minus one.
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Thus, we have shown that if one element of V is not connected, we can
construct another V' = V] U.. .UV satisfying the same required properties
but with the additional property that the total number of components of
the elements of V is reduced by one. Hence, we can repeat this procedure
until we get that all of the links in the chains are connected. O

Lemma 5.3. Let X be a continuum. Suppose that K is a compact sub-
space of X such that each of its nondegenerate components is a pseudo-arc.
Let U be an open (in X ) taut chain covering K. Then there exists 6 > 0
such that each d-chain in X that properly covers some component of K is
crooked in U.

Proof. Let U = {Uy,...,U,}. Let 69 > 0 be such that each subset of X
with diameter less than J¢ that intersects K is contained in some U;. If
0 <6 < 6o and V is a é-chain that properly covers a component of K,
then V refines U. If n < 3, by definition V is crooked in ¢. Thus, we can
suppose that n > 4.

Suppose that the lemma does not hold. Then for each m € N, there
exists a ()-chain V,, = {V; ™. .,Vk(:)} in X that properly covers a
component C,, of K and V,, is not crooked in .

Let M € N be such that 5; < d. Given m > M, by the choice of
00, Vm refines Y. Since V,, is not crooked in U, there exist i,,,jm €
{1,...,n} and ry, S;m € {1,..., km} such that i, +2 < jpm, vim -,

Vg(f lcu ims Tm < 8m (if 7 > Sy, we can rename the elements of V)
and if t,,, = min{t € {rm,...,sm}: Vt(m) C Uj,, -1} (see Lemma 2.4 (a)),
then r,, < t,, and for each t € {t,;, +1,...,8m}, Vt(m) ¢ Ui, +1-

Taking a subsequence if necessary, we may assume that all the indexes
im coincide and the same happens for the indexes j,,, that is, we may
assume that there exist ig, jo € {1,...,n} such that i, = i¢ and j,, = jo
for every m > M.

For each m > M, let A4,, = ch(V,«(,T) U...uJ Vt(:l_)l) and B,, =
cl X(Vt(:l) U...u Vs(m)) Taking a subsequence, if necessary, we may as-
sume that lim A,, = A and lim B,, = B, in 2%, for some nonempty closed
subsets A and B of X. Since V,, is a (- )-chain for each m € N, we obtain
that A and B are connected. Given m > M, since A,, C N(Cpp, =) C
N(K, L), we obtain that A C K. Similarly, B C K. Since A, N By, # 0,
we have AN B # (.

Giveni € {rm,...,tm—1}, Vi(m) Cc Ujforsomej € {1,...,n}—{jo—1}.
Since V;, C U;,, Lemma 2.4 (a) implies that vimu. Vt(:?l cliu

Tm

U Ujo—2- This implies that A C Clx(Ul u...u Ujo—2)-
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Let i € {tm,...,8m}t- We claim that Vi(m) C Uiyp2 U ... U U,.
Suppose to the contrary that this claim does not hold. Let j =
max{t € {tm,...,sm} : Vt(m) C Uig42U...UUy}. Then j < 4. Since
VI N (Uig2 U ... UU,) # 0 and V refines U, we have V1) € Ui 11.
This contradicts the choice of ,,, and s,, and ends the proof of the claim.
This claim implies that B C clx (Ujy+2 U ... UU,).

Since A, NU;, # 0 for each m > M, we have AN clx(U;,) # 0, so
A ¢ B. Similarly, BN clx(Uj,) # 0 and B ¢ A. Therefore, A, B are
subcontinua of K such that ANB # 0, A ¢ B and B ¢ A. This
contradicts the assumption that all nondegenerate components of K are
pseudo-arcs and ends the proof of the lemma. |

Lemma 5.4. Let U be a taut chain of connected links in R, with k > 3,
such that U is a chain from point p to q. Suppose that Z is a chain from p
to q such that the links of Z are connected and Z refinesUU. Then for each
€ > 0 there exists a taut chain V C B, from p to q, such that V refines Z,
the elements of V are connected and V is crooked in 3(U).

Proof. Since UZ is an open connected subset of R¥. there exists a k-cell
A C UZ containing p and ¢ in its interior. Then there exists a pseudo-arc
Q@ C intge (A) such that p,q € Q. Let 6 > 0 be as in Lemma 5.3 satisfying
also that § < ¢ and each subset of @) of diameter less that ¢ is contained in
some link of Z. Since @ is chainable and all of its pairs of points are end
points, there exists a finite family F = {Fy,..., F,} of compact subsets
of R* such that p € Fy — Fy, ¢ € F,, — F,_1, F; N F; # (0 if and only
if i — j] < 1 and mesh(F) < §. By the normality of R”, it is possible
to construct a taut d-chain W = {W1,...,W,} C B such that p € W;—
clpr (Wa), ¢ € Wyp— clpe (Why—1), F; € W; for each ¢ € {1,...,n} and
mesh(W) < 4.

Let D ={D € B: D is a component of W; for some i € {1,...,n} and
DN@Q #0}. Then D is an open (in R¥) cover of Q. By the connectedness
of Q, there exists a chain & = {Fy,...,E,} C D such that p € E;
and q € E,,. Using the normality and the local connectedness of R¥ it
is possible to construct a taut chain ¥V = {Vi,...,V;,} C B such that
p € Vi— clgr(V2), q € Vi— clge (Vin—1) and for each i € {1,...,m}, V; C
clx (V;) C E;, V; is connected and V; N Q # (). Then V refines W.

By the choice of §, V refines Z.

Finally, we prove that V is crooked in 3(U). Let U = {Uq,...,U.} and
3U) = {Y1,...,Y.}. Let i,j € {1,...,e} and r,s € {1,...,m} be such
that i +2 < j, V. C Y; and V; C Y;. We consider the case r < s. The
other one (s < r) is similar.

By Lemma 2.4 (c), there exist a,b € {1,...,c}, such that V. C U, C Y;
and V; C U, C Y;. By definition of 3(), a +6 < b.
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Let u,v € {1,...,n} be such that E, C W, and E; C W,. By the
choice of §, W is crooked in U, with W,, C U,, and W, C Us, for some
a,by € {1,...,c}. Notice that a; € {a—1,a,a+1} and by € {b—1,b,b+
1}. Thus, a3 + 4 < by. Then there exist z,y € {1,...,n} such that
Wz CUp—1, Wy CUg 41 and eitheru <z <y <vorv<y<z<u.

By Lemma 2.4 (a), there exist r < r; < $1 < s such that V., C
Wy CUp—1 C Y1 UYjand Vs, € Wy C Ugq1 C Y;UY,4;. Since
V refines 3(U), there exist r < 7o < 71 and s1 < so < s such that
Vi, CUp—3 CYj_1 and Vi, C Usqs C Yjy1. Therefore, V is crooked in
3U). |

Theorem 5.5. Let K be a compact subspace of RF, with k > 3, such that
each nondegenerate component of K is a pseudo-arc. Let p,q € RF — K
and U = {Uy,...,U,} C B be a taut chain such that p # q, p € Uy,
q € U,, each U; is connected and K C Uy U...UU,. Then for each
e > 0, there exists a taut e-chain Y = {Y1,...,Y,,} C B such that p € Y7,
q € Y, each Y; is connected, K C Y1 U...UY,, and Y 1is crooked in
2(U).

Proof. Let X be a k-cell such that K C intgr(X). Take § > 0, as in
Lemma 5.3 such that § < e. We may assume that N(K,20) C X, {p,¢}N
clgr (N (K,20)) = 0 and for each j € {1,...,n}, Uj— clge(N(K,0)) # 0.
By Theorem 5.2, there exist s € N, components C4,...,Cs of K and
taut J-chains Ry,...,R, of (open) connected subsets of RF such that
clx (UR1),...,clx (UR) are pairwise disjoint, K C (UR1)U...U (UR,),
Ri1U...URs C Band for each i € {1,...,s} R; properly covers C;. Then
each R; is crooked in U and clgr (UR1) U ... Uclgs (URs) C N(K,20), so
{p,a}N clgr ((UR1) U... U (URy)) = 0. _

Givenie€ {1,...,s},let R; = {Rgl)7 ... ,Rﬁ-?}. In the case that r; = 1,
R; = {Rgl)} and we replace K by Ky as follows. Take jo € {1,...,n}
such that clge (RY)) C Uj,, take a point z € Uj,— cle(RY)) and an arc
X C Uj, joining z to a point z* € C;. Shortening x if necessary, we may
assume that y does not intersect clgx (UR;) for any j # 4. Let Rgz) eB
be such that Rg) is connected, x C Rg) C Uj, and Rgi) Z clgw (Rg)).
Then we replace K by Ko = KU x and R; by R}, = {Rgi), Rg)}. Thus,
it is enough to find the chain Y using Ky and R;. Of course, K has a
component that is not a pseudo-arc, but we will not need this property
anymore. Thus, we may assume that r; > 1 for each i € {1,...,s}.

Note that there exist u;,v; € {1,...,n} such that u; < v;, clpr (UR;) C
Uy, U...UU,,, no element of R; is either contained in U,,_1 or in U,, 41,
and there exist a;, b; € {1,...,7;} such that R((f,;) c U,, and Rl()? cU,,.
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We will apply Lemma 2.8, so we need that the first link of R; be
contained in U,,. That is, we need that a; = 1. When a; > 1, we will
modify R; according to the following procedure.

Suppose that a; > 1.

For each j € {1,...,a; — 1}, choose a point z; € Rg-z) N R§21 — K (see
Lemma 5.1). By Lemma 5.1 and successive applications of Lemma 4.2 it
is possible to construct street arcs s, ..., aq, such that = apU...Uay,
is a street arc, a,, joins a point in Rt(l? — (clgr (Rg?_l) UK) to z4,-1,
Qa; C Rt(fi) — K, and for each j € {2,...,a; — 1}, o; C Ry) — K and o
joins x;_1 to x;.

By Lemma 4.3, there exists V' € B such that V is connected, a C V,
cen (V) € (R U...URY) — K and for each W € R;, W— clge (V) is
nonempty and connected.

For each j € {2,...,a;}, let S,,11-; € B be such that Su,41-; is
connected and a; C Sg, 11— C clge(Sa,41-5) C V' N R;z). Consider the
sequence

C = {Sla PN 7Sai717 RSlZ)’ Rgb)_ Cl]Rk (‘/v)7 ceey R((lll)_ Cle (‘/v)7 Rgi)-‘rl_
clar(V), R, .. RVY.
We claim that the following properties hold.

e)UC CUR; CU,, U...UU,, and

(f) K N (UR;) C UC.

Given j € {1,...,7; — 1}, if (R~ clax(V)) N (RS}~ clpe(V)) =
0, then C; N (R U...URY)— clgn(V) and C; N (RY), U...URY)~
clpr (V) is a separation of C;, a contradiction. Thus, (R§-i)— clgs (V) N

(Rﬁl— clgr (V) # (0. Using this fact it is easy to show that C is a chain.
Crookedness of C in 2(Yf) is an immediate consequence of Lemma 2.7. The
rest of the properties are easy to check.

In the case that a; = 1, the chain R; has properties (a)-(f) (its first
link is contained in U,,).

With a similar argument, considering the cases b; < w; or b; = wy, it
is possible to construct a chain S; satisfying properties (a), (c)-(f) (for
C = §;) and the following properties.

(b’) S; is crooked in 4(U),

(g) the last link of S; is contained in U,,,

(h) since r; > 1 and the length of S; is greater than or equal to r;, we
have s; > 1.
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Let S; = {8, ... sy

For each i € {1,...,s}, since intgs(K) = 0, we can choose points
w;, z; and k-boxes A;, B; such that w; € A; C S%Z) — (KU cle(Sél))) and
z; € B; C ng) — (KU clg (SS)—1>) Since the sets clx (URq), ... ,clx (URs)
are pairwise disjoint, we obtain that the sets A,..., As, By, ..., By are
pairwise disjoint.

Let £ > 0 be such that &1 < e, N({w;},3e1) C A; and N({z;},3e1) C
B;.
By (a) and Lemma 5.1 it is possible to choose a street arc §; joining
w; to z; such that 3; C (US;) — K. Since K U §; is one-dimensional,
US; — (K U 3;) is open and connected, so we can choose points wj, z;
and a street arc +y; joining w; to z, such that w, € A;, 2z} € B; and
i C (US;) — (K U B;).

By Lemma 5.1, (W) — (K U~ U...U~s) is open and connected, so
by Lemma 4.2 (a), there exists a street arc  C (W) — (K Uy U...U~s)
such that 8 joins p to ¢, f1 U...U s C B and, in the natural order of 3,
Pp<w <21 <wy <2< ...<ws <zg<yq.

Let A > 0 be such that A < &1 and clgr(N(8,2)) C (W) — (K U
v1 U...U~). By Lemma 4.3, there exists Vy € B such that V; is con-
nected, 8 C Vy C clge (Vo) C N(8,\) and for each W € (S; U...US,) U
{Ay,..., A} U{By,...,Bs}, W— clge(V5) is nonempty and connected.
Given i € {1,...,s}, clge (Vo) Ny =0, so w} € S%l)— clgx (Vp). Similarly,
zl € ng)— clpr (Vo).

Following the arc 8 construct a taut chain Z of connected elements of
B such that Z goes from p to ¢, 8 CUZ C Vj and for each ¢ € {1,...,s},
Z has a subchain Z; = {Zy),...,Zc(f)} such that 8; C UZ; C US; C
clpr (UR;), Z; goes from w; to z;, mesh(Z;) < €1, Z refines Y and Z
preserves the order of the arc, in particular, in the order of Z, Z; appears
first, Z, after Z;, Z3 after Z, etc. Then Z{i) C N({w;},e1) and ng) -
N({zi},e1). Since A; N B; = 0, we have Z£Z) N Zg) = 0.

By Lemma 5.4, there exists a taut chain V ={V;,...,V,,} C B of con-
nected sets such that V refines Z, V is crooked in 3(U), mesh(V) <
min({e1} U {gdist(clgs (US;),clgs (US;)) @ 4,5 € {1,...,s} and i # j} U
{dist(p,clgr (US;)) = 4 € {1,...,s}} U {dist(g,clgr (US;)) : i € {1,...,s}})
and V goes from p to q.

Let ¢ be a street arc joining p to ¢ such that ( C UV.

Since Z preserves the order of the arc 3, given i € {1,..., s}, the link
Z{i) precedes the link Zc(l) By Lemma 2.4 (a), there exist ko;_1, ks; €
{1,...,m} such that ky;_y < kas, Viu, , C 2\, Vi, € 28 Vi, ,U...U
Vi, CUZ;and 1 < ky < kg < ... < ks < m. Notice that Vi,, ;-1 C

N(Vi,,_,e1) € N(Z e1) € N({w;},2e1) C A;. Similarly, Vi, 11 C B;.
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Since UZ; C US; C UR;, we have Vy,, ,U...UV,, CU,, U...UU,, and
(Vigs s Ue+-UVig )N (Vi .. UVa, ) = 0, if i # j. Since Vi, , € 217 €
clpr (US;) and V,, C Zéf) C clge (US;), by the choice of mesh(V), if we
define ko =1 and k23+1 =m, we have that ko +3 < kl, ko +3< kg, ceey
kos + 3 < kasi1-

Given i € {1,..., s}, choose points p;,¢; and k-boxes P;, Q; such that
pi € P; Cclpe (PZ) C Vigi1—1— clgs (CUVlU. UV 1 —2UV,, UL .UVm)
and ¢; € Q; C clgs (Ql) C Vigi+1— clgsr (CUV&U. UV, UV, 12U .UVm).
Then p; € A; and ¢; € B;.

Choose street arcs n;, A; such that n; C A; — (, \; C B; — (, n; joins
p; to w; and A; joins ¢; to z}. Since Aj,..., As, By,..., B, are pairwise
disjoint, then n1,...,7ms, A1,..., As are pairwise disjoint.

By Corollary 4.4, there exist connected sets L;, M; € B such that
n; C L; C Cle(LZ‘) Cc A; — ¢, \i CM; C Cle(Mi) C B; —( and W—
clpe (L1 U...ULsN My U...UM,) is nonempty and connected for each
WeSU...UuSUVU{P,...,P;,Q1,...,Qs}. Choose connected
sets L, M] € B such that n; C L, C clgs(L;) C L; and \; C M/ C
clpr (M]) C M;.

Set ‘ ' ‘

Wi = {(S1) = clge (Vo)) U L}, (557 = clpe (Vo)), -+, (S — el (Vo)),
(S8 elg (Vo)) U M}

Since w, € L; N Sf)f clgr (V), we obtain that (S;i)f clpr (Vo)) U L;
is connected. Similarly, (S’S)— clpr (Vo)) U M; is connected. Hence, the
elements of W; are connected. Since clgx (Vo) Ny; = 0 and v; C US; joins
wj € Sgi)— cle(Séi)) to 2] € ng)— cle(ngll), it follows that {(S’y)—
cler (V0)), (857 = elgw (1)), -, (S0, = el (Vo). (S5~ clan(V0))} s a
taut chain. Since L; C Sy) and M; C Ss(f), by Lemma 2.6, W; is a taut
chain crooked in 2(4(U)) = 8(U).

LetL:Llu...ULS, M:Mlu...UMS and J = {k‘l—l,...,kgs_l—
1}U{ka+1,...,kos +1}. For each j € {1,...,m}, let

vV =
j
Vi — clpe (LU M), if ¢ J,

(VJ — Cle(LU M)) UP;, ifj=ky_1 —1 for someie {1,. . .,S},

(Vi — clge (LUM))UQ;,  if j =ko;+ 1 for some i € {1,...,s}.

Let V' ={V{,..., V. }.

Since ¢ C (Vi— clgu (LU M)) U ... U (Vi— clge (L U M)), the family
Vi = {(Vi— clgs (LU M)), ..., (Vi— clge (L U M))} is a taut chain. By
Lemma 2.6, V) is crooked in 6(U/). Since for eachi € {1,...,s}, Vi,, ,—11s
the only element in V such that clgr (Vi,,_,—1)N clps (P;) # 0, and Vi, +1
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is the only element in V such that clgr(Vi,,+1)N clge(Q;) # 0. Lemma
2.6 implies that V' is a taut chain of connected sets that is crooked in
6(U).

Since 0 # P;— clge (LU M)) C (Viy, , —1— clge (LU M)) N P;, we have
Vi,,, 1 is connected. Similarly, V| =, is connected. Thus, the elements
of V' are connected.

We will check that the conditions of Lemma 2.8 are satisfied for V'.

Let W; = {W{”, ..., W}, Since p; e ;; n P c W' n Vi 1> We
have Wl(z) NV, 1 #0.

Similarly, Ws(f) NV, 1 # 0.

Since clgx (UY) C UZ C Vy and P, UQ; C UV for each i € {1,...,s},
we have that for each i € {1,...,s}, (Wg(i) U...U Ws(:)_l) N (uY) = 0.

Moreover, if clgr (W )N clgr (V) # 0, then clgr (LN clgr (V) # 0.
This implies that either ¢ = kge—; — 1 for some e € {1,...,s} and
clge (L) NP, # 0 or ¢ = kge + 1 for some e € {1,...,s} and L, N Q. # 0.
Notice that for each e € {1,...,s}, P. C V},, | C A, CUS. C UR.
and Q. C V}, ., C B. C UR..

In the case that there exists e € {1,..., s} such that ¢ = kg,—1 — 1 and
L;N P, #(, since L; C UR;, we have i = e and ¢ = koge_1 — 1.

In the case that there exists e € {1,..., s} such that ¢ = kg + 1 and
L;NQ. # 0, we have i = e, ¢ = kg + 1. Since L; C A; C Sy) — (KU
clpk (Sél))) and Q; C B; C Sg? — (KU cle(ng)_l)), we obtain that L; N
Q; = 0, a contradiction, so this case is impossible and we conclude that
Cc = kgifl — 1.

This completes the proof that clgx (Wl(i))ﬂ clgr (V) # 0 if and only if
¢ = kg;—1 — 1, and we have proved that Wl(l) NV, -1 # 0. Similarly,
clpr (Ws(f))ﬂ clgr (V) # 0 if and only if ¢ = ko; + 1, and we have proved
that W NV, ., #0.

Notice that WUV (81— clgs (Vo)) ULLUZY € U,,UA; C U,,.
Similarly, W&(f) U kazi c U,,.

Notice also that for each i € {1,...,s}, (UW;)U(V] ~ U...UV] )C
(US) U (UZ;) CUS; C clgr(UR;) C U, U...UU,,.

Since for each i € {1,...,s}, UW; C US; C clgr(UR;), we obtain
UW, ..., UW, are pairwise disjoint.

Define Y = V’(].7 ki — ]_) * W1 *V’(kz +1,ks— 1) *Whx. .. *V’(kg(r_l) +
Lkop—1 — 1)« Wy 5 V' (kop + 1, kopy1).

Since V" and each W; is crooked in 24(U), by Lemma 2.8, Y is crooked
in 72(U).
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Clearly, ) is a taut e-chain of elements of B and each link of ) is
connected. Since clgs (L U M) C clge((UR1) U ... U (UR;)), we have
p € V{, so p belongs to the first link of . Similarly, ¢ belongs to the last
link of Y.

Since K C (US1) U ... U (US,) and KN clgx(Vp) = 0, we have K C
(UW) U...U(UW,) C UY. O

Theorem 5.6. Let k > 3. Suppose that K is a compact subspace of RF
such that each nondegenerate component of K is a pseudo-arc. Then there
exists a pseudo-arc P in R* such that K C P.

Proof. Using Theorem 5.5 it is possible to define inductively a sequence
{U,}22, of taut chains in R¥ such that for each r € N,

(a) U, is a chain from p to ¢,

(b) Uy41 is crooked in 72(U,.),

(¢) mesh(U,) < L, and

(d) K c UU,.
Then, by Lemma 2.3, the set P = N{clpx (U,.) : 7 € N} is a pseudo-arc
containing K. O
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