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FUNCTION SPACES AND L-PREORDERED SETS

JEFFREY T. DENNISTON, AUSTIN MELTON,
AND STEPHEN E. RODABAUGH

Abstract. In classical domain theory, the function-space con-
structor is the most interesting domain constructor. In this paper,
we review some results involving the classical function-space con-
structor and the Scott topology, and then we begin to consider how
these results could be extended if we replace preordered and par-
tially ordered sets with L-preordered sets and L-partially ordered
sets for a frame L. In this paper, we focus on L-preordered sets.

1. Introduction

One of the interesting issues in domain theory is how to define function-
space domains so that they behave nicely with respect to the function-
space constructor. Since the function-space constructor involves spaces of
functions, cardinality issues may be problematic. A specific goal of this
current study is to begin to examine conditions which could be applied
in lattice-valued settings so that the function-space constructor would
behave nicely.

There is a relatively rich literature on L-fuzzy preorders and L-fuzzy
partial orders, where the L may be a lattice structure different from a
frame; see, for example, [1, 6, 11, 12]. In this paper, when compared to
Lai and Zhang [6], we focus on L-preorders instead of L-partial orders,
though we do compare our L-antisymmetry condition to theirs. When
compared to Yao and Shi [11], we work with traditional topologies in-
stead of many-valued topologies even when beginning with many-valued
orders. This may be considered an intermediate step as one transitions
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from the world of two-valued logic to a fully many-valued world. However,
it is noteworthy that this situation of moving from many-valued relations
to traditional topologies also occurs in the work of U. Höhle. Höhle uses
many-valued equivalence relations to build stalk spaces equipped with tra-
ditional topologies [4, 5]. In fact, the moving from many-valued relations
to traditional topologies is consistent with the “defuzzification” processes
commonly employed in applications of many-valued logic.

Continuing with the idea of transitioning from L-preorders and L-
partial orders though traditional topologies in developing a Scott-like do-
main theory, in future work the authors do plan to complete the transition
though traditional topologies to many-valued topologies as they attempt
to help develop a many-valued, Scott-like domain theory.

In this paper, we do address the question of how far Dana Scott’s
theory of continuous functions can be extended, i.e., what is a “maximal”
extension of Scott’s theory, if the equivalence of order continuity and
topological continuity of functions is to be preserved. For example, may
partially ordered sets be replaced by preordered sets, and does one have
to work with “complete orders”?

2. Function Spaces in Classical Domain Theory

There are several good introductions to domain theory. For this paper,
the book The Formal Semantics of Programming Languages An Introduc-
tion by Glynn Winskel [10] is used.

As stated in [10], “Domain theory is the mathematical foundation of
denotational semantics,” which is a formal and mathematical method of
assigning semantics to computer programs. Domains are usually built
from partially ordered sets. In this paper, we try to use preordered sets,
which we call presets, as much as possible. As we are working in a more
general than usual setting, we include proofs of some classical-like results.

Definition 2.1. Let X be a set. A partial order ≤ on X is a relation on
X, i.e., ≤ ⊂ X ×X with the following properties: the relation ≤ is

(1) reflexive if for each x ∈ X, x ≤ x;
(2) antisymmetric if for all x, y ∈ X, whenever x ≤ y and y ≤ x, then

x = y; and
(3) transitive if for all x, y, z ∈ X, whenever x ≤ y and y ≤ z, then

x ≤ z.
When ≤ is a partial order on X, (X,≤) or just X is called a partially

ordered set or a poset.
If ≤ is reflexive and transitive but not necessarily antisymmetric, then

≤ is a preorder, and (X,≤) or simply X is a preordered set or a preset. •
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Domains are the data types for programming. Data types may be
explicitly given. For example, the data type of Boolean values, denoted
by

B = ({true, false},≤B),
where false ≤B true, is usually given as is the data type of natural
numbers denoted by (N ,=) where N = {0,1,2, . . .}. In programming
languages, most data types are constructed using data type constructors.
The most interesting standard constructor is the function space construc-
tor.

The function space constructor is interesting in part because it can
cause fatal problems as shown by an example which is given in [9] and
paraphrased below.

A program execution may be thought of as a sequence of states where
a state is modeled as values stored in memory locations. The first state
in a program execution sequence has program inputs stored in memory
locations. As the program executes, the stored values change as input
values are modified and as temporary values are created and manipulated
until the program computes its (final) output values. Each change in
the stored values may be thought of as creating a new state, and thus, a
program execution may be thought of as a finite sequence of states. Once
all the output values have been calculated, the program may/should stop
execution with output values stored in the final state of the program
execution sequence.

To simplify matters, a program execution is often thought of as simply
two states, an initial state and a final state where the initial state is the
first one in the sequence mentioned above and the final state is the last
one in that sequence, and a program itself is the set of all its program
executions. Thus, a program is a function which takes (initial) states to
(final) states.

These comments lead to Definition 2.2 and Example 2.3.

Definition 2.2. A state is a function from the set of memory locations
to the set of possible values. •

We are being casual in our use of the terms such as “memory location”
and “possible value”. These terms may, of course, be defined more rigor-
ously. However, doing so in this paper would contribute very little. The
intuitive meanings for these terms suffice for our purposes.

Many programming languages allow programs themselves to be in-
cluded in the values which may be stored in a memory location of a state.
As pointed out in [9], these considerations lead to the following contra-
diction.
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Example 2.3. We let location be the set of memory locations, value
the set of values which may be stored in the memory locations, and state
the set of functions from location to value, i.e.,

state = [location → value].

Further, if program is the set of programs, then by thinking of a program
as a function from (initial) states to (final) states, we have

program = [state → state],

and, further, since programs may be values, then

program ⊂ value.

Hence, if the cardinality of the set of possible states is α, then we have
the following cardinality results.

•
|state| = α

•
|program| = αα

•
|value| ≥ αα

•
|state| ≥ αα

•
α = |state| ≥ αα •

The above contradiction, when α > 1, is created because the function
space constructor for sets grows exponentially. The solution to this prob-
lem in domain theory is to restrict the set of functions, i.e., the set of
programs, which may be included in a function space domain. Part of
this restricting is accomplished by using the Scott topology. Dana Scott
defined this topology which is named after him [8].

The Scott topology is developed by working with preordered or par-
tially ordered sets which have additional properties.

Definition 2.4. Let (D,≤) be a preset. (D,≤) or just D is a directed set
if every finite subset of D has an upper bound, i.e., if E is a finite subset
of D, then there exists d ∈ D such that for each e ∈ E, e ≤ d. Since E
may be empty, then D must be non-empty.

If (X,≤) is a preset, then D ⊂ X is a directed subset of X if (D,≤D)
is a directed set where ≤D is the restriction of ≤ to D. •
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Definition 2.5. Let (X,≤) be a preset. (X,≤) or X is a directed complete
preset or a dcpro if every directed subset D of X has a least upper bound
or supremum

⊔
D in X. •

Directed completeness is usually defined for partially ordered sets, and
a directed complete partially ordered set is abbreviated dcpo.

Definition 2.6. A preset (X,≤) is a complete preset or a cpro if it is
directed complete and if it has a bottom element, i.e., if it has an element
⊥ such that for each x ∈ X, ⊥ ≤ x. •

As with dcpros, completeness is usually defined for partially ordered
sets, and a complete partially ordered set is abbreviated cpo.

Definitions in domain theory are not fully standardized. For example,
sometimes a bottom element is required for a cpo and sometimes not.
We define Scott continuous functions between presets [7], and others may
define them between partially ordered sets or cpos.

Definition 2.7. Let (X,≤) and (Y,⊑) be presets, and let f : X → Y be
a function. The function f is order-preserving if whenever a, b ∈ X with
a ≤ b, then f(a) ⊑ f(b). •

Scott continuous functions are usually defined as functions which pre-
serve least upper bounds of directed sets. Often this means working with
dcpros or dcpos, and requiring that a Scott continuous function map the
least upper bound of a directed set to the least upper bound of the image
of that directed set. As in [7], this setting can be generalized. When one
considers generalizations, obvious questions include how can this setting
be generalized and how much can it be generalized. In [7], the general-
ization is to require that when a directed set has a least upper bound,
then the image of that least upper bound be the least upper bound of
the image of the directed set. From the assumed conditions in this more
general setting, it does follow that the image of a directed set with a
least upper bound also has a least upper bound, and thus, the function is
order-preserving.

An important result of Scott’s work is the equivalence of Scott contin-
uous functions in the preordered or partially ordered setting and continu-
ous functions in the (Scott) topological setting. We want to preserve this
equivalence in our generalization. Thus, our generalization questions in-
clude how and how much can we generalize our setting and our conditions
and still preserve the equivalence of continuous function in the ordered
setting and the topological setting.

There are, of course, multiple ways of generalizing the classical setting
in which one works with dcpos or cpos. In the classical setting, directed
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sets always have least upper bounds or limits, and the functions are order-
preserving. In Remark 2.9, we suggest a generalization which is more
general than [7]. According to this proposed suggestion in Remark 2.9,
it would not be required that the image of a directed set with a limit
also have a limit. This seems like a natural generalization. However,
as seen in Example 2.10, satisfying the order condition of Remark 2.9
does not ensure topological continuity, and in fact, the order condition of
Remark 2.9 does not imply that the function is order-preserving. However,
requiring that limits of directed sets are mapped to limits of the images
of directed sets does imply order-preservation; see Lemma 2.11.

Notation 2.8. Let f : X → Y be a function; let W ⊂ X; and let Z ⊂ Y .
We use f→(W ) for the subset of Y containing the images of all points in
W , i.e.,

f→(W ) = {f(w) |w ∈ W} ⊂ Y.

Similarly, we use f←(Z) for the subset of X containing all the preimages
of points in Z, i.e.,

f←(Z) = {x ∈ X | f(x) ∈ Z} ⊂ X. •

Remark 2.9. It would seem that a possible generalization of the classical
definition of a Scott continuous function could be: Let (X,≤) and (Y,⊑)
be presets, and let f : X → Y be a function. Then the function f would
be Scott continuous if it would preserve the suprema of directed sets when
the image sets have suprema. That is, if D is a directed subset of X, if⊔
D exists in X, and if

⊔
f→(D) exists in Y , then f(

⊔
D) is a supremum

of f→(D). However, as we see in Example 2.10, this generalization does
not work because this “order” condition can be satisfied without having
topological continuity. Thus, it seems that the generalization in [7], which
is the generalization which we use in this paper, is maximal. It is also
worth noting that the order condition in this remark does not ensure that
the function is order-preserving. •

Example 2.10. Let X = Y = {a, b} where a and b are distinctive ele-
ments. Define a reflexive relation ≤ on X by a ≤ b, and define a reflexive
relation ⊑ on Y such that a and b are not related. Also, define f : X → Y
to be the identity function. In this example, the condition “if D is a di-
rected subset of X, if

⊔
D exists in X, and if

⊔
f→(D) exists in Y , then

f(
⊔

D) is a supremum of f→(D)” holds, but we have a “problem” with
topological continuity.

The Scott topology on X is {∅, {b}, X}, and the Scott topology on Y
is the powerset of Y . The function f : X → Y is the identity function,
which is not topologically continuous because {a} is open in Y but {a} =
f←({a}) is not open in X. Thus, the order-theoretic condition of this
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remark holds, but the function is not continuous with respect to the Scott
topologies.

Further note that the function f is not order-preserving. We have that
a ≤ b, but a = f(a) ̸⊑ f(b) = b.

It seems as though requiring our functions to be order-preserving is an
important condition. •

The requirement that our functions be order-preserving is in keeping
with Scott’s information ordering which assumes when given two order re-
lated inputs to a program or “computation function”, that the output from
the input with the more information will contain at least as much infor-
mation as the output from the input with the lesser information. Thus,
we are working in the category Preset of presets and order-preserving
functions.

We want our functions to be order-preserving, but as in the classical
setting, we do not need to explicitly require that our functions are order-
preserving.

Lemma 2.11. Let (X,≤) and (Y,⊑) be presets, and let f : X → Y be a
function. The function f is order-preserving if whenever D is a directed
subset of X and D has a least upper bound

⊔
D, then f(

⊔
D) is a least

upper bound of f→(D) in Y . •
Proof. Let a, b ∈ X with a ≤ b. Then D = {a, b} is a directed subset of
X with least upper bound b. Since f preserves this least upper bound,
then f(a) ⊑ f(b). �
Definition 2.12. Let (X,≤) and (Y,⊑) be presets. The function f is
Scott continuous if it preserves the suprema of directed sets. That is, if
D is a directed subset of X and if

⊔
D exists in X, then f(

⊔
D) is a

supremum of f→(D). •
As we will see below, calling these functions continuous is, in fact,

justifiable from a topological perspective.
When working with presets in place of partially ordered sets, least

upper bounds need not be unique. However, for a distinct directed subset,
all least upper bounds are related, in that each one is less than or equal
to every least upper bound.

This lack of uniqueness of least upper bounds in presets is why the last
sentence in Definition 2.12 reads “then f(

⊔
D) is a supremum of f→(D)”

instead of reading “then f(
⊔
D) =

⊔
f→(D)”.

Definition 2.13. Let (X,≤) be a preset, and let V ⊂ X. The up-closure
of V in X is {x ∈ X| ∃v ∈ V . v ≤ x}. The up-closure of V is denoted by
↑ V . V is said to be up-closed if V =↑ V . •



46 DENNISTON, MELTON, AND RODABAUGH

Definition 2.14. Let (X,≤) be a preset. A subset U ⊂ X is Scott open
if U is up-closed and if it non-trivially intersects every directed set whose
least upper bound or limit it contains. Thus, U is Scott open if U =↑ U
and whenever D is a directed subset of X with

⊔
D existing and in U ,

i.e.,
⊔

D ∈ U , then U ∩D ̸= ∅. •
Proposition 2.15. Let (X,≤) be a preset; τ = {U ⊂ X|U is Scott open}
is a topology on X. •
Definition 2.16. In Proposition 2.15, τ is the Scott topology on (X,≤)
or X, and (X, τ) is a Scott topological space. •

We have taken a quick and direct approach to get the Scott topology.
There are interesting connections between a given preorder and related
topologies, of which one is the Scott topology. For each topological space
(X,σ), the topology σ generates a preorder on X. This preorder is called
the specialization preorder, and it is defined such that for x, y ∈ X, x≤σy
if and only if whenever x ∈ U ∈ σ, then y ∈ U , i.e., if and only if
cl({x}) ⊂ cl({y}), where for A ⊂ X, cl(A) is the closure of A, i.e., the
smallest closed set containing A.

Multiple topologies on a set X may generate the same preorder. In fact,
there is a complete lattice of topologies which generate the same preorder.
Each of these topologies is called an order-consistent topology [3] with
respect to the generated preorder. This complete lattice of topologies is
ordered by subset inclusion of the topologies. The finest topology in each
of these complete lattices is the Alexandroff topology which is the topology
of up-closed subsets. The coarsest or weakest topology is the topology
generated by the collection of sets of the form (X− ↓ a) when a ∈ X and
when ↓ a = {x ∈ X |x ≤ a}. The Scott topology is the topology whose
open sets are the up-closed sets which non-trivially intersect the directed
sets whose limits they contain. More about the interrelationships between
preorders and topologies may be found in [3, 7].

Lemma 2.17 may be proven directly. It also follows from the preceding
discussion because the Scott topology for a given preorder, i.e., the order-
consistent Scott topology for a given preorder, is a subset of the order-
consistent Alexandroff topology and a superset of the order-consistent
weakest topology for the same preorder.
Lemma 2.17. Let (X,≤) be a preset, and let a ∈ X. Then U = (X− ↓ a)
is a Scott open set. •

Theorem 2.18. Let (X,≤) and (Y,⊑) be presets; let (X, τX) and (Y, τY )
be the corresponding Scott topological spaces; and let f : X → Y be a
function. f : (X,≤) → (Y,⊑) is Scott continuous in the order theoretic
sense if and only if f : (X, τX) → (Y, τY ) is continuous in the topological
sense. •
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Proof. Suppose f : (X,≤) → (Y,⊑) is Scott continuous in the order
theoretic sense. Let U be a Scott open subset of Y . Suppose that a ∈
f←(U) and that a ≤ b for b ∈ X. Since f is order-preserving and since
f(a) ∈ U , then f(b) ∈ U . It follows that b ∈ f←(U), and therefore,
f←(U) is up-closed.

Let D be a directed subset of X such that
⊔
D exists and

⊔
D ∈

f←(U). Since D is directed and since f is order-preserving, then f→(D)
is directed in Y . Also, since

⊔
D ∈ f←(U), then f(

⊔
D) ∈ U . Further,

since f is Scott continuous in the order theoretic sense, then f(
⊔
D) is

a least upper bound of f→(D). Hence, we have a directed set f→(D)
in Y and we have the least upper bound, f(

⊔
D), in the open set U . It

follows that f→(D)∩U ̸= ∅, and thus, there exists d ∈ D with f(d) ∈ U .
Therefore, D ∩ f←(U) ̸= ∅, and f←(U) is Scott open in X. Hence, f is
continuous with respect to the Scott topologies on X and Y .

Suppose f : (X, τX) → (Y, τY ) is continuous in the topological sense.
Let D be a directed subset of (X,≤) such that

⊔
D exists. Since f is

order-preserving, then f→(D) is directed, and f(
⊔

D) is an upper bound
for f→(D). Suppose f(

⊔
D) is not a least upper bound. Then there exists

y ∈ Y such that y is an upper bound for f→(D), and y < f(
⊔
D). Let

V = (Y− ↓ y). By Lemma 2.17, V is open in Y , and thus, f←(V ) is open
in X. Since f→(D)∩ V = ∅ because f→(D) ⊂ ↓ y, then D ∩ f←(V ) = ∅.
However, since f←(V ) is open in X and

⊔
D ∈ f←(V ), then D∩f←(V ) ̸=

∅. This contradiction shows that f(
⊔
D) is the least upper bound for

f→(D), and therefore, f : (X,≤) → (Y,⊑) is Scott continuous in the
order theoretic sense. �

Notation 2.19. Let X and Y be sets. We denote the set of all functions
from X to Y by [X → Y ]. If D ⊂ [X → Y ], we let Dx 7→ denote the set
{f(x) | f ∈ D}. We use [(X,≤) → (Y,⊑)]S or just [X → Y ]S for the set
of Scott continuous functions from (X,≤) to (Y,⊑). •

Lemma 2.20. Let (X,≤) and (Y,⊑) be presets. We define ≤ on [X →
Y ] pointwise, i.e., for f, g ∈ [X → Y ], f ≤ g if and only if ∀x ∈ X,
f(x) ⊑ g(x). If D is a directed subset of [X → Y ], then for each x ∈ X,
Dx 7→ is a directed subset of Y . •

Proof. Let x ∈ X. Since D is non-empty, then Dx 7→ is also non-empty.

Suppose that y1 and y2 are arbitrary elements in Dx 7→. Then there
exist f1, f2 ∈ D such that f1(x) = y1 and f2(x) = y2. Since D is directed,
there exists h ∈ D such that f1 ≤ h and f2 ≤ h. Therefore, by definition
of ≤ on [X → Y ], y1 = f1(x) ⊑ h(x) and y2 = f2(x) ⊑ h(x), and thus,
Dx 7→ is a directed subset of Y . �
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In the proof of the next theorem, the axiom of choice is used in the
definition of the function h.

Theorem 2.21. Let (X,≤) be a preset, and let (Y,⊑) be a cpro. Then
([X → Y ]S ,≤) is also a cpro. •

Proof. Since (Y,⊑) is a preset, then ([X → Y ],≤) is also a preset.
Let D[]S

be a directed subset of [X → Y ]S . Define h : X → Y such
that for each x ∈ X, h(x) =

⊔
{f(x) | f ∈ D[]S

}. We claim that h is well
defined; that h ∈ [X → Y ]S ; and that

⊔
D[]S

= h.
Since D[]S

is directed in [X → Y ]S , then by the proof of Lemma 2.20,
{f(x) | f ∈ D[]S

} is directed for each x ∈ X. Thus, h is well defined since
(Y,⊑) is directed complete.

Let a, b ∈ X such that a ≤ b. Since a ≤ b, then for each f ∈ D[]S
,

f(a) ⊑ f(b). It follows that
⊔
{f(a) | f ∈ D[]S

} ⊑
⊔
{f(b) | f ∈ D[]S

}, i.e.,
h(a) ⊑ h(b).

Let D be a directed subset of X such that
⊔
D exists. Since h is order-

preserving, then h→(D) is directed, and
⊔
h→(D) ⊑ h(

⊔
D). (We know

that
⊔
h→(D) exists because Y is a cpro.)

Suppose that
⊔
h→(D) < h(

⊔
D). Then the Scott open set V = Y−

↓
⊔
h→(D) contains no elements in h→(D), i.e., h→(D)∩V = ∅. However,

since h(
⊔
D) ∈ V , then

⊔
D ∈ h←(V ), and thus, D ∩ h←(V ) ̸= ∅.

Therefore, h→(D) ∩ V ̸= ∅. This contradiction means that
⊔
h→(D) =

h(
⊔

D), and therefore, h : (X,≤) → (Y,⊑) is Scott continuous. Since the
ordering on [X → Y ]S is pointwise, then

⊔
D[]S

= h.
The bottom element of ([X → Y ]S ,≤) is the function f : X → Y where

f(x) = ⊥Y for each x ∈ X. It follows that ([(X,≤) → (Y,⊑)]S ,≤) is a
cpro. �

3. Introducing Function Spaces with L-Preorders

In this section, we work with L-valued relations.

Definition 3.1. Let X be a set, and let (L,≤) be a frame with largest
element ⊤L. An L-valued relation R on X is a function R :X×X→ L. •

Definition 3.2. Let R : X ×X → L be an L-valued relation on X. R is
an L-preorder if

• R is reflexive, i.e., ∀x ∈ X, R(x, x) = ⊤L, and
• R is transitive, i.e., ∀x, y, z ∈ X, R(x, y) ∧R(y, z) ≤ R(x, z).

R is an L-partial order if, additionally,
• R is antisymmetric, i.e., ∀x, y ∈ X,R(x, y)∧R(y, x) = ⊤L ⇒ x =
y.
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If R is an L-preorder on X, then (X,R) or just X is an L-preordered
set or an L-preset, and if R is an L-partial order, then (X,R) or just X
is an L-partially ordered set or an L-poset. •

Of course, the antisymmetry condition that R(x, y) ∧ R(y, x) = ⊤L is
equivalent to R(x, y) = ⊤L and R(y, x) = ⊤L. For more on our antisym-
metry property, please see [2].

The axioms of Definition 3.2 are equivalent to those of [11]. The axioms
of Definition 3.2 are also given in [2], and there they are motivated from
enriched categories.

For an L-preset (X,R), when R(x, y) = α ∈ L, we consider x to be
R-related to y to degree α. However, when R(x, y) = α, we normally say
either x is less than or equal to y to degree α, or y is greater than or equal
to x to degree α.

When R : X × X → L is an L-valued relation, we may, at times,
use the expressions “L-reflexive”, “L-antisymmetric”, and “L-transitive”,
respectively, in place of “reflexive”, “antisymmetric”, and “transitive”.

In [6], Hongliang Lai and Dexue Zhang define L-preorders and L-partial
orders. In their definitions, L is restricted to the closed unit interval [0, 1],
and in their transitivity definition, they use a triangular or t-norm instead
of the meet operation. Additionally, they define R to be a fuzzy partial
order on X if it is a fuzzy preorder on X and if

∀x, y ∈ X, [x = y iff ∀z ∈ X,R(z, x) = R(z, y)].

Proposition 3.3. Let X be a set; let L be a frame; and R an L-valued
relation on X, i.e., R : X ×X → L. The Lai-Zhang condition

∀x, y ∈ X, [x = y iff ∀z ∈ X,R(z, x) = R(z, y)]

and our antisymmetry condition

∀x, y ∈ X,R(x, y) ∧R(y, x) = ⊤L ⇒ x = y

are not equivalent. However, if (X,R) is an L-preset, then the two con-
ditions are equivalent. •

Proof. This proof comprises the following two examples and two claims.
Example 1: Let X = {a, b} where a and b are distinct elements, and let
R : X ×X → [0, 1] where [0, 1] has the normal ordering. Define R such
that for all x, y ∈ X, R(x, y) = r, where r is a fixed element in [0, 1). R
is an L-transitive relation. Our antisymmetry condition holds, but the
Lai-Zhang condition does not hold.
Claim 1: If X is a set, if L is a frame, and if R is an L-transitive relation
on X, then the Lai-Zhang condition implies our antisymmetry condition.
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Suppose x, y ∈ X and further suppose that R(x, y) ∧ R(y, x) = ⊤L,
i.e., R(x, y) = ⊤L and R(y, x) = ⊤L. For z ∈ X,

R(z, x) = R(z, x) ∧ ⊤L = R(z, x) ∧R(x, y) ≤ R(z, y).

Similarly,

R(z, y) = R(z, y) ∧ ⊤L = R(z, y) ∧R(y, x) ≤ R(z, x).

Therefore, R(z, x) = R(z, y), and by the Lai-Zhang condition, x = y.
Therefore, our antisymmetric condition holds.
Example 2: Let X = {a, b, c} where a, b, and c are distinct elements,
and let R : X ×X → {0, 1} where {0, 1} has the usual ordering. Define
R(a, b) = 1; R(a, c) = 0; R(b, a) = 1; R(b, c) = 0; R(c, a) = 0; and
R(c, b) = 1. For each x ∈ X, R(x, x) = 1. R is an L-reflexive relation.
The Lai-Zhang-condition holds, but our condition does not hold because
a ̸= b.
Claim 2: If X is a set, if L is a frame, and if R is an L-reflexive relation
on X, then our antisymmetry condition implies the Lai-Zhang condition.

Suppose x, y ∈ X and further suppose for each z ∈ X, that R(z, x) =
R(z, y). Since R is L-reflexive, when z = y, then R(y, x) = R(y, y) = ⊤L,
and similarly, when z = x, then R(x, y) = R(y, y) = ⊤L. It follows that
R(x, y) ∧R(y, x) = ⊤L, and therefore, x = y.

By Claims 1 and 2, if R is an L-preset, then the Lai-Zhang condition
and our antisymmetry condition are equivalent. �

Definition 3.4. Let (X,R) be an L-preset; let Y ⊂ X; and let α ∈ L.
An element x ∈ X is an α-upper bound for Y if ∀y ∈ Y,R(y, x) ≥ α.

The element x is an α-least upper bound for Y if it is an α-upper bound
for Y and if for every α-upper bound z of Y , R(x, z) ≥ α.

If (X,R) is an L-preset and if Y has an α-least upper bound, we denote
this element by

⊔
αY . We may also call

⊔
αY an α-supremum or an α-

limit of Y in X. The α-suprema of a subset Y need not be unique. •

Definition 3.5. Let (D,R) be an L-preset, and let α ∈ L. (D,R) or just
D is an α-directed set if every finite subset of D has an α-upper bound
in D. Since the finite subset may be empty, then D must be non-empty.

If (X,R) is an L-preset, then D ⊂ X is an α-directed subset of X if
(D,RD) is an α-directed set where RD is the restriction of R to D×D. •

Definition 3.6. Let (X,R) be an L-preset, and let α ∈ L. (X,R) or X
is an α-directed complete preset or an α-dcpro if every α-directed subset
D of X has an α-least upper bound or α-supremum

⊔
αD in X. •
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Definition 3.7. Let (X,R) be an L-preset, and let α ∈ L. X has an
α-bottom element if there is an element ⊥(X,R)α

∈ X such that for each
x ∈ X, R(⊥(X,R)α

, x) ≥ α. An L-preset (X,R) is said to have an L-bottom
element or simply a bottom element if it has a ⊤L-bottom element, and
then ⊥(X,R)⊤L

denotes an L-bottom element. •

Definition 3.8. An L-preset (X,R) is an α-complete preset or an α-cpro
if it is α-directed complete and if it has an α-bottom element. •

Example 3.9. Let (X,R) be an L-preset, and let ⊥L be the least or
bottom element of L. For every x, y ∈ X, R(y, x) ≥ ⊥L. Thus, if Y ⊂ X,
each element of X is a ⊥L-upper bound for Y . Therefore, if D is a non-
empty subset of X, then D is a ⊥L-directed subset of X. Further, if w
and z are ⊥L-upper bounds for D, then since R(w, z) ≥ ⊥L, we have
that w is a ⊥L-least upper bound for D. Thus, each element of X is a
⊥L-least upper bound for D, and (X,R) is a ⊥L-directed complete preset.
Additionally, since for every x, y ∈ X, R(y, x) ≥ ⊥L, then each element
in X is a ⊥L-bottom element for (X,R); thus, (X,R) is a ⊥L-complete
preset.

Let ⊤L be the largest element in L. Define (X,≤) such that for
x, y ∈ X, y ≤ x if and only if R(y, x) = ⊤L. Then (X,R) is a ⊤L-directed
complete preset if and only if (X,≤) is a directed complete preset. Fur-
ther, when (X,R) has a least or bottom element, then (X,R) is a ⊤L-cpro
if and only if (X,≤) is a cpro. •

Definition 3.10. Let (X,R) and (Y, S) be L-presets, and let α ∈ L.
A function f : X → Y is α-order-preserving if whenever a, b ∈ X with
R(a, b) ≥ α, then S(f(a), f(b)) ≥ α. The function f is L-order-preserving
if for all a, b ∈ X, R(a, b) ≤ S(f(a), f(b)). •

Proposition 3.11. Let (X,R) and (Y, S) be L-presets, and let f : X →
Y . The function f is L-order-preserving if and only if it is α-order-
preserving for each α ∈ L. •

Proof. If f is L-order-preserving, then clearly it is α-order-preserving for
each α ∈ L.

Suppose f is α-order-preserving for each α ∈ L. Assume f is not
L-order-preserving. Thus, there exists a, b ∈ X such that R(a, b) ̸≤
S(f(a), f(b)). It follows that f is not R(a, b)-order-preserving. This con-
tradiction gives us that f is L-order-preserving. �

Example 3.12. There exist L-posets (X,R), (Y, S), and (Z, T ); functions
f : X → Y , and g : X → Z; and α2, α3 ∈ L with α2 < α3 such that
f is α3-order-preserving but not α2-order-preserving and g is α2-order-
preserving but not α3-order-preserving.
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Let L be a frame with α1, α2, α3 ∈ L such that α1 < α2 < α3. Define
(X,R), (Y, S), and (Z, T ) as follows: X = Y = Z = {a, b, c}. For each
x ∈ X, for each y ∈ Y , and for each z ∈ Z, R(x, x) = S(y, y) = T (z, z) =
⊤L; R(b, c) = S(b, c) = α3; and otherwise for x1, x2 ∈ X, R(x1, x2) = α2;
for y1, y2 ∈ Y , S(y1, y2) = α1; and for z1, z2 ∈ Z, T (z1, z2) = α2.

Define f such that for each x ∈ X, f(x) = x; and define g such that
for each x ∈ X, g(x) = x. The function f is α3-order-preserving, but
it is not α2-order-preserving. The function g is α2-order-preserving, but
it is not α3-order-preserving. It is also the case that neither f nor g is
L-order-preserving. •

Definition 3.13. Let (X,R) and (Y, S) be L-presets, and let α ∈ L. A
function f : X → Y is α-Scott continuous if it preserves α-suprema of
α-directed sets. That is, if D is an α-directed subset of X and if

⊔
αD

exists in X, then f(
⊔

αD) is an α-supremum of f→(D). •

Definition 3.14. Let (X,R) and (Y, S) be L-presets, and let f : X → Y .
The function f is L-Scott continuous if and only if it is α-Scott continuous
for each α ∈ L. •

As we will see below, calling the functions in Definition 3.13 α-Scott
continuous is, in fact, justifiable from a topological perspective.

Proposition 3.15. Let (X,R) and (Y, S) be L-presets; let α ∈ L; and let
f : X → Y be a function. If the function f is α-Scott continuous, then it
is α-order-preserving. •

Proof. Let a, b ∈ X such that R(a, b) ≥ α. Then D = {a, b} is an
α-directed subset of X with b =

⊔
αD. Since f is α-Scott continuous,

then f(b) =
⊔

αf
→(D). It follows that S(f(a), f(b)) ≥ α, and thus, f is

α-order-preserving. �

Definition 3.16. Let (X,R) be an L-preset; let V ⊂ X; and let α ∈ L.
The α-up-closure of V in X is {x ∈ X| ∃v ∈ V .R(v, x) ≥ α}. The α-up-
closure of V is denoted by ↑αV . V is said to be α-up-closed if V = ↑αV .
•

Definition 3.17. Let (X,R) be an L-preset, and let α ∈ L. A subset
U ⊂ X is α-Scott open if U is α-up-closed and if it non-trivially intersects
every α-directed set whose limit it contains. Thus, U is α-Scott open if
U = ↑αU and whenever D is an α-directed subset of X with

⊔
αD existing

and in U , i.e.,
⊔

αD ∈ U , then U ∩D ̸= ∅. •

Proposition 3.18. Let (X,R) be an L-preset; let α ∈ L; and let τα =
{U ⊂ X |U is α-Scott open}. Then τα is a topology on X. •
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Proof. The empty set and X are in τα.
Suppose U, V ∈ τα. Since U and V are both α-up-closed, then U ∩ V

is also α-up-closed. Suppose D is an α-directed subset of X with
⊔

αD ∈
U ∩ V . Since both U and V are α-Scott open, there exist dU ∈ D ∩ U
and dV ∈ D ∩ V . Since D is directed, there is also d ∈ D such that d is
an α-upper bound for dU and dV . Since both U and V are α-up-closed,
then d ∈ U ∩ V . It follows that d ∈ D ∩ (U ∩ V ), and U ∩ V is α-Scott
open.

Suppose U = {Ui | i ∈ I} ⊂ τα. Since each Ui is α-up-closed, then
∪

U
is also α-up-closed. Suppose that D is an α-directed subset of X and⊔

αD ∈
∪
U . There is j ∈ I such that

⊔
αD ∈ Uj , and since Uj is α-Scott

open, then D∩Uj ̸= ∅. It follows that D ∩ (
∪
U) ̸= ∅, and therefore,

∪
U

is α-Scott open. Hence, τα is a topology. �

Definition 3.19. The topology τα defined in Proposition 3.18 is the α-
Scott topology on the L-preset (X,R) or just X. •

Lemma 3.20. Let (X,R) be an L-preset; let α ∈ L; and let a ∈ X. Let
↓αa = {x ∈ X |R(x, a) ≥ α}, and let U = X−↓αa. Then U is an α-Scott
open subset of X. •

Proof: Suppose that c, d ∈ X such that c ∈ U and R(c, d) ≥ α. If d ̸∈ U ,
then d ∈ ↓αa which means that R(d, a) ≥ α. Since R(c, d) ≥ α and
R(d, a) ≥ α, then R(c, a) ≥ R(c, d)∧R(d, a) ≥ α. Therefore, c ∈ ↓αa and
c ̸∈ U . This contradiction shows that d ∈ U , and thus, U is α-up-closed.

Suppose that D is an α-directed subset of X and that
⊔

αD ∈ U . If
D∩U = ∅, then D ⊂ ↓αa. If D ⊂ ↓αa, then clearly a is an α-upper bound
for D. Since

⊔
αD is an α-least upper bound for D, then R(

⊔
αD, a) ≥ α.

Therefore,
⊔

αD ∈ ↓αa, and
⊔

αD ̸∈ U . This contradiction shows that
D ∩ U ̸= ∅, and hence, U is α-Scott open. �

Lemma 3.21. Let (X,R) and (Y, S) be L-presets; let α ∈ L; and let
f : (X, τR) → (Y, τS) be continuous when τR and τS are the α-Scott
topologies on (X,R) and (Y, S), respectively. Then f : (X,R) → (Y, S) is
α-order-preserving. •

Proof. Let a, b ∈ X such that R(a, b) ≥ α, and let V ⊂ Y such that
V = Y − ↓αf(b). We claim that S(f(a), f(b)) ≥ α, i.e., we claim that
f(a) ∈ ↓αf(b). If this claim is false, then f(a) ∈ V , and if f(a) ∈ V , then
a ∈ f←(V ). However, since f is continuous with respect to τR and τS
and since V ∈ τS , then f←(V ) is α-Scott open in X, which means it is α-
up-closed. Therefore, since a ∈ f←(V ) and R(a, b) ≥ α, then b ∈ f←(V ).
However, this would imply that f(b) ∈ V , which is not true. Therefore,
f(a) ∈ ↓αf(b), and S(f(a), f(b)) ≥ α, i.e., f is α-order-preserving. �
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Theorem 3.22. Let (X,R) and (Y, S) be L-presets; let α ∈ L; and let
f : X → Y be a function. f : (X,R) → (Y, S) is α-Scott continuous if
and only if f : (X, τR) → (Y, τS) is continuous when τR and τS are the
α-Scott topologies on (X,R) and (X,S), respectively. •

Proof. Suppose f : (X,R) → (Y, S) is α-Scott continuous. Let V ∈ τS .
We claim that f←(V ) ∈ τR. Thus, we need to show that f←(V ) is α-
up-closed and that f←(V ) behaves correctly with respect to least upper
bounds of α-directed subsets in (X,R).

Suppose that a, b ∈ X, that R(a, b) ≥ α, and that a ∈ f←(V ). By
Proposition 3.15, S(f(a), f(b)) ≥ α. Since f(a) ∈ V and since V is α-up-
closed, then f(b) ∈ V . Hence, b ∈ f←(V ), and f←(V ) is α-up-closed.

Suppose that D is an α-directed subset of X, that
⊔

αD exists, and that⊔
αD ∈ f←(V ). Then f(

⊔
αD) ∈ V . Further, f is α-Scott continuous,

then by Definition 3.13 f→(D) is an α-directed subset of Y , and f(
⊔

αD)
is an α-least upper bound of f→(D). Thus, f→(D) ∩ V ̸= ∅. Let d ∈ D
such that f(d) ∈ f→(D) ∩ V . Then d ∈ D ∩ f←(V ). It follows that
f←(V ) is α-Scott open in X, and f : (X, τR) → (Y, τS) is continuous with
respect to the α-topologies.

Now suppose that f : (X, τR) → (Y, τS) is continuous with respect
to the α-topologies. Further, suppose that D is an α-directed subset of
X and that

⊔
αD exists. We need to show that f(

⊔
αD) is an α-upper

bound for f→(D) and if y ∈ Y is an α-upper bound for f→(D), then
S(f(

⊔
αD), y) ≥ α.

By Lemma 3.21, f is α-order-preserving, and thus, f→(D) is α-directed,
and f(

⊔
αD) is an α-upper bound for f→(D).

Suppose that y ∈ Y is an α-upper bound for f→(D). Then f→(D) ⊂
↓αy.

Let U = Y −↓αy. Then U is α-Scott open in Y , and f←(U) is α-Scott
open in X. If we assume that f(

⊔
αD) ̸∈ ↓αy, then f(

⊔
αD) ∈ U , and⊔

αD ∈ f←(U). It then follows that D∩ f←(U) ̸= ∅, and therefore, there
exists d ∈ D with f(d) ∈ U . Thus, S(f(d), y) ̸≥ α, and f→(D) ̸⊂ ↓αy.
This contradiction shows that f(

⊔
αD) ∈ ↓αy and S(f(

⊔
αD), y) ≥ α. �

Notation 3.23. Let X be a set and (Y, S) an L-preset. Define RX→(Y,S) :
[X → Y ]× [X → Y ] → L by

RX→(Y,S)(f, g) =
∧

x∈X
S(f(x), g(x)).

Let (X,R) and (Y, S) be L-presets, and let α ∈ L. We let [X → Y ]α
or [(X,R) → (Y, S)]α denote the set of all α-Scott continuous functions
from (X,R) to (Y, S). •
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Lemma 3.24. Let X be a set and (Y, S) an L-preset. Then ([X →
Y ], RX→(Y,S)) is an L-preset. If (Y, S) is an L-poset, then so is ([X →
Y ], RX→(Y,S)). •

Proof. Let f ∈ [X → Y ]. Since ∀x ∈ X, S(f(x), f(x)) = ⊤L, then we
have RX→(Y,S)(f, f) = ⊤L.

Let f, g, h ∈ [X → Y ].

RX→(Y,S)(f, g) ∧RX→(Y,S)(g, h) =

(
∧

x∈X
S(f(x), g(x))) ∧ (

∧
x∈X

S(g(x), h(x))) =∧
x∈X

(S(f(x), g(x)) ∧ S(g(x), h(x))) ≤∧
x∈X

S(f(x), h(x)) =

RX→(Y,S)(f, h).

Let f, g ∈ [X → Y ]. If

RX→(Y,S)(f, g) ∧RX→(Y,S)(g, f) = ⊤L,

then ∀x ∈ X,
S(f(x), g(x)) ∧ S(g(x), f(x)) = ⊤L,

and therefore, for ∀x ∈ X, f(x) = g(x). Hence, f = g. �
Lemma 3.25. Let (X,R) be an L-preset, x ∈ X, α ∈ L, (Y, S) an α-
cpro, and D an α-directed subset of ([(X,R) → (Y, S)]α, RX→(Y,S)). Then
Dx 7→ is an α-directed subset of Y . •
Proof. Let {f1, . . . , fn} be an arbitrary finite subset of D. It follows that
{f1(x), . . . , fn(x)} is a finite subset of Y . Since {f1, . . . , fn} is a finite
subset of D, there exists f ∈ D such that for each i, RX→(Y,S)(fi, f) ≥ α.
Therefore, for each i, S(fi(x), f(x)) ≥ α, and thus, Dx 7→ is an α-directed
subset of Y . �

In the proof of the next theorem, the axiom of choice is used in the
definition of the function h.

Theorem 3.26. Let (X,R) be an L-preset; let α ∈ L; and let (Y, S) be
an α-cpro. Then ([(X,R) → (Y, S)]α, RX→(Y,S)) is also an α-cpro. •

Proof: Let ⊥(Y,S)α be an α-bottom element of (Y, S), and define ⊥[X→Y ]α :
(X,R) → (Y, S) by ⊥[X→Y ]α(x) = ⊥(Y,S)α , for all x ∈ X. Then ⊥[X→Y ]α

is an α-bottom element of [X → Y ]α because ∀y ∈ Y, S(⊥(Y,S)α , y) ≥ α.
Let D be an α-directed subset of ([(X,R) → (Y, S)], RX→(Y,S)). For

each x ∈ X, Dx7→ is an α-directed subset of Y , and thus,
⊔

αDx 7→ exists
because (S, Y ) is an α-cpro. Define h : (X,R) → (Y, S) so that ∀x ∈ X,

(3.1) h(x) =
⊔

α
Dx 7→.
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We claim that h is α-Scott continuous and that h =
⊔

αD.

Let a, b ∈ X with R(a, b) ≥ α. For each f ∈ D, S(f(a), f(b)) ≥ α
because f is α-Scott continuous. Since for each f ∈ D, S(f(b),

⊔
αDb7→) ≥

α, then by the L-transitivity of S, S(f(a),
⊔

αDb7→) ≥ α for each f ∈ D.
Thus,

⊔
αDb 7→ is an α-upper bound for Da7→, and therefore, it follows

that S(
⊔

αDa7→,
⊔

αDb 7→) ≥ α. Hence, S(h(a), h(b)) ≥ α, and h is α-
order-preserving.

Let E be an α-directed subset of (X,R) such that
⊔

αE exists. Since
h is α-order-preserving, then h→(E) is an α-directed subset of (Y, S) and
h(
⊔

αE) is an α-upper bound for h→(E).

Let y ∈ Y be an α-upper bound for h→(E). Let f ∈ D, and let x ∈ X.
From Equation (3.1), we get S(f(x), h(x)) ≥ α. Therefore, for each x ∈ E,
S(f(x), h(x)) ≥ α, and thus, y is also an α-upper bound for f→(E). Thus,
since each f ∈ D is α-Scott continuous, we have S(f(

⊔
αE), y) ≥ α.

Since D is an α-directed subset of ([(X,R) → (Y, S)], RX→(Y,S)) and
since

⊔
αE ∈ X, then D⊔

αE 7→ is an α-directed subset of Y , and since
(Y, S) is an α-cpro, then

⊔
α(D

⊔
αE 7→) exists. Since for each f ∈ D,

S(f(
⊔

αE), y) ≥ α, then S(
⊔

α(D
⊔

αE 7→), y) ≥ α, i.e., S(h(
⊔

αE), y) ≥ α.
It follows that, h(

⊔
αE) is an α-least upper bound of h→(E), and h is

α-Scott continuous.

We have yet to show that h is
⊔

αD.

Let f ∈ D. For each x ∈ X, S(f(x),
⊔

αDx7→) ≥ α, and thus,
RX→(Y,S)(f, h) ≥ α. Suppose l ∈ [(X,R) → (Y, S)]α with RX→(Y,S)(k, l)
≥ α for each k ∈ D. It follows for each x ∈ X and each k ∈ D, that
S(k(x), l(x)) ≥ α, and therefore, S(

⊔
αDx 7→, l(x)) ≥ α, for all x ∈ X, i.e.,

S(h(x), l(x)) ≥ α for all x ∈ X. Hence, RX→(Y,S)(h, l) ≥ α, and h is an
α-least upper bound of D. �

4. Conclusion

Working in an L-preordered setting, we have defined Scott continuous
functions and domain theory-like function spaces with properties which
may potentially allow for a fully developed domain theory in a many-
valued setting. We have further shown that our generalized setting for
defining Scott continuous functions is in some sense maximal. Also, we
have shown that when working with L-presets, then our antisymmetry
condition and the one of Lai and Zhang [6] are equivalent.

We want to thank the referee for many helpful comments and sugges-
tions.
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