TOPOLOGY PROCEEDINGS Volume 47, 2016 Pages 81–88

http://topology.nipissingu.ca/tp/

OK-extendible filters on ω

by Andrés Millán

Electronically published on April 14, 2015

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

E-Published on April 14, 2015

OK-EXTENDIBLE FILTERS ON ω

ANDRÉS MILLÁN

ABSTRACT. In this note we prove that every meager filter can be extended to an OK-point and that there are 2^c-many nonmeager and null filters having OK-point extensions as well. These results generalize a construction by K. Kunen. Also, we notice that is consistent with ZFC that some measure zero filters cannot have OK-point extensions. Finally, we prove that despite of the fact that there exist 2^c-many OK-points, its generic existence is independent of the axioms of ZFC.

1. Introduction

OK point ultrafilters were introduced by K. Kunen in [4] in order to prove that the remainder of the Stone-Čech compactification of ω is not homogeneous. Kunen constructed OK-points by using a system of infinite sets of ω with strong combinatorial properties. However, it was not clear for which kind of filters other than the cofinite filter that a similar construction could be performed. Also, it was shown in [4] that in ZFC, OK points are relatively abundant in the sense that there are 2°-many of them but, it was not obvious whether "small" filters could be extended to OK-points. The lack of interest about these issues could be attributed to the fact that papers [1], [2] and [6] had not yet been published and possibly those questions were not relevant at that time. This note can be considered as a first attempt to answer them.

Our notation and terminology is fairly standard. The cofinite filter will be denoted $\mathscr{F}_{cof} = \{A \subseteq \omega \colon |\omega \setminus A| < \omega\}$. Letters \mathscr{F} , \mathscr{G} and \mathscr{H} will always denote a filter containing \mathscr{F}_{cof} . Letters \mathscr{U} and \mathscr{V} will denote

²⁰¹⁰ Mathematics Subject Classification. Primary 03E05, 03E65, 04A20; Secondary 54A25.

Key words and phrases. OK-point, OK-extendible filter, OK-friendly filter.

Thanks to profesors K. Kunen and J. Roitman for sending me copies of their papers.

nonprincipal ultrafilters. The set of nonprincipal ultrafilters on ω will be denoted by ω^* . For any \mathscr{F} , let $\mathcal{I}_{\mathscr{F}} = \{A \subseteq X : X \setminus A \in \mathscr{F}\}$ be the dual ideal of \mathscr{F} and $\mathcal{I}_{\mathscr{F}}^+ = \mathcal{P}(X) \setminus \mathcal{I}_{\mathscr{F}}$. The filter generated by a family of sets \mathcal{A} will be denoted as $\langle \mathcal{A} \rangle$. Given \mathscr{F} we say that $\mathcal{B} \subseteq \mathscr{F}$ is a basis of \mathscr{F} if for every $F \in \mathscr{F}$ there is a $B \in \mathcal{B}$ such that $B \subseteq F$. If such a \mathcal{B} has size $<\mathfrak{c}$ we say that \mathscr{F} is $<\mathfrak{c}$ -generated. The character of an ultrafilter \mathscr{U} is defined as $\chi(\mathscr{U}) = \min\{|\mathcal{B}| : \mathcal{B} \subseteq \mathscr{U} \text{ and } \mathcal{B} \text{ is a basis}\}$. It is known that $\omega_1 \leq \chi(\mathscr{U}) \leq \mathfrak{c}$ for every $\mathscr{U} \in \omega^*$. If X is countably infinite 2^X will denote the set $\{f|f\colon X\to\{0,1\}\}$. This set can be topologized by taking the discrete topology on $\{0,1\}$ and then product topology on 2^X . Also, a probability measure can be defined on 2^X by taking the measure μ_0 on $\{0,1\}$ defined by $\mu_0(\{0\}) = \mu_0(\{1\}) = 1/2$ and then, the product measure. If $A \subseteq X$ then, χ_A denotes the characteristic function of A. A filter \mathscr{F} is either meager or null provided the set $\hat{\mathscr{F}} = \{\chi_A \in 2^X : A \in \mathscr{F}\}$ is. Letters \mathcal{M} y \mathcal{N} denote respectively the meager and null ideals on 2^{X} . If $A \subseteq \omega \times \omega$ and $n < \omega$ then, $(A)_n = \{m < \omega : (n, m) \in A\}$. Given \mathscr{F} and \mathscr{G} the Fubini product $\mathscr{F} \otimes \mathscr{G}$ is the filter defined by

$$\mathscr{F} \otimes \mathscr{G} = \{ A \subseteq \omega \times \omega \colon \{ n < \omega \colon (A)_n \in \mathscr{G} \} \in \mathscr{F} \}.$$

Notice that $\mathscr{V} \otimes \mathscr{U}$ is always an ultrafilter.

Finally, \mathfrak{d} and \mathfrak{b} will denote respectively the minimum size of a dominating and unbounded family on ω^{ω} , $\operatorname{cov}(\mathcal{M})$ the minimum size of a family of meager sets covering 2^{ω} and, $\mathfrak{u} = \min\{\chi(\mathscr{U}) \colon \mathscr{U} \in \omega^*\}$.

2. OK-EXTENDIBILITY

Definition 2.1 (K. Kunen [4]). A nonprincipal ultrafilter \mathscr{U} on ω is an OK-point if for every $\{L_n \colon n < \omega\} \subseteq \mathscr{U}$ there exists a sequence $\langle V_{\alpha} \in \mathscr{U} \colon \alpha < \mathfrak{c} \rangle$ such that for every $n \geq 1$ y $F \in [\mathfrak{c}]^n$

$$\bigcap_{\alpha \in F} V_{\alpha} \subseteq^* L_n.$$

If this is the case, we say that the sequence $\langle V_{\alpha} \in \mathcal{U} : \alpha < \mathfrak{c} \rangle$ is OK for $\{L_n : n < \omega\}$.

Notice that the terms of $\langle V_{\alpha} \in \mathcal{U} : \alpha < \mathfrak{c} \rangle$ are not necessarily different.

Proposition 2.2 (K. Kunen [4]). Every P-point is an OK-point.

Proof. If \mathscr{U} is a P-point and $\{L_n : n < \omega\} \subseteq \mathscr{U}$ there exists a $U \in \mathscr{U}$ such that $U \subseteq^* L_n$ for every $n < \omega$. Define $\langle V_\alpha \in \mathscr{U} : \alpha < \mathfrak{c} \rangle$ by making $V_\alpha = U$ for every $\alpha < \mathfrak{c}$.

Definition 2.3. A filter \mathscr{F} is OK-extendible provided there exists an OK-point \mathscr{U} such that $\mathscr{F} \subseteq \mathscr{U}$.

Definition 2.4 (K. Kunen [4]). An Independent Linked System with respect to \mathscr{F} (ILS w.r.t. \mathscr{F}) is a system $\{A_{\alpha,n}^{\beta}: \alpha, \beta < \mathfrak{c}; n \geq 1\}$ of infinite subsets of ω satisfying the following conditions:

- (a) $\forall \beta < \mathfrak{c}, n \geq 1, \ \sigma \in [\mathfrak{c}]^n, \ \tau \in [\mathfrak{c}]^{n+1}; \ \bigcap_{\alpha \in \sigma} A_{\alpha,n}^{\beta} \in \mathcal{I}_{\mathscr{F}}^+ \text{ and }$ $\bigcap_{\alpha \in \tau} A_{\alpha,n+1}^{\beta} \in [\omega]^{<\omega}.$ (b) $\forall \alpha, \beta < \mathfrak{c}, n \geq 1$ $A_{\alpha,n}^{\beta} \subseteq A_{\alpha,n+1}^{\beta}.$ (c) $\forall \tau \in [\mathfrak{c}]^{<\omega}, \beta \in \tau, n_{\beta} \geq 1, \sigma_{\beta} \in [\mathfrak{c}]^{n_{\beta}}, \bigcap_{\beta \in \tau} \bigcap_{\alpha \in \sigma_{\beta}} A_{\alpha,n_{\beta}}^{\beta} \in \mathcal{I}_{\mathscr{F}}^{+}.$

Definition 2.5. We call a filter \mathscr{F} , OK-friendly provided that there is an ILS w.r.t. to \mathscr{F} .

Theorem 2.6 (K. Kunen [4]). The filter \mathscr{F}_{cof} is OK-friendly.

Proof. (P. Simon [4]) Let $\mathcal{P}(\omega) = \{X_{\alpha} : \alpha < \mathfrak{c}\}\$ be an enumeration of $\mathcal{P}(\omega)$ and $S = \{(k, f): k < \omega \& f \in \mathcal{P}(\mathcal{P}(k))^{\mathcal{P}(k)}\}$. If we put

$$A_{\alpha,n}^{\beta} = \{(k,f) \in S \colon X_{\alpha} \cap k \in f(X_{\beta} \cap k) \& |f(X_{\beta} \cap k)| \le n\}.$$

then, $\{A_{\alpha,n}^\beta\colon \alpha,\beta<\mathfrak c;n\ge 1\}$ is an ILS w.r.t. $\mathscr F_{\mathrm{cof}}.$

The proof of the next theorem is that in [4] however, in that paper only extensions of \mathscr{F}_{cof} were considered.

Theorem 2.7. Every OK-friendly filter is OK-extendible.

Proof. (K. Kunen [4]) Fix and enumeration $\{B_{\mu} : \mu < \mathfrak{c} \text{ is even}\}\$ of $\mathcal{P}(\omega)$ and a listing $\langle C_n^{\mu} : n < \omega \rangle : \mu < \mathfrak{c}$ is odd of the decreasing sequences in $[\omega]^{\omega}$ where every sequence appears listed cofinally often. Let $\mathscr F$ be OKfriendly and let $\{A_{\alpha,n}^{\beta}: \alpha, \beta < \mathfrak{c}; n \geq 1\}$ an ILS w.r.t \mathscr{F} . We will construct families $\{\mathscr{F}_{\mu}: \mu < \mathfrak{c}\}$ and $\{K_{\mu}: \mu < \mathfrak{c}\}$ of filters on ω and subsets of \mathfrak{c} respectively satisfying the following conditions:

- (1) $\mathscr{F}_0 = \mathscr{F}$ and $K_0 = \mathfrak{c}$.
- (2) If $\mu < \nu < \mathfrak{c}$ then, $\mathscr{F}_{\mu} \subseteq \mathscr{F}_{\nu}$ and $K_{\nu} \subseteq K_{\mu}$. (3) If $\nu < \mathfrak{c}$ is limit, $\mathscr{F}_{\nu} = \bigcup_{\mu < \nu} \mathscr{F}_{\mu}$ and $K_{\nu} = \bigcap_{\mu < \nu} K_{\mu}$.
- (4) If $\mu < \mathfrak{c}$ then $|K_{\mu} \setminus K_{\mu+1}| < \omega$.
- (5) If μ < c is even then either B_μ ∈ F_{μ+1} or ω \ B_μ ∈ F_{μ+1}.
 (6) If μ < c is odd and {C^μ_n: n < ω} ⊆ F_μ there is a sequence $\langle D^\mu_\alpha \in \mathscr{F}_{\mu+1} \colon \alpha < \mathfrak{c} \rangle \text{ which is OK for } \{C^\mu_n \colon n < \omega\}.$
- (7) $\{A_{\alpha,n}^{\beta} : \alpha < \mathfrak{c}, \ \beta \in K_{\mu}; n \geq 1\}$ is an ILS w.r.t. \mathscr{F}_{μ} .

If this construction is possible put $\mathscr{U} = \bigcup_{\mu < \mathfrak{c}} \mathscr{F}_{\mu}$. Conditions (1) and (5) imply that \mathcal{U} is an ultrafilter extending \mathscr{F} and condition (6) that \mathcal{U} is an OK-point. Thus, we only need to show by induction that this construction can be carried out. By condition (3) this is obvious for the limit step. Therefore, suppose that \mathscr{F}_{μ} and K_{μ} are defined. We want to show how to perform the construction of $\mathscr{F}_{\mu+1}$ and $K_{\mu+1}$. If μ is even, the filter $\langle \mathscr{F}_{\mu} \cup \{B_{\mu}\} \rangle$ is proper and $\{A_{\alpha,n}^{\beta} : \alpha < \mathfrak{c}, \beta \in K_{\mu}; n \geq 1\}$ is an ILS w.r.t. $\langle \mathscr{F}_{\mu} \cup \{B_{\mu}\} \rangle$ put $\mathscr{F}_{\mu+1} = \langle \mathscr{F}_{\mu} \cup \{B_{\mu}\} \rangle$ and $K_{\mu+1} = K_{\mu}$. Otherwise, there exist $F \in \mathscr{F}_{\mu}$, $\tau \in [K_{\mu}]^{<\omega}$, $n_{\beta} \geq 1$ and $\sigma_{\beta} \in [\mathfrak{c}]^{n_{\beta}}$ for each $\beta \in \tau$ such that

$$F \cap B_{\mu} \cap \bigcap_{\beta \in \tau} \bigcap_{\alpha \in \sigma_{\beta}} A_{\alpha, n_{\beta}}^{\beta} = \emptyset.$$

Then put $K_{\mu+1} = K_{\mu} \setminus \tau$ and let $\mathscr{F}_{\mu+1}$ be the filter generated by \mathscr{F}_{μ} and $\bigcap_{\beta \in \tau} \bigcap_{\alpha \in \sigma_{\beta}} A_{\alpha,n_{\beta}}^{\beta}$. Notice that in this case, $\omega \setminus B_{\mu} \in \mathscr{F}_{\mu+1}$. If μ is odd and there is a C_{n}^{μ} not in \mathscr{F}_{μ} then, put $\mathscr{F}_{\mu+1} = \mathscr{F}_{\mu}$ and $K_{\mu+1} = K_{\mu}$. Otherwise, by condition (4) $K_{\mu} \neq \emptyset$. Thus pick $\beta \in K_{\mu}$. Let

$$D^\mu_\alpha = \left(\bigcap_{n<\omega} C^\mu_n\right) \cup \left(\bigcup_{m\geq 1} A^\beta_{\alpha,m} \cap (C^\mu_m \setminus C^\mu_{m+1})\right) \text{ for every } \alpha < \mathfrak{c}.$$

The union on the right is infinite because it contains $A_{\alpha,1}^{\beta} \cap C_1^{\mu} \in \mathcal{I}_{\mathscr{F}_{\mu}}^+$. Thus, D_{α}^{μ} is infinite for every $\alpha < \mathfrak{c}$. We are going to check that if $F \in [\mathfrak{c}]^n$ and $n \geq 1$ then, $|\bigcap_{\alpha \in F} D_{\alpha}^{\mu} \setminus C_n^{\mu}| < \omega$. This is true if n = 1 because $D_{\alpha}^{\mu} \setminus C_1^{\mu} = \emptyset$. Suppose that n > 1. We check that $\bigcap_{\alpha \in F} D_{\alpha}^{\mu} \setminus C_n^{\mu} \subseteq \bigcap_{\alpha \in F} A_{\alpha,n-1}^{\beta}$. If $x \in \bigcap_{\alpha \in F} D_{\alpha}^{\mu} \setminus C_n^{\mu}$ then, $x \notin C_n^{\mu}$ and for every $\alpha \in F$ there is a $m_{\alpha} \geq 1$ such that x is in $A_{\alpha,m_{\alpha}}^{\beta} \cap (C_{m_{\alpha}}^{\mu} \setminus C_{m_{\alpha+1}}^{\mu})$. Notice that $m_{\alpha} < n$ for every $\alpha \in F$ otherwise, we get a contradiction because $x \notin C_n^{\mu}$. So, $x \in \bigcap_{\alpha \in F} A_{\alpha,m_{\alpha}}^{\beta} \subseteq \bigcap_{\alpha \in F} A_{\alpha,n-1}^{\beta}$. Since this last intersection is finite by clause (a) in Definition 2.4 we get that the sequence $\langle D_{\alpha}^{\mu} \colon \alpha < \mathfrak{c} \rangle$ is OK for $\{C_n^{\mu} \colon n < \omega\}$. To verify condition (7) it is enough to notice that $A_{\alpha,m}^{\beta} \cap C_m^{\mu} \subseteq D_{\alpha}^{\mu}$ for every $m \geq 1$.

Corollary 2.8. Every OK-friendly filter can be extended to $2^{\mathfrak{c}}$ -many OK-points which are not P-points.

Proof. Let \mathscr{F} be OK-friendly and let $\{A_{\alpha,n}^{\beta}: \alpha, \beta < \mathfrak{c}; n \geq 1\}$ be an ILS w.r.t. \mathscr{F} . Fix $Z \subseteq \mathfrak{c}$ such that $|Z| = |\mathfrak{c} \setminus Z| = \mathfrak{c}$ and $Z_0 \in [Z]^{\omega}$. For each $h: Z \to \mathfrak{c}$ let \mathscr{F}_h be the filter generated by \mathscr{F} , $\{A_{h(\xi),1}^{\xi}: \xi \in Z\}$ and the family $\{\omega \setminus Y: \forall \xi \in Z_0 \mid Y \setminus A_{h(\xi),1}^{\xi}| < \omega\}$. Then, $\mathscr{F} \subseteq \mathscr{F}_h$, the family $\{A_{\alpha,n}^{\beta}: \alpha < \mathfrak{c}, \beta \in \mathfrak{c} \setminus Z; n \geq 1\}$ is an ILS w.r.t. \mathscr{F}_h and, \mathscr{F}_h cannot be extended to a P-point. Notice that if $h_1 \neq h_2$ and $h_1(\xi) \neq h_2(\xi)$ then $|A_{h_1(\xi),1}^{\xi} \cap A_{h_2(\xi),1}^{\xi}| < \omega$. Thus, $A_{h_1(\xi),1}^{\xi} \in \mathscr{F}_{h_1}$ and $\omega \setminus A_{h_1(\xi),1}^{\xi} \in \mathscr{F}_{h_2}$. Therefore, the extensions of \mathscr{F}_{h_1} and \mathscr{F}_{h_2} must be different. Since there are $\mathfrak{c}^{|Z|} = 2^{\mathfrak{c}}$ -many of such functions h we are done.

Proposition 2.9 (M. Talagrand [6]). A filter \mathscr{F} on ω is meager if and only if there exists a partition $\{I_i: i < \omega\}$ of ω into finite sets such that every member \mathscr{F} intersects every I_i except for finitely many of them.

Theorem 2.10. Every meager filter is OK-friendly therefore, it is OK-extendible. In particular, every analytic filter is OK-friendly.

Proof. Let \mathscr{F} be a meager filter and let $\{I_i \colon i < \omega\}$ be a partition as in Proposition 2.9. Let $\{A_{\alpha,n}^{\beta} \colon \alpha, \beta < \mathfrak{c}; n \geq 1\}$ be an ILS w.r.t. \mathscr{F}_{cof} and put $B_{\alpha,n}^{\beta} = \bigcup \{I_i \colon i \in A_{\alpha,n}^{\beta}\}$ for every $\alpha, \beta < \mathfrak{c}$ and $n \geq 1$. Then, $\{B_{\alpha,n}^{\beta} \colon \alpha, \beta < \mathfrak{c}; n \geq 1\}$ satisfies clauses (a), (b) and (c) in Definition 2.2 because $\{A_{\alpha,n}^{\beta} \colon \alpha, \beta < \mathfrak{c}; n \geq 1\}$ does.

Corollary 2.11. Every $< \mathfrak{b}$ -generated filter is OK-friendly and $\mathfrak{b} = \mathfrak{c}$ implies that every $< \mathfrak{c}$ -generated filter is OK-friendly.

Proof. This is because every $< \mathfrak{b}$ -generated filter is meager.

Lemma 2.12. Let X be a countable set, \mathscr{U} an ultrafilter and $\{S_k : k < \omega\}$ a partition of X into finite subsets such that $\sum_{k < \omega} 2^{-|S_k|} < \infty$. If

$$\mathscr{F}_{\mathscr{U}} = \{ A \subseteq X : \{ k < \omega \colon S_k \subseteq A \} \in \mathscr{U} \}$$

then, $\mathscr{F}_{\mathscr{U}}$ is a filter in $\mathcal{N} \setminus \mathcal{M}$.

Proof. Let $Z_k = \{\chi_A \in 2^X \colon S_k \subseteq A\}$ for every $k < \omega$. Then, $\mu(Z_k) = 2^{-|S_k|}$ for every $k < \omega$ and, $\mathscr{F}_{\mathscr{U}} \subseteq \bigcap_{n < \omega} \bigcup_{k \geq n} Z_k \in \mathscr{N}$. To see that $\mathscr{F}_{\mathscr{U}}$ is not meager let $\{I_i \colon i < \omega\}$ be a partition of X into finite sets and let $\{J_r \colon r < \omega\}$ be a partition of ω into finite sets such that for every $r < \omega$ there is an $i < \omega$ such that $I_i \subseteq \bigcup \{S_k \colon k \in J_r\}$. Since \mathscr{U} is an ultrafilter either $\bigcup_{r < \omega} J_{2r} \in \mathscr{U}$ or $\bigcup_{r < \omega} J_{2r+1} \in \mathscr{U}$. Say $\bigcup_{r < \omega} J_{2r} \in \mathscr{U}$ and let $X = \bigcup \{S_k \colon k \in \bigcup_{r < \omega} J_{2r}\}$. Then, $X \in \mathscr{F}_{\mathscr{U}}$ and $X \cap I_i = \emptyset$ for every $I_i \subseteq \bigcup \{S_k \colon k \in \bigcup_{r < \omega} J_{2r+1}\}$. Thus, $\mathscr{F}_{\mathscr{U}} \notin \mathscr{M}$ by Proposition 2.9.

Theorem 2.13. There are $2^{\mathfrak{c}}$ -many measurable, OK-friendly and non-meager filters on ω .

Proof. Put $S_k = \{k\} \times \mathcal{P}(\mathcal{P}(k))^{\mathcal{P}(k)}$ and $X = \bigcup \{S_k \colon k < \omega\}$. Then, $\{S_k \colon k < \omega\}$ is a disjoint family of finite subsets of X with $|S_k| = 2^{2^{2k}}$ for every $k < \omega$. Thus, $\sum_{k < \omega} 2^{-|S_k|} < \infty$. If \mathscr{U} is arbitrary let $\mathscr{F}_{\mathscr{U}}$ be the filter $\mathscr{F}_{\mathscr{U}} = \{A \subseteq X \colon \{k < \omega \colon S_k \subseteq A\} \in \mathscr{U}\}$. Then, $\mathscr{F}_{\mathscr{U}} \in \mathcal{N} \setminus \mathcal{M}$. Consider the family $\{A_{\alpha,n}^{\beta} \colon \alpha, \beta < \mathfrak{c}; n \ge 1\}$ defined in the proof of Theorem 2.2. We will check only that condition (c) in definition 2.4 holds. Let $\tau \in [\mathfrak{c}]^{<\omega}$, and for every $\beta \in \tau$, let $1 \le n_{\beta} < \omega$ and $\sigma_{\beta} \in [\mathfrak{c}]^{n_{\beta}}$.

Pick $U \in \mathscr{U}$ and $k_0 \in U$ so big that (i) $\forall \beta, \beta' \in \tau$ such that $\beta \neq \beta'$, $X_{\beta} \cap k_0 \neq X_{\beta'} \cap k_0$ and (ii) $\forall \beta \in \tau, \forall \alpha \in \sigma_{\beta} \mid \{X_{\alpha} \cap k_0 : \alpha \in \sigma_{\beta}\} \mid = n_{\beta}$. Then, for $k \in U$ and $k \geq k_0$ define a function $f_k : \mathcal{P}(k) \to \mathcal{P}(\mathcal{P}(k))$ by

$$f_k(Z) = \begin{cases} \{X_{\alpha} \cap k \colon \alpha \in \sigma_{\beta}\} & \text{if } Z = X_{\beta} \cap k \text{ for some } \beta \in \tau \\ \emptyset & \text{otherwise.} \end{cases}$$

Then, $(k, f_k) \in \bigcap_{\beta \in \tau} \bigcap_{\alpha \in \sigma_{\beta}} A_{\alpha, n_{\beta}}^{\beta} \cap S_k$. Therefore, given $X \in \mathscr{F}_{\mathscr{U}}$ then, $U = \{k < \omega \colon S_k \subseteq X\} \in \mathscr{U}$. Thus, $(k, f_k) \in \bigcap_{\beta \in \tau} \bigcap_{\alpha \in \sigma_{\beta}} A_{\alpha, n_{\beta}}^{\beta} \cap S_k$ for all but finitely many $k \in U$. So, $\bigcap_{\beta \in \tau} \bigcap_{\alpha \in \sigma_{\beta}} A_{\alpha, n_{\beta}}^{\beta} \in \mathcal{I}_{\mathscr{F}_{\mathscr{U}}}^+$. Since there are $2^{\mathfrak{c}}$ -many nonprincipal ultrafilters on ω we are done.

Proposition 2.14 (T. Bartoszynski/S. Shelah [1]). If $M \models$ "ZFC + $\mathfrak{c} = \omega_2$ " then there exists $\mathbb{P} \in M$ such that in M, \mathbb{P} is a support finite iteration of c.c.c forcing notions in ω_1 stages such that if G is a \mathbb{P} -generic filter over M then

$$M[G] \models \text{``ZFC} + \mathfrak{c} = \omega_2 + \exists \ \mathbf{U} \in [\omega^*]^{\omega_1} \ such \ that \ \bigcap \mathbf{U} \in \mathcal{N}.$$
"

Lemma 2.15. Let U be a family of ultrafilters on ω such that $|U| < \mathfrak{c}$. If \mathscr{F} is arbitrary, then $\mathscr{F} \otimes \bigcap U$ is not OK-extendible.

Proof. Put $L_n = \bigcup \{\{i\} \times \omega \colon i > n\}$ for every $n < \omega$ and let $\mathscr V$ be an ultrafilter extending $\mathscr F \otimes \bigcap \mathbf U$. Notice that $\{L_n \colon n < \omega\} \subseteq \mathscr V$. We claim that no sequence $\langle V_\alpha \in \mathscr V \colon \alpha < \mathfrak c \rangle$ is OK for $\{L_n \colon n < \omega\}$. In fact, we can find an uncountable $X \subseteq \mathfrak c$, an $\mathscr U \in \mathbf U$ and $n \geq 1$ such that $\forall \alpha \in X$, $(V_\alpha)_n \in \mathscr U$. If $F \in [X]^n$ then, $|(\bigcap_{\alpha \in F} V_\alpha)_n| = |\bigcap_{\alpha \in F} (V_\alpha)_n| = \omega$. Thus, $|\bigcap_{\alpha \in F} V_\alpha \setminus L_n| = \omega$ and $\langle V_\alpha \in \mathscr U \colon \alpha < \mathfrak c \rangle$ is not OK for $\{L_n \colon n < \omega\}$. \square

The next lemma is a consequence of a more general theorem by M. Talagrand (see [6], Proposition 15). For the sake of the paper we give a self-contained proof.

Lemma 2.16. If $\mathscr{G} \in \mathcal{N}$ and \mathscr{F} is any filter then, $\mathscr{F} \otimes \mathscr{G} \in \mathcal{N}$.

Proof. Let μ_1 and μ_2 be the standard measures on 2^ω and $2^{\omega\times\omega}$ respectively. If $n<\omega$ let $f_n\colon 2^{\omega\times\omega}\to 2^\omega$ be defined by $f_n(\chi_A)=\chi_{(A)_n}$. Then, f_n is continuous and, for every basic open set $O\subseteq 2^\omega$, $f_n^{-1}[O]\subseteq 2^{\omega\times\omega}$ is a basic open set such that $\mu_2(f_n^{-1}[O])=\mu_1(O)$. Thus, $f_n^{-1}[X]$ is a μ_2 -null set provided X is μ_1 -null. Since $\mathscr{H}\subseteq \bigcap_{n<\omega}\bigcup_{k\geq n}f_k^{-1}[\mathscr{G}]$ we are done. \square

Proposition 2.17 (J. Roitman [5]). *P-points exist in iterated c.c.c forcing extensions whose length has uncountable cofinality.*

Theorem 2.18. There exists a model N of $\mathsf{ZFC} + \mathfrak{c} = \omega_2$ such that in N there are filters $\mathscr{F}_1, \mathscr{F}_2 \in \mathcal{N}$ with \mathscr{F}_1 not OK -extendible and \mathscr{F}_2 OK -extendible but not OK -friendly.

Proof. Let N=M[G] and $\{\mathscr{U}_{\alpha}\colon \alpha<\omega_1\}$ be the model and the family of ultrafilters described in Proposition 2.14. Then, $\bigcap_{\alpha<\omega_1}\mathscr{U}_{\alpha}\in\mathcal{N}$. If \mathscr{F} is any filter then, $\mathscr{F}_1=\mathscr{F}\otimes\bigcap_{\alpha<\omega_1}\mathscr{U}_{\alpha}\in\mathcal{N}$ by Lemma 2.16 and it is not OK-extendible by Lemma 2.15. In order to construct \mathscr{F}_2 notice that we are in the situation of Proposition 2.17. Therefore, let $\mathscr{U}_{\omega_1}\in M[G]$ be a P-point. Put $\mathscr{F}_2=\bigcap_{\alpha\leq\omega_1}\mathscr{U}_{\alpha}$. Then, $\mathscr{F}_2\subseteq\mathscr{U}_{\omega_1},\,\mathscr{F}_2\in\mathcal{N}$ and \mathscr{F}_2 is OK-extendible by Proposition 2.2. To see that \mathscr{F}_2 is not OK-friendly notice that if $\{A_\xi\colon \xi<\mathfrak{c}\}\subseteq \mathscr{I}_{\mathscr{F}_2}^+$ then there is an $\alpha\leq\omega_1$ and an uncountable $X\subseteq\mathfrak{c}$ such that $A_\xi\in\mathscr{U}_{\alpha}$ for every $\xi\in X$. Thus, if $n\geq 1$ and $F\in[X]^n$ then $\bigcap_{\xi\in F}A_\xi\in\mathscr{U}_{\alpha}$ and $|\bigcap_{\xi\in F}A_\xi|=\omega$. Hence, there is no ILS w.r.t.

3. Generic Existence

Definition 3.1 (R. M. Canjar [2]). Let $\mathscr C$ be a class of ultrafilters. The ultrafilters from $\mathscr C$ generically exist provided every $< \mathfrak c$ -generated filter can be extended to an ultrafilter in $\mathscr C$.

We abbreviate $GE(\mathscr{C}, \mathfrak{c})$ the statement "ultrafilters in \mathscr{C} generically exist". The next two propositions relate the generic existence of P-points and selective ultrafilters with certain cardinal invariants. Here, P and S stand for the class of P-points and selective ultrafilters respectively.

Proposition 3.2 (J. Ketonen [3]).

$$GE(P, \mathfrak{c}) \Leftrightarrow \mathfrak{d} = \mathfrak{c}.$$

Proposition 3.3 (R. M. Canjar [2]).

$$GE(S, \mathfrak{c}) \Leftrightarrow cov(\mathcal{M}) = \mathfrak{c}.$$

Lemma 3.4. Given \mathscr{F} and \mathscr{U} the filter $\mathscr{F} \otimes \mathscr{U}$ is not OK-extendible. Moreover, if \mathscr{U} is a P-point then $\chi(\mathscr{F} \otimes \mathscr{U}) \leq \max\{\chi(\mathscr{F}), \chi(\mathscr{U}), \mathfrak{d}\}$. In particular $\mathscr{U} \otimes \mathscr{U}$ is not an OK-point and $\chi(\mathscr{U} \otimes \mathscr{U}) = \max\{\chi(\mathscr{U}), \mathfrak{d}\}$ provided \mathscr{U} is a P-point.

Proof. The first part follows from Lemma 2.15 by taking $\mathbf{U} = \{\mathcal{U}\}$. Let $\{F_{\xi} : \xi < \chi(\mathscr{F})\}$ and $\{U_{\eta} : \eta < \chi(\mathscr{U})\}$ be bases of \mathscr{F} and \mathscr{U} respectively and let $\{f_{\gamma} : \gamma < \mathfrak{d}\}$ be a dominating family in ω^{ω} . Consider the family $\{V_{\xi,\eta,\gamma} : \xi < \chi(\mathscr{F}), \eta < \chi(\mathscr{U}), \gamma < \mathfrak{d}\}$ where $V_{\xi,\eta,\gamma}$ is defined by $V_{\xi,\eta,\gamma} = \bigcup \{\{n\} \times (U_{\eta} \setminus f_{\gamma}(n)) : n \in F_{\xi}\}$. This is a basis of $\mathscr{F} \otimes \mathscr{U}$.

In reference [4] K. Kunen constructed an OK-point and he explained how to modify that construction to get it not P-point and \mathfrak{c} -generated. The next lemma shows that we have only to worry about the not P-point condition.

Lemma 3.5. If $\mathscr U$ is an OK-point but not a P-point, then, $\chi(\mathscr U)=\mathfrak c.$

Proof. If $\mathscr U$ is not a P-point then, there is a partition $\mathcal P=\{P_n\colon n<\omega\}$ of ω such that $\mathcal P\cap\mathscr U=\emptyset$ and for every $U\in\mathscr U$, $|U\cap P_n|=\omega$ for infinitely many $n<\omega$. Therefore, $\{L_n\colon n<\omega\}\subseteq\mathscr U$ provided $L_n=\bigcup\{P_i\colon i>n\}$. Suppose that $\chi(\mathscr U)<\mathfrak c$ and let $\{U_\xi\colon \xi<\chi(\mathscr U)\}$ be a base for $\mathscr U$. There exist an uncountable $X\subseteq\mathfrak c$ and a $\xi<\chi(\mathscr U)$ such that $U_\xi\subseteq V_\alpha$ for every $\alpha\in X$. Since $U_\xi\in\mathscr U$, there is an $n\geq 1$ such that $|U_\xi\cap P_n|=\omega$. If $F\in[X]^n$ then, $U_\xi\subseteq\bigcap_{\alpha\in F}V_\alpha$ and $|\bigcap_{\alpha\in F}V_\alpha\setminus L_n|=\omega$. Thus, no sequence $\langle V_\alpha\in\mathscr U:\alpha<\mathfrak c\rangle$ can be OK for $\{L_n\colon n<\omega\}$.

Theorem 3.6.

$$\mathfrak{d} = \mathfrak{c} \Rightarrow GE(OK, \mathfrak{c}) \Rightarrow max\{\mathfrak{u}, \mathfrak{d}\} = \mathfrak{c}.$$

Proof. The implication on the left follows from Propositions 2.2 and 3.2. To prove the implication on the right suppose by the way of contradiction, that $GE(OK,\mathfrak{c})$ holds but $\max\{\mathfrak{u},\mathfrak{d}\}<\mathfrak{c}$. Let $\mathscr U$ be such that $\chi(\mathscr U)=\mathfrak{u}<\mathfrak{c}$. Then, $\mathscr U$ is an OK-point. Moreover, $\mathscr U$ must be a P-point because if otherwise, $\chi(\mathscr U)=\mathfrak{c}$ by Lemma 3.5 and this is impossible. By Lemma 3.4 $\chi(\mathscr U\otimes\mathscr U)\leq \max\{\mathfrak{u},\mathfrak{d}\}<\mathfrak{c}$ therefore, $\mathscr U\otimes\mathscr U$ is OK and this contradicts Lemma 3.4.

Corollary 3.7. $GE(OK, \mathfrak{c})$ is independent of the axioms of ZFC.

Proof. The identity $\mathfrak{d}=\mathfrak{c}$ holds for example, in any model of ZFC + MA + $\mathfrak{c}>\omega_2$. On the other hand, in the model of ZFC obtained by iterating Sacks reals with countable supports over a model of ZFC + CH all the cardinal invariants of the continuum are equal to ω_1 but $\mathfrak{c}=\omega_2$. Therefore, in that model "max $\{\mathfrak{u},\mathfrak{d}\}=\omega_1<\mathfrak{c}$ ".

References

- [1] Tomek Bartoszynski, Saharon Shelah The intersection of $< 2^{\aleph_0}$ ultrafilters may have measure zero, Archive for Math. Logic **31** (1992), no. 4, 221–226.
- [2] R. Michael Canjar On the generic existence of special ultrafilters, Proc. Amer. Math. Soc. 110 (1990), no. 1, 233–241.
- [3] Jussi Ketonen P-points in the Stone-Čech compactifications of integers, Fund. Math. 92, (1976) 91–94.
- [4] Kenneth Kunen Weak P-points in N*, Colloq. Math. Sco. Janos Bolyai, 23, 1980, 741–749.
- [5] Judy Roitman, P-points in iterated forcing extensions, Proc. Amer. Math. Soc. 69, no 2 May, (1978), 114–118.
- [6] Michael Talagrand, Compacts de fonctions mesurables et filtres nonmesurables, Studia Math. 67, 1980, 13–43.

DEPARTMENTO OF MATEMÁTICAS; UNIVERSIDAD METROPOLITANA; LA URBINA NORTE; 1070-76810; CARACAS, VENEZUELA

E-mail address: amillan@unimet.edu.ve