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OK-EXTENDIBLE FILTERS ON w

ANDRES MILLAN

ABsTRACT. In this note we prove that every meager filter can be
extended to an OK-point and that there are 2°-many nonmeager
and null filters having OK-point extensions as well. These results
generalize a construction by K. Kunen. Also, we notice that is
consistent with ZFC that some measure zero filters cannot have
OK-point extensions. Finally, we prove that despite of the fact that
there exist 2°-many OK-points, its generic existence is independent
of the axioms of ZFC.

1. INTRODUCTION

OK point ultrafilters were introduced by K. Kunen in [4] in order to
prove that the remainder of the Stone-Cech compactification of w is not
homogeneous. Kunen constructed OK-points by using a system of infi-
nite sets of w with strong combinatorial properties. However, it was not
clear for which kind of filters other than the cofinite filter that a similar
construction could be performed. Also, it was shown in [4] that in ZFC,
OK points are relatively abundant in the sense that there are 2°-many of
them but, it was not obvious whether “small” filters could be extended
to OK-points. The lack of interest about these issues could be attributed
to the fact that papers [1], [2] and [6] had not yet been published and
possibly those questions were not relevant at that time. This note can be
considered as a first attempt to answer them.

Our notation and terminology is fairly standard. The cofinite filter
will be denoted Feorf = {A C w: |w\ 4] < w}. Letters &, 4 and
will always denote a filter containing Z.¢. Letters % and ¥ will denote
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nonprincipal ultrafilters. The set of nonprincipal ultrafilters on w will be
denoted by w*. For any %, let Tz = {AC X: X \ A € Z} be the dual
ideal of .Z and I}, = P(X)\ Zz. The filter generated by a family of sets
A will be denoted as (A). Given .# we say that B C .% is a basis of .#
if for every F' € % there is a B € B such that B C F. If such a B has
size < ¢ we say that % is < c-generated. The character of an ultrafilter
% is defined as x(%) = min{|B|: B C % and B is a basis}. It is known
that w1 < x(%) < ¢ for every % € w*. If X is countably infinite 2%
will denote the set {f|f: X — {0,1}}. This set can be topologized by
taking the discrete topology on {0, 1} and then product topology on 2X.
Also, a probability measure can be defined on 2X by taking the measure
to on {0,1} defined by po({0}) = uo({1}) = 1/2 and then, the product
measure. If A C X then, x4 denotes the characteristic function of 4. A
filter .Z is either meager or null provided the set .# = {x4 € 2¥: A € Z}
is. Letters M y N denote respectively the meager and null ideals on 2%.
If ACwxwandn < w then, (A), = {m <w: (n,m) € A}. Given .#
and ¢ the Fubini product & ® ¢ is the filter defined by

FRY={ACwxw:{n<w: (A),€¥9}eF}

Notice that ¥ @ % is always an ultrafilter.

Finally, 0 and b will denote respectively the minimum size of a dom-
inating and unbounded family on w*, cov(M) the minimum size of a
family of meager sets covering 2¢ and, u = min{x(%): % € w*}.

2. OK-EXTENDIBILITY

Definition 2.1 (K. Kunen [4]). A nonprincipal ultrafilter % on w is
an OK-point if for every {L,: n < w} C % there exists a sequence
(Vo € % : a < ¢) such that for everyn > 1y F € [¢]"

() Va € L.
acF
If this is the case, we say that the sequence (V, € % : a < ¢) is OK for
{Lp: n < w}.
Notice that the terms of (V,, € % : o < ¢) are not necesarily different.
Proposition 2.2 (K. Kunen [4]). Every P-point is an OK-point.

Proof. If % is a P-point and {L,: n < w} C % there exists a U € %
such that U C* L,, for every n < w. Define (V, € % : o < ¢) by making
Vo = U for every a < c. a

Definition 2.3. A filter .# is OK-extendible provided there exists an
OK-point % such that % C % .
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Definition 2.4 (K. Kunen [4]). An Independent Linked System with
respect to .Z (ILS w.r.t. %) is a system {AS :a,8 < ¢n > 1} of
infinite subsets of w satisfying the following conditions:

() V8 < en > 1, 0 € [*, 7 € [("™ Nyew A2, € T4 and

— aco T Ta,n

Naer Ag,n-H € [w]<v.
(b) Ya,B<en>1A5, CAD .

a,n =

(©) V7 €[, BEm, ns > 1,05 € [0, Nper Nucoy Ay €T

Definition 2.5. We call a filter .#, OK-friendly provided that there is
an ILS w.r.t. to .Z.

Theorem 2.6 (K. Kunen [4]). The filter %ot is OK-friendly.

Proof. (P. Simon [4]) Let P(w) = {X,: o < ¢} be an enumeration of
P(w) and S = {(k, f): k <w & f € P(P(k))P*)}. If we put

Al ={(k.f)eS: Xanke f(XgNk) & |f(Xsnk)| <n}.

then, {A5 : o, 8 < ¢;n > 1} is an ILS wor.t. Feof. O
The proof of the next theorem is that in [4] however, in that paper
only extensions of % ¢ were considered.

Theorem 2.7. FEvery OK-friendly filter is OK-extendible.

Proof. (K. Kunen [4]) Fix and enumeration {B,,: u < ¢ is even} of P(w)
and a listing ((C#: n < w): u < ¢ is odd) of the decreasing sequences in
[w]¥ where every sequence appears listed cofinally often. Let % be OK-
friendly and let {AS : o, 8 < ¢;n > 1} an ILS w.r.t .#. We will construct
families {Z,: p < ¢} and {K,: p < ¢} of filters on w and subsets of ¢
respectively satisfying the following conditions:

(1) 3;0 =.% and KO = C.

(2)

(3) If v < cis limit, #, =U,., F, and K, =, K.

(4) If p < ¢ then |K, \ K, +1| < w.

(5) If p < ¢ is even then either B, € #, 1 or w\ B, € Z,11.

(6) If p < ¢is odd and {C¥:n < w} C Z, there is a sequence

(Dt € F,41: o < ¢) which is OK for {C¥: n < w}.

(7) {AL o<, B € Kyyn > 1} is an ILS wort. .
If this construction is possible put # = {J,.,#,. Conditions (1) and
(5) imply that % is an ultrafilter extending .# and condition (6) that
% is an OK-point. Thus, we only need to show by induction that this
construction can be carried out. By condition (3) this is obvious for the
limit step. Therefore, suppose that .%, and K, are defined. We want to
show how to perform the construction of %, and K, . If p1 is even,
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the filter (#, U{B,}) is proper and {AS :a < ¢,f € K,;n > 1} is
an ILS wrt. (%, U{B,}) put F,41 = (%, U{B,}) and K,11 = K,,.
Otherwise, there exist F' € .%,, 7 € [K,]<¥, ng > 1 and o5 € [¢|"# for
each 8 € 7 such that

FaB,n() () AL, =0.

BeT acop

Then put K,41 = K, \ 7 and let .#,;1 be the filter generated by %,
and Nge, Naeo, Ag)nﬁ. Notice that in this case, w \ B, € Z,41. If pis
odd and there is a C¥ not in %, then, put #, 1 = %, and K41 = K.
Otherwise, by condition (4) K, # (). Thus pick § € K,,. Let

DH = (m Cﬁ) U U AL n(cEN\Ch L) | for every o < c.

n<w m>1

The union on the right is infinite because it contains Ag,l NnCY e I}M.
Thus, D¥ is infinite for every ao < ¢. We are going to check that if F' € [¢]™
and n > 1 then, [(,cp Dh \ Ck| < w. This is true if n = 1 because
D\ CY = 0. Suppose that n > 1. We check that (), Dh \ Ch C
maeFAg,n—l' If v € Nyep D\ Cl then, x ¢ C) and for every a € F'
there is a mq > 1 such that  is in A5 N (Ck_\ Ch ). Notice that
meq < nfor every o € F otherwise, we get a contradiction because z ¢ CH.
So, & € Nper Al . € ﬂaeFAg,n—l' Since this last intersection is finite
by clause (a) in Definition 2.4 we get that the sequence (DH: a < ¢) is
OK for {C#: n < w}. To verify condition (7) it is enough to notice that
Agm NCH C D for every m > 1. O

Corollary 2.8. Fvery OK-friendly filter can be extended to 2¢-many OK-
points which are not P-points.

Proof. Let % be OK-friendly and let {Agm: a,B < ¢n > 1} be an ILS
w.r.t. Z. Fix Z C ¢ such that |Z] = |c¢\ Z| = ¢ and Z; € [Z]“. For each

h: Z — ¢ let #}, be the filter generated by 7, {Ai(g) 1€ € Z} and the

family {w \ Y: V€ € Zo [V \ 4] )| < w}. Then, F C Fp, the family
{AS ,:a<c¢Bec\Zn>1}isan ILS wrt. %, and, #), cannot be
extended to a P-point. Notice that if hy # ho and hy(§) # ha(€) then
A5 1 N Aol < w. Thus, A5 ) € Fy, and w\ A} | € Fi,.
Therefore, the extensions of %y, and %), must be different. Since there
are ¢/l = 2°-many of such functions h we are done. O
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Proposition 2.9 (M. Talagrand [6]). A filter # on w is meager if and
only if there exists a partition {I;: i < w} of w into finite sets such that
every member F intersects every I; except for finitely many of them.

Theorem 2.10. FEvery meager filter is OK-friendly therefore, it is OK-
extendible. In particular, every analytic filter is OK-friendly.

Proof. Let .# be a meager filter and let {I;: i < w} be a partition as
in Proposition 2.9. Let {45 ,: a,8 < ¢;n > 1} be an ILS w.rt. Feor
and put B, = U{li:i € AJ} for every a,3 < ¢ and n > 1. Then,
{Bf ,: a,B < ¢;n > 1} satisfies clauses (a), (b) and (c) in Definition 2.2

because {Agm: o, < ¢n > 1} does. O

Corollary 2.11. Every < b-generated filter is OK-friendly and b = ¢
implies that every < c-generated filter is OK-friendly.

Proof. This is because every < b-generated filter is meager. (]

Lemma 2.12. Let X be a countable set, % an ultrafilter and {Si: k < w}
a partition of X into finite subsets such that ), _ 2715k < 00, If

Gy ={ACX:{k<w: S, CAe¥}
then, Fq, is a filter in N'\ M.

Proof. Let Zp = {xa € 2%X: S, C A} for every k < w. Then, u(Zy) =
219k for every k < w and, Fy C MNpew Ursn Ze € N. To see that Fy
is not meager let {I;: i < w} be a partition of X into finite sets and let
{Jyp: 7 < w} be a partition of w into finite sets such that for every r < w
there is an ¢ < w such that I; C |J{Sk: k € J.}. Since % is an ultrafilter
either {J,,, Jor € % or U, ., Jory1 € %. Say |, ., Jor € % and let
X = U{Sk: k € U, Jor}. Then, X € Fy and X NI; = ) for every
I CU{Sk: k€ U, ., J2rt1}- Thus, F4 ¢ M by Proposition 2.9. O

Theorem 2.13. There are 2°-many measurable, OK-friendly and non-
meager filters on w.

Proof. Put S, = {k} x P(P(k))P* and X = [J{Sr: k < w}. Then,
{Sk: k < w} is a disjoint family of finite subsets of X with |Si| = 22*"
for every k < w. Thus, ), 2715l < oo, If % is arbitrary let .Fy be
the filter 9y = {AC X: {k <w: Sy C A} € %}. Then, Fo € N'\ M.
Consider the family {A] ,: a,8 < ¢;n > 1} defined in the proof of The-
orem 2.2. We will check only that condition (c) in definition 2.4 holds.
Let 7 € [¢]<¥, and for every S € 7, let 1 < ng < w and o € [¢]"5.
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Pick U € % and ko € U so big that (i) V8,8 € 7 such that 8 # 3,
XgNko # Xy Nko and (ii) VB € 7,Va € o5 {Xa Nko: a € og}| = ng.
Then, for k € U and k > ko define a function f;: P(k) — P(P(k)) by

{XaNk:aecog} ifZ=XgNk forsome et
f(2) = :
0 otherwise.

Then, (k, fr) € Nger Naco, Ag’nﬁ N S. Therefore, given X € .F4 then,
U={k<w: 5, C X} €. Thus, (k fr) € Nger Naco, Agm N Sy for
all but finitely many k € U. So, Mz, MNaeo, Agnﬁ € I}%. Since there
are 2°-many nonprincipal ultrafilters on w we are done. O
Proposition 2.14 (T. Bartoszynski/S. Shelah [1]). If M = “ZFC+ ¢ =
wy” then there exists P € M such that in M, P is a support finite iteration
of c.c.c forcing notions in wy stages such that if G is a P-generic filter
over M then

M[G] & “ZFC+ ¢ =wp + 3 U € [w*]“* such that ﬂU EN

Lemma 2.15. Let U be a family of ultrafilters on w such that |U| < .
If & is arbitrary, then F @ (U is not OK-extendible.

Proof. Put L, = |J{{i} X w: ¢ > n} for every n < w and let ¥ be an
ultrafilter extending .# ® (| U. Notice that {L,: n < w} C ¥. We claim
that no sequence (V, € ¥: a < «¢) is OK for {L,: n < w}. In fact, we
can find an uncountable X C ¢, an % € U and n > 1 such that Va € X,
(Va)n € %. It F € [X]" then, [(Nycp Valnl = [Nacr(Va)n| = w. Thus,
|Nacr Va\Ln| =wand (V, € Z: a <¢)isnot OK for {L,: n <w}. O

The next lemma is a consequence of a more general theorem by M.
Talagrand (see [6], Proposition 15). For the sake of the paper we give a
self-contained proof.

Lemma 2.16. If 4 € N and .Z is any filter then, F @94 € N.

Proof. Let 1 and uo be the standard measures on 2% and 2“*“ respec-
tively. If n < w let f,,: 2*% — 2¢ be defined by f.(xa) = x(a),- Then,
fn is continuous and, for every basic open set O C 2%, f-1[0] C 2v*«
is a basic open set such that us(f,*[0]) = p1(0). Thus, f,[X] is a
po-null set provided X is py-null. Since S C (), Upsp i ' [9] we are
done. |

Proposition 2.17 (J. Roitman [5]). P-points exist in iterated c.c.c forc-
ing extensions whose length has uncountable cofinality.

Theorem 2.18. There exists a model N of ZFC + ¢ = wy such that in

N there are filters Fy, %o € N with F, not OK-extendible and %5 OK-
extendible but not OK-friendly.



OK-EXTENDIBLE FILTERS ON w 87

Proof. Let N = M[G] and {%Z: o < w1} be the model and the family of
ultrafilters described in Proposition 2.14. Then, (., % € N. If Z is
any filter then, 71 = 7 @, ., % € N by Lemma 2.16 and it is not
OK-extendible by Lemma 2.15. In order to construct %, notice that we
are in the situation of Proposition 2.17. Therefore, let %,, € M|[G] be a
P-point. Put #y =, <,,, a- Then, F5 C %,,, F2 € N and F; is OK-
extendible by Proposition 2.2. To see that %3 is not OK-friendly notice
that if {A¢: € < ¢} C I}Z then there is an o < w; and an uncountable
X C ¢ such that Ae € %, for every £ € X. Thus, if n > 1 and F € [X]”
then (Neep Ae € % and |(\ecp A¢| = w. Hence, there is no ILS w.r.t.
Fa. O

3. GENERIC EXISTENCE

Definition 3.1 (R. M. Canjar [2]). Let € be a class of ultrafilters. The
ultrafilters from % generically exist provided every < c¢-generated filter
can be extended to an ultrafilter in %.

We abbreviate GE(%,¢) the statement “ultrafilters in ¢ generically
exist". The next two propositions relate the generic existence of P-points
and selective ultrafilters with certain cardinal invariants. Here, P and S
stand for the class of P-points and selective ultrafilters respectively.

Proposition 3.2 (J. Ketonen [3]).
GE(P,¢c) 0 =c.

Proposition 3.3 (R. M. Canjar [2]).

GE(S,¢) & cov(M) =c.
Lemma 3.4. Given % and % the filter % @ U is not OK-extendible.
Moreover, if % is a P-point then x(F @ %) < mazx{x(F),x(%),0}. In
particular % @ U s not an OK-point and x(% @ %) = maz{x(%),0}
provided % is a P-point.
Proof. The first part follows from Lemma 2.15 by taking U = {Z}. Let
{Fe: £ < x(F)} and {U,: n < x(%)} be bases of F and % respectively
and let {f,: vy < 0} be a dominating family in w*. Consider the family

Ve €< x(F),n < x(%),y < 0} where Vg, . is defined by V¢, , =
U{{n} x (U, \ fy(n)): n € F¢}. This is a basis of % @ % . O

In reference [4] K. Kunen constructed an OK-point and he explained
how to modify that construction to get it not P-point and c-generated.
The next lemma shows that we have only to worry about the not P-point
condition.

Lemma 3.5. If % is an OK-point but not a P-point, then, x(%) = c.



88 ANDRES MILLAN

Proof. If % is not a P-point then, there is a partition P = {P,: n < w}
of w such that PN% = () and for every U € %, |UN P, | = w for infinitely
many n < w. Therefore, {L,,: n < w} C % provided L,, = | J{P;: i > n}.
Suppose that x(%) < ¢ and let {Ugs: £ < x(% )} be a base for % . There
exist an uncountable X C ¢ and a § < x(%) such that U C V, for
every o € X. Since Ug € %, there is an n > 1 such that |Us N P,| = w.
If I € [X]" then, Us € Nycp Va and [(Nyep Va \ Ln| = w. Thus, no
sequence (V,, € % : a < ¢) can be OK for {L,,: n < w}. O

Theorem 3.6.
0=c¢= GE(OK,c) = maz{u,0} =c.

Proof. The implication on the left follows from Propositions 2.2 and 3.2.
To prove the implication on the right suppose by the way of contradic-
tion, that GE(OK,c) holds but max{u,d} < c¢. Let % be such that
X(%) = u < ¢. Then, 7 is an OK-point. Moreover, % must be a P-
point because if otherwise, x(% ) = ¢ by Lemma 3.5 and this is impossible.
By Lemma 3.4 x(% ® %) < max{u,d} < ¢ therefore,  ® % is OK and
this contradicts Lemma 3.4. |

Corollary 3.7. GE(OK,¢) is independent of the axioms of ZFC.

Proof. The identity 9 = ¢ holds for example, in any model of ZFC +
MA + ¢ > ws. On the other hand, in the model of ZFC obtained by
iterating Sacks reals with countable supports over a model of ZFC 4+ CH
all the cardinal invariants of the continuum are equal to w; but ¢ = ws.
Therefore, in that model “max{u, 0} = w; < ¢”. O
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