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ON CHARMING SPACES AND SOME RELATED
SUBCLASSES

FIDEL CASARRUBIAS-SEGURA AND CARLOS G. PANIAGUA-RAMÍREZ

Abstract. The class of charming spaces was introduced by A.V.
Arhangel’skii in [Remainders of metrizable spaces and a generaliza-
tion of Lindelöf Σ-spaces, Fund. Math., 215 (2011), 87–100]. The
purpose of this paper is to show some relevant properties of this
new class of topological spaces. We present generalizations to some
results of V. V. Tkachuk related to the lifting of topological pro-
perties. Also we show that for every ℵ0-bounded topological group
G, G is a Lindelöf Σ-space iff G is a (K, LΣ)-structured space. As a
consequence we prove that, for every Tychonoff space X, the func-
tion space Cp(X) is Lindelöf-Σ if and only if is (K, LΣ)-structured,
and that, for X compact, Cp(X) is Lindelöf-Σ if and only if Cp(X)

is (LΣ, LΣ)-structured.

1. Introduction

In this paper we study the class of charming spaces. The class of
charming spaces (or (LΣ, LΣ)-structured spaces) was introduced by
A. V. Arhangel’skii in [1] as an extension of the class of Lindelöf Σ-spaces.
Our “basic conjecture” is that many results in the class of the Lindelöf
Σ-spaces, can be “transformed” into results in this new class of spaces or
some intermediate class between the class of Lindelöf Σ-spaces and the
(LΣ, LΣ)-structured spaces.

Among other things, we prove that the class of (LΣ, LΣ)-structured
spaces has nice categorical properties. For example, we prove that this
class is closed under countable unions, closed subspaces and continuous
images.
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Besides, it is well-known that if a topological space X condenses (that
is, there is a continuous bijection) onto a topological space Y with some
property P, this does not imply that the topological space X has the
property P. In this sense we say that P is “not lifted” by condensations. In
[4], V. V. Tkachuk made a first systematic study of topological properties
that are lifted by condensations in Lindelöf Σ-spaces. In this paper we are
going to prove that some results of Tkachuk can be extended to classes
of (LΣ, LΣ)-structured spaces. For example, we prove that the property
of being a monotonically κ-monolithic space is lifted by condensations
in (LΣ, LΣ)-structured spaces. Also, we prove that if X is a (K, LΣ)-
structured space such that X condenses onto a κ-monolithic space, then
X is κ-monolithic.

In the last part of this paper we show that for every ℵ0-bounded topo-
logical group G, G is a Lindelöf Σ-space iff G is a (K, LΣ)-structured
space. As a consequence we prove that, for every Tychonoff space X, the
function space Cp(X) is Lindelöf Σ if and only if it is (K, LΣ)-structured,
and that, for X compact, Cp(X) is Lindelöf Σ if and only if Cp(X) is
(LΣ, LΣ)-structured.

2. Notation and terminology

All spaces are assumed to be Tychonoff, unless otherwise is stated.
Given a space X we denote by τ(X) its topology. If X is a topological
space and A ⊆ X then τ(A,X) = {U ∈ τ(X) : A ⊆ U}; given a point
x ∈ X we write τ(x,X) instead of τ({x}, X). The space R is the real
line with the usual order topology and N will denote the set of natural
numbers with the subspace topology. N+ = ω \ {0}.

For any infinite cardinal κ, we denote by Dκ the discrete space of
cardinality κ, and by Lκ the one-point Lindelöfication of Dκ; thus, Lκ

is the set Dκ ∪ {∞} with the topology in which all points of the set Dκ

are isolated, and a set U is a neighborhood of the point ∞ if and only if
∞ ∈ U and the complement of U in Dκ is at most countable.

For any space X we denote by Cp(X) the set of all real-valued continu-
ous functions on X endowed with the topology of pointwise convergence.
A map f : X → Y is called a condensation if it is a continuous bijection;
in this case we say that X condenses onto Y .

A family N of subsets of a space X is a network with respect to a
cover C (or a network modulo C) of X if for every set C ∈ C and every
U ∈ τ(C,X) there is an element N ∈ N such that C ⊂ N ⊂ U .

A topological space X is a Lindelöf Σ-space (or LΣ) if there is a count-
able family N of subsets of X such that N is a network with respect to
a compact cover C of X.
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We denote by K the class of compact spaces, σK the class of σ-compact
spaces, M the class of metrizable separable spaces, L the class of Lindelöf
spaces, and LΣ the class of Lindelöf Σ-spaces. P and Q will denote classes
of topological spaces. When Y is a subspace of X such that Y belongs to
P, we say that Y is a P-subspace of X.

Given a space X assume that, for every point x ∈ X, a countable
family G(x) of subsets of X is chosen. We say that {G(x) : x ∈ X} is a
Collins-Roscoe collection if, for any x ∈ X and for any U ∈ τ(x,X), we
can find an open set V such that x ∈ V ⊂ U and for any y ∈ V there
exists a set P ∈ G(y) with x ∈ P ⊂ U . If a space X has a Collins-Roscoe
collection then we will say that X has the Collins-Roscoe property.

The rest of our notation is standard and follows [2].

3. (P,Q)-structured spaces

The following concept was introduced by A. V. Arhangel’skii in [1].

Definition 3.1. Let P and Q be some classes of topological spaces. A
topological space X will be called (P,Q)-structured if there exists a sub-
space Y of X (called a P-kernel of X) such that Y ∈ P and for every
open neighborhood U of Y in X, the subspace X \ U belongs to Q.

The (LΣ, LΣ)-structured spaces are also called charming spaces.

It is clear that if P0 is a subclass of P and Q0 is a subclass of Q, then
every (P0,Q0)-structured space is a (P,Q)-structured space.

It is easy to see that every Lindelöf Σ-space is (K, LΣ)-structured space.
Indeed, any compact subset of the space is an LΣ-kernel.

It follows that all metrizable separable spaces and all the Lindelöf p-
spaces are (K, LΣ)-structured. Nevertheless, there exist (LΣ, LΣ)-struc-
tured spaces that are not Lindelöf Σ-spaces. Indeed, let κ ≥ ℵ1 and Lκ be
the one-point Lindelöfication of the discrete space of cardinality κ, then
Lκ is a (K, LΣ)-structured space. To verify it, we can take as LΣ-kernel
the subspace Z = {∞}, where ∞ the non-isolated point of Lκ; let U be
an arbitrary open neighborhood of Z. It is clear that the set Lκ \ U is
a countable subspace of Lκ, and then LΣ. It is known that Lκ is not
Lindelöf Σ-space.

Recall that a space X is simple if it has at most one non-isolated point.
Observe that the last argument shows also that every simple Lindelöf
space is a (K, LΣ)-structured space.

The following facts are immediate from the definition. We give a proof
of (2), because it will be helpful in the rest of the paper.

Proposition 3.2. Let P and Q classes of topological spaces closed under
continuous images, closed subspaces, and such that M ⊆ P ⊆ Q ⊆ LΣ.
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Then
(1) every continuous image of a (P,Q)-structured space is a (P,Q)-

structured space;
(2) every closed subspace of a (P,Q)-structured space is a (P,Q)-

structured space;
(3) if P and Q are closed under perfect preimages, then every perfect

preimage of a (P,Q)-structured space is a (P,Q)-structured space;
(4) every (P,Q)-structured space is Lindelöf.

Proof. (2). Let X be a (P,Q)-structured space, Z a P-kernel of X and
F ⊂ X a closed subspace of X. If F ∩ Z = ∅ then F belongs to Q and
therefore is a (P,Q)-structured space.

If F ∩ Z ̸= ∅, then ZF = F ∩ Z is a P-subspace of F . We claim
that ZF is a P-kernel of F . Indeed, let U be an open neighborhood of
ZF in F , then there exists an open set W ⊂ X such that W ∩ F = U .
Let V = W ∪ (X \ F ), note that V is an open neighborhood of Z in X
and given that Z is a P-kernel of X, X \ V is a Q-subspace of X. Now
X \ V = F \ U , and therefore F \ U is a Q-subspace of F , and F is
(P,Q)-structured with P-kernel ZF . �
Remark 3.3. If P and Q are as in Proposition 3.2, it is easy to see that
the product X ×K of a (P,Q)-structured space X and a compact space
K is a (P,Q)-structured space. Besides, since a multivalued mapping
p : X → Y is compact-valued upper semicontinuous iff it is a composition
of the inverse of a perfect mapping onto a closed subspace of X and a
continuous function (see, e.g., [3]), we have that the image of a (P,Q)-
structured space under a compact-valued upper semicontinuous mapping
is a (P,Q)-structured space.

In the rest of this section we assume that P and Q are subclasses of
the class of Lindelöf Σ-spaces invariant with respect to countable unions.

Our next result is related to topological sums.

Proposition 3.4. Let {Xn : n ∈ N} be a family of (P,Q)-structured
spaces. Then X =

⊕
{Xn : n ∈ N} is (P,Q)-structured.

Proof. Since every Xn is (P,Q)-structured, we can take a P-kernel Zn ⊂
Xn to define Z =

∪
{Zn : n ∈ N}. Then Z is a P-subspace of X. Now

consider an open neighborhood U of Z in X. Note that Zn ⊂ Un = Xn∩U
and Un is an open neighborhood of Zn in Xn. Since, for all n ∈ N, Zn is
a P-kernel of Xn it follows that Xn \ Un is a subspace of Xn that belong
to Q.

Now it is enough to observe that X \ U =
∪
{Xn \ Un : n ∈ N} and

make use of the fact that the countable union of Q-subspaces is again a
Q-space to conclude that X is a (P,Q)-structured space. �
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Corollary 3.5. Let P and Q be closed under countable unions, X be a
space and {Xn : n ∈ N} a family of (P,Q)-structured subspaces of X.
Then

∪
{Xn : n ∈ N} is a (P,Q)-structured space.

Proof. It is a consequence of the following facts: the topological sum of
a countable family of (P,Q)-structured spaces is (P,Q)-structured, the
function f :

⊕
n∈N Xn →

∪
n∈N Xn defined by f(x) = x is continuous

and onto, and the continuous image of a (P,Q)-structured space is a
(P,Q)-structured space. �

Corollary 3.6. Let P and Q be closed under countable unions, and X
be a (P,Q)-structured space. Then every Fσ subspace of X is a (P,Q)-
structured space.

As we mentioned before, the product of a (P,Q)-structured space and
a compact space is a (P,Q)-structured space. This fact can be generalized
in the following way.

Proposition 3.7. Let P and Q be closed under countable unions and
perfect preimages. If X is a (P,Q)-structured space and Z a σ-compact
space, then X × Z is a (P,Q)-structured space.

Proof. Let bZ be a compactification of Z, then the projection π1 : X ×
bZ → X is perfect, and since the preimage under a perfect mapping of
a (P,Q)-structured space is a space that belongs to the same class, it
follows that X × bZ is a (P,Q)-structured space.

Since Z is σ-compact, we can represent Z =
∪
{Kn : n ∈ N} with Kn

compact, for every n ∈ N. Then X ×Kn is a closed subspace of X × bZ,
and therefore a (P,Q)-structured space.

Finally, X × Z is the countable union of (P,Q)-structured spaces, be-
cause X×Z =

∪
n∈N(X×Kn). So, X×Z is a (P,Q)-structured space. �

A natural question that arises in connection with Proposition 3.7 is the
following: Is the product of (P,Q)-structured spaces a (P,Q)-structured
space? The next example answers this question in the negative.

Example 3.8. Let Y = Lκ × Lκ (with κ ≥ ω1) the square of the Lin-
delöfication of the discrete space of cardinality κ, then Y is not (LΣ, LΣ)-
structured space. Indeed, suppose that there exists an LΣ-kernel Z∗ of
Y . Since the Lindelöf Σ property is preserved by continuous functions, it
follows that the projection of Z∗ in the first factor, Z1 = π1(Z

∗), is an
LΣ-subspace of Lκ, so it is a countable subset of Lκ. Let y ∈ Lκ \ Z1,
and take as U the set Y \ ({y}×Lκ). Then U is an open neighborhood of
Z∗ and the complement is homeomorphic to Lκ, but Lκ is not a Lindelöf
Σ-space. Therefore, Y is not an (LΣ, LΣ)-structured space.
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Note that this example also shows that even the subclass of the (K,M)-
structured spaces is not closed under finite products. However we have
some positive results about products.

Proposition 3.9. Let P ⊆ LΣ, κ be an infinite cardinal and X be a
space in P. Then Lκ ×X is a (P, LΣ)-structured space.

Proof. Let ∞ the non-isolated point of Lκ, the subspace Z = {∞}×X ⊂
Lκ ×X is a space in P. We claim that Z is a P-kernel of Lκ ×X. Let
W be an open neighborhood of Z in Lκ ×X. Since Z is Lindelöf we can
assume that W contains a countable union of basic open sets of Lκ ×X,
i.e. W ⊇

∪
{Un×Vn : n ∈ N}. Now, for every n ∈ N, we have that Un is an

open neighborhood of ∞ in Lκ and therefore the set U = ∩{Un : n ∈ N}
also is an open neighborhood of ∞ in Lκ. So the set (Lκ \ U) × X is
an LΣ-space and (Lκ × X) \ W is a closed subspace of it, therefore an
LΣ-space. �

Remark 3.10. Note that Proposition 3.9 allows us to construct (LΣ, LΣ)-
structured spaces that are not Lindelöf Σ-spaces. Indeed, by 3.9, given
a Lindelöf Σ-space X, we have that Lω1 × X is an (LΣ, LΣ)-structured
space with an LΣ-kernel homeomorphic to X and is not an LΣ-space.

In [3] the authors introduce the classes of LΣ(≤ κ)-spaces. We can
use these classes to introduce other subclasses of the class of (LΣ, LΣ)-
stuctured spaces.

We recall that, given a cardinal κ, finite or infinite, a space X is called
an LΣ(< κ)-space if there is a compact cover C of X such that w(C) < κ
for every C ∈ C and a countable network modulo C in X.

A space X is an LΣ(≤ κ)-space if it is an LΣ(< κ+)-space. X is an
LΣ(κ)-space if it is an LΣ(≤ κ)-space and not an LΣ(< κ)-space. Of
course, for finite κ, the weights of the elements of the compact covers in
the above definition can be replaced by the cardinalities.

It is easy to see (see Remark 3.10) that, for every n ∈ N+, the class
of the (LΣ(≤ n), LΣ)-structured spaces is non-empty and there exists
(LΣ(≤ n), LΣ)-structured spaces that are not LΣ-spaces.

4. Lifting properties

If a topological space X condenses onto a topological space Y with
some property P, this does not imply that the topological space X has the
property P. In this sense we say that P is “not lifted” by condensations.
For example, the connectedness is not lifted by condensations. Indeed,
the Sorgenfrey line condenses onto R, but the Sorgenfrey line is zero-
dimensional and R is connected. In [4], V. V. Tkachuk made a first
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systematic study of topological properties that are lifted by condensations
in Lindelöf Σ-spaces. In this section we are going to prove that some
results of Tkachuk can be extended to class of (LΣ, LΣ)-structured spaces.

Let X be a topological space, recall that a family G of subsets of X is
a network at a point x ∈ X if for any U ∈ τ(x,X) there exists G ∈ G
such that x ∈ G ⊂ U .

Lemma 4.1. Let X be a topological space such that there exist a compact
cover C and a network N modulo C. Suppose that f : X → Y is a
condensation and F is a network for y = f(x) in Y . Then the family
E = {f−1(F ) ∩N : F ∈ F , N ∈ N} is a network at the point x = f−1(y)
in X.

Proof. Let x = f−1(y) and take any U ∈ τ(x,X). Given that C is a
compact cover of X, there exists Cx ∈ C such that x ∈ Cx. Since the
family F is a network at y, we can choose a set F ∈ F such that y ∈
F and F ∩ f(Cx \ U) = ∅. If G = f−1(F ), then G ∩ (Cx \ U) = ∅.
Since Cx \ U is a compact subspace of X, G and Cx \ U are completely
separated subsets of X. Then the closures of G and Cx \U in the Stone-
Čech compactification of X, βX, are disjoint ([2, 3.6.2]). Hence there
exists a set V ∈ τ(Cx \ U,X) such that V ∩ G = ∅. The set U ∪ V
is an open neighborhood of Cx in X so we can find N ∈ N for which
Cx ⊂ N ⊂ (U ∪ V ).

The set E = G∩N is an element of E such that x ∈ E ⊂ U . Therefore
E is a network for the point x = f−1(y) in X. �

We are going to prove that the property of being a monotonically κ-
monolithic space is lifted by condensations in (LΣ, LΣ)-structured spaces
(c.f. Corollary 4.5). First recall the definition of monotonically κ-monolitic
space.

Definition 4.2. (1) Given a set A ⊂ X we say that a family N of
subsets of X is an external network of A in X if N is a network
at every x ∈ A.

(2) For an infinite cardinal κ, a space X is monotonically κ-monolithic
if, for any set A ⊂ X with |A| ≤ κ, we can assign an external net-
work θ(A) to the set A in such a way that the following conditions
are satisfied:

(a) |θ(A)| ≤ κ;
(b) if A ⊂ B, then θ(A) ⊂ θ(B);
(c) if λ ≤ κ is an ordinal and we have a family {Aα : α < λ}

of subsets of X such that α < β < λ implies Aα ⊂ Aβ , then

θ(
∪

{Aα : α < λ}) =
∪

{θ(Aα) : α < λ}.
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(3) A space X is monotonically monolitic if it is monotonically κ-
monolitic for every infinite cardinal κ.

Theorem 4.3. Let X be a topological space, C a compact cover of X and
N a network modulo C of cardinality less or equal to κ. If there exists a
condensation of X onto a monotonically κ-monolithic space Y , then X is
monotonically κ-monolithic.

Proof. Let f : X → Y be a condensation, θ be a κ-monolithity operator
in Y . Take any set A ⊂ X of cardinality less or equal than κ and put the
family G(A) = {f−1(B) ∩ N : N ∈ N , B ∈ θ(f(A))}. Then |G(A)| ≤ κ,
and since f is a condensation, the properties (b) and (c) of the operator
θ also hold for the operator G.

Now, if x ∈ A, let y = f(x). Then θ(f(A)) is a network at the point
y, so we can apply the Lemma 4.1 to conclude that G(A) is a network at
the point x. So we have that G is a monotonic κ-monolithity operator on
X. �

Let X be a topological space and Z ⊆ X, the character of Z in X
is the cardinal χ(Z,X) = min{|U| : U ⊆ τ(Z,X) is a base of Z in X},
where U ⊆ τ(Z,X) is a base of Z in X if for every W ∈ τ(Z,X) there is
a U ∈ U such that Z ⊆ U ⊆ W .

Remark 4.4. It is easy to see that if an (LΣ, LΣ)-structured space X
has an LΣ-kernel Z such that χ(Z,X) ≤ κ, then there is a compact cover
C of X and a network modulo C of cardinality less or equal than κ.

The next corollary is a slight generalization of a result of Tkachuk in
[4].

Corollary 4.5. Let X be a (LΣ, LΣ)-structured space such that there
exists an LΣ-kernel Z with χ(Z,X) ≤ κ. If X condenses onto a mono-
tonically κ-monolithic space Y , then X is monotonically κ-monolithic.

Corollary 4.6 (Tkachuk, [4]). If a Lindelöf Σ-space X condenses onto a
monotonically monolithic space, then X is monotonically monolithic.

Now, we are going to prove that the Collins-Roscoe property is lifted
by condensations in certain subclasses of the (LΣ, LΣ)-structured spaces
to an adequate and natural variation of the Collins-Roscoe property (c.f.
Proposition 4.7)

Let κ be an infinite cardinal. If to every x ∈ X we assign a collection
of cardinality less or equal than κ so that the conditions of the Collins-
Roscoe property are satisfied (i.e., for each x ∈ X and every U ∈ τ(x,X),
we can find a set V such that x ∈ V ⊂ U and, for every y ∈ V , there
exists a set P ∈ G(y) such that x ∈ P ⊂ U), we say that X has the
κ-Collins-Roscoe property.
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Proposition 4.7. Let X be an (LΣ, LΣ)-structured space, Z an LΣ ker-
nel of X with χ(Z,X) ≤ κ. If X condenses onto a Collins-Roscoe space
Y , then X has the κ-Collins-Roscoe property.

Proof. Let C be a compact cover of X and N a network modulo C of
cardinality less or equal than κ. Let f : X → Y a condensation, {G(y) :
y ∈ Y } a Collins-Roscoe collection in Y . For each x ∈ X, we define the
family G(x) = {f−1(F ) ∩ N : N ∈ N , F ∈ G(f(x))}. It is clear that the
cardinality of G(x) is less or equal than κ.

Take a set A ⊂ X. If x ∈ A and f(x) = y, then ε =
∪
{G(f(z)) : z ∈ A}

is a network at the point y = f(x) ∈ f(A). By Lemma 4.1, we can
conclude that the family

G(x) = {f−1(F ) ∩N : N ∈ N , F ∈ G(f(x))} =
∪

{G(f(z)) : z ∈ A}

is a network at the point x. That is {G(x) : x ∈ X} is a κ- Collins-Roscoe
collection in X. �

The following is a well-known fact; nevertheless, for the sake of com-
pleteness, we give the proof.

Lemma 4.8. Let X be a space of weight κ and K ⊂ X a compact sub-
space. Then χ(K,X) ≤ κ.

Proof. Let β = {Uα : α ∈ I} be a base for X of cardinality less or
equal than κ and K a compact subspace of X. Let βK be the family
of all finite unions of elements of β that cover K. This family satisfies
|βK | ≤ |[β]ω| = |β| ≤ κ, therefore |βK | ≤ κ. The family βK is a base of
K in X. Indeed, let U ∈ τ(K,X). For each x ∈ K let Ux be an element
of β such that x ∈ Ux ⊂ U . Let VK =

∪
{Ux : x ∈ K}, then VK ⊂ U and

there exists {x1, x2, . . . , xn} ⊂ K such that K ⊂
∪n

i=1 Uxi ⊂ VK . Clearly∪n
i=1 Uxi ∈ βK and it shows that βK is a base for K in X. Therefore,

χ(K,X) ≤ κ. �
Recall that a topological space X is κ-stable if for every continuous

image Y of X, if Y condenses onto a space Z with w(Z) ≤ κ we have that
nw(Y ) ≤ κ. A space is stable if it is κ-stable for every infinite cardinal κ.

An important property of the LΣ-spaces is that they are stable. Now
we can prove a slight generalization of this fact. We show that the
(K, LΣ)-structured spaces are also stable.

Proposition 4.9. Let X be a (K, LΣ)-structured space. Then X is stable.

Proof. Let K be a compact kernel of X, f : X → Y a continuous function
and g : Y → Z a condensation of Y onto a space of weight κ. We need
to prove that nw(Y ) ≤ κ. Observe that Y is a (K, LΣ)-structured space
and f(K) is a compact kernel of Y .
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Since K is compact, K∗ = g(f(K)) ⊂ Z is compact and, by Lemma
4.8, we have that χ(K∗, Z) ≤ κ. Let U = {Uα : α ≤ κ} be a base for K∗

in Z. Let Vα = g−1(Uα) and consider the family V = {Vα : α ≤ κ}, then
∩V = f(K). If we define the subspaces Yα = Y \ Vα we can represent Y
in the following form: Y =

∪
α≤κ(Yα ∪ f(K)). Observe that every space

Yα is LΣ, and since f(K) is compact, every Yα and f(K) have i-weight
less or equal than κ, so we have that nw(Y ) ≤ κ and we can conclude
that X is κ-stable. Since κ is arbitrary, it follows that X is stable. �

A space X is called κ-monolithic if nw(B) ≤ κ for every subset B of
X with |B| ≤ κ. X is called monolithic if X is κ-monolithic for every
cardinal κ. Arhangel’skii proved that Cp(X) is monolithic if and only if
X is stable. Since every (K, LΣ)-structured space is stable, we arrive at
the following.

Corollary 4.10. Let X be a (K, LΣ)-structured space. Then Cp(X) is
monolithic.

Tkachuk proved in [4, Proposition 2.1] that if a Lindelöf Σ-space X
condenses onto a κ-monolithic space then X itself is a κ-monolithic space.
With the help of Proposition 4.9 we can give a slight generalization of this
result of Tkachuk.

Proposition 4.11. Let κ be an infinite cardinal and X be a (K, LΣ)-
structured space. If X condenses onto a κ-monolithic space, then X is
κ-monolithic.

Proof. Let f : X → Y be a condensation of X onto a κ-monolithic space
Y . Let A ⊂ X a subset of cardinality less or equal than κ, then A is a
(K, LΣ)-structured space that condenses onto the space Z = f(A). Using
that nw(Z) ≤ κ and the stability of A, we can conclude that nw(A) ≤ κ.
Therefore, X is κ-monolithic. �

5. ℵ0-bounded topological groups and
(LΣ, LΣ)-structured spaces

The purpose in this section is to study when the properties of being
LΣ-space and being (LΣ, LΣ)-structured space (or belonging to some sub-
class of the class of (LΣ, LΣ)-structured spaces) coincide in some class of
topological spaces. We show, for example, that an ℵ0-bounded topologi-
cal group is (K, LΣ)-structured if and only if it is a Lindelöf Σ-space. As
a consequence we prove that, for every Tychonoff space X, the function
space Cp(X) is Lindelöf-Σ if and only if it is (K, LΣ)-structured.

Recall that a topological group G is ℵ0-bounded if for every neighbor-
hood of the identity element of G there exists a countable subset K ⊆ G
such that G = K · U .
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Proposition 5.1. Let P and Q be some classes of topological spaces.
If Q is closed under countable unions and G is an ℵ0-bounded topological
group such that G is a (P,Q)-structured space with a non-dense P-kernel,
then G belongs to the class Q.

Proof. Let K ⊂ G a non-dense P-kernel. Then there exists a point g ∈
U = G \K. Using the regularity of G, we can find an open neighborhood
V of g in G such that g ∈ V ⊂ V ⊂ U . Observe that G \ V is an
open neighborhood of K, therefore V belongs to Q and, without loss of
generality, we can assume that V is a neighborhood of the identity element
of G. Finally, given that G is ℵ0-bounded, there exists a countable set
N ⊂ G such that G = N · V , so we can write G as a countable union
of subspaces of G such that each subspace belongs to Q. Therefore, G
belongs to Q. �

Corollary 5.2. Let P be a subclass of L and let Q be one of the following
classes: σK, LΣ(< n), LΣ(≤ n), LΣ(< ω), LΣ(≤ ω), LΣ, L. If G is an
ℵ0-bounded topological group such that G is a (P,Q)-structured space with
a non-dense P-kernel, then G belongs to the class Q.

Since every topological group of countable cellularity is ℵ0-bounded,
we have the following corollary.

Corollary 5.3. Let Q be one of the following classes: σK, LΣ(< n),
LΣ(≤ n), LΣ(< ω), LΣ(≤ ω), LΣ, L. Suppose that Cp(X) is a (K,Q)-
structured space, then Cp(X) belongs to class Q.

Since every LΣ-space is a (K, LΣ)-structured space, we have the fol-
lowing result.

Corollary 5.4. Let G be an ℵ0-bounded topological group. Then G is a
(K, LΣ)-structured space if and only if it is a Lindelöf Σ-space.

Corollary 5.5. Let X be a Tychonoff space. Then Cp(X) is a (K, LΣ)-
structured space if and only if it is a Lindelöf Σ-space.

When the space X is compact, we have an improvement to Corollary
5.5.

Theorem 5.6. Let P be a subclass of LΣ that includes the compact
spaces. Let X be a compact space. Then Cp(X) is (P, LΣ)-structured
space if and only if it is a Lindelöf Σ-space.

Proof. Suppose that Cp(X) is a (P, LΣ)-structure space. Then Cp(X)
has a dense subgroup that is a Lindelöf Σ-space ([1, Theorem 5.2]). Since
X is compact, the fact that Cp(X) contains a dense Lindelöf Σ-subspace
implies that it is Lindelöf Σ.
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Besides, if Cp(X) is a Lindelöf Σ-space it is a (P, LΣ)-structured
space. �

In particular, we have the following corollaries.

Corollary 5.7. Let X be a compact space. Then Cp(X) is (σK, LΣ)-
structured space if and only if it is a Lindelöf Σ-space.

Corollary 5.8. Let X be a compact space. Then Cp(X) is (LΣ, LΣ)-
structured space if and only if it is a Lindelöf Σ-space.

Corollary 5.9. Suppose that X =
⊕

n∈N Kn is a topological sum of com-
pact spaces. If Cp(X) is a (LΣ, LΣ)-structured spaces then Cp(X) is a
Lindelöf Σ-space.

Proof. Since
∏

n∈N Cp(Kn) is homeomorphic to Cp(
⊕

n∈N Kn) = Cp(X),
we have that

∏
n∈N Cp(Kn) is a (LΣ, LΣ)-structured space. Now, for

every m ∈ N the space Cp(Km) is a (LΣ, LΣ)-structured space because
Cp(Km) is a continuous image of

∏
n∈N Cp(Kn). Since Km is compact,

by the Corollary 5.8 we have that Cp(Km) is a Lindelöf Σ. It follows that
Cp(X) is a Lindelöf Σ-space. �

Considering the Corollaries 5.7, 5.8 and 5.9, the following questions are
natural:

Question 5.10. Let X be a non-compact space. Suppose that Cp(X) is
a (LΣ, LΣ)-structured space. Is it true that Cp(X) is a Lindelöf Σ-space?

Question 5.11. Let X be a non-compact space. Suppose that Cp(X) is
a (σK, LΣ)-structured space. Must Cp(X) be a Lindelöf Σ-space?

We do not know the answers to above questions but our Proposition
5.16 gives a result in connection with question 5.11.

Definition 5.12. Let κ be an infinite cardinal.
(1) A κ-Baire space is a space such that the intersection of less than

κ dense open sets, is a dense set.
(2) A space X belongs to the (2, κ+)-Baire category, if the intersection

of a family of at most κ dense open sets is non-empty.

It is not difficult to show that a space X belongs to the (2, κ+)-Baire
category iff X cannot be represented as the union of at most κ nowhere
dense subsets. Neither is it difficult to show that for a homogeneous
space X, it is a κ-Baire space iff it belongs to (2, κ+)-Baire category.
Nevertheless, for the sake of completeness, we give proof of the last claim.
For that we recall first the following:
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Remark 5.13. Let U and V be open subsets of the space X, with V ⊆ U .
Then, if V belongs to the (2, κ+)-Baire category, U belongs to the (2, κ+)-
Baire category. In fact, if {Gα : α < κ} is a family of open dense subsets
of U and we define the sets Vα = Gα∩V , then {Vα : α < κ} is a family of
open dense subsets in V . Therefore, ∅ ̸= ∩{Vα : α < κ} ⊆ ∩{Gα : α < κ}
and this implies that U belongs to the (2, κ+)-Baire category.

Now, it is easy to show the next result.
Proposition 5.14. A non-empty space X is κ+-Baire if and only if every
non-empty open subset of X belongs to the (2, κ+)-Baire category.
Proof. ⇒ ⌋ Let V be an open non-empty subset of X and {Vα : α < κ} a
family of open dense subsets in V . Define the sets Gα as Gα = Vα∪(X\V ),
for each α < κ. Since {Gα : α < κ} is a family of dense open subsets in
X, and X is a κ+-Baire space, it follows that ∩{Gα : α < κ} is a dense
subset of X and given that V is an open non-empty set, we have that
∩{Gα : α < κ} ∩ V = ∩{Vα : α < κ} is dense in V . Therefore, V is
κ+-Baire and belongs to the (2, κ+)-Baire category.

⇐ ⌋ Let {Gα : α < κ} be a family of open and dense subsets in X and U
an open subset, non-empty, of X. It is easy to see that {Gα,U : α < κ} is a
family of dense open subsets of U , where Gα,U = Gα ∩U . By hypothesis,
U belongs to the (2, κ+)-Baire category, so

∅ ≠ ∩{Gα ∩ U : α < κ} = (∩{Gα : α < κ}) ∩ U.

Therefore, ∩{Gα : α < κ} is a dense subset of X. �

Proposition 5.15. Let X be a homogeneous space, then X belongs to the
(2, κ+)-Baire category if and only if X has the κ+-Baire property.
Proof. Suppose that X belongs to the (2, κ+)-Baire category. Suppose X
does not have the κ+-Baire property. By Proposition 5.14, there exists
an open non-empty set U ⊆ X that does not belong to (2, κ+)-Baire
category. Let x ∈ U , then x has a neighborhood base of sets that do not
belong to (2, κ+)-Baire category. Since X is homogeneous we can take a
neighborhood base B, for X, of sets that do not belong to the (2, κ+)-
Baire category. By the Zorn’s lemma, there exists a maximal family
γ ⊆ B of disjoint open sets. We have that (∪γ) = X. Since every U ∈ γ
does not belong to the (2, κ+)-Baire category, we can choose a family
{Gα,U : α < κ} of open dense subsets in U such that ∩{Gα,U : α < κ} = ∅.
Let Gα = ∪{Gα,U : U ∈ γ}, for each α < κ. Then {Gα : α < κ} is a
family of open dense subsets of X. However∩

{Gα : α < κ} =
∩
α<κ

∪{Gα,U : U ∈ γ} =
∪
U∈γ

∩{Gα,U : α < κ} = ∅,

a contradiction. Therefore X has the κ+-Baire property. �
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Since every topological group is a homogeneous space, we have the
following result.

Proposition 5.16. Let G be a (σK, LΣ)-structured and ℵ0-bounded topo-
logical group. Suppose that Z is a σ-compact kernel of G of character α
in X and let κ = max{α, 2ℵ0}. If G has the κ+-Baire property, then G
is a Lindelöf Σ-space.

Proof. Suppose that G is a (σK, LΣ)-structured topological group. Let
Z =

∪
n∈N Kn be a σ-compact kernel of G. We can represent G in the

following form: G =
(∪

n∈N Kn

)
∪
∪

V ∈B(G \ V ), where B is a base for Z
in G of minimum cardinality. Given that all the elements in the union are
closed subspaces and Lindelöf Σ, and G has the κ+-Baire property, there
is some element in the union with non-empty interior. Since G is homo-
geneous and ℵ0-bounded, we can apply the method used in Proposition
5.1 to show that G is a Lindelöf Σ-space. �
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