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RATIONALITY OF THE SL(2,C)-REIDEMEISTER
TORSION IN DIMENSION 3

JEROME DUBOIS AND STAVROS GAROUFALIDIS

Abstract. IfM is a finite volume complete hyperbolic 3-manifold
with one cusp and no 2-torsion, the geometric component XM of
its SL(2,C)-character variety is an affine complex curve, which is
smooth at the discrete faithful representation ρ0. Porti defined a
non-abelian Reidemeister torsion in a neighborhood of ρ0 in XM
and observed that it is an analytic map, which is the germ of a
unique rational function on XM . In the present paper we prove
that (a) the torsion of a representation lies in at most quadratic
extension of the invariant trace field of the representation, and (b)
the existence of a polynomial relation of the torsion of a represen-
tation and the trace of the meridian or the longitude. We postulate
that the coefficients of the 1/Nk-asymptotics of the Parametrized
Volume Conjecture forM are elements of the field of rational func-
tions on XM .

1. Introduction

1.1. The volume of an SL(2,C)-representation and the A-polyno-
mial. A well-known numerical invariant of a 3-dimensional finite volume
hyperbolic manifold M with a cusp is its volume, a positive real number.
A complete invariant of the hyperbolic structure of M is a discrete faith-
ful representation of π1(M) into PSL(2,C) (well-defined up to conjuga-
tion) which is also a topological invariant, as follows from Mostow rigidity
Theorem. Every PSL(2,C)-representation ρ of π1(M) has a real-valued
volume Vol(ρ); see [14, Ch.2] and also [17, 16]. When a representation
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varies in a 1-parameter family ρt, the variation of the volume d
dtVol(ρt)

depends only on the restriction of ρt to the boundary torus ∂M . This is
a general principle of Atiyah-Patodi-Singer, and in our special case it also
follows from Schalfi’s formula. This raises the question: which PSL(2,C)-
representations of ∂M extend to a representation of M? The answer is
given by an algebraic condition between the eigenvalues of a meridian
and longitude of ∂M . This condition is the vanishing of the so-called
A-polynomial of M ; see [7]. The A-polynomial of M encodes important
information about

(a) the hyperbolic geometry of M , and determines the variation of
the volume of the hyperbolic structure of M .

(b) the topology of M and more precisely about the slopes of in-
compressible surfaces in the knot complement, as follows from
Culler-Shalen theory; see [7].

More recently, the A-polynomial (or rather, its extension that includes
the images of all components of the character variety) is conjecturally
linked in two different ways to a quantum knot invariant, namely the
colored Jones polynomials of a knot in 3-space (for a definition of the
latter, which we will not use in the present paper, see [34] and [20]):

(a) There is an Aq-polynomial in two q-commuting variables which
encodes a minimal order linear q-difference equation for the se-
quence of colored Jones polynomials; see [20]. The AJ Conjecture
of [18] states that when q = 1, the Aq-polynomial coincides with
the A-polynomial.

(b) There is a parametrized version of the Volume Conjecture which
links the variation of the limit in the Volume Conjecture to the
A-polynomial; see [22, 21].

Aside from conjectures, the following result of [10] and [5] (based on
foundational work of Kronheimer-Mrowka) shows that the A-polynomial
detects the unknot.

Theorem 1.1. [5, 10] The A-polynomial of a nontrivial knot in 3-space
is nontrivial.

1.2. The SL(2,C)-character variety of M and its field of ratio-
nal functions. For historical reasons that simplify the linear algebra, it
is useful to consider SL(2,C) (rather than PSL(2,C))-representations of
π1(M). In the rest of the paper, M will denote a finite volume hyper-
bolic 3-manifold with one cusp, such that the homology of M contains
no 2-torsion. In this case, the discrete faithful representation of M lifts
to a SL(2,C)-representation ρ0 : π1(M) → SL(2,C); see [9]. To under-
stand how the SL(2,C)-representation ρ0 of π1(M) varies, we consider
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the unique component XM of the SL(2,C)-character variety of M that
contains ρ0. It is well-known that XM is an affine curve defined over Q
and that ρ0 is a smooth point of XM ; see [7]. Moreover, the coordinate
ring Q[XM ] is generated by trγ for all γ ∈ π1M (see [33, Prop.1.1.1]),
where trγ is the so called trace-function defined by:

(1) trγ : XM −→ C, trγ(ρ) = tr(ρ(γ)).

Here tr(A) =
∑
i aii denotes the trace of a square matrix A = (aij). Let

Q(XM ) denote the field of rational functions of XM . For a detailed dis-
cussion on character varieties, the reader may consult Shalen’s survey [33]
and also [1, Sec.10] and [7, 23].

1.3. The Reidemeister torsion of an SL(2,C)-representation. An-
other important numerical invariant of a representation of a manifold is
its Reidemeister torsion, which comes in several combinatorial or analytic
flavors, see Milnor’s survey [25] or Turaev’s monograph [35] for details.
Combinatorially, the Reidemeister torsion is defined in terms of ratios
of determinants of matrices assigned to based, acyclic complexes, which
themselves are associated with a cell decomposition of a manifold and
an acyclic representation. One can define torsion for all (not necessar-
ily acyclic) representations of a manifold as an element of a top exterior
power of a twisted (co)homology group, and one can obtain a complex
number after choosing a basis for the twisted (co)homology. Porti [30]
defined a Reidemeister torsion for the adjoint representation associated
to an SL(2,C)-representation ρ of π1(M) when ρ is in a neighborhood U
of ρ0 ∈ XM

1. Such representations are not acyclic and a basis for the
twisted homology (and thus the torsion) depends on an admissible curve
γ, i.e., a simple closed curve γ in ∂M which is not nullhomologous in
∂M (see [30, Chap. 3] for details). Thus, the non–abelian Reidemeister
torsion is a map:

(2) τγ : U −→ C.
Moreover, Porti [30] observed that τγ is an analytic map, and obtained
the following result.

Theorem 1.2. [30, Thm.4.1] For every admissible curve γ, the non-
abelian Reidemeister torsion τγ : U −→ C is the germ of a unique element
of Q(XM ), which is regular at ρ0.

In Section 3.2 we will give an independent proof of Theorem 1.2, which
we need for the main results of our paper. To phrase our results, recall

1The referee points out that the torsion of the adjoint of an SL(2,C) representation
of M depends only on the corresponding PSL(2,C) representation. This holds since
the adjoint representation of SL(2,C) factors through PSL(2,C).
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that the trace field Q(ρ) of an SL(2,C)-representation ρ of M is the field
Q(trg(ρ)|g ∈ π1(M)). For an admissible curve γ, let {eγ(ρ), eγ(ρ)−1}
denote the eigenvalues of ρ(γ). Observe that the field Q(ρ)(eγ(ρ)) is at
most a quadratic extension of the trace field of ρ. Our next theorem uses
the notion of a generic representation, defined in Section 2. Note that this
is a Zariski open condition, and that the discrete faithful representation
is generic (regular in the language of Porti’s work).
Theorem 1.3. For every admissible curve γ and every generic represen-
tation ρ, τγ(ρ) lies in the field Q(ρ)(εγ(ρ)). In particular, τγ(ρ0) lies in
the trace field of M .

Note that since the homology of M has no 2-torsion, the trace field of
M coincides with its invariant trace field; see [28, Thm.2.2]. Our next
theorem shows that τγ is an algebraic function of trγ . This follows easily
from the fact that τγ and trγ are rational functions on XM and that
Q(XM ) has transcendence degree 1, since XM is an affine curve defined
over Q.
Theorem 1.4. For every admissible curve γ, there exists a polynomial
Tγ(τ, y) ∈ Z[τ, y], called the Tγ-polynomial, so that

(3) Tγ(τγ , trγ) = 0.

Let us make some remarks regarding Theorems 1.2 and 1.4.
Remark 1.1. The dependence of the torsion function τγ on γ is deter-
mined by the A-polynomial; see Equation (19). Thus, Tγ is determined by
Tµ and the A-polynomial of M . Moreover, if we let {eµ(ρ), e−1

µ (ρ)} (resp.
{eλ(ρ), e−1

λ (ρ)}) de the eigenvalues for the meridian µ (resp. longitude λ)
at ρ, that is to say, if

eµ(ρ) + e−1
µ (ρ) = trµ(ρ) and eλ(ρ) + e−1

λ (ρ) = trλ(ρ)

then one has (see [30, Thm.4.1]):

τλ =
eµ
eλ
· ∂eλ
∂eµ
· τµ.

In particular, at the discrete faithful representation ρ0, we have:

(4) τλ(ρ0) = c · τµ(ρ0)

where c is the cusp-shape. This holds since near ρ0 we have A(1 + t +
O(t)2,−1 + c t+O(t2)) = 0 where A(M,L) is the A-polynomial.
Remark 1.2. Theorem 1.2 is an instance of a well-recorded phenomenon:
many classical and quantum invariants of knotted 3-dimensional objects
are algebraic. For a detailed discussion regarding conjectures and facts,
see [19]. For a quick explanation of the algebricity in dimension 3, see
Section 3.1 below.
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1.4. Examples. In this section, we illustrate Theorem 1.4 for the com-
plement of the figure eight knot 41, and the complement of the 52 knot.

Example 1.3. Consider the complement M of the figure eight knot 41

with a meridian-longitude system (µ, λ). The non–abelian Reidemeister
torsion (with respect to the longitude λ) on the character variety XM is
given by (see [30] or [13]):

τλ =
√

17 + 4 trλ

with the convention that we choose the positive square root near the
discrete faitfhul representation ρ0 with trλ(ρ0) = −2 (see [6, Cor.2.4]).
Thus Tλ(τλ, trλ) = 0 where

Tλ(x, y) = 17 + 4y − x2.

Let trλ = eλ + e−1
λ , trµ = eµ + e−1

µ . The vanishing of the A-polynomial
for the figure eight knot gives us the following identity (see [7]):

A(ελ, eµ) = −2 + (e4
µ + e−4

µ )− (e2
µ + e−2

µ ) + (eλ + eλ).

Thus, we obtain:
trλ = tr4

µ−5 tr2
µ +2.

For details, see [30, 12]. On the other hand, the torsion with respect to
the meridian is given by (see Equation (18)):

τµ = τλ ·

(
tr2
λ−4

tr2
µ−4

)1/2

· ∂ trµ
∂ trλ

=
1

2

√
(tr2

µ−5)(tr2
µ−1).

Thus Tµ(τµ, trµ) = 0 where

Tµ(τ, z) = −5 + 6z2 − z4 + 4τ2.

At the discrete faithful representation ρ0, we have trλ(ρ0) = −2 (see [6,
Cor.2.4]) and trµ(ρ0) = ±2 giving that

τλ(ρ0) = 3, τµ(ρ0) =
i
√

3

2
.

On the other hand, the trace field of 41 is Q(x) where x2 + 3 = 0. This
confirms Theorem 1.3 for the discrete faithful representation ρ0 of 41. In
addition, the cusp-shape of 41 is c = −2i

√
3, confirming Equation (4).

Example 1.4. We will repeat the previous example for the twist knot
52. The non–abelian Reidemeister torsion (with respect to the longitude
λ) for 52 is given by (see [12]):

τλ = (−10 tr2
µ +21) +

(
5 tr4

µ−27 tr2
µ +35

)
u+

(
7− 5 tr2

µ

)
u2,

where u satisfies the polynomial equation

(2 tr2
µ−7)−

(
tr4
µ−7 tr2

µ +14
)
u+

(
2 tr2

µ−7
)
u2 − u3 = 0.
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Eliminating u from the above equations, it follows that Tλ(τλ, trµ) = 0
where

Tλ(x, y) = x3

+ x2(35− 26y2 + 5y4)

+ x(294− 280y2 + 83y4 − 10y6)

+ 343 + 196y2 − 126y4 + 20y6.

We choose the branch of u such that at the discrete faithful representation,
u0 satisfies the equation

1− 2u0 + u2
0 − u3

0 = 0, u0 = 0.21508 . . .− 1.30714 . . . i

which coincides with the Riley polynomial of 52; see [26]. The invariant
trace field of 52 is the cubic subfield Q(α) of the complex numbers given
by:

α3 − α2 + 1 = 0, α = 0.877439 . . .− 0.744862 . . . i

and the cusp shape c is given by:

c = 4α− 6 = −2.49024 . . .− 2.97945 . . . i

which is related with the the root of the Riley polynomial by:

u0 =
4

−c− 2
.

The above equation agrees with [12, Eqn.(3.9)] up to the mirror image of
52. It follows that at the discrete faithful representation ρ0, τλ(ρ0) is the
root of the equation

τλ(ρ0)
3+11τλ(ρ0)

2−138τλ(ρ0)+391 = 0, τλ(ρ0) = 4.11623 . . .−1.84036 . . . i

and in terms of the invariant trace field, is given by:

τλ(ρ0) = −6α2 + 13α− 6.

Equation (4) and the above discussion imply that:

τµ(ρ0) =
τλ(ρ0)

c
= 1− 3

2
α = −0.316158 . . .+ 1.11729 . . . i.

Notice that −2τµ(ρ0) = 3α − 2 is a prime of norm −23. In fact, the
invariant trace field Q(α) has discriminant −23 and 23 ramifies as:

−23 = (3α− 2)2(3α+ 1)

where 3α− 2 and 3α + 1 are the primes above 23. The above discussion
confirms Theorem 1.3 for the discrete faithful representation.
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1.5. Problems. In this section we list a few problems and future direc-
tions.

Problem 1.5. Is the Tλ-polynomial of a hyperbolic knot nontrivial?

Remark 1.6. The volume and the Reidemeister torsion appear as the
classical and semiclassical limit in a parametrized version of the Volume
Conjecture; see for example [22]. Physics arguments suggest that the non-
commutative A-polynomial and the Reidemeister torsion is determined by
the A-polynomial and the volume of the manifold alone. However, compu-
tations with twist knots suggest that the A and Tλ-polynomials seem to be
independent from each other. Perhaps this discrepancy can be explained
by the difference between on-shell and off-shell physics computations.

Let us now formulate a speculation regarding the Parametrized Volume
Conjecture of Gukov-Murakami and Le-Garoufalidis; see [22, 21]. If K is
a knot in S3, let JK,N (q) ∈ Q[q±1] denote the quantum group invariant
of K colored by the N -dimensional irreducible representation of sl2(C),
and normalized to be 1 at the unknot. For fixed α ∈ C, the Parametrized
Volume Conjecture studies the asymptotics of the sequence (JK,N (eα/N ))
for N = 1, 2, . . . . For suitable α near 2πi, and for hyperbolic knots K,
one expects an asymptotic expansion of the form

JK,N (eα/N ) ∼ e
NCS(ρα)

2πi N3/2c0(α)

(
1 +

∞∑
k=1

ck(α)

Nk

)
where ρα ∈ XM denotes a representation near ρ0 with trµ(ρα) = eα+e−α;
see [11, 21].

Problem 1.7. For every k, and with suitable normalization, show that
ck(α) are germs of unique elements of the field Q(XM ).

Conjecture 1.8. Show that

(5) c0(0) = (2τµ(ρ0))−1/2.

H. Murakami has proven the above conjecture for the 41 knot (see
[27]), and unpublished computations of the second author and D. Zagier
have numerically verified the above conjecture for the 52 and the (−2, 3, 7)
pretzel knot. The details will appear in forthcoming work.

Our next problem concerns the extension of Theorem 1.2 to simple
complex Lie groups GC, rather than SL(2,C). Physics arguments regard-
ing the 1-loop computation of perturbative Chern-Simons theory suggest
that an extension of Theorem 1.2 to arbitrary complex simple groups GC
is possible. It is reasonable to expect that an extension of the non abelian
Reidemeister torsion is possible (see for example [2, 3]), and that Theorem
1.2 extends.
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Problem 1.9. Extend Theorem 1.2 to arbitrary simple complex Lie
groups GC.

2. The character variety of hyperbolic 3-dimensional
manifolds

2.1. Four favors of the character variety, après Dunfield. The
careful reader may observe that the volume function is defined for
PSL(2,C) representations of a 1-cusped hyperbolic manifold M , whereas
the Reidemeister torsion is defined for SL(2,C)-representations ofM . Our
proof of Theorem 1.2 requires a new variant of a representation, the so-
called augmented representation that comes in two flavors: the PSL(2,C)
and the SL(2,C) one. For an excellent discussion, we refer the reader
to [14, Sec.2-3] and [1, Sec.10]. Much of the results of this section the
second author learnt from N. Dunfield, whom we thank for his guidance.
Naturally, we are responsible for any comprehension errors.

Let us define the four versions of the character variety of M . Let
R(M,SL(2,C)) denote the set of all homomorphisms of π1(M) into
SL(2,C) and letXM,SL(2,C) be the set of characters of π1(M) into SL(2,C)
— which is in a sense the algebro-geometric quotient R(M, SL(2,C))//
SL(2,C), where SL(2,C) acts by conjugation (see [33]). The charac-
ter χρ : π1(M) → C associated to the representation ρ is defined by
χρ(g) = tr(ρ(g)), for all g ∈ π1(M). For irreducible representations,
two representations are conjugate (in SL(2,C)) if, and only if, they have
the same character (see [7] or [33]). It is easy to see that R(M,SL(2,C))
and XM,SL(2,C) are affine varieties defined over Q.

Let R(M, SL(2,C)) denote the subvariety of R(M, SL(2,C)) × P 1(C)
consisting of pairs (ρ, z) where z is a fixed point of ρ(π1(∂M)). Let
XM,SL(2,C) denote the algebro-geometric quotient of R(M, SL(2,C)) un-
der the diagonal action of SL(2,C) by conjugation and Möbius transfor-
mations respectively. We will call elements (ρ, z) ∈ R(M, SL(2,C)) aug-
mented representations. Their images in the augmented character variety
X(M,SL(2,C)) will be called augmented characters and will be denoted
by square brackets [(ρ, z)]. Likewise, replacing SL(2,C) by PSL(2,C), we
can define the character variety XM,PSL(2,C) and its augmented version
XM,PSL(2,C).

The advantage of the augmented character variety XM,SL(2,C) is that
given γ ∈ π1(∂M) there is a regular function eγ which sends [(ρ, z)] to
the eigenvalue of ρ(γ) corresponding to z. In contrast, in XM,SL(2,C) only
the trace eγ + e−1

γ of ρ(γ) is well-defined. Likewise, in XM,PSL(2,C) (resp.
XM,SL(2,C)) only e2

γ (resp. e2
γ + e−2

γ ) is defined.
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From now on, we will restrict to a geometric component of the PSL(2,C)
character variety ofM and its lifts. The four character varieties associated
to M fit in a commutative diagram

(6) XM,SL(2,C)
//

��

XM,PSL(2,C)

��
XM,SL(2,C)

// XM,PSL(2,C)

where the vertical maps are forgetful maps [(ρ, z)] −→ [ρ] = χρ and the
horizontal maps are induced by the projection SL(2,C) −→ PSL(2,C).
The vertical maps are generically 2:1 at the geometric components. The
horizontal maps are discussed in [14, Cor.3.2].

The notation XM of Section 1 matches the notation XM = XM,SL(2,C)

of this section.
The next lemma describes the coordinates rings of the four versions of

the character variety.

Lemma 2.1. (1) The coordinate ring of XM,SL(2,C) is generated by
trg for all g ∈ π1(M).

(2) The coordinate ring of XM,PSL(2,C) is generated by tr2
g for all g ∈

π1(M).
(3) The coordinate ring of XM,SL(2,C) is generated by trg for all g ∈

π1(M) and by eγ for γ ∈ π1(∂M).
(4) The coordinate ring of XM,PSL(2,C) is generated by tr2

g for all
g ∈ π1(M) and by e2

γ for γ ∈ π1(∂M).

The commutative diagram (6) gives an inclusion of fields of rational
functions:

(7) Q(XM,SL(2,C)) Q(XM,PSL(2,C))? _oo

Q(XM,SL(2,C))
?�

OO

Q(XM,PSL(2,C))? _oo
?�

OO

where the vertical field extensions are of degree 2.

2.2. The coefficient field of augmented representations. A crucial
part in our proof of Theorem 1.2 is the choice of a coefficient field of an
SL(2,C)-representation of π1(M). In this section, we show that the notion
of an augmented representation fits well with the choice of a coefficient
field.

First, let us describe the problem. Given a subgroup Γ of SL(2,C),
we can define its trace field Q(Γ) (resp. its coefficient field E(Γ)) by



124 JEROME DUBOIS AND STAVROS GAROUFALIDIS

Q(tr(A) |A ∈ Γ) (resp. the field generated over Q by the entries of all
elements A of Γ). The trace field but not the coefficient field of Γ is
obviously invariant under conjugation of Γ in SL(2,C). In general, it is
not possible to choose a conjugate of Γ to be a subgroup of SL(2,Q(Γ)).
The following lemma shows that this is possible after passing to at most
quadratic extension of the trace field.

Lemma 2.2. ([24, Prop. 3.3][26, Cor. 3.2.4]) If Γ is non-elementary, then
Γ is conjugate to SL(2,K) where K = Q(Γ)(e) is an extension of degree
[K : Q(Γ)] ≤ 2, and e can be chosen to be an eigenvalue of a loxodromic
element of Γ.

For the definition of a non-elementary subgroup of SL(2,C) and of a
loxodromic element, see [24, 26]. The proof of Lemma 2.2 uses the theory
of 4-dimensional quaternion algebras.

We want to apply Lemma 2.2 to a representation ρ ∈ R(M,SL(2,C)).
Recall that the discrete faithful representation ρ0 of π1(M) is non-element-
ary, and that the subset of characters of elementary representations in the
geometric component XM,SL(2,C) is Zariski closed, and therefore, finite;
see [26].

Given a representation ρ ∈ R(M,SL(2,C)), let Q(ρ) and E(ρ) de-
note the trace field and the coefficient field of the subgroup ρ(π1(M)) ⊂
SL(2,C) respectively. Likewise, if (ρ, z) ∈ R(M,SL(2,C)) is an aug-
mented representation, let Q(ρ, z) denote the field generated over Q by
trg(ρ) for g ∈ π1(M) and eγ for γ ∈ π1(∂M). Similarly, we define the
coefficient field E(ρ, z) associated to the augmented representation (ρ, z).

The next lemma follows from Lemma 2.2 and the above discussion.

Lemma 2.3.
(1) If ρ ∈ R(M,SL(2,C)) is generic (i.e., non-elementary) then a

conjugate of ρ is defined over a quadratic extension of Q(ρ).
(2) If (ρ, z) ∈ R(M,SL(2,C)) is generic (i.e., non-elementary) then

there exists N ∈ SL(2,C) so that N−1(ρ, z)N is defined over
E(ρ, z).

An alternative version of the above Lemma is possible; see Lemma 2.6
below.

2.3. Augmented representations and the shape field. There is an
alternative description of the field Q(XM,PSL(2,C)) in terms of shape pa-
rameters of ideal triangulations of M , which is useful in applications.
For completeness, we discuss it in this section and the next. Let us first
describe XM,PSL(2,C) in terms of pseudo-developing maps, discussed in
detail in [14, Sec.2.5]. Given ρ ∈ RM,PSL(2,C), consider a ρ-equivariant
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map M̃ −→ H3, where H3 denotes the 3-dimensional hyperbolic space.
Since ∂M is a 2-torus, it lifts to a disjoint collection of planes R2 in the
universal cover M̃ . Let M denote the space obtained by cutting M̃ along
these planes, and crushing them into points. Set-theoretically, the set
M \ M̃ of ideal points is in 1-1 correspondence with the cusps of M in
H3, i.e., with the coset π1(M)/π1(∂M). An augmented representation
(ρ, z) ∈ RM,PSL(2,C) gives a π1(M)-equivariant map

D(ρ,z) : M −→ H3

whereH3
= H3∪CP1 is the compactification of hyperbolic space by adding

a sphere CP1 at infinity. Such a map is a pseudo-developing map in [14,
Sec.2.5]. An augmented character [(ρ, z)] ∈ XM,PSL(2,C) does not have a
unique pseudo-developing map, however every two are homotopic relative
to CP1, for example using a straight line homotopy tf(x) + (1− t)g(x) in
H3. Thus, there is a well-defined map:

(8) XM,PSL(2,C) −→ {Pseudo-developing maps of M,

modulo homotopy rel boundary}.
Consider a 4-tuple of distinct points (A,B,C,D) ∈ (M \M̃)4, and an aug-
mented character [(ρ, z)] ∈ XM,PSL(2,C). Then, D[(ρ,z)] sends A,B,C,D
to four points A′, B′, C ′, D′ in C∪ {∞} = CP1 = ∂H3, and consider their
cross-ratio

crA,B,C,D[(ρ, z)] =
(A′ −D′)(B′ − C ′)
(A′ − C ′)(B′ −D′)

.

IfA′, B′, C ′, D′ are distinct, then crA,B,C,D[(ρ, z)]∈C, else crA,B,C,D[(ρ, z)]
is undefined. This gives a rational map

crA,B,C,D : XM,PSL(2,C) −→ C.

Let Qdev
M denote the field over Q generated by crA,B,C,D for all 4-tuples

of distinct points of M \ M̃ .

Lemma 2.4. We have

Qdev
M = Q(XM,PSL(2,C)).

The proof will be given in the next section.

2.4. Ideal triangulations and the gluing equations variety. A con-
venient way to construct the unique hyperbolic structure on M , and its
small incomplete hyperbolic deformations is using an ideal triangulation
T = (T1, . . . , Ts) of M which recovers the complete hyperbolic struc-
ture. For a detailed description of ideal triangulations, see [4] and also [1,
App.10]. An ideal triangulation T which is compatible with the discrete
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faithful representation has nondegenerate shape parameters zj ∈ C\{0, 1}
for j = 1, . . . , s. Such a triangulation always exists; for example subdi-
vide the canonical Epstein-Penner decomposition of M by adding ideal
triangles; see [15, 4, 31]. Once we choose shape parameters for each ideal
tetrahedron, one can use them to give a hyperbolic metric (in general in-
complete) in the universal cover M̃ , once a compatibility condition along
the edges of T is satisfied. This compatibility condition defines the so-
called Gluing Equations variety G(T ). In the appendix of [1], Dunfield
describes a map

(9) G(T ) −→ RM,PSL(2,C)

which projects to an injection

(10) G(T ) −→ XM,PSL(2,C)

Consider the field Q(z1, . . . , zs) over Q generated by the shape parame-
ters z1, . . . , zs. A priori, Q(z1, . . . , zr) depends on M . The next lemma
describes the fields of rational functions of augmented representations in
terms of the shape field.

Lemma 2.5. (a) We have

(11) Q(XM,PSL(2,C)) = Q(z1, . . . , zs)

and

(12) Q(XM,SL(2,C)) = Q(z1, . . . , zs, eλ, eµ)

(b) If the image of (z1, . . . , zs) ∈ G(T ) is [(ρ, z)] ∈ RM,PSL(2,C) under the
map (9), then the trace field (resp. coefficient field) of an SL(2,C) lift of
[(ρ, z)] is Q(z1, . . . , zs) (resp. Q(z1, . . . , zs, eλ, eµ)).

Proof. The shape parameters zj , for j = 1, . . . , s, are coordinate functions
on the curve G(T ). In addition, the squares e2

λ and e2
µ of the eigenvalues

of a meridian-longitude pair (λ, µ) of ∂M are rational functions of the
shape parameters zj . Since the map in Equation (10) is an inclusion of
a curve into another, it follows that their fields of rational functions are
equal. This proves Equation (11). Equation (12) follows from Lemma 2.3
and the fact that e2

λ, e
2
µ ∈ Q(z1, . . . , zs). This proves part (a). Part (b)

follows from [26, Cor.3.2.4]. �

Proof. (of Lemma 2.4) It follows by applying verbatim the proof of [26,
Lem.5.5.2]. �
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Let us end this section with an alternative version of Lemma 2.3 using
shape fields. Recall from [14, Sec.2] that the map in Equation (9) can be
defined as follows. Fix a solution (z1, . . . , zs) of the Gluing Equations of
T . Lift T to an ideal triangulation of M̃ , and then map the lift of one
ideal tetrahedron to a fixed ideal tetrahedron of H3 of the same shape,
and then use π1(M)-equivariance to send every other ideal tetrahedron
to an appropriate ideal tetrahedron of H3, using face-pairings. There is a
consistency condition, which is satisfied since we are using a solution to
the Gluing Equations. This defines a developing map and a corresponding
PSL(2,C)-representation ρ. In [1, App. 10], Dunfield describes how to
define not only a representation in PSL(2,C), but also an augmented one
(ρ, z).

The combinatorial structure of T gives a presentation of Π = π1(M)
in terms of face-pairings:

(13) Π = 〈g1, . . . , gs | r1, . . . , rs−1〉 .

Each generator of Π is represented by a path in the 1-skeleton of the dual
triangulation of T ; see [26, Chap. 5] or [32, Ch.11]. The entries of ρ(gj),
for j = 1, . . . , s, are given by face-pairings, and are explicit matrices with
entries in Q(z1, . . . , zs); see [26, Chap. 5]. The above discussion proves
the following version of Lemma 2.3.

Lemma 2.6. (1) The image of the map in Equation (9) is defined
over Q(z1, . . . , zs).

(2) Generically, a lift of the image of the map in Equation (9) to
R(M,SL(2,C)) is defined over Q(z1, . . . , zs, eλ, eµ).

3. The non-abelian Reidemeister torsion

3.1. An explanation of the rationality of the Reidemeister tor-
sion in dimension 3. Before we prove the rationality of the torsion
stated in Theorem 1.2, let us give the main idea which is rather simple,
and defer the technical details for the next section.

The starting point is a hyperbolic manifold M with one cusp. The
character variety XM,SL(2,C) depends only on π1(M) but we view it in
a specific birational equivalent way by using a combinatorial decomposi-
tion of M into ideal tetrahedra. Every such manifold is obtained by a
combinatorial face-pairing of a finite collection T of nondegenerate (but
perhaps flat, or negatively oriented) ideal tetrahedra T1, . . . , Ts. The hy-
perbolic shape of a nondegenerate ideal tetrahedron is determined by a
complex number z ∈ C \ {0, 1}, up to the action of a finite group of order
6. The discrete faithful representation ρ0 assigns hyperbolic shapes zj to
the tetrahedra Tj for j = 1, . . . , s. As we already observe, these shapes



128 JEROME DUBOIS AND STAVROS GAROUFALIDIS

satisfy the so-called Gluing Equations, which is a collection of polynomial
equations in zj and 1−zj to make the metric match along the edges of the
ideal tetrahedra. The Gluing Equations define a variety G(T ) which of
course depends on T . When the discrete faithful representation ρ0 slightly
deforms in ρt (i.e., bends, in the language of Thurston) this causes the
shapes zj of Tj to deform to zj(t). For small enough t, the new shapes
still satisfy the Gluing Equations. Consequently, for every t, the shapes
zj(t) , for j = 1, . . . , s, are algebraically dependent, and so is any algebraic
function of the shapes.

In the case of the A-polynomial, the squares eλ(t)2 and eµ(t)2 of the
eigenvalues eλ(t) and eµ(t) of a meridian-longitude pair of T 2 = ∂M are
rational functions in zj(t) (in fact, monomials in zj(t) and 1− zj(t) with
integer exponents), thus (eλ(t), eµ(t)) are algebraically dependent. This
dependence defines the A-polynomial.

In the case of Reidemeister torsion and Theorem 1.2, the torsion τµ(ρt)
of the relevant chain complex is defined over the field Q(z1(t), . . . , zs(t),
eλ(t), eµ(t)). In other words all matrices that compute the torsion (and
thus the ratios of their determinants) have entries in the field Q(z1(t), . . . ,
zs(t), eλ(t), eµ(t)).

3.2. Proof of Theorem 1.2. In this section, we will prove Theorem
1.2. Let M be a one-cusp finite-volume complete hyperbolic 3-manifold.
Choose an ideal triangulation T = (T1, . . . , Ts) compatible with the dis-
crete faithful representation of M as described above, and let (z1, . . . , zs)
denote the shape parameters of T . Let E denote the following field:

K = Q(z1, . . . , zs, eλ, eµ) = Q(XM,SL(2,C))

where the last equality follows from Lemma 2.5.
Let J denote an open interval in R that contains 0, and consider a

1-parameter family t ∈ J 7→ z(t) = (z1(t), . . . , zs(t)) ∈ G(T ) of solutions
of the Gluing Equations, with image (ρ′t, z

′
t) ∈ R(M,PSL(2,C)) under the

map in Equation (9) and with lift (ρt, zt) ∈ R(M, SL(2,C)) where ρ0 is
a lift to SL(2,C) of the discrete faithful representation of M . Fix γ an
essential curve in the boundary torus ∂M .

We will explain how to define the Reidemeister torsion τγ(ρt) (for com-
plete definitions the reader can refer to Porti’s monograph [30] and to Tu-
raev’s book [35]), and why it coincides with the evaluation of an element
of K at ρt.

The 2-skeleton of the combinatorial dual W to T is a 2-dimensional
CW -complex which is a spine of M ; see [4]. Mostow rigidity Theorem
implies that every homotopy equivalence of M is homotopic to a homeo-
morphism (even to an isometry), and Chapman’s theorem concludes that
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every homotopy equivalence ofM is simple; [8]. Thus, W is simple homo-
topy equivalent to M , and we can use W to compute τγ(ρt). The ideas
of the definition of the non-abelian torsion τγ(ρt) are the following:

(a) Consider the universal cover W̃ of W and the integral chain com-
plex C∗(W̃ ;Z) of W̃ for ∗ = 0, 1, 2. The fundamental group
Π = π1(W ) = π1(M) acts on W̃ by covering transformations.
This action turns the complex C∗(W̃ ;Z) into a Z[Π]-module. The
Lie algebra sl2(C) also can be viewed as a Z[Π]-module by using
the composition Ad ◦ ρt, where Ad denotes the adjoint represen-
tation of sl2(C). We let sl2(C)ρt denote this Z[Π]-module. The
twisted chain complex of W is the C-vector space:

(14) Cρt∗ = C∗(W̃ ;Z)⊗Z[Π] sl2(C)ρt .

(b) The twisted chain complex Cρt∗ computes the so-called twisted
homology of W which is denoted by Hρt

∗ . The betti numbers
of Hρt

∗ are given by (because ρt lies in a neighborhood of the
discrete and faithful representation and thus is generic, or regular
in Porti’s language, see [30, Chap. 3]):

dimC(Hρt
0 ) = 0, dimC(Hρt

1 ) = 1, dimC(Hρt
2 ) = 1.

(c) For i = 1, 2 construct elements hti in C
ρt
i , which project to bases

of the twisted homology groups Hρt
i .

(d) Then, the torsion τγ(ρt) is an explicit ratio of determinants; see [13]
or [30, Chap. 3] and Equation (17) below.

We now give the details of the definition of the non-abelian Reidemeister
torsion and prove Theorem 1.2. To clarify the presentation, suppose that
Vt is a 1-parameter family of C-vector spaces for t ∈ J . We will say
that Vt is defined over K if there exists a vector space VK over Q such
that Vt = (VK ⊗Q E(ρt, zt)) ⊗Q C for all t ∈ J , where E(ρt, zt) is the
coefficient field of (ρt, zt), defined in Section 2.2. Likewise, a 1-parameter
family of C-linear transformations Tt ∈ HomC(Vt,Wt) is defined over K
if T ∈ HomQ(VK,WK) ⊗Q C. In concrete terms, a 1-parameter family of
matrices (resp. vectors) is defined over E if its entries (resp. coordinates)
lie in K.

Lemma 2.6 implies the following.

Claim 3.1. The 1-parameter family (ρt, zt) (t ∈ J) is defined over K.

Consider the presentation Π in Equation (13) of π1(M) given by face-
pairings. A coordinate description of the chain complex Cρt∗ is given by
(see [13])

0 //sl2(C)s−1
d
ρt
2 //sl2(C)s

d
ρt
1 //sl2(C) //0
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for ∗ = 0, 1, 2 where the boundary operators are given by

dρt1 (x1, . . . , xs) =

s∑
j=1

(1−gj)◦xj , and dρt2 (x1, . . . , xs−1) =

(
s−1∑
j=1

∂rj
∂gk

◦ xj

)
16k6s

.

Here g ◦ x = Adρt(g)(x) and ∂rj
∂gk

denotes the Fox derivative of rj with
respect to gk. The above description of Cρt∗ and Claim 3.1 imply the
following.

Claim 3.2. The 1-parameter family Cρt∗ (t ∈ J) is defined over K.

Next, we construct a 1-parameter family of basing elements hti for
i = 1, 2 and show that it is defined over K. Let

{
e

(i)
1 , . . . , e

(i)
ni

}
be the

set of i-dimensional cells of W . We lift them to the universal cover and
we choose an arbitrary order and an arbitrary orientation for the cells{
ẽ

(i)
1 , . . . , ẽ

(i)
ni

}
. If B = {a,b, c} is an orthonormal basis of sl2(C), then

we consider the corresponding (geometric) basis over C:

ciB =
{
ẽ

(i)
1 ⊗ a, ẽ

(i)
1 ⊗ b, ẽ

(i)
1 ⊗ c, . . . , ẽ(i)

ni ⊗ a, ẽ(i)
ni ⊗ b, ẽ(i)

ni ⊗ c
}

of Cρti . We fix a generator P ρt of Hρt
0 (∂M) ⊂ Cρt0 i.e., P ρt ∈ sl2(C) is

such that Adρt(g)(P
ρt) = P ρt for all g ∈ π1(∂M).

Claim 3.3. The 1-parameter family P ρt (t ∈ J) is defined over K.

Proof. Observe that P ρt is a generator of the intersection

ker(Adρt(µ) − 1) ∩ ker(Adρt(λ) − 1).

Since this family of vector spaces and linear maps is defined over K (by
Claim 3.2), the result follows. �

The canonical inclusion j : ∂M →M induces (see [30, Corollary 3.23])
an isomorphism

j∗ : Hρt
2 (∂M)→ Hρt

2 (M) ' Hρt
2 (W ) = ker dρt2 ⊂ C

ρt
2 .

Moreover, one can prove that (see [30, Proposition 3.18])

Hρt
2 (∂M) ∼= H2(∂M ;Z)⊗ C.

More precisely, let [[∂M ]] ∈ H2(∂M ;Z) be the fundamental class induced
by the orientation of ∂M , one has Hρt

2 (∂M) = C [[[∂M ]]⊗ P ρt ]. The ref-
erence generator of Hρt

2 (M) is defined by

(15) ht2 = j∗([[[∂M ]]⊗ P ρt ]) ∈ Cρt2 .

Claim 3.3 implies that
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Claim 3.4. The 1-parameter family ht2 (t ∈ J) is defined over K.

Since ρt is near ρ0 and γ is admissible, the inclusion ι : γ −→M induces
(see [30, Definition 3.21]) an isomorphism

ι∗ : Hρt
1 (γ)→ Hρt

1 (M) ' Hρt
1 (W ) = ker dρt1 /im dρt2 .

The reference generator of the first twisted homology group Hρt
1 (M) is

defined by

(16) ht1 = ι∗ ([[[γ]]⊗ P ρt ]) ∈ Cρt1 .

Claim 3.3 implies that:

Claim 3.5. The 1-parameter family ht1 (t ∈ J) is defined over K.

Using the bases described above, the non-abelian Reidemeister torsion
of the 1-parameter family ρt is defined by:

(17) τγ(ρt) = Tor(Cρt∗ (W ; sl2(C)ρt), c
∗
B,h

∗
t ) ∈ C∗.

The torsion τγ(ρt) is an invariant of M which is well defined up to a sign.
Moreover, if ρt and ρ̃t are two 1-parameter family of representations which
pointwise have the same character then τγ(ρt) = τγ(ρ̃t). Finally, one can
observe that τγ(ρt) does not depend on the choice of the invariant vector
P ρt (see [13]).

The above discussion implies that

Claim 3.6. For every essential curve γ ∈ ∂M , the 1-parameter family
τγ(ρt) (t ∈ J) is defined over K.

In other words, there exist τ̂γ ∈ Q(XM,SL(2,C)) such that for (ρt, z)
near (ρ0, z0) we have τγ(ρ) = τ̂γ(ρt, z). Since the left hand side does not
depend on z, it follows from Section 2.1 that τ̂γ ∈ Q(XM,SL(2,C)). This
concludes the proof of Theorem 1.2. �

3.3. Proof of Theorems 1.3 and 1.4. The proof of Theorem 1.2 implies
that for every admissible curve γ, the torsion function τγ is the germ of
an element of Q(XM,SL(2,C)). Theorem 1.3 follows from Theorem 1.2 and
Lemmas 2.3 and 2.5.

Theorem 1.4 follows from the fact that XM,SL(2,C) is an affine complex
curve, and its field of rational functions has transcendence degree 1. In
addition, τγ and trγ are rational functions on XM,SL(2,C).

3.4. The dependence of the Reidemeister torsion on the admis-
sible curve and the A-polynomial. In this section, we discuss the
dependence of the non-abelian Reidemeister torsion on the admissible
curve. Although this discussion is independent of the proof of Theorem
1.2, it might be useful in other contexts. Recall that the non-abelian
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Reidemeister torsion is defined in terms of the twisted chain complex in
Equation (14) which is not acyclic. Thus, it requires the choice of distin-
guished bases hi for i = 1, 2. Such bases can be chosen once an admissible
curve γ ∈ ∂M is chosen; see [30, Chap. 3]. Porti proves that for every
homotopically non-trivial curve γ in ∂M , the discrete and faithful repre-
sentation ρ0 is γ-regular. The same holds for representations ρ near ρ0. A
well-known application of Thurston’s Hyperbolic Dehn Surgery Theorem
implies that ρ0 ∈ XM is a smooth point of XM and that a neighborhood
U of ρ0 is parametrized by the polynomial function trγ ; see for example
[29] and [30, Cor. 3.28]. Choose a meridian-longitude pair (µ, λ) in ∂M ,
set trµ(ρt) = eµ + e−1

µ , trλ(ρ) = eλ + e−1
λ , and consider the A-polynomial

AM = AM (eµ, eλ) ∈ Z[e±1
µ , e±1

λ ] of M . For a detailed discussion on the
A-polynomial of M and its relation to the various views of the character,
see the appendix of [1].

With the above notation, Porti proves that the dependence of the tor-
sion on the admissible curve γ is controlled by the A-polynomial. More
precisely, one has [30, Cor. 4.9, Prop. 4.7]:

τµ = τλ ·

(
tr2
λ−4

tr2
µ−4

)1/2

· ∂ trµ
∂ trλ

(18)

= τλ · (res∗ ◦ (∆∗)−1)

(
eλ
eµ

∂AM/∂eλ
∂AM/∂eµ

)
,(19)

where res∗ : XM,SL(2,C) → X∂M,SL(2,C) is the restriction-map induced by
the usual inclusion ∂M ↪→M , and ∆∗ works has follows on the trace field

∆∗(trγ) = eγ + eγ
−1.

Acknowledgment. A first draft of the paper was discussed during a
workshop on the Volume Conjecture in Strasbourg 2007. The authors
wish to thank their organizers, S. Baseilhac, F. Costantino and G. Mas-
suyeau for their hospitality, and M. Heusener, R. Kashaev and W. Neu-
mann for enlightening conversations. S.G. wishes to thank N. Dunfield
for numerous useful conversations and the anonymous referee.

References

[1] David W. Boyd, Nathan M. Dunfield, and Fernando Rodriguez-Villegas,
Mahler’s measure and the dilogarithm (II), Preprint 2005.

[2] Dan Burghelea and Stefan Haller, Complex-valued Ray-Singer torsion, J.
Funct. Anal. 248 (2007), no. 1, 27–78. MR 2329682 (2008b:58035)

[3] , Torsion, as a function on the space of representations, C∗-algebras
and elliptic theory II, Trends Math., Birkhäuser, Basel, 2008, pp. 41–66.
MR 2408135 (2009i:58045)



RATIONALITY OF THE SL(2,C)-REIDEMEISTER TORSION IN... 133

[4] Riccardo Benedetti and Carlo Petronio, Lectures on hyperbolic geometry,
Universitext, Springer-Verlag, Berlin, 1992. MR 1219310 (94e:57015)

[5] Steven Boyer and Xingru Zhang, Every nontrivial knot in S3 has nontriv-
ial A-polynomial, Proc. Amer. Math. Soc. 133 (2005), no. 9, 2813–2815
(electronic). MR 2146231 (2006g:57018)

[6] Danny Calegari, Real places and torus bundles, Geom. Dedicata 118
(2006), 209–227. MR 2239457 (2007d:57026)

[7] D. Cooper, M. Culler, H. Gillet, D. D. Long, and P. B. Shalen, Plane curves
associated to character varieties of 3-manifolds, Invent. Math. 118 (1994),
no. 1, 47–84. MR 1288467 (95g:57029)

[8] Marshall M. Cohen, A course in simple-homotopy theory, Springer-Verlag,
New York, 1973, Graduate Texts in Mathematics, Vol. 10. MR 0362320
(50 #14762)

[9] Marc Culler, Lifting representations to covering groups, Adv. in Math. 59
(1986), no. 1, 64–70. MR 825087 (87g:22009)

[10] Nathan M. Dunfield and Stavros Garoufalidis, Non-triviality of the A-
polynomial for knots in S3, Algebr. Geom. Topol. 4 (2004), 1145–1153
(electronic). MR 2113900 (2005i:57004)

[11] Tudor Dimofte, Sergei Gukov, Jonatan Lenells, and Don Zagier, Exact
results for perturbative Chern-Simons theory with complex gauge group,
Commun. Number Theory Phys. 3 (2009), no. 2, 363–443. MR 2551896
(2010k:58038)

[12] Jérôme Dubois, Vu Huynh, and Yoshikazu Yamaguchi, Non-abelian Reide-
meister torsion for twist knots, J. Knot Theory Ramifications 18 (2009),
no. 3, 303–341. MR 2514847 (2010k:57010)

[13] Jérôme Dubois, Non abelian twisted Reidemeister torsion for fibered knots,
Canad. Math. Bull. 49 (2006), no. 1, 55–71. MR 2198719 (2006k:57064)

[14] Nathan M. Dunfield, Cyclic surgery, degrees of maps of character curves,
and volume rigidity for hyperbolic manifolds, Invent. Math. 136 (1999),
no. 3, 623–657. MR 1695208 (2000d:57022)

[15] D. B. A. Epstein and R. C. Penner, Euclidean decompositions of noncom-
pact hyperbolic manifolds, J. Differential Geom. 27 (1988), no. 1, 67–80.
MR 918457 (89a:57020)

[16] Stefano Francaviglia and Ben Klaff, Maximal volume representations
are Fuchsian, Geom. Dedicata 117 (2006), 111–124. MR 2231161
(2007d:51019)

[17] Stefano Francaviglia, Hyperbolic volume of representations of fundamental
groups of cusped 3-manifolds, Int. Math. Res. Not. (2004), no. 9, 425–459.
MR 2040346 (2004m:57032)

[18] Stavros Garoufalidis, On the characteristic and deformation varieties of
a knot, Proceedings of the Casson Fest, Geom. Topol. Monogr., vol. 7,
Geom. Topol. Publ., Coventry, 2004, pp. 291–309 (electronic). MR 2172488
(2006j:57028)

[19] , Chern-Simons theory, analytic continuation and arithmetic, Acta
Math. Vietnam. 33 (2008), no. 3, 335–362. MR 2501849 (2011c:58051)

[20] Stavros Garoufalidis and Thang T. Q. Lê, The colored Jones function is
q-holonomic, Geom. Topol. 9 (2005), 1253–1293 (electronic). MR 2174266
(2006j:57029)

[21] , Asymptotics of the colored Jones function of a knot, Geom. Topol.
15 (2011), no. 4, 2135–2180. MR 2860990



134 JEROME DUBOIS AND STAVROS GAROUFALIDIS

[22] Sergei Gukov and Hitoshi Murakami, SL(2,C) Chern-Simons theory and
the asymptotic behavior of the colored Jones polynomial, Lett. Math. Phys.
86 (2008), no. 2-3, 79–98. MR 2465747 (2010m:58037)

[23] William M. Goldman, Invariant functions on Lie groups and Hamiltonian
flows of surface group representations, Invent. Math. 85 (1986), no. 2,
263–302. MR 846929 (87j:32069)

[24] A. M. Macbeath, Commensurability of co-compact three-dimensional hy-
perbolic groups, Duke Math. J. 50 (1983), no. 4, 1245–1253. MR 726327
(85f:22013)

[25] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426.
MR 0196736 (33 #4922)

[26] Colin Maclachlan and Alan W. Reid, The arithmetic of hyperbolic 3-
manifolds, Graduate Texts in Mathematics, vol. 219, Springer-Verlag, New
York, 2003. MR 1937957 (2004i:57021)

[27] Hitoshi Murakami, The colored jones polynomial, the chern–simons invari-
ant, and the reidemeister torsion of the figure-eight knot, Preprint 2011.

[28] Walter D. Neumann and Alan W. Reid, Arithmetic of hyperbolic mani-
folds, Topology ’90 (Columbus, OH, 1990), Ohio State Univ. Math. Res.
Inst. Publ., vol. 1, de Gruyter, Berlin, 1992, pp. 273–310. MR 1184416
(94c:57024)

[29] Walter D. Neumann and Don Zagier, Volumes of hyperbolic three-
manifolds, Topology 24 (1985), no. 3, 307–332. MR 815482 (87j:57008)

[30] Joan Porti, Torsion de Reidemeister pour les variétés hyperboliques, Mem.
Amer. Math. Soc. 128 (1997), no. 612, x+139. MR 1396960 (98g:57034)

[31] Carlo Petronio and Joan Porti, Negatively oriented ideal triangulations
and a proof of Thurston’s hyperbolic Dehn filling theorem, Expo. Math. 18
(2000), no. 1, 1–35. MR 1751141 (2001c:57017)

[32] John G. Ratcliffe, Foundations of hyperbolic manifolds, second ed., Gradu-
ate Texts in Mathematics, vol. 149, Springer, New York, 2006. MR 2249478
(2007d:57029)

[33] Peter B. Shalen, Representations of 3-manifold groups, Handbook of
geometric topology, North-Holland, Amsterdam, 2002, pp. 955–1044.
MR 1886685 (2003d:57002)

[34] V. G. Turaev, The Yang-Baxter equation and invariants of links, Invent.
Math. 92 (1988), no. 3, 527–553. MR 939474 (89e:57003)

[35] Vladimir Turaev, Torsions of 3-dimensional manifolds, Progress in
Mathematics, vol. 208, Birkhäuser Verlag, Basel, 2002. MR 1958479
(2003m:57028)

Institut de Mathématiques de Jussieu – Paris Rive Gauche, Université
Paris Diderot–Paris 7, UFR de Mathématiques, Bâtiment Sophie Germain,
Case 7012, 75205 Paris Cedex 13, FRANCE,
http://www.institut.math.jussieu.fr/~dubois/

E-mail address: dubois@math.jussieu.fr

School of Mathematics, Georgia Institute of Technology, Atlanta, GA
30332-0160, USA
http://www.math.gatech.edu/~stavros

E-mail address: stavros@math.gatech.edu

http://www.institut.math.jussieu.fr/~dubois/
http://www.math.gatech.edu/~stavros

	1. Introduction
	1.1. The volume of an SL(2,C)-representation and the A-polynomial
	1.2. The SL(2,C)-character variety of M and its field of rational functions
	1.3. The Reidemeister torsion of an SL(2,C)-representation
	1.4. Examples
	1.5. Problems

	2. The character variety of hyperbolic 3-dimensional manifolds
	2.1. Four favors of the character variety, après Dunfield
	2.2. The coefficient field of augmented representations
	2.3. Augmented representations and the shape field
	2.4. Ideal triangulations and the gluing equations variety

	3. The non-abelian Reidemeister torsion
	3.1. An explanation of the rationality of the Reidemeister torsion in dimension 3
	3.2. Proof of Theorem 1.2
	3.3. Proof of Theorems 1.3 and 1.4
	3.4. The dependence of the Reidemeister torsion on the admissible curve and the A-polynomial
	Acknowledgment

	References

