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DECOMPOSITIONS OF FUNCTION SPACES

DAVID GUERRERO SÁNCHEZ

Abstract. In this article we generalize a known result of Velichko
by proving that a space Cp(X) is the union of less than d of its
countably compact subspaces if and only if X is finite. We present
an example of a space X which is not a P -space and Cp(X, [0, 1])
admits a closure-preserving cover by countably compact subspaces.
It is also proved that Cp(X, [0, 1]) is contained in the closure of a
second countable space M ⊂ Cp(X) and for some f ∈ Cp(X, [0, 1])
the space M ∪ {f} has a countable local base at f , then X is
countable.

1. Introduction

In this note we continue with the work started in [8] and [10] by study-
ing different kind of decompositions of function spaces. In section 3 we
look at decompositions that yield covers of function spaces by compact-
like subspaces. In this case, we will extend a result of Velichko by showing
that Cp(X) is the union of less than d of its compact subspaces if and
only if X is finite. We will also provide an example of a space X such that
Cp(X, I) is not countably compact, but has a closure-preserving cover by
countably compact spaces.

Section 4 is devoted to the study of certain topological games in func-
tion spaces. Let C(P) be the class of topological spaces with a certain
topological property P. We will see that for many topological proper-
ties P there is a very similar behavior between spaces Cp(X) for which
Player I has a winning strategy in the game G(C(P), Cp(X)) and those
with a closure-preserving cover by subspaces in the class C(P). However,
substantial differences will be observed for the Lindelöf and Lindelöf Σ
properties.
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148 DAVID GUERRERO SÁNCHEZ

2. Notation and terminology

Every topological space in this text is assumed to be Tychonoff. For
a space X, the family of all subsets of X is denoted by exp(X). The
topology of X is denoted by τ(X) and τ∗(X) is the family of non-empty
open subsets of X. For C ⊂ X the family of all open sets of X that
contain C is denoted by τ(C,X); if x ∈ X then we write τ(x,X) instead
of τ({x}, X). The set of real numbers with the natural topology is denoted
by R and the interval [0, 1] ⊂ R is represented by I.

For every space X we denote by υX the Hewitt real-compactification
of the space X. A map f : X → Y is compact covering if every compact
subset of Y is the image under f of some compact subset of X. A space
X is called scattered if every non-empty subspace of X has an isolated
point.

A family F of subspaces of a space X is closed if every F ∈ F is closed
in X. The space of all continuous functions from a space X into a space
Y , endowed with the topology inherited from the product space Y X , is
denoted by Cp(X,Y ). The space Cp(X,R) will be abbreviated by Cp(X).
Given the points x1, . . . , xm ∈ X, and the open sets O1, ..., Om ∈ τ(R)
let [x1, ..., xm, O1, ..., Om] = {f ∈ Cp(X) : f(xi) ∈ Oi for i = 1 . . . ,m}.
For every U = [x1, ..., xm, O1, ..., Om] we define Supp(U) = {x1, . . . , xm}.
For every f ∈ Cp(X,Y ), define the dual map f∗ : Cp(Y ) → Cp(X) by
f∗(g) = g◦f for every g ∈ Cp(Y ). Given a space X, a function f ∈ Cp(X),
and a number ε > 0, let I(f, ε) = {g ∈ Cp(X) : |g(x) − f(x)| ≤ ε for all
x ∈ X}.

A continuous bijection is called a condensation. If there is a conden-
sation φ : X −→ Y we say that X condenses onto Y. If Y is a subspace
of X we denote by πY : Cp(X) −→ Cp(Y ) the restriction map defined by
πY (f) = f |Y for any f ∈ Cp(X).

On the other hand, Cu(X) is the space of all continuous real-valued
functions on a space X, with the topology of uniform convergence.

If X is a space and C is a cover of X then a family F is called a
network modulo C if for any C ∈ C and U ∈ τ(C,X) there is F ∈ F with
C ⊂ F ⊂ U . A family N of subsets of a space X is a network in X if
it is a network modulo of the cover {{x} : x ∈ X}. The network weight
nw(X) of a space X is the minimal cardinality of a network in X. A space
X is cosmic if nw(X) = ω. The space X is a P -space if every Gδ subset
of X is onpen in X

A map φ : Y −→ exp(X) is called upper semicontinuous if for every
U ∈ τ(X) the set

∪
{φ−1(C) : C ⊂ U} ∈ τ(Y ) and φ is onto if

∪
{φ(y) :

y ∈ Y } = X. If each φ(y) is a compact subspace of X then φ is called
compact-valued.
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A space X is Lindelöf Σ if it has a countable network modulo a compact
cover of X. The number of K-determination of a space X is denoted by
ℓΣ(X) and is defined in [CMO] as min{w(M) : M is a metric space
and there is a compact-valued upper semicontinuous onto map φ : M →
exp(X)}.

Given a space Z the family K(Z) consists of all compact subsets of Z.
A family A is called fundamental if for every K ∈ K(Z) there is A ∈ A
such that K ⊂ A. If all elements of a cover C of X are compact then the
family C is called compact. Whereas a family B is M -ordered for some
space M if B = {BK : K ∈ K(M)} where K ⊂ L implies BK ⊂ BL.
A space X is dominated by a space M if it has an M -ordered compact
cover. The metric domination index of a space X is denoted dm(X) as
defined in [9] as min{w(M) : M is a metric space that dominates X}.

The cardinal iw(X) = min{κ : the space X has a weaker topology
of weight κ} is called i-weight of X, observe that it coincides with the
minimum of the set {w(Y ) : the space X condenses onto Y }. Recall that
iw(X) ≤ nw(X) for any space X. The rest of our notation is standard
and follows [7]; our reference book on Cp-theory is [19].

3. Covering Function Spaces by compact-like subspaces

As we can observe from [15] or [8], decomposing Cp(X) spaces by
compact-like spaces imply strong restrictions on X whenever the decom-
position is countable or closure-preserving. In both cases the following fact
seems crucial: Rω does not embed in Cp(X) as a closed subspace which
implies X is pseudocompact. Since the minimum amount of compact
spaces needed to cover Rω is d, we decided to address the corresponding
question in this section.

The following theorem summarizes some known results (by Velichko,
Shakmatov and Tkachuk, and Guerrero) that characterize function spaces
by expressing them as a union of compact-like subspaces (see for example
[8, Corollary 2.7]).

Theorem 3.1. For a space X the following conditions are equivalent:
(a) The space X is finite.
(b) The space Cp(X) is σ-compact.
(c) The space Cp(X) is σ-countably compact.
(d) The space Cp(X) =

∪
F where F is a closure-preserving closed σ-

countably compact family.

To generalize ((a) ⇔ (b)) we will use the following fact that will be
helpful later.

Lemma 3.2. If X is a pseudocompact infinite space then there is a closed
subspace of Cp(X) that maps continuously onto ωω.
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Proof. Since X is infinite, by Lemma [8, Lemma 2.6] we can find f ∈
Cp(X) such that Y = f(X) is an infinite compact subspace of R. It
follows that there is a countable infinite compact Z ⊂ Y. We can identify
Cp(Y ) with a closed subspace of Cp(X). Apply [19, Problem 152] to see
that the restriction map πZ : Cp(Y ) −→ Cp(Z) is continuous. Since Z is
compact and countable the space Cp(Z) is analytic but not σ-compact;
by [12, Theorem 3.5.3] we can deduce that it contains a closed subspace T
homeomorphic to ωω. It follows that π−1

Z (T ) is homeomorphic to a closed
subspace of Cp(X) that maps continuously onto ωω. �

Recall that d is the minimum amount of compact sets needed to cover
ωω or equivalently Rω.

Theorem 3.3. Let κ < d. For a space X the following conditions are
equivalent:
(a) The space X is finite.
(b) The space Cp(X) =

∪
α<κ

Kα where Kα is a compact subspace of Cp(X)

for every α < κ.

(c) The space Cp(X) =
∪
α<κ

Kα where Kα is a countably compact subspace

of Cp(X) for every α < κ.

Proof. We will show that (c) ⇔ (a). By [8, Lemma 2.6] it suffices to
show that every continuous real image of X is finite. Let f ∈ Cp(X) and
suppose that f(X) is infinite. Condition (c) implies that Rω does not
embed in Cp(X) as a closed subspace which means X is pseudocompact
(see [19, S 186, Fact 1]). Thus, by Lemma 3.2 Cp(X) contains a closed
subspace Z that maps continuously onto ωω. This implies that Z and
therefore ωω can be covered by κ many countably compact subsets. This
contradiction shows that f(X) is finite and so is X. �

In [8, Corollary 3.8 and Corollary 2.4] it is proved that if Cp(X) is
equal to the union of a closure-preserving (not necessarily closed) family
of countably compact subspaces then X is finite. Whereas in [10, Theo-
rem 2.11] the authors show that if Cp(X, I) admits a closure-preserving
closed cover by σ-countably compact subspaces then Cp(X, I) is countably
compact. The following example shows that it is not possible to replace
Cp(X) by Cp(X, I) in the statement of [10, Theorem 2.11]. Furthermore
this example evinces that it is essential to assume that the elements of
the closure-preserving cover in [10, Theorem 2.11] are closed.

Example 3.4. There exists a space X such that Cp(X, I) contains a
countably compact dense subspace but Cp(X, I) is not countably compact.
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Proof. By [19, S.480 Fact 2] there exists a space X such that
(a) X condenses onto a P -space.
(b) X condenses onto R and every open subset of X has cardinality c, in

particular, X does not contain isolated points.
We will show that the space X is the one we are looking for. By

condition (a) we can find a P -space Y for which it is possible to find a
condensation r : X → Y. From [19, Problem 397] it follows that Cp(Y, I)
is countably compact. The image of Cp(Y, I) under the dual map r∗ :
Cp(Y ) → Cp(X) is a dense subspace of Cp(X, I). Besides, by [19, Problem
133] we can see that D = r∗(Cp(Y, I)) is a countably compact subspace
of Cp(X, I).

To verify that Cp(X, I) is not countably compact it suffices to show that
X is not a P -space (see [19, Problem 397]). Indeed, condition (b) implies
that there is a condensation t : X → R, thus the set {x} = t−1(t(x)) is
Gδ for every x ∈ X. If X were a P -space, then each of its points would
be isolated which cannot happen by condition (b). �

Corollary 3.5. There is a space X such that Cp(X, I) =
∪
F where F is

a closure-preserving family and each F ∈ F is countably compact, however
Cp(X, I) is not countably compact.

Proof. The space X from Example 3.4 has the property that the space
Cp(X, I) is not countably compact and contains a countably compact
dense subspace F . The family {F ∪ {f} : f ∈ Cp(X, I)} is a closure-
preserving cover of Cp(X, I) by countably compact subspaces of
Cp(X, I). �

In [10, Problem 4.1] the authors ask if the presence of a closure-
preserving closed cover by Lindelöf subspaces of Cp(X) implies that Cp(X)
is Lindelöf. We still do not know if this is so. However, recalling that
Cp(X) is paracompact if and only if it is Lindelöf we can provide a par-
tial answer to the problem in [10] for the case of locally finite covers that
consist of paracompact subspaces of Cp(X).

Proposition 3.6. Suppose that P is a property preserved by subsets of
type Fσ. If Cp(X) =

∪
F and F is locally finite and each F ∈ F has P

then Cp(X) is the union of finitely many subspaces with P.

Proof. It follows easily from the fact that Cp(X) embeds as an Fσ subset
of any of its non-empty open subspaces. �

Corollary 3.7. Let F={realcompletness,monolithicity,paracompactness}.
If a property P is in the list F and Cp(X) has a locally finite closed cover
C such that C ∈ C has P then Cp(X) also has P.
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Proof. Is an immediate consequence of Proposition 3.6 and Theorems 2.2,
2.5 and 2.9 of [4]. �

The most important problem yet unsolved in [8] and [10] is to determine
whether the space Cp(I) can be covered by a closure-preserving family of
second countable subspaces. It has already been shown that if Cp(X)
has a closure-preserving cover F then a homeomorphic copy of Cp(X, I)
is contained in F for some F ∈ F . Considering the case when Cp(X, I) is
contained in the closure of a second countable space M ⊂ Cp(X) we have
the following:

Theorem 3.8. Suppose Cp(X, I) is contained in the closure of a space
M ⊂ Cp(X) and for some f ∈ Cp(X, I) the space M ′ = M ∪ {f} has a
countable local base at f , then X is countable.

Proof. Take a countable local base B = {Un : n ∈ ω} of M ′ at f . For each
Un ∈ B there is Vn = [x1, ..., xm, O1, ..., Om]∩M ′ such that f ∈ Vn ⊂ Un.
Let A =

∪
{Supp(Vn) : n ∈ ω}. Suppose there is x ∈ X \ A. We can

find Ox ∈ τ(f(x),R) with the property that there is O ∈ τ∗(R) such
that O ⊂ I \ Ox. Since the function f ∈ [x,Ox] ∩ M ′, there is n ∈ ω
for which f ∈ Vn ⊂ [x,Ox] ∩ M ′ with Vn = [y1, ..., yk, O1, ...Ok] ∩ M ′.
Let U = [y1, ..., yk, x,O1, ...Ok, O]. It is possible to find g ∈ Cp(X, I)
such that g(yi) = f(yi) for i = 1, ..., k and g(x) ∈ O. This shows that
the set Cp(X, I) ∩ U is not empty, so there exists h ∈ M ∩ Cp(X, I) ∩ U
which implies h(yi) ∈ Oi for i = 1, ..., k hence h ∈ Vn. On the other hand
h(x) ∈ O implies h /∈ [x,Ox] a contradiction. �

4. Topological games on Cp(X) and Cp(X, I)

If a space Z has a compact closure-preserving cover then a topological
game on Z can be defined in a natural manner; in this game the first
player has a winning strategy. Therefore studying analogous games in
function spaces gives a possibility to strengthen some results of the previ-
ous section. The following game is a slight variation of the one presented
by R. Telgarsky in [14]. It is worth to mention that studying properties
of function spaces by means of topological games is a procedure that has
already proven fruitful as shown in [7].

Definition 4.1. On a Tychonoff space Y , consider a family C ⊂ exp(Y ).
We define the game G(C, Y ) of two players I and II who take turns in
the following way: at the move number n, Player I chooses Cn ∈ C and
Player II chooses a set Un ∈ τ(Cn, Y ). The game ends after the n-th
move of each player has been made for every n ∈ ω and Player I wins if
Y =

∪
{Un : n ∈ ω}; otherwise the winner is Player II.
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Definition 4.2. A strategy t for the first Player in the game G(C, Y )
on a space Y is defined inductively in the following way. First the set
t(∅) = F0 ∈ C is chosen. An open set U0 ∈ τ(X) is legal if F0 ⊂ U0. For
every legal set U0 the set t(U0) = F1 ∈ C has to be defined. Let us assume
that legal sequences (U0, ..., Ui) and sets t(U0, ...Ui) have been defined for
each i ≤ n. The sequence (U0, ...Un+1) is legal if the sequence (U0, ..., Ui)
for each i ≤ n and Fn+1 = t(U0, ..., Un) ⊂ Un+1 is too. A strategy t for
Player I is winning if it ensures victory for I in every play it is used.
Definition 4.3. A strategy s for Player II in the game G(C, Y ) on a
space X is a function that assigns to every finite sequence (F0, . . . , Fn) of
elements of C an open set U ∈ τ(Fn, X). Such a strategy for Player II is
winning if it ensures victory for II in every play where it is used.

The following facts appeared first in [8]. Since we will use them exten-
sively we formulate them here.
Theorem 4.4. [8, Theorem 3.4] Given a non-empty space X, if Y =
Cp(X, I) and

F = {F ⊂ Y : F is nowhere dense in Cu(X, I)},
then Player II has a winning strategy in the game G(F , Y ).

Remark 4.5. [8, Remark 3.5] It is possible to reformulate Theorem 4.4
for the set Y = Cp(X) and the family F = {F ⊂ Y : F is nowhere
dense in Cu(X)}, applying the same method to prove that Player II has
a winning strategy in the game G(F , Y ).

Remark 4.6. [8, Remark 3.6] Given a space X consider the set Y =
Cp(X, I) (or Y = Cp(X)), and let F = {F ⊂ Y : F is nowhere dense in
Cu(X, I)} (or F = {F ⊂ Y : F is nowhere dense in Cu(X)}). If C is a
family of non-empty closed subsets of Y for which Player I has a winning
strategy in the game G(C, Y ) then C * F .

It is standard to verify that a space X is Lindelöf if and only if Player
I has a winning strategy for the game G(L, X) where L is the family of all
the Lindelöf not necessarily closed subspaces of X. Is it possible to char-
acterize other topological properties of function spaces in an analogous
way?

In Remark 4.6 it is established that if X is non-empty and
F ⊂ exp(Cp(X, I)) and player I has a winning strategy for the game
G(F , Cp(X, I)) then there is F ∈ F that is not nowhere dense in Cu(X, I).
An analogous fact is also established for Cp(X).

Proposition 4.7. For a non-empty space X, if C is a closed family of
subsets of Cp(X) or Cp(X, I) and player I has a winning strategy for the
game G(C, Cp(X) or the game G(C, Cp(X, I)) then there exists C ∈ C such
that U ⊂ C for some non-empty open subset U of the space Cu(X).
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Proof. Indeed, C is also a closed family of subsets of Cu(X) or Cu(X, I)
so by Remark 4.6 the interior of some C ∈ C in Cu(X) must be non-
empty. �

Corollary 4.8. For a non-empty X, if C is a closed family of subsets
of Cp(X) or Cp(X, I) and player I has a winning strategy for the game
G(C, Cp(X) or the game G(C, Cp(X, I)) then there exist C ∈ C and f ∈ C
such that I(f, ε) ⊂ C for some ε > 0.

Proof. Apply [10, Proposition 2.1] and Proposition 4.7. �

Corollary 4.9. Suppose X is a space and C is a closed family of subsets
of Cp(X) or Cp(X, I) such that every C ∈ C has P. If player I has a
winning strategy in the game G(C, Cp(X)) or G(C, Cp(X, I)), then some
C ∈ C contains a homeomorphic copy of Cp(X).

Proof. Apply Corollary 4.8 and [10, Proposition 2.1] �

Corollary 4.10. Suppose that P is a hereditary topological property and C
is a closed family of subsets of Cp(X) or Cp(X, I) such that every C ∈ C
has P. If player I has a winning strategy in the game G(C, Cp(X) or
G(C, Cp(X, I)) then Cp(X) also has P.

Proof. By Corollary 4.8, there exists C ∈ C such that some I ⊂ C is
homeomorphic to Cp(X); since C has P, the space I and hence Cp(X)
must have P. �

Remark 4.11. Suppose that κ is an infinite cardinal. Notice that Corol-
lary 4.10 applies, for instance, to the following properties: weight ≤ κ,
network weight ≤ κ, i-weight ≤ κ, diagonal number ≤ κ, character ≤ κ,
pseudocharacter ≤ κ, tightness ≤ κ, spread ≤ κ, hereditary Lindelöf num-
ber ≤ κ, hereditary density ≤ κ, κ-monolithicity, metrizability, Fréchet-
Urysohn property, small diagonal, hereditary realcompactness, Whyburn
property, being perfect, being functionally perfect.

In [17, Example 15] it is proved that if K is the Cantor set then Cp(K)

has a countable family {Fn : n ∈ ω} of closed sets such that
∪
n∈ω

Fn =

Cp(K) and every Fn has a countable π-base but Cp(K) does not have a
countable π-base. It is easy to see that this implies that the first player
has a winning strategy for the game G(F , Cp(K)) where F is the family
of all the closed subspaces of Cp(K) with countable π-weight. We can
conclude that if a property P is not hereditary and F is the family of all
the subspaces of Cp(X) that have P, the existence of a winning strategy
for Player I in the game G(F , Cp(X) does not necessarily imply that
Cp(X) has P.
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Nevertheless, for properties that are inherited by closed subspaces we
can proceed in a similar way as in [10] and use Corollary 4.8 to observe
the following.

Remark 4.12. Given a non-empty space X and a closed-hereditary prop-
erty P, call F the family of all the closed subspaces of Cp(X, I) that have
P. If Player I has a winning strategy for the game G(F , Cp(X, I)) then
Cp(X, I) also has the property P. We can name some of these properties:
extent ≤ κ, Nagami number ≤ κ, K-analyticity, ℓΣ ≤ κ, dm ≤ κ, mg ≤ κ,
mi ≤ κ , normality, sequentiality.

Again following the arguments presented in Section 3 of [10] we notice
that for some properties we can say even more.

Remark 4.13. If F is a closed family of subsets of Cp(X, I) for which
Player I has a winning strategy in the game G(F , Cp(X, I)) and every
F ∈ F is realcompact then Cp(X) is realcompact. If it is the case that
every F ∈ F is a Čech-complete subspace, then X is discrete. Given a
space X, if it happens that every F ∈ F is σ-countably compact, then
Cp(X, I) is countably compact. Whereas if the elements of F are σ-
compact then X is discrete.

Theorem 4.14. Given a space X and a property P that is preserved by
quotient images, if F is a closed family of subsets of Cp(X, I) for which
Player I has a winning strategy in the game G(F , Cp(X, I)) and every
F ∈ F has P then Cp(X, I) also has the property P.

Proof. Apply 4.8 to find F ∈ F such that I(f, ε) ⊂ F for some f ∈ F
and ε > 0. By [10, Proposition 2.1] the set I(f, ε) is a retract of Cp(X)
and so it is also a retract of F which implies it has the property P and so
does Cp(X, I). �
Remark 4.15. Suppose that κ is an infinite cardinal. Theorem 4.14
applies to properties such as weak functional tightness ≤ κ, functional
tightness ≤ κ.

Theorem 4.14 applies also to the property of κ-stability, but in this
case not only Cp(X, I) is κ-stable but the whole Cp(X) is.

Remark 4.16. Indeed, since Cp(X, I) is κ-stable then Cp(Cp(X, I)) is
κ-monolithic by [1, Theorem II.6.8]; the space X embeds in Cp(Cp(X, I)),
thus X is also κ-monolithic so Cp(X) is κ-stable by [1, Theorem II.6.9].

Theorem 4.17. Given a space X and a topological property P that is
invariant under continuous images, if F is a family of subsets (not neces-
sarily closed) of either Cp(X) or Cp(X, I) for which Player I has a winning
strategy in the game G(F , Cp(X)) or G(F , Cp(X, I)) and every F ∈ F has
P then Cp(X, I) contains a dense subspace that has P.
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Proof. Apply Corollary 4.8 to find a function f ∈ Cp(X, I) and ε > 0

such that I(f, ε) ⊂ C for some C ∈ C. The set R = I(f, ε) is a retract of
Cp(X) homeomorphic to Cp(X, I). Consequently, there exists a retraction
r : C → R. The set r(C) is dense in r(C) = R and has the property P.
Since R is homeomorphic to Cp(X, I), the latter also has a dense subspace
with the property P. �

Theorem 4.18. Suppose that X is a space and P is a σ-additive topolog-
ical property preserved by continuous images. If F is a family of subsets
(not necessarily closed) of either Cp(X) or Cp(X, I) for which Player I
has a winning strategy in the game G(F , Cp(X)) or G(F , Cp(X, I)) and
every F ∈ F has P then Cp(X) contains a dense subspace that has P.

Proof. Apply Theorem 4.17 to deduce that Cp(X, I) has P. Since the
property P is σ-additive the space

∪
n∈N

Cp(X, [−n, n]) has P and is dense

in Cp(X). �

Remark 4.19. For an infinite cardinal κ Theorem 4.18 applies to the
following properties: network weight ≤ κ, spread ≤ κ, hereditary density
≤ κ. Furthermore when applying Theorem 4.18 to k-separability, caliber
κ, point-finite cellularity ≤ κ, or density ≤ κ then it is possible to ensure
the presence of the corresponding property in Cp(X) and in Cp(X, I).

In the case of pseudocompactness it is not possible to obtain this prop-
erty for Cp(X) with non-empty X, yet we obtain σ-pseudocompactness
of Cp(X) and Cp(X, I) is pseudocompact.

Remark 4.20. Assume F is a family of pseudocompact subspaces of
Cp(X) and Player I has a winning strategy for the game G(F , Cp(X)).
Then the space Cp(X) is σ-pseudocompact and Cp(X, I) is pseudocom-
pact.

Proof. Since the closure of every element of F is pseudocompact we do
not lose generality if we consider that F is a closed family. If the space X
is not pseudocompact, then there is a retraction Cp(X) → Rω. Let C =
{r(F ) : F ∈ F}; it is standard to verify that the first player has a winning
strategy for the game G(C,Rω). This is a contradiction with Corollary 3.11
of [8] which shows that X is pseudocompact. Apply now Theorem 4.17 to
conclude that Cp(X, I) has a dense pseudocompact subspace and therefore
it is pseudocompact and Cp(X) is σ-pseudocompact. �

This method of studying topological games in function spaces can also
provide characterizations of important classes of compact spaces.
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Corollary 4.21. Let K be a compact space and let F be the class of
σ-compact spaces. If Player I has a winning strategy for the game
G(F , Cp(K, I)) then K is Eberlein compact.

Proof. Recall (see e.g. [1, Theorem IV.1]) dense σ-compact subspace and
apply Theorem 4.17. �

Clearly Corollary 4.21 implies that if Player I has a winning strategy
in the game G(F , Cp(K)) then K is Eberlein, however [8, Corollary 3.12]
implies that the converse is not true if K is infinite.

Arhangel’skii [1, Section IV.2] defined ω-perfect classes P as closed-
hereditary, invariant under continuous images and such that Z ∈ P im-
plies (Z × ω)ω ∈ P. It turns out that ω-perfect classes are also relevant
to the topic of this section.

Proposition 4.22. If K is a compact space and P is an ω-perfect class
then the following are equivalent:
(a) Player I has a winning strategy for the game G(P, Cp(K)).
(b) Player I has a winning strategy for the game G(P, Cp(K, I)).
(c) Cp(X) belongs to P.

Proof. The implications (c) =⇒ (a) and (c) =⇒ (b) are trivial. If (a)
or (b) holds then we can apply Theorem 4.17 to convince ourselves that
Cp(X, I) has a dense subspace Z that belongs to P. Therefore Z separates
the points of X and hence we can apply [2, Proposition IV.3.3] to conclude
that Cp(X) belongs to P. �

Corollary 4.23. Suppose that K is a compact space and P is either K-
analitycity or ℓΣ(·) ≤ κ, or even dm(·) ≤ κ. Then the following conditions
are equivalent:
(a) Player I has a winning strategy for the game G(P, Cp(K)).
(b) Player I has a winning strategy for the game G(P, Cp(K, I)).
(c) Cp(X) belongs to P.

Proof. Observe that K-analitycity, ℓΣ(·) ≤ κ, and dm(·) ≤ κ, are ω-
perfect properties and apply Proposition 4.22. �

Remark 4.24. Suppose that K is a compact space and F is a family of
subsets of Cp(K, I) for which Player I has a winning strategy in the game
G(F , Cp(K, I)). If the elements of F are K-analytic then K is a Talagrand
compact space whereas if every F ∈ F is Lindelöf Σ then K is Gul’ko
compact.

In the rest of this section we will consider the situation when Player
I has a winning strategy in the game G(F , Cp(X)) where F is a closed
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family of Lindelöf Σ-subspaces of Cp(X). It is not clear at all if in this
case the space Cp(X) has to be Lindelöf Σ.

Proposition 4.25. If dm(X) ≤ ω and Player I has a winning strategy in
the game G(F , Cp(X)) where F is a closed family of Lindelöf Σ-subspaces
of Cp(X) then Cp(X) is a Lindelöf Σ-space.

Proof. From Theorem 4.14 we obtain that Cp(X, I) is Lindelöf Σ. Since
dm(X) ≤ ω we can apply [6, Proposition 2.14] to conclude that Cp(X)
Lindelöf Σ-framed (i.e. there is a Lindelöf Σ space Z such that Cp(X) ⊂
Z ⊂ RX) and therefore υX is Lindelöf Σ by [11, Theorem 3.6]. Let
πX : Cp(υX) → Cp(X) be the restriction map. The space Cp(υX, I) =

π−1
X Cp(X, I) is Lindelöf Σ by [19, Theorem 2.6]. Therefore, Cp(υX) is

Lindelöf Σ by [11, Theorem 3.6]. Hence, Cp(X) is a Lindelöf Σ space for
it is a continuous image of Cp(υX). �

Corollary 4.26. If ω1 is a caliber of a scattered space X and Player I has
a winning strategy in the game G(F , Cp(X)) where F is a closed family
of Lindelöf Σ-subspaces of Cp(X) then X is cosmic.

Proof. Since ω1 is a caliber of X and the set of isolated is dense in X,
we have that the space X must be separable and therefore iw(Cp(X)) ≤
ω. This implies that every Lindelöf Σ subspace of Cp(X) has countable
i-weight and hence countable network weight. Apply Remark 4.11 to
conclude that Cp(X) is cosmic and so is X. �

5. Open Problems

Problem 5.1. Suppose that X is a space such that Cp(X) is the union
of a closure-preserving family of its closed Lindelöf subspaces. We know
that in this case Cp(X, I) is a Lindelöf space. But must the whole Cp(X)
be Lindelöf?

Problem 5.2. Suppose that X is a space such that Cp(X) is the union of
a closure-preserving family of its closed Lindelöf Σ-subspaces. We know
that in this case Cp(X, I) is a Lindelöf Σ-space. But must the whole
Cp(X) be Lindelöf Σ? The answer is not clear even if X has a unique
non-isolated point.

The existence of a topological property in Cp(Cp(X)) usually implies
stronger restrictions on X than having this property in Cp(X). Therefore
there is hope that the following question has a positive answer.

Problem 5.3. Suppose that Cp(Cp(X)) is the union of a closure-preserving
family of its closed Lindelöf Σ-subspaces. Must the space Cp(Cp(X)) be
Lindelöf Σ?
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If Cp(X) is a Lindelöf Σ-space and has the Baire property then X must
be countable. This is the motivation for the following question.

Problem 5.4. Suppose that X is a space such that Cp(X) has the Baire
property and can be represented as the union of a closure-preserving family
of its closed Lindelöf Σ-subspaces. Must X be countable?

If a space X has countable spread and Cp(X) is a Lindelöf Σ-space
then X must be cosmic. However it is not clear whether we could replace
Cp(X) by Cp(X, I) in this result.

Problem 5.5. Suppose that X is a space such that s(X) ≤ ω and
Cp(X) is the union of a closure-preserving family of its closed Lindelöf
Σ-subspaces. Must X have a countable network?

Problem 5.6. Suppose that X is a space such that Cp(X) is the union of
a closure-preserving family of its closed K-analytic subspaces. We know
that in this case Cp(X, I) is a K-analytic space. But must the whole
Cp(X) be K-analytic?

Problem 5.7. Suppose that X is a space such that Cp(X) is the union
of a closure-preserving family of its closed sequential subspaces. We know
that in this case Cp(X, I) must be sequential. But must the whole Cp(X)
be sequential?

Problem 5.8. Suppose that X is a space such that Cp(X, I) is sequential.
Must Cp(X, I) (or equivalently Cp(X)) be Fréchet-Urysohn?

Problem 5.9. Is the space Cp(I) representable as the union of a closure-
preserving family of its second countable subspaces?

With respect of characterizing function spaces by means of the topo-
logical games described here the most important remaining problem on
this topic is the following.

Problem 5.10. Suppose that X is a space such that Player I has a win-
ning strategy for the game G(F , Cp(X)) where F is the family of the closed
Lindelöf Σ-subspaces of Cp(X). We know that in this case Cp(X, I) is a
Lindelöf Σ-space. But must the whole Cp(X) be Lindelöf Σ? The answer
is not clear even if X has a unique non-isolated point.

Not only do we not know the answer to the previous problem, but we
do not even know if in that case, the space Cp(X) has the properties that
it would if it were a Lindelöf Σ space.

Problem 5.11. Suppose that X is a space such that Player I has a win-
ning strategy for the game G(F , Cp(X)) where F is the family of the closed
Lindelöf Σ-subspaces of Cp(X). Must the whole Cp(X) be ω-monolithc?
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