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STRUCTURE SPACES OF INTERMEDIATE RINGS OF
ORDERED FIELD VALUED CONTINUOUS FUNCTIONS

SUDIP KUMAR ACHARYYA AND PRITAM ROOJ

Abstract. Let F be a totally ordered field equipped with its or-
der topology and X, a Hausdorff Completely F -regular topological
space(CFR space in short) in the sense that, points and closed sets
in X could be separated by F -valued continuous functions on X.
Suppose C(X,F ) is the ring of all F -valued continuous functions on
X and B(X,F ) = {f ∈ C(X,F ) : |f | < λ for some λ > 0 in F}. We
call any ring A(X,F ) lying between B(X,F ) and C(X,F ) an inter-
mediate ring. Given an intermediate ring A(X,F ) it is shown that,
there is a one-to-one correspondence between the set MF (A) of all
maximal ideals in this ring and the set βFX of all zF -ultrafilters on
X. If MF (A) is endowed with the Hull-Kernel topology and βFX
with the Stone topology, then these two spaces become homeomor-
phic. This extends a result of Byun and Watson [3] which says on
choosing F = R that, the structure space of any ring lying between
C∗(X) and C(X) is βX, the Stone-Čech compactification of X.
The Hausdorff compactification βFX of X thus obtained enjoys a
kind of extension property similar to that of βX described as fol-
lows: any continuous map from X to a compact Hausdorff CFR
space Y extends to a continuous map from βFX to Y . Using this
extension property, we have shown that the ring CK(X,F ) of all
functions in C(X,F ) with compact support becomes identical to
the set

∩
p∈βFX−X Op

F , where for p ∈ βFX, Op
F = {f ∈ C(X,F ):

the closure in βFX of the zero-set of f in X is a neighborhood of
p in the space βFX }. A special case of this result with F = R
yields the standard formula CK(X) =

∩
p∈βX−X Op in the clas-

sical situation. This exemplifies a further similarity between βFX

and βX.
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1. Introduction

Let F be a totally ordered field equipped with its order topology. For
any topological space X, the set C(X,F ) = {f : X → F | f is continuous
on X} makes a commutative lattice ordered ring with 1, if the relevant
operations are defined pointwise onX. The set B(X,F ) = {f ∈ C(X,F ) :
there exists λ > 0 in F with |f | ≤ λ on X} and C∗(X,F ) = {f ∈
C(X,F ) : clF f(X) is compact} turn out to be subrings and sublattices
of C(X,F ) with the inclusion relation C∗(X,F ) ⊆ B(X,F ) ⊆ C(X,F ).
With F = R, C∗(X,F ) is the same as B(X,F ). However with F ̸=
R, it may well happen that these two rings are different. This can be
illustrated by choosing X = F = Q and observing that the function
f : Q → Q defined by f(x) = x

1+|x| where x ∈ Q, belongs to B(X,F ),
without belonging to C∗(X,F ). Indeed for this function f , clF f(X) is the
set {x ∈ Q : −1 ≤ x ≤ 1}, which is never compact. It is well known that,
there is a nice interaction between the topological structure of X and the
algebraic ring and order structure of C(X) and C∗(X) both. An excellent
account of this interplay can be found in [4]. It is worth mentioning in this
context that a good many results related to this interaction are still valid if
C(X) ( respectively C∗(X)) is replaced by C(X,F ) ( respectively B(X,F )
and C∗(X,F )) for any totally ordered field F and this is best realized if
one sticks to the completely F -regular spaces. X is called completely
F -regular if it is Hausdorff and given a point x ∈ X and a closed set
K in X with x /∈ K, there is an f ∈ B(X,F ) such that f(x) = 0 and
f(K) = 1. Thus complete F -regularity reduces to complete regularity
in case F = R. Incidentally if F ̸= R then complete F -regularity of X
and zero-dimensionality of X are equivalent conditions. Problems of this
kind are already investigated by Acharyya, Chattopadhyay and Ghosh in
an earlier paper [1]. A seemingly similar kind of problem, albeit treated
differently is also addressed by Bachman, Beckenstein, Narici and Warner
in [2]. For brevity, completely F -regular Hausdorff spaces will be termed
as CFR spaces. By following the terminology of Sack and Watson [7],
we call a ring lying between B(X,F ) and C(X,F ) an intermediate ring.
Further by adapting closely the techniques of Byun and Watson [3], we
have shown that for a typical intermediate ring A(X,F ), there exists a
one to one correspondence between the set MF (A) of all maximal ideals
of A(X,F ) and the set βFX of all zF -ultrafilters on X. A zF -ultrafilter on
X stands for a family of zero-sets of F -valued continuous functions on X,
which is maximal with respect to having finite intersection property. The
just mentioned bijective correspondence culminates to a homeomorphism,
if MF (A) is endowed with hull-kernel topology and βFX with the stone
topology. Thus the structure spaces of all the intermediate rings are the
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same and identical to βFX. This extends a result of Byun and Watson [3],
which reads on choosing F = R that the structure space of any ring lying
between C∗(X) and C(X) is βX. For a large class of zero-dimensional
spaces X, viz, when X is strongly zero-dimensional it is realized that
βFX = βX for any totally ordered field F (see [1]). Essentially therefore
for all strongly zero-dimensional spaces X and for all choices of F , the
structure space of all the intermediate rings are simply βX. X is called
strongly zero-dimensional if every open cover of X by co-zero sets in X
has a finite open refinement of mutually disjoint sets. IndeedX is strongly
zero-dimensional if and only if βX is zero-dimensional (see Prop. 3.34,
p.85 [8]). This implies in particular that, every strongly zero-dimensional
space is zero-dimensional. But there do exist zero-dimensional spaces
which are not strongly zero-dimensional (see Example 3.39, p.87 [8]). It
is not known to us, whether for all zero-dimensional spaces X, βFX is still
the same as βX for every choice of F . Nevertheless βFX possesses the
following extension property akin to that of βX: any continuous map from
X to a compact Hausdorff CFR space Y extends to a unique continuous
map from βFX to Y . We have exploited this extension property of βFX
to establish that if CK(X,F ) is the ring of all functions in C(X,F ) with
compact support then CK(X,F )=

∩
p∈βFX−X O

p
F , where for p ∈ βFX,

OpF = {f ∈ C(X,F ): clβFXZ(f) is a neighborhood of p in βFX}. The
well known standard formula CK(X)=

∩
p∈βX−X O

p, results as a special
case of this representation on putting F = R (see 7E, [4]). Thus we see
that the last two properties of βFX put the analogous properties enjoyed
by βX on a more general setting.

It may appear in this context that, any ring lying between C∗(X,F )
and C(X,F ) would have been also a natural candidate to be designated
as an intermediate ring. But the structure spaces of these ‘intermediate’
rings may not be identical. Indeed it was established in ([1], Theorem
3.12) that, for a CFR space X, the structure space of C∗(X,F ) is β0X,
the Banaschewski compactification of X. We note that β0X is necessarily
CFR though it is not known to us whether the structure space of C(X,F )
is really CFR (see [1], Remark 3.2). Since the main aim of this article is to
look for those subrings of C(X,F ), which have identical structure space
as that of C(X,F ), it just happened in the general case that, B(X,F ),
rather than C∗(X,F ) turns out to be the right analogue of C∗(X). Apart
from this, C(X,F ) and B(X,F ) yield the same family of zero subsets of
X, a fact which we have used several times in this paper without explicit
notice to prove our main results. On the contrary, it is not known to
us, whether in general C∗(X,F ) and C(X,F ) produce the same family of
zero subsets in X. In the classical situation, i.e., with F = R, to show that
some chosen f in C(X,F ) is also a function in C∗(X,F ), it requires only
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to check that, f is bounded on X, which is often quite easy (see the proof
of Theorems 2.13, 2.14). In the general case however ( i.e., with F ̸= R),
one has to verify in addition that the range of such an f is a pre compact
subset of F , which may not be the case, as closed and bounded subsets of
an arbitrary F need not be compact (see the example considered earlier
in this section).

2. A few technicalities

We reproduce a few preliminary results from our paper [1] which we
will use from time to time to establish the main theorems in this paper.

Theorem 2.1 (see [9], 1978). Any topological field is either connected or
totally disconnected.

Theorem 2.2. Any totally ordered field F is either connected, in which
case it is isomorphic to R or else zero-dimensional.

Proof. If F is connected, then it is Dedekind-complete (indeed an ordered
set is connected if and only if it is Dedekind-complete (see [4], Problem
3O, p.52)), and hence Archimedian. Therefore F is isomorphic either to R
or to a proper sub-field of R. Since no proper sub-field of R is Dedekind-
complete, it follows that F is isomorphic to R. On the other hand if F
is not connected, then it is totally disconnected by Theorem 2.1. Let F ∗

be the Dedekind-completion of F and of course F $ F ∗. It is easy to
check that {(α, β)∩F : α, β ∈ (F ∗ \F )} constitutes a clopen base for the
order topology on F , where (α, β) = {γ ∈ F ∗ : α < γ < β}. Hence F is
zero-dimensional. �

For any f ∈ C(X,F ), Z(f) = {x ∈ X : f(x) = 0} is called the zero
set of f and it is clear that Z(f) = Z(g), if one chooses g = (−1∨ f)∧ 1,
so that B(X,F ) and C(X,F ) produce the same family of zero sets in X
(with respect to F ). Let Z(X,F ) = {Z(f) : f ∈ C(X,F )}

Theorem 2.3. For F ̸= R, X is a CFR space if and only if X is zero-
dimensional.

Proof. By following the classical technique adopted in the Chapter 3 of
[4], one can easily see that, X is a CFR space if and only if its topology is
the same as the weak topology on X, induced by C(X,F ). This implies in
view of the fact that, F is zero-dimensional and the inverse image under
a continuous map of a clopen set is clopen, that X is zero-dimensional if
it is a CFR space.

It is easy to verify that a zero-dimensional space is completely F -regular
for any choice of F . �
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Remark 2.4. Zero-dimensionality of a topological space X is realized
as a kind of separation axiom effected by ordered field (̸= R) valued
continuous functions on X.

Definition 2.5. A zF -filter on X is a subfamily F of Z(X,F ) with the
following three conditions:

(1) ϕ /∈ F.
(2) If Z1, Z2 ∈ F, then Z1 ∩ Z2 ∈ F.
(3) If Z ∈ F and Z ⊆ Z ′ ∈ Z(X,F ), then Z ′ ∈ F.

A zF -ultrafilter on X is a zF -filter on X, which is not properly con-
tained in any other zF -filter on X. By an ideal I in C(X,F ) or in B(X,F )
or in any ring between B(X,F ) and C(X,F ), we shall always mean a
proper ideal.

Theorem 2.6. The following two results describe the relation between
ideals (resp. maximal ideals) of C(X,F ) and zF -filters (resp. zF -ultrafilters)
on X:

(1) If I is an ideal of C(X,F ), then ZF [I] = {Z(f) : f ∈ I} is a
zF -filter on X. Conversely for any zF -filter F on X, Z−1

F [F] =
{f ∈ C(X,F ) : Z(f) ∈ I} is an ideal in C(X,F ).

(2) If M is a maximal ideal of C(X,F ) then ZF [M ] is a zF -ultrafilter
on X and conversely for any zF -ultrafilter U on X, Z−1

F [U] is a
maximal ideal in C(X,F ).

The map M 7→ ZF [M ] establishes a bijection on the set of all maximal
ideals of C(X,F ) onto the collection of all zF -ultrafilters on X.

Theorem 2.7. Every prime ideal in C(X,F ) extends to a unique maxi-
mal ideal of C(X,F ), equivalently a prime zF -filter F on X is extendable
to a unique zF -ultrafilter on X. (A zF -filter F on X is called prime if for
any Z1, Z2 ∈ Z(X,F ), Z1 ∪ Z2 ∈ F ⇒ Z1 ∈ F or Z2 ∈ F). It is easy to
see that a zF -ultrafilter on X is also a prime zF -filter on X.

Theorem 2.8. For a CFR space X, the following statements are equiv-
alent:

(1) X is compact.
(2) Every maximal ideal M of C(X,F ) is fixed in the sense that there

exists x ∈ X for which f(x) = 0 for any f ∈M .
(3) Every maximal ideal of B(X,F ) is fixed.

Remark 2.9. The proof of the last three theorems viz Theorems 2.6, 2.7,
2.8 can be done by a simple adaptation of the proof of the corresponding
Theorems with F = R as given in Chapter 2 and Chapter 4 of [4].
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Intermediate rings Σ(X,F )

In what follows, we introduce the rings that lie between B(X,F ) and
C(X,F ) and call these intermediate rings. Let Σ(X,F ) = {A(X,F ) :
A(X,F ) is a ring with B(X,F ) ⊆ A(X,F ) ⊆ C(X,F )}. We explore into
some natural duality existing between the ideals of a typical intermediate
ring and the zF -filters on X.

Definition 2.10. As in Byun and Watson [3] we call an f ∈ A(X,F ) ∈∑
(X,F ), E-regular, where E ⊆ X, if there exists g ∈ A(X,F ) such that

(f.g) |E= 1. We set for f ∈ A(X,F ), ZA,F (f) = {E ∈ Z(X,F ) : f is (X\
E)−regular} and for any ideal I of A(X,F ), ZA,F [I]=

∪
{ZA,F (f) :f ∈I}.

It is easy to check that, if f ∈ A(X,F ) satisfies f ≥ c > 0 on some
E ⊆ X, then f is E-regular.

Theorem 2.11. The following results are straight forward adaptations
from Byun and Watson’s paper [3]. We give a sketch of proof of a few of
these only.

(1) For f ∈ A(X,F ),ZA,F (f) is a zF -filter on X if and only if f is
noninvertible in A(X,F ).

(2) For any ideal I of A(X,F ), ZA,F [I] is a zF -filter on X.
(3) For any zF -filter F on X, Z−1

A,F [F]={f ∈A(X,F ) :ZA,F (f) ⊆ F}
is an ideal in A(X,F ).

(4) For f ∈ A(X,F ),
∩
ZA,F (f) = Z(f) ≡ {x ∈ X : f(x) = 0}.

Proof. Observe that for each ϵ >0 in F , Eϵ(f)={x∈X : |f | ≤ ϵ}
is a zero set in X(with respect to F ) and f is [X \Eϵ(f)]-regular
because |f | ≥ ϵ > 0 on this last set, this means that Eϵ(f) ∈
ZA,F (f). Hence Z(f) =

∩
ϵ>0Eϵ(f) ⊇

∩
ZA,F (f). On the other

hand if E ∈ ZA,F (f) then f is (X \ E)-regular, consequently f
cannot vanish on (X \E), i.e., Z(f) ⊆ E. Therefore

∩
ZA,F (f) ⊇

Z(f). �

(5) For any ideal I of A(X,F ), ZA,F [I] ⊆ ZF [I].

Proof. Let E ∈ ZA,F [I]. Then there exists f ∈ I such that E ∈
ZA,F (f). This implies in view of (4) that, E ⊇ Z(f) and hence
E ∈ ZF [I], as ZF [I] is a zF -filter on X. �

Theorem 2.12. Let I be an ideal of A(X,F ) ∈ Σ(X,F ) and F be a zF -
filter on X. Then the following relation holds: Z−1

A,F [ZA,F [I]] ⊇ I and
therefore if M is a maximal ideal of A(X,F ), then Z−1

A,F [ZA,F [M ]] =M.
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Theorem 2.13. If A0(X,F )⊇B0(X,F )⊇B(X,F ), where each A0(X,F ),
B0(X,F ) ∈ Σ(X,F ), then for any ideal I of A0(X,F ),ZA0,F [I] =
ZB0,F [I ∩B0(X,F )].

Proof. Enough to prove that, ZA0,F [I] = ZB,F [I ∩B(X,F )]. It is trivial
that, ZB,F [I ∩B(X,F )] ⊆ ZA0,F [I]. Let E ∈ ZA0,F [I]. Then there exists
f ∈ I and g ∈ A0(X,F ) such that fg |(X\E)= 1. Set h = 2fg

1+|fg| , then
h ∈ I ∩ B(X,F ) and h |(X\E)= 1. This shows that E ∈ ZB,F (h) and
hence h ∈ ZB,F [I ∩B(X,F )]. �

Theorem 2.14. Let a zero set E ∈ Z(X,F ) meet every member of the
zF -filter ZC,F (N), where N is a maximal ideal of C(X,F ). Then E ∈
ZF [N ] ≡ the zF -ultrafilter on X, corresponding to the maximal ideal N
of C(X,F ).

Proof. If possible, let E /∈ ZF [N ]. Then there exists f ∈ N such that,
E ∩Z(f) = ϕ. Since f ∈ C(X,F ) is not invertible, it follows that Z(f) ̸=
ϕ. Consequently there is a g ∈ B(X,F ) such that g(X) ⊂ [0, 1], g(E) = 1
and g(Z(f)) = {0}. Since Z(g) ⊇ Z(f) ∈ ZF [N ], it is clear that g ∈ N .
Let h : X → F be defined as follows:

h(x) =

{
g(x), if g(x) ≤ 1

2
1

4g(x) , if g(x) ≥ 1
2 ,

then h is continuous on X and of course h ∈ B(X,F ). Let G = {x ∈ X :
g(x) ≤ 1

2}. Then G ∈ Z(X,F ), E ∩G = ϕ. Furthermore 4gh |(X\G)= 1.
This indicates that g is (X\G)-regular, which means that, G ∈ ZC,F (g) ⊂
ZC,F [N ]. This contradicts the hypothesis that E meets every member of
ZC,F [N ]. �

Theorem 2.15. If M is a maximal ideal of A(X,F ) ∈ Σ(X,F ), then
ZA,F [M ] is contained in a unique zF -ultrafilter on X.

Proof. It follows from Theorem 2.6 that, ZA,F [M ] is a zF -filter on X
and there exists a maximal ideal M ′ of C(X,F ) such that ZA,F [M ] ⊂
ZF [M ′]. This yields in view of Theorems 2.11, 2.12, 2.13 that, M =
Z−1
A,F [ZA,F [M ]] ⊆ Z−1

A,F [ZF [M ′]] = an ideal(proper) of A(X,F ) and con-
sequently M = Z−1

A,F [ZF [M
′]] ⊇ Z−1

A,F [ZC,F [M ′]] = Z−1
A,F [ZA,F [M ′ ∩

A(X,F )]] ⊇ M ′ ∩ A(X,F ). Hence by Theorem 2.13, applied once again
it follows that, ZC,F [M ′] = ZA,F [M ′ ∩ A(X,F )] ⊆ ZA,F [M ] ⊆ ZF [M ′].
Now suppose that there is another maximal ideal N of C(X,F ) such that,
ZA,F [M ] ⊆ ZF [N ]. Then a simple repetition of the above arguments
yield: ZC,F [N ] ⊆ ZA,F [M ] ⊆ ZF [N ]. Now any zero set E ∈ ZF [N ] meets
each zero set in the family ZA,F [M ] and hence it meets every zero set
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in the family ZC,F [M ′]. It follows from Theorem 2.14 that, each such
E ∈ ZF [N ] is a member of ZF [M ′], i.e., ZF [N ] ⊆ ZF [M

′] and hence
ZF [N ] = ZF [M

′] because each is a zF -ultrafilter on X. �

Theorem 2.16. Let U be a zF -ultrafilter on X. Then for any A(X,F ) ∈
Σ(X,F ), Z−1

A,F [U] ≡ {f ∈ A(X,F ) : ZA,F (f) ⊆ U} is a maximal ideal of
A(X,F ).

Proof. There is a maximal ideal M ′ of C(X,F ) such that, U = ZF [M
′] ≡

{Z(f) : f ∈ M ′}. So we can write by using Theorems 2.11, 2.13 that,
Z−1
A,F [U]=Z−1

A,F [ZF [M
′]]⊇Z−1

A,F [ZC,F [M ′]]=Z−1
A,F [ZA,F [M ′ ∩A(X,F )]]⊇

M ′ ∩ A(X,F ). Now the prime ideal M ′ ∩ A(X,F ) of the ring A(X,F )
extends to a maximal ideal M of A(X,F ), i.e., M ′ ∩ A(X,F ) ⊆ M .
The theorem will be finished if we can show that, Z−1

A,F [U] = M . We
see that ZA,F [M ] is a zF -filter on X, therefore ZA,F [M ] ⊆ ZF [N ] for
some maximal ideal N of C(X,F ). This yields: ZC,F [M ′] = ZA,F [M ′ ∩
A(X,F )] ⊆ ZA,F [M ] ⊆ ZF [N ]. It is clear that, each zero set in ZF [N ]
meets every zero set in the family ZC,F [M ′] and hence by Theorem
2.14, ZF [N ] ⊆ ZF [M

′], which yields ZF [N ] = ZF [M
′] as each is a zF -

ultrafilter on X. Now ZA,F [M ] ⊆ ZF [N ] ⇒ M = Z−1
A,F [ZA,F [M ] ⊆

Z−1
A,F [ZF [N ]] = Z−1

A,F [ZF [M
′]] = a proper ideal of A(X,F ). This implies

M = Z−1
A,F [ZF [M

′]] = Z−1
A,F [U], (as M is a maximal ideal of A(X,F )). �

Remark 2.17. For any A(X,F ) ∈ Σ(X,F ), there is a bijective corre-
spondence on the set of all maximal ideals of A(X,F ) onto the family of
all zF -ultrafilters on X.

3. Structure spaces of Intermediate rings, realized as
Stone-Čech like compactification of X

Let βFX be the set of all zF -ultrafilters on X, we recall that, X is a
CFR space. For any E ∈ Z(X,F ), set βFXE = {U ∈ βFX : E ∈ U}.
Then it is easy to verify that, B = {βFXE : E ∈ Z(X,F )} is a base for
the closed sets of some topology, which we wish to call the Stone-topology
on βFX.

Definition 3.1. For each point p ∈ X, set AF,p = {Z ∈ Z(X,F ) : p ∈
Z} ≡ the family of all zero sets in X (with respect to F -valued contin-
uous functions on X), which contain the point ‘p’, which is obviously a
zF -ultrafilter on X.

One can easily check for any E ∈ Z(X,F ) that, βFXE∩{AF,p : p ∈ X} =
{AF,p : p ∈ E}. This simple fact can be written using different notations.
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Let us define a map ηX,F : X → βFX by the rule: ηX,F (p) = AF,p. There-
fore we can write: for any E ∈ Z(X,F ), βFXE ∩ ηX,F (X) = ηX,F (E).
This means that, ηX,F : X → βFX enchanges the basic closed sets of X
and the basic closed sets of the subspace ηX,F (X) of βFX. Also the fact
that, X is CFR ensures that, ηX,F is a one-to-one map. Altogether, we
can write the following result.

Theorem 3.2. The map ηX,F : X → βFX defined by the rule: ηX,F (p) =
AF,p is a topological embedding.

By using a few standard properties of zF -ultrafilters on X and taking
note of the construction of the Stone-topology on βFX, we can establish
the following results without any difficulty.

Theorem 3.3. For all E ∈ Z(X,F ), ηX,F (E) = βFXE, where ηX,F (E)
means taking closure with respect to the Stone-topology on βFX. In par-
ticular therefore ηX,F (X) = βFXX = βFX.

Theorem 3.4. For all E1, E2 ∈ Z(X,F ),

ηX,F (E1 ∩ E2) = ηX,F (E1) ∩ ηX,F (E2).

Using the last fact, one can easily prove that, βFX is a compact space.
Also given a pair of disjoint zero sets Z1, Z2 inX (with respect to F -valued
continuous functions on X), there always exist a pair of zero sets Z ′

1,Z ′
2

in X with the following property: Z1 ∩ Z ′
1 = ϕ = Z2 ∩ Z ′

2, Z ′
1 ∪ Z ′

2 = X.
This fact can be used to prove that βFX is a Hausdorff space. Altogether
we can write:

Theorem 3.5. βFX or more formally the pair (ηX,F , βFX) is a Haus-
dorff compactification of X.

It is clear that, with F = R, βFX is the same as βX. It is not known
to us whether there exists an F ̸= R and a CFR space X, for which
βFX ̸= βX. In view of the conclusive remarks made in [1] it follows
that, any such space X must be zero-dimensional without being strongly
zero-dimensional. In this connection it may be mentioned that, there
exists a zero-dimensional space which is not strongly zero-dimensional,
[8, Example 3.39, p. 87]. But it is not known to us whether for that
space X, βFX ̸= βX with F ̸= R. In general, however, βFX enjoys the
following property which we call the F -extension property similar to that
of βX.

Theorem 3.6. Any continuous map f : X → Y , where Y is a compact
Hausdorff CFR space, can be extended to a continuous map fβ : βFX →
Y with the following property: fβ ◦ ηX,F = f , i.e., which renders the
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following diagram commutative:

X

f

��

ηX,F // βFX

fβ

||zz
zz
zz
zz

Y

Proof. Choose U from the set βFX. Then it is not hard to check that,
f̃(U) ≡ {Z ∈ Z(Y, F ) : f−1(Z) ∈ U} is a prime zF -filter on Y , because if
Z1, Z2 ∈ Z(Y, F ) are such that, Z1∪Z2 ∈ f̃(U) then f−1(Z1)∪F−1(Z2) ∈
U; this yields in view of the fact that, the zF -ultrafilter U on X is prime
that either f−1(Z1) ∈ U or f−1(Z2) ∈ U. Consequently Z1 ∈ f̃(U) or
Z2 ∈ f̃(U). It follows from Theorem 2.7 that, f̃(U) extends to a unique
zF -ultrafilter on Y. As Y is compact CFR space, by Theorem 2.8, each
zF -filter on X is fixed, consequently

∩
f̃(U) = {y}, a singleton. We set

fβ(U) =
∩
f̃(U) = {y}. Then fβ : βFX → Y is a well defined map. It

is clear that, if p ∈ X and Z ∈ f̃(AF,p), then f−1(Z) ∈ AF,p. Conse-
quently p ∈ f−1(Z), i.e., f(p) ∈ Z. This indicates that fβ(AF,p) = f(p),
i.e., fβ ◦ ηX,F (p) = f(p) for all p ∈ X. This settles the commutativity of
the diagram. To establish the continuity of fβ , let U be a neighborhood
of fβ(U), (U ∈ βFX) in the space Y . Since both the zero set neigh-
borhoods (with respect to F -valued continuous functions on Y ) and also
the co-zero set neighborhoods of a point in the CFR space Y can gen-
erate independently the entire neighborhood system of the same point,
we can therefore write: fβ(U) ∈ (Y − Z1) ⊆ Z2 ⊆ U for some Z1, Z2

∈ ZF (Y ). Now fβ(U) /∈ Z1 ⇒ Z1 /∈ f̃(U) ⇒ f−1(Z1) /∈ U ⇒ U /∈
βFXf−1(Z1) ⇒ U ∈ βFX − βFXf−1(Z1) = an open neighborhood of the
point U in the space βFX. We assert that fβ(βFX − βFXf−1(Z1)) ⊆ U ,
indeed U∗ ∈ (βFX − βFXf−1(Z1)) ⇒ f−1(Z1) /∈ U∗ ⇒ f−1(Z2) ∈ U∗

(because f−1(Z1) ∪ f−1(Z2) = f−1(Y ) = X ∈ U∗ ) ⇒ Z2 ∈ f̃(U∗) ⇒
fβ(U∗) ∈ Z2 ⊆ U . �

Remark 3.7. In the classical situation with F = R the CFR condition
on Y in the above theorem is redundant as a compact Hausdorff space
is completely regular. But in general with F ̸= R, a compact Hausdorff
space Y need not be CFR, equivalently need not be zero-dimensional; in
view of Theorem 2.3.

We shall now exploit the above extension property of βFX to show
that, the ring CK(X,F ) of all F -valued continuous functions on X with
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compact support can be realized as the intersection of a suitable family
of ideals emerging from the growth βFX −X of X. Surely this exempli-
fies a further similarity between βFX and βX. Recall that C∗(X,F )=
{f ∈ C(X,F ): clF f(X) is compact}. Since F is completely F -regular and
complete F -regularity is an hereditary topological property (see Theorem
2.2 and Theorem 2.3), it is clear that, every subspace of F is completely
F -regular. Hence we can use the result of Theorem 3.6 to ensure that each
f ∈ C∗(X,F ) can be extended to a unique continuous fβF : βFX → F .
Let ZβFX(fβF ) stand for the zero set of the function fβF in the space βFX.
Then the following fact emerges.

Theorem 3.8. For any CFR space X, CK(X,F ) =

{f ∈ C∗(X,F ):ZβFX(fβF ) is a neighborhood of βFX − X in the space
βFX}.

Proof. If f ∈ CK(X,F ) then f(X) is a compact subset of F because
f(X) = f(clF (X−Z(f))∪Z(f)) = f(clF (X−Z(f)))∪{0}. Consequently
f ∈ C∗(X,F ). Thus CK(X,F ) ⊆ C∗(X,F ). Now choose f ∈ C∗(X,F ),
then clF (X −Z(f)) is compact from which it follows clβFX(X −Z(f)) ⊆
X......(1). Again from the relation X = (X−Z(f))∪Z(f), we set βFX =
clβFXX = ClβFX(X−Z(f))∪clβFXZ(f), which yields βFX−clβFX(X−
Z(f)) ⊆ clβFXZ(f)......(2). Combining the relations (1),(2), we can write
βFX − X ⊆ βFX − clβFX(X − Z(f)) ⊆ clβFXZ(f) ⊆ ZβFX(fβF ). This
implies that, clβFXZ(f) and hence ZβFX(fβF ) is a neighborhood of βFX−
X in the space βFX. Conversely if f ∈ C∗(X,F ) is such that ZβFX(fβF ) is
a neighborhood of βFX−X in the space βFX, then since ZβFX(fβF )∩X =
Z(f), it is clear that, no point of βFX−X can be a limiting point of the set
X−Z(f) in the space βFX. This means that, clβFX(X−Z(f)) = clX(X−
Z(f)), hence f ∈ CK(X,F ). The theorem is completely proved. �

As a consequence, we have the following theorem:

Theorem 3.9. For any CFR space X, CK(X,F ) =
∩
p∈βFX−X O

p
F .

Proof. If f ∈ CK(X,F ), then we have observed in the course of proving
Theorem 3.8 that, clβFXZ(f) is a neighborhood of βFX−X in the space
βFX. The later assertion means that f ∈ OpF for each p ∈ βFX − X.
Conversely if f ∈ OpF for each p ∈ βFX −X, then clβFXZ(f) and hence
ZβFX(fβF ) is a neighborhood of βFX −X in the space βFX, as we recall
that clβFXZ(f) ⊆ ZβFX(fβF ). Hence from Theorem 3.8, we get f ∈
CK(X,F ). �
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Stucture space of a typical A(X,F)∈ Σ(X,F )

For each p ∈ X, set Mp
A,F = {f ∈ A(X,F ) : f(p) = 0}. It is easy

to check that, {Mp
A,F : p ∈ X} constitutes the entire family of fixed

maximal ideals of A(X,F ). The following result can be established by
using routine arguments and adapting the proof of Theorem 3.6 of [6].

Theorem 3.10. The structure space MF (A) of the ring A(X,F ) (i.e.
the set of all maximal ideals of A(X,F ) with Hull-Kernel topology) is
a compact Hausdorff space. Furthermore the map ψA,F : X → MF (A)
defined by the rule ψA,F (p) = Mp

A,F establishes a topological embedding
with ψA,F (X) dense in MF (A).

Thus MF (A) or more formally the pair (ψA,F ,MF (A)) makes a Haus-
dorff compactification of X. The following result indicates that, the two
compact Hausdorff spaces MF (A) and βFX are essentially the same.

Theorem 3.11. MF (A) and βFX are homeomorphic for any interme-
diate ring A(X,F ).

Proof. Define the map v : MF (A) → βFX as follows: for each M ∈
MF (A), v(M) is the unique zF -ultrafilter on X, which contains ZA,F [M ].
We have already established (see Remark 2.17) that v is a bijection onto
βFX. Since any bijection between two compact Hausdorff spaces is a
homeomorphism if it is either a continuous map or a closed map, we
shall show that, v is a closed map. A typical basic closed set in the space
MF (A) is a set of the form MF (A)f = {M ∈ MF (A) : f ∈M}, for some
f ∈ A(X,F ). It is not hard to check that, v(MF (A)f ) =

∩
E∈ZA,F (f){U ∈

βFX : E ∈ U} = the intersection of a family of basic closed sets in βFX =
a closed set in βFX. �

The actual relation between MF (A) and βFX is manifested by the
following result.

Theorem 3.12. The two Hausdorff compactifications (ψA,F ,MF (A))
and (ηX,F , βFX) of X are topologically equivalent in the sense that, there
is a homeomorphism υ : MF (A) → βFX which makes the following dia-
gram commutative:

X

ηX,F

��

ψA,F // MF (A)

υ
zzuu
uu
uu
uu
u

βF,X



INTERMEDIATE RINGS 175

Proof. Because of Theorem 3.11 we need to check only the commutativity
of the diagram. We recall that, ψA,F (p) = Mp

A,F ≡ {f ∈ A(X,F ) :

f(p) = 0} and ηX,F (p) = AF,p ≡ {Z ∈ Z(X,F ) : p ∈ Z} for each point
p ∈ X. Next we observe that, if p ∈ X and f ∈ A(X,F ) are such
that, f(p) = 0 then Z(f) ∈ AF,p, from which it follows in view of the
relation ∩ZA,F (f) = Z(f) (see Theorem 2.11 (4)) that, ZA,F (f) ⊆ AF,p.
Hence we can write ZA,F (Mp

A,F ) ⊆ AF,p. But recall that v(Mp
A,F ) is

the unique zF -ultrafilter on X, containing ZA,F (Mp
A,F ). Hence it follows

that, v(Mp
A,F ) = AF,p. Since this is true for each p ∈ X, we can write

v ◦ ψA,F = ηX,F . The theorem is completely proved. �

Remark 3.13. The structure spaces of any two intermediate rings be-
tweenB(X,F ) and C(X,F ) are topologically equivalent, each being equiv-
alent to βFX. If F = R, then these structure spaces (of rings lying be-
tween C∗(X) and C(X)) are the same as βX- a fact established by Plank
in 1969 and by Byun and Watson in 1991 by different methods.

Open Question 3.14. Which results amongst Theorems 2.13, 2.15, 2.16
are valid if B(X,F ) is replaced by C∗(X,F ) ?
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