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DENSE SADDLES IN TORUS MAPS

SUDDHASATTWA DAS

Abstract. In this paper, we look at a specific class of maps in
the torus and explore the consequences of this map having a dense
set of periodic saddles. The main result states that under these
assumptions, the torus splits into a countable number of invariant
cylinders with disjoint interiors and the map is transitive on each
cylinder.

1. Introduction

We will focus on a class of maps F : T2 → T2 which are of the form

(1.1) F : (x, y) = (mx, g(x, y))( mod 1),

where m ∈ N is > 1 and g : T2 → S1 is C2. The motivation of this work is
to explore the connection between transitivity of a map and the existence
of dense periodic saddles in the torus. There are maps on the torus which
have dense periodic saddles but are not transitive, as shown at the end of
this section. Our main result states that a map on the torus with dense
saddles may not be transitive, but there will be a decomposition of the
torus into a finite number of cylinders with disjoint interiors with the map
transitive on each component.

Our approach will be by using an invariant structure in the tangent
bundle called “invariant, expanding cone system”, explained in Section
2.2. Cone-systems have been studied previously as geometric structures
in vector bundles, for example in [4]. The reason we assume that our map
has the form (1.1) is because it has an invariant expanding cone system.
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178 SUDDHASATTWA DAS

We believe that the results of this paper are applicable to other maps on
the torus with an invariant, expanding cone system.

The Jacobian of this map is given by

(1.2) DF (x, y) =

(
m 0

∂1g(x, y) ∂2g(x, y)

)
for ∀(x, y) ∈ T2.

Our main result assumes that the map is a local diffeomorphism, i.e.,
its Jacobian is invertible everywhere. This property will be assumed for
the rest of the paper. From (1.2) this condition can be stated as

(1.3) ∂2g(x, y) ̸= 0 for ∀(x, y) ∈ T2.

Let z0 = (x0, y0) ∈ T2 be a periodic point of period p ∈ N. Then one of
the eigenvalues of dF p(z0) is mp. Therefore, depending upon whether the
other eigenvalue, which equals |∂2(g ◦F p−1)(z0))|, is lesser than, equal to
or greater than 1, z0 is a saddle, non-hyperbolic or a repellor.

Our main result will carry the additional assumption that the expan-
sion in the X-direction by m dominates any expansion in the Y-direction.
This can be stated as

(1.4) |∂2g(x, y)| < m for ∀(x, y) ∈ T2.

We will also find use for a stronger condition on the expansion, which is

(1.5) |∂2g(x, y)| < 0.5m for ∀(x, y) ∈ T2.

Vertical circles. A vertical circle is a subset of the torus of the form
{X = x}, which can also be represented as {x} × S1, where x ∈ S1. It
will be denoted as Sx . Then the map (1.1) maps vertical circles into
vertical circles, that is,

(1.6) For ∀x ∈ S1, F (Sx) = SF (x)

All the vertical circles Sx with x of the form

(1.7) x0 =
k

mn − 1
( mod 1)

are invariant under Fn. These will be called the periodic circles of the
map and will be denoted as Γk,n.

(1.8) Γk,n := {(x, y) ∈ T2 | x =
k

mn − 1
( mod 1)}.

So if z0 = (x0, y0) is a periodic point, then x0 must be of the form (1.7)
and z0 is a fixed point of the circle map Fn|Sx0 . Depending upon whether
this fixed point is attracting, neutrally stable or repelling for Fn|Sx0 , z0
is a saddle, non-hyperbolic periodic point or repellor for F .

A cylinder is a set diffeomorphic to S1 × [0, 1]. Recall that a map is
transitive if it has a dense trajectory or equivalently, for every pair of
open sets U and V , there is some n ∈ N for which F−n(U) ∩ V ̸= Φ.
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A set X is called forward-invariant wrt F if F (X) ⊆ X. It is called
strongly forward-inavariant if F (X) = X. Backward-invariance and in-
variance is similarly defined.

Theorem 1.1 (Main result). Let (1.1) be a local diffeomorphism that has
dense periodic saddles and satisfies (1.5). Then either the map is transi-
tive or there exists some p ∈ N such that the torus is a union of finitely
many cylinders with disjoint interiors such that F p acts transitively on
each cylinder and the action of F on the set of cylinders is a permutation
whose cycles are of order p.

The following two corollaries are immediate consequences of the main
theorem. They show that the splitting of the torus into invariant cylinders
can be refuted by easily satisfiable conditions.

Corollary 1.2. Let (1.1) be a local diffeomorphism that has dense peri-
odic saddles, satisfies (1.5) and there is a periodic circle Γk,n of the form
(1.8) on which Fn is transitive. Then the map F is transitive on T2.

Corollary 1.3. Let (1.1) be a local diffeomorphism that has dense pe-
riodic saddles and satisfies (1.5). Moreover, suppose that there are two
periodic points whose periods are coprime. Then the map F is transitive
on T2.

Section 2 has some definitions and properties needed to prove Theorem
1.1. Finally, section 3 presents the proof to Theorem 1.1.

A non-transitive torus map with dense periodic saddles. Con-
sider the cylinder C = S1 × [0, 1]. We will first construct a map on this
cylinder which has a dense set of periodic saddles and leaves the bound-
aries S1 × {0} and S1 × {1} invariant. Then the map on the torus can
be constructed by gluing corresponding boundaries of each cylinder to-
gether. We will continue to use the notation Sx to denote the vertical line
segments {x} × [0, 1].

The following map on the cylinder is a modification of a torus map
studied in [3].

(1.9) F (x, y) = (3x (mod ()1), y + 0.01 sin(2πy) + 0.2g(y) sin2(πx)),

where (x, y) ∈ S1 × [0, 1]. Here g : [0, 1] → [0, 1] is a smooth map
which equals 0 in a small neighborhood of 0 and 1 and equals 1 for
y ∈ [0.01, 0.99]. The map has a fixed saddle point z at (0, 0.5). Let
R be the set bounded by the circle S1 × [0.4] and from the bottom by
portions of the unstable manifold of z. Using a bit of arithmetic, it was
shown in [3] that R ⊂ S1 × [0, 0.4] and that R ⊂ F (R). Therefore, every
point in R has a preimage in R. Also note that ∂Fy

∂y > 1 in R. From this
it follows that the unstable manifold Wu of z is dense in R. This region
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also has a periodic repellor, so the forward iterates of R covers the interior
of the cylinder C. Therefore, Wu is everywhere dense.

Now note that the stable manifold W s of z contains S0 − {z} and
all of its inverse images. The inverse images of S0 are the vertical lines
{Sx | x = k

3n ( mod 1), k, n ∈ N}. W s is dense on each such vertical line
and these lines are dense in C. Therefore W s is dense in C.

Therefore, the intersections of Wu with W s are transverse homoclinic
points and dense in C. Each of them are limit points of periodic points,
hence, the set of periodic points is dense in C.

2. Definitions and properties

2.1. Stable and unstable manifolds. In this section, the definitions of
local and global, stable and unstable manifolds are reviewed.

Definition 2.1 (Local stable and unstable manifolds for hyperbolic
maps.). Let M be a closed n-manifold, F : M → M be a C1 diffeo-
morphism, Λ ⊆ M is a compact hyperbolic set. Then for ∀x ∈ Λ, ∀ϵ > 0 :
W s

ϵ (x) := {y ∈ M | ∀n ∈ N0, d(fn(y), fn(x)) < ϵ}.
Wu

ϵ (x) := {y ∈ M | ∀n ∈ N0, d(f−n(y), f−n(x)) < ϵ}.

Definition 2.2 (Global stable and unstable manifolds for hyperbolic
maps.). Let M be a closed n-manifold, F : M → M be a C1 diffeo-
morphism, Λ ⊆ M is a compact hyperbolic set. Then for ∀x ∈ Λ, ∀ϵ > 0 :
W s(x) := {y ∈ M | lim

n→∞
d(fn(y), fn(x)) = 0}.

Wu(x) := {y ∈ M | lim
n→∞

d(f−n(y), f−n(x)) = 0}.
It follows from hyperbolic systems’ theory and proved in various sources,
such as [5], that ∃ϵ0 > 0 such that for ∀0 < ϵ < ϵ0,
W s

ϵ (x) is a manifold and W s(x) = ∪
n∈N0

F−n(W s
ϵ (x)).

Wu
ϵ (x) is an embedded manifold and Wu(x) = ∪

n∈N0

Fn(Wu
ϵ (x)).

Definition 2.3 (Stable and unstable manifolds of hyperbolic periodic
points.). Let a point P on a n-dimensional manifold M be a hyperbolic
periodic point of period p, of a map F . Then P must be a hyperbolic
fixed point of the map F p. By the Hartman-Grobman theorem [2], there
is a neighbourhood W of P in which F p is C1 conjugate to the linear
map dF p(P ). The local stable and unstable manifolds of P exists in
this neighborhood. The global stable and unstable manifolds can then be
described as above.

2.2. Invariant cone systems.

Definition 2.4 (Invariant system of cones :). Let M be a manifold, F :
M → M a C1 map. Let T (M) = Eu + Es be a splitting of the tangent
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bundle and for ∀x ∈ M , ∀α > 0, the α-unstable cone at x, denoted as
Cu
α(x), is defined to be {(vu, vs) ∈ T (x,M)||vs| ≤ α|vu|}. Then (M,F )

is said to have a system of invariant cones wrt the splitting Eu ⊕ Es if
∃α > 0 such that for ∀x ∈ M , ∀v ∈ Cu

α(x), v′ = dF (x)(v) ∈ Cu
α(F (x)).

Definition 2.5 (Invariant, expanding system of cones :). Let M be a
manifold, F : M → M a C1 map. Let T (M) = Eu +Es be a splitting of
the tangent bundle. Then (M,F ) is said to have a an invariant expanding
cone system if ∃α > 0, k > 1 such that for ∀x ∈ M , ∀v ∈ Cu

α(x), v′ =
dF (x)(v) ∈ Cu

α(F (x)) and |v′| > k|v|.

If the splitting Eu⊕Es and constants α > 0 and K > 0 are clear from
the context, then they will be dropped from the notation and the invari-
ant, expanding cone system Cu

α will be simply denoted as { C(x) | x ∈ M}
or { Cα(x) | x ∈ M}.

We will now describe curves whose tangent bundle is contained in the
cone system. Borrowing from a similar idea in physics, we will call such
curves causal.

Definition 2.6 (Differentiable causal curves). A C1 curve λ : R → M
is said to be a causal curve if its tangent vector at every point lies inside
the cone associated with that point. In other words, for ∀t ∈ R, λ′(t) ∈
Cα(λ(t)).

This definition of causality can be extended from differentiable curves
to continuous curves

Definition 2.7 (Causal curves). A C0 curve λ : R → M is said to be a
causal curve if at every point z0 on λ and any neighborhood U of z0, any
point z on U can be joined to z0 by a differentiable, causal curve γ lying
inside U .

Causal curves are therefore Lipschitz curves. By Rademacher’s theo-
rem (see [1], Theorem 3.1.6), they are differentiable at Lebesgue almost
every point. In particular, they are rectifiable and their length can be
obtained by integrating their slopes.

Lemma 2.8 (Properties of an expanding system of unstable cones). Let
M be a manifold, F : M → M a C1 map with an invariant, expanding
cone system wrt the splitting Es

⊕
Eu and constants K and α. Let λ :

R → M be a causal curve. Then
(1) The image F (λ) under the map of the causal curve λ is also a

causal curve.
(2) length(F (λ)) > K length(λ).
(3) length(Fn(λ)) > Kn length(λ), which → ∞ as n → ∞.
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Proof. (1) For ∀t ∈ R, (F ◦ λ)′(t) = dF (λ(t))λ′(t). Since the cone
system is forward invariant, this vector ∈ Ku

α(λ(t)), hence F (λ)
is a causal curve too.

(2) length(F (λ)) =
∫
R
|(F ◦ λ)′(t)|dt ≤

∫
R
k|(λ)′(t)|dt = K length(λ).

(3) This follows from (i) and (ii) above.
�

Cone system for (1.1). Let ex and ey denote the vector fields along
the X and Y directions respectively. Take Eu to be ex and Es to be ey.
Then the map (1.1) has an invariant cone system wrt the splitting ex⊕ey
if it satisfies (1.4). The cone system will be expanding if the stronger
condition (1.5) is satisfied.

In an invariant cone system, the cone C(x) at a point x is mapped
under DF (x) into the cone at F (x). The following quantities an track
how thin the images DFn(x)(C(x)) get with the iteration number n.

(2.1) For ∀n ∈ N, ∀z ∈ M, αn(z) := sup{∥v∥
∥u∥

| (u, v) ∈ DFn(Cα(z))}.

(2.2) For ∀z ∈ M, ᾱ(z) := inf
n∈N

αn(z).

If ᾱ(z) > 0, then all of the images DFn(C(z)) will contain the ᾱ-cone
wrt the splitting Eu ⊕ Es. Note that the Eu(DFn(z)) always lies inside
DFn(C(z)). This can be summarized as follows.
(2.3) For ∀z∈M, ∀n∈N, Eu(Fn(z))⊆Cᾱ(F

n(z))⊆dFn(Cα(z))⊆Cα(F
n(z)).

So if ᾱ(z) = 0, Eu must be invariant under DF along the orbit of z.
Conversely, if Eu is not an invariant sub-bundle, then ᾱ > 0.

Stable and unstable manifolds. It turns out that in dynamical
systems with an expanding, invariant cone system, the stable and unstable
manifolds, W s and Wu, have a nice behavior which have been described
in the following two propositions.

Proposition 2.9. In a 2-manifold M with an invariant, expanding cone
system, the unstable manifold of a saddle is an embedded, causal curve.

Proof. Let z be a saddle, Wu its unstable manifold. By Lemma 4.1, C(z)∩
Tz(W

u) contains a subspace of dimension 1. Since Wu is 1-dimensional,
Tz(W

u) must be contained in the interior of C(z). By continuity of the
tangent space along Wu and of the cone system C, ∃ϵ > 0 such that for
∀z′ ∈ Wu

ϵ (z), Tz′(Wu) ∈ C(z′). Therefore, since the curve Wu
ϵ (z) is causal

and since Wu(x) = ∪
n∈N0

Fn(Wu
ϵ (z)), by Lemma 2.8, it is an embedded,

causal curve. �
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Proposition 2.10. In a manifold M with an invariant, expanding cone
system, the stable manifold of a saddle is everywhere transverse to the
invariant cones.

Proof. Let W s be the stable manifold of a saddle z. The proof has two
parts. First we will prove that W s

ϵ is transverse to the cone system for
some ϵ > 0. Secondly, we will show this implies that the entire stable
manifold is transverse to the cone system.

Since Tz(W
s) is a contracting eigenspace and vectors in C(z) expand

by at least k > 1, Tz(W
s) must be disjoint from C(z). Since both C and

W s are C1 structures and C(z) is a closed set, for sufficiently small ϵ > 0,
W s

ϵ is transverse to the cone system.
Suppose at some z0 ∈ W s, ∃w ∈ Tz0(W

s)∩ C(z0). By the definition of
the stable manifold, zn := Fn(z0) → z, so for every large n ∈ N, zn ∈ W s

ϵ .
By the invariance of the cone structure, dFn(w) ∈ C(zn), a contradiction
of the previous conclusion. So no such z0 exists and W s is everywhere
transverse to the cone system. �

3. Proof of Theorem 1.1

In this section it will be assumed that F in (1.1) is a local diffeomor-
phism and its periodic saddles are dense in T2. If F is transitive, then the
theorem is already proved, so we will proceed with the assumption that
F is not transitive. So there exists an open subset U of T2 whose images
are not dense in T2.

By assumption, there exists a periodic point of period p ∈ N in U .
Hence, ∀n ∈ N, F pn(U) intersects U . Since U , is connected, so is F pn(U),
therefore, for ∀N ∈ N, Un := ∪

0≤n≤N
F pn(U) is a connected set. U∞ :=

∪
n∈N0

F pn(U) is open and K := Ū∞ is closed and hence compact. Both K

and U∞ are forward invariant under F p.
Given any subset A of a topological space X, Int(A) will denote the

interior of the set A.
By Lemma 4.3, U∞ = Int(K), ∂(K) and KC are strongly forward and

backward invariant under F p. As a consequence, we can conclude that,

Lemma 3.1. Unstable manifolds of periodic saddles do not cross ∂K.
Moreover, if a saddle lies on ∂K, then its unstable manifold lies in ∂K.

Claim 1. The connected component of the boundary of K are C1,
causal, closed curves. Thence, we will conclude that K is homeomorphic
to a cylinder. This is proved in Section 3.1.

Claim 2. T2 decomposes into a finite number of such cylinders with
disjoint interiors and each cylinder is mapped into and onto another cylin-
der. This is proved in Section 3.2.
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3.1. The proof of Claim 1.

The boundary of K. By making U smaller if necessary, we may assume
without loss of generality that U is homeomorphic to an open rectangle
and that its boundary has four C1 components, the top and the bottom
boundary are tangent to Eu and its left and right boundaries are tangent
to Es. For ∀x ∈ S1, Kx is the 1-dimensional set Sx ∩ K. This is a
compact set and hence a union of compact intervals. Therefore, a point
z0 = (x0, y0) ∈ ∂K is either the boundary of a proper component interval
of Kx0 or a singleton component of Kx0 . We will first prove that each
connected component of ∂K is an embedded curve. To prove this, we
will show that there is a unique C0 curve embedded in ∂K that passes
through z0. The claim will be proved separately for both the possibilities
for z0 in Lemmas 3.2 and 3.3.

Lemma 3.2. For ∀z0 = (x0, y0) ∈ ∂K which are boundary points of
proper component intervals of Kx0

, ∃ a unique C0 curve embedded in ∂K
that passes through z0.

Proof. If Sx0 is given the usual orientation, then every proper component
interval of Kx0 has an upper boundary and a lower boundary. Without
loss of generality, the point z0 = (x0, y0), which lies on the boundary of
a proper component interval of Kx0 , is an upper boundary. We will first
demonstrate the existence of a continuous curve embedded in ∂K and
passing through z0.

Since z0 ∈ ∂K, ∃zn ∈ U and kn ∈ N ∋ F pkn(zn) → z and F pkn(zn) ∈
Sx0 . Since z is the upper boundary of a component interval, this con-
vergence is from below. Let γ be the upper boundary of U . Let z′n be
the point in γ with the same X-coordinate as zn. Since F is orientation
preserving, F pkn(z′n) → z and F pkn(z′n) ∈ Sx0 .

Let I be a small open interval in S1 around x0. For all x ∈ I, let
yn(x) be the y coordinate of the point where the curve γn := F pkn(γ)
first hits Sx after passing through F pkn(z′n). Since γ is a causal curve, so
are its images γn under F pkn . Then it follows that Γ(x) := sup

n∈N
yn(x) is

a continuous, causal curve passing through z and lying in ∂K.
We will now prove that this embedded curve is unique. Suppose ∃

two different curves Γ1 and Γ2 in ∂K passing through z0. Let Q be a
periodic saddle close to z0 such that one of these curves lies above it and
the other below it. Then since the unstable manifold of Q is causal, it
must intersect one of these curves, which contradicts Lemma 3.1. �

Lemma 3.3. For ∀z0 = (x0, y0) ∈ ∂K which are singleton components
of Kx0 , ∃ a unique C0 curve embedded in ∂K that passes through z0.
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Proof. Let z0 = (x0, y0) be a singleton component of Sx0 . Since it lies on
∂K, it is a limit point of points zn in the interior of K.

We will first show that these points zn can be chosen to lie on Sx0 .
Suppose not, then let zn = (xn, yn). Then without loss of generality,
xn → x−

0 . Let I(xn) = [Γ1(xn),Γ2(xn)] be the component of Kxn that
contains zn. By Lemma 3.2, Γ1 and Γ2 can be extended to C0 curves
in a left neighborhood of x0. Since there are no points in the interior of
K in a neighborhood of z0 in Sx0 , Γ1, Γ2 intersect Sx0 at z0. Let Q be
a periodic saddle close to z0 such that one of these curves lies above it
and the other below it. Then since the unstable manifold of Q is causal,
it must intersect one of these curves, which contradicts Lemma 3.1. So
the assumption was false and hence, z0 is a limit of proper component
intervals of Kx0 .

Let these component intervals be In = [an, bn]. Without loss of gen-
erality, In-s converge to z0 from below. By Lemma 3.1, there exists C0

curves Γn embedded in ∂K and passing through bn. For ∀x in a neighbor-
hood of x0, Γ(x) := ¯lim

n→∞
Γn(x). This Γ lies in ∂K and is C0 and causal.

It is also the unique curve in ∂K passing through z0. �

Lemma 3.4. No point z0 = (x0, y0) on a boundary curve of ∂K passing
through an upper/lower boundary point can be a singleton component of
Kx0 .

Proof. Let Γ1 be a boundary curve of ∂K passing through an upper
boundary point z1. Without loss of generality, z0 is the closest point to z1
lying on Γ1, so the segment of the curve Γ1 from z1 to z0 must have only
upper boundary points and consequently, has an adjacent lower boundary
curve Γ2. Since Γ1, Γ2 are C0 and z0 is an isolated point of Kx0 , they
must intersect at z0. This contradicts the uniqueness of embedded curves
in ∂K passing through z0. �

Lemma 3.5. A boundary curve of ∂K passing through an upper boundary
point, cannot intersect a boundary curve of ∂K passing through a lower
boundary point.

Proof. Let the contrary be true, so there exists a boundary curve Γ1 of ∂K
passing through an upper boundary point z1 and intersecting a boundary
curve Γ2 of ∂K passing through a lower boundary point z2. Let the point
of intersection be z0 = (x0, y0). Then since Γ1, Γ2 are continuous, z is
a singleton component of Kx0 . However, this is not possible by Lemma
3.4 �
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Lemma 3.6. Let z ∈ ∂K be a lower boundary point. Then F p(z) is also
a lower boundary point and the connected component of ∂K containing z
has only lower boundary points. Analogous statements hold true for upper
boundary points.

Proof. Since F is orientation preserving and by Lemma 3.1, lower bound-
ary points are mapped into lower boundary points. Since T2 itself is
orientable, an embedded curve, which is a co-dimension 1 embedded sub-
manifold, is also orientable and hence, if a boundary has a lower boundary
point, then all of its points are lower boundaries. �

Now consider an adjacent upper boundary and lower boundary Γ1 and
Γ2 respectively. These two curves do not intersect each other. Hence, the
region R enclosed by them is either homeomorphic to a cylinder or an
infinite tape. If it is a cylinder, then the Claim 1 is proved. So we will
demonstrate that it cannot be an infinite tape.

The proof will be by contradiction, so we will assume that R is an
infinite tape. Therefore, Γ1, Γ2 must be open curves of infinite length.
We will first show that none of them can have more than one periodic
saddle using the following lemma.

Lemma 3.7. Let Γ be an causal, open curve in T2 invariant under F p.
Then at most one periodic point can lie on Γ.

Proof. Since Γ is causal and is invariant under F p, it must have infinite
length.

The proof will be by contradiction. So let Q1, Q2 be two periodic
points on Γ with periods p1, p2 respectively. Let N = pp1p2. Then Q1,
Q2 are fixed points of FN and Γ is invariant under FN .

Γ must be the unstable manifold of both the Qi-s. Let L be the section
of the curve joining the Qi-s. Then for ∀n ∈ N, FnN (L) is a sub-segment
of Γ with the Qi-s as its endpoints. Since Γ is an open curve and since
F is a local diffeomorphism, L is the only such curve-segment, hence
FN (L) = L. This contradicts the expansion property of the map F on
causal curves. �

However, the next lemma proves that periodic points on the Γi-s are
dense. This leads to a contradiction and consequently, proves Claim 1.

Lemma 3.8. Every point z0 in an upper boundary curve is a limit point
of periodic points lying on that curve.

Proof. Suppose z0 = (x0, y0) is a point on an upper boundary of K.
Let Γ1 be the upper boundary passing through z0 and let Γ2 be the
adjacent lower boundary. Let I be a small neighborhood of x0 in S1.



DENSE SADDLES IN TORUS MAPS 187

Then the region R := {z = (x, y) ∈ T2 | x ∈ I, Γ2(x) ≤ y ≤ Γ1(x)}
is homeomorphic to a rectangle. Since periodic saddles are dense, ∃ a
periodic saddle z1 = (x1, y1) in R of period q ∈ N. Then the circle Sx1

must be invariant under F pq and for a sufficiently large N ∈ N, all the
periodic points on Sx1 are fixed under F pqN . Let L be the line segment
Sx1 ∩R. L contains the periodic point Q.

Note that Q is an attracting fixed point for the map FNP |Sx1 . By
Lemma 4.3, the end-points of L must be fixed points. �

3.2. The proof of Claim 2. As a result of the lemmas in the previous
section, we can conclude that the invariant set K is diffeomorphic to a
cylinder S1× [0, 1] and Int(K), KC and ∂K are invariant under F p. Now
instead of considering the iterated map F p, we will examine the action of
F on K.

Lemma 3.9. Suppose for some m ∈ N, Fm(K)∩K ̸= Φ. Then Fm(K) =
K.

Proof. Let the contrary be assumed, i.e., Fm(K)∩K ̸= Φ for some m ∈ N.
Since F p(K) = K, it may be assumed without loss of generality that
0 < m < p. Since F is a local diffeomorphism and F p−m(Fm(K) = K,
we must have,

(3.1) Fm(∂K) = ∂(Fm(K)), Fm(Int(K)) = Int(Fm(K).

The boundary of K is composed of two disjoint, closed, causal curves
which are the upper and lower boundaries respectively. Since F is orienta-
tion preserving, F maps upper(lower) boundaries to upper(lower) bound-
aries, so Fm(K) is also a cylinder. The only way by which the upper/lower
boundary of K intersects the upper/lower boundary of Fm(K) and satisfy
(3.1) is if they coincide. Therefore, Fm(K) = K. �

Lemma 3.10. The images of K under F form a disjoint collection of
cylinders.

Proof. Suppose for some 0 ≤ m < n < p, Fm(K) ∩ Fn(K) ̸= Φ.
Then F p−n(Fm(K) ∩ Fn(K)) ̸= Φ. But F p−n(Fm(K) ∩ Fn(K)) ⊆
F p−n+m(K) ∩ F p(K) = F p−n+m(K) ∩K.
Therefore, ∃p′ := p− (n−m) which is less than p and for which F p′

(K)∩
K ̸= Φ. Without loss of generality, p′ is the minimum such integer > 0.
Then by Lemma 3.9, this implies that F p′

(K) = K. From this it follows
that the images K = F 0(K), . . . , F p′−1(K) are all distinct cylinders. �

Lemma 3.11. The number of periodic cylinders is finite.
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Proof. Henceforth, K and its images F 1(K), F 2(K), . . . will be called pe-
riodic cylinders. Since by assumption, F is not transitive, it does not
have dense trajectories. Therefore, every point is in a periodic cylinder.
We will show that there are only a finite number of periodic cylinders,
whence, T2 can be decomposed into a finite “stack” of cylinders with dis-
joint interiors.

Let K be a periodic cylinder. For ∀k, n ∈ N, the intersection Γk,n∩∂K
has a periodic point, where Γk,n is described in (1.8). Since (1.1) is C1,
each Γk,n can have a finite number of periodic points on it wrt the map
Fn. Therefore, the set of such periodic cylinders K must be finite in
number. �

Lemma 3.12. All the periodic cylinders have the same period.

Proof. Let p be the minimum period of a periodic cylinder K1. Therefore,
if Γ is its upper boundary, then F p(Γ) = Γ. But Γ is the lower boundary
of the cylinder K2 stacked above K1. Therefore, the period of K2 must
be a divisor of p and because of the minimality of p, must be p itself. A
repetition of this argument a finite number of times establishes that all
the cylinders have the same period p. �

Therefore, we have proved our main result Theorem 1.1.

4. Appendix : Some lemmas

Lemma 4.1. Let z be a saddle and Wu its unstable manifold. If
dim(Wu) = 1, then Wu is an embedded causal curve.

Proof. Suppose that M is an n-manifold. Let Sn−1 be the unit sphere
in Tz(M). Then the intersection Q := C(z) ∩ Sn−1 is compact. If the
dimension of Eu is k for some 0 < k < n, and α = tan(θ) for some
θ ∈ (0, π

2 , then Q is diffeomorphic to Sk−1 × Dn−k−1 × [−θ, θ] via the
map ϕ : (u, v, t) 7→ cos(t)u+ sin(t)v .

If k = 1, then Q ∼= S0 × Dn−1. Now consider the map G : Sn−1 →
Sn−1 defined as G(w) = dF (z)(w)

∥w∥ . This map is well defined and smooth
because dF (z) is invertible and linear. Since C(z) is invariant under dF (z),
G : K → K. Therefore, by the Brower fixed point theorem, G has a
fixed point w in K. But w is a fixed point of G iff ∃λ > 0 such that
dF (z)(w) = λw. Since dF is an expanding map on C, λ must be > 1.

Since dF (z) is hyperbolic, all subspaces of Tz(M) invariant under dF (z)
must be subspaces of either Tz(W

u) or Tz(W
s). In particular, the eigen-

vector w must be in one of these subspaces. Since its eigenvalue λ is > 1,
w must ∈ Tz(W

u). Then the span of w is the 1-dimensional subspace
contained in the intersection C(z) ∩ Tz(W

u). �
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Lemma 4.2. Let F : M → M be a local diffeomorphism on a compact
manifold M. Let the periodic points of F be dense in M and let U ⊂ M
be open and forward-invariant under F . Suppose that K := Ū is a proper
subset of M . Then F p(K) = K, F (∂K) = ∂K and F (KC) = KC .

Proof. Since K is forward invariant under F , F (K) ⊆ K. Suppose it is
a strict subset, i.e., F (K) ⊂ K. Since K is compact, F (K) is compact
and hence closed. Therefore, K − F (K) has non-empty interior V . Let
Q ∈ V be a periodic point of period q. Then F q(Q) = Q. However,
Q = F q(Q) ∈ F q(K) which is disjoint from V which contains Q, leading
to a contradiction. Hence the assumption was wrong and F (K) = K.

We will first prove that F (∂K) ⊆ ∂K. Let the contrary be assumed,
hence ∃x ∈ ∂K ∋ F (x) ∈ Int(K). Since F is a local diffeomorphism,
it is an open mapping too. Hence, ∃ a neighborhood V of x such that
F (V ) is an open set contained in the interior Int(K) of K. Since x is
a boundary point, V contains an open set in the exterior of K. Let Q
be a periodic point of period q lying in V − K. Then F q(Q) = Q. But
F (Q) ∈ F (V ) ⊂ K, and by the forward invariance of K under F , Fn(Q)
never exits K and hence is never equal to Q which lies outside K, leading
to a contradiction.

We will next prove that in fact, strict equality holds. Let the contrary
be assumed, i.e., F (∂K) ⊂ ∂K. Then ∃x ∈ ∂K ∋ F (x) is disjoint from
∂K. However, since F (K) = K, x must have an inverse image y in
Int(K). Take a neighborhood V of y in K. Then F (V ) is a neighborhood
of x. Since x is a boundary point, F (V ) intersects KC . This contradicts
the forward invariance of K. Hence the initial assumption was untrue and
F (∂K) must equal ∂K.

The last equality follows from the previous two. �

Lemma 4.3. Let F be a a C1 map on S1 with a non-zero derivative. Let
J ⊂ S1 be a compact set such that both J and ∂J are forward invariant.
Let a component interval L of J contain an attractor. Then the endpoints
of L are periodic points.

Proof. For N ∈ N sufficiently large, all the periodic points of FN are fixed
points. J and ∂J remain invariant under FN . Consider an endpoint A of
L. The proof will be by contradiction, so suppose that A is not a fixed
point of FN .

Let Q be the fixed point on L closest to A. By assumption, Q ̸= A.
Q must be an attractor or repellor. We will prove that both cases lead
to contradictions and hence, the assumption about A not being a fixed
point will be proved false.
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If Q is an attractor, then A is in the basin of attraction of Q and FN

maps A closer to Q. In other words, FN (A) ∈ Int(L) ⊆ Int(J), violating
the invariance of ∂J .

If Q is a repellor, then A lies in the basin of repulsion of Q and hence,
A has an inverse image under FN in the interior of the line segment QA.
Since F has non-zero derivative, FN (QA) must contain a neighborhood of
A. Since A ∈ ∂J , FN (QA) intersects the exterior of J . This contradicts
the invariance of J . �
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