TOPOLOGY PROCEEDINGS Volume 47, 2016 Pages 191–205

http://topology.nipissingu.ca/tp/

ENTROPY OF INDUCED DENDRITE HOMEOMORPHISMS

by

PALOMA HERNÁNDEZ AND HÉCTOR MÉNDEZ

Electronically published on October 11, 2015

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

E-Published on October 11, 2015

ENTROPY OF INDUCED DENDRITE HOMEOMORPHISMS

PALOMA HERNÁNDEZ AND HÉCTOR MÉNDEZ

ABSTRACT. Let $f:D\to D$ be a dendrite homeomorphism. Let 2^D denote the hyperspace of all nonempty compact subsets of D endowed with the Hausdorff metric. Let $2^f:2^D\to 2^D$ be the induced homeomorphism. We show in this note that the topological entropy of 2^f has only two possible values: 0 or ∞ . This claim generalizes a result due to M. Lampart and P. Raith.

1. Introduction and some definitions

A continuum is a nonempty compact and connected metric space.

Let X=(X,d) be a continuum. Let 2^X be the collection of all nonempty compact subsets of X endowed with the Hausdorff metric H_d induced by metric d. If Y is a continuum and $Y \subset X$ then Y is a subcontinuum of X.

It is said that X is

- an arc provided that it is homeomorphic to the unit interval [0, 1],
- a simple closed curve provided that it is homeomorphic to the circle $S^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\},$
- a *dendrite* provided that it is a locally connected and contains no simple closed curves.

Let $\mathbb N$ denote the set of all positive integers. A mapping is a continuous function. Let $f:X\to X$ be a mapping.

Let $2^f: 2^X \to 2^X$ be the mapping induced in 2^X by f. For each $n \in \mathbb{N}$ and for each $A \in 2^X$, $(2^f)^n(A) = f^n(A)$.

²⁰¹⁰ Mathematics Subject Classification. Primary 37B40, 37B45; Secondary 54B20.

Key words and phrases. Topological entropy, omega limit set, dendrite homeomorphism, induced hyperspace homeomorphism.

^{©2015} Topology Proceedings.

In section 5 we recall the definition of topological entropy of a mapping $f: X \to X$ and some of its basic properties.

In year 2010 M. Lampart and P. Raith, [6], proved the following result.

Theorem 1.1. Let I = [0,1] be the unit interval and $f: I \to I$ be a homeomorphism. Then

- topological entropy of $2^f: 2^I \to 2^I$ has only two possible values: 0 or ∞ :
- topological entropy of $2^f: 2^I \to 2^I$ is ∞ if and only if $f \circ f$ is not the identity map.

Our main result is the following: Let D be a dendrite and $f:D\to D$ be a homeomorphism. Then

- topological entropy of $2^f: 2^D \to 2^D$ has only two possible values:
- topological entropy of $2^f: 2^D \to 2^D$ is ∞ if and only if the set of recurrent points of f is distinct from D.

2. Preliminary results

Let X=(X,d) be a compact metric space. From now on we assume that X is nondegenerate (it contains more than one point). Let $f:X\to X$ be a mapping. Given a point x in X, the *orbit of* x *under* f is the sequence

$$o(x, f) = \{ f^n(x) : n > 0 \},\$$

where f^0 denotes the identity map in X, $f^1 = f$, and for each $n \in \mathbb{N}$, $f^{n+1} = f \circ f^n$. If there exists $n \in \mathbb{N}$ with $f^n(x) = x$, then x is a periodic point of f. If f(x) = x, then x is a fixed point of f. Let Per(f) and Fix(f) denote the set of all periodic points and of all fixed points of f, respectively. If $x \in Per(f)$, then $n_0 = \min\{n \in \mathbb{N} : f^n(x) = x\}$ is the period of x.

The omega limit set of x under f is the set

$$\omega(x,f) = \left\{ y \in X : \exists \left\{ n_1 < n_2 < \dots \right\} \text{ with } \lim_{i \to \infty} f^{n_i}(x) = y \right\}.$$

If $x \in \omega(x, f)$, then it is said that x is a recurrent point of f. Let R(f) denote the set of all recurrent points of f. It is known that for each $N \in \mathbb{N}$, $R(f^N) = R(f)$. See [2].

Let
$$\Lambda(f) = \bigcup \{\omega(x, f) : x \in X\}$$
. Note that

$$Fix(f) \subset Per(f) \subset R(f) \subset \Lambda(f)$$
.

If f is a homeomorphism, the alpha limit set of x under f is the set

$$\alpha(x,f) = \omega(x,f^{-1}).$$

If $\varepsilon > 0$, then $B(x,\varepsilon)$ denotes the open ball around $x \in X$ with radius ε . If $A \subset X$, then the symbols cl(A), int(A) and bd(A) stand for the closure, the interior and the boundary of A in X. Furthermore, if $A \neq \emptyset$,

$$N(A,\varepsilon) = \{ y \in X : \text{ there is } x \in A, \ d(y,x) < \varepsilon \} = \bigcup \{ B(x,\varepsilon) : x \in A \},$$

and $diam(A) = \sup \{d(x,y) : x \text{ and } y \text{ in } A\}$. Symbol |A| stands for the cardinality of A.

A nonempty subset $A \subset X$ is invariant under $f: X \to X$ if $f(A) \subset A$; it is strongly invariant provided that f(A) = A. It is said that A is a minimal set of f if it is closed, invariant and for any closed subset $B \subset A$, $B \neq \emptyset$, that is invariant under f, we have that B = A.

Proposition 2.1 contains some basic properties of $\omega(x, f)$. See [2].

Proposition 2.1. Let x in X.

- $\omega(x, f)$ is closed and nonempty.
- $\omega(x, f)$ is strongly invariant.
- For each $m \in \mathbb{N}$, $f(\omega(x, f^m)) = \omega(f(x), f^m)$.
- For each $m \in \mathbb{N}$,

$$\omega(x, f) = \omega(x, f^m) \cup \omega(f(x), f^m) \cup \dots \cup \omega(f^{m-1}(x), f^m).$$

Thus, $\omega(x, f)$ is finite if and only if for some m, $\omega(x, f^m)$ is finite.

- Let $y \in X$. If $\lim_{n\to\infty} d(f^n(x), f^n(y)) = 0$, then $\omega(x, f) = \omega(y, f)$.
- If cardinality of $\omega(x, f)$ is finite, say N, then there exists $y \in Per(f)$ of period N with

$$\omega(x, f) = \{y, f(y), f^{2}(y), \dots, f^{N-1}(y)\}.$$

Therefore, if $\omega(x, f)$ is finite, then it is a minimal set of f.

Proof of Lemma 2.2 is a direct consequence of Proposition 2.1.

Lemma 2.2. Let $x, y \in X$. If for some $N \in \mathbb{N}$, $\omega(x, f^N) = \omega(y, f^N)$, then $\omega(x, f) = \omega(y, f)$.

Let X be a continuum. Let A and B be two elements of 2^X . Then

$$H_d(A, B) = \inf \{ \varepsilon > 0 : A \subset N(B, \varepsilon) \text{ and } B \subset N(A, \varepsilon) \}$$

defines a metric in 2^X , the Hausdorff metric. See [4] and [8].

Let $\{A_n\}$ be a sequence in 2^X and $A \in 2^X$. If $\lim_{n \to \infty} H_d(A_n, A) = 0$, then we write $\lim_{n \to \infty} A_n = A$.

3. Dendrites

In this section we recall some basic properties of dendrites and of maps defined on dendrites. Let D denote a nondegenerate dendrite. Proofs of Theorems 3.1 and 3.2 can be found in [8].

Theorem 3.1. The following conditions hold:

- Every connected subset of D is arcwise connected.
- Each subcontinuum of D is a dendrite.
- The intersection of any two connected subsets of D is connected.
- For each $\varepsilon > 0$, there are finitely many dendrites D_1, \ldots, D_n contained in D such that $diam(D_i) < \varepsilon$ and $D = \bigcup_{i=1}^n D_i$.
- For every dendrite mapping $f: D \to D$, there is a point $x \in D$ such that f(x) = x.

Let $x \in D$. It is said that x is an end point of D provided that $D \setminus \{x\}$ is connected; x is a cut point of D if $D \setminus \{x\}$ is not connected. The order of x, ord(x), is the cardinality of the set of all components of $D \setminus \{x\}$. Each point of D is of order $\leq \aleph_0$ (see [8]). If $ord(x) \geq 3$, it is said that x is a branch point of D.

Theorem 3.2. The following conditions hold:

- Each nondegenerate subcontinuum of D contains uncountably many cut points.
- The set of all branch points of D is countable.

Corollary 3.3. Each nondegenerate subcontinuum of D contains cut points of order 2.

Proof. The result follows immediately from Theorem 3.2. \Box

Propositions 3.4 and 3.5 are proved in [7].

Proposition 3.4. Let $\{A_n\}$ be a sequence of nonempty connected subsets of D such that for each pair $n \neq m$, $A_n \cap A_m = \emptyset$. Then

$$\lim_{n \to \infty} diam \left(A_n \right) = 0.$$

Given two distinct points a and b in D, there is only one arc from a to b contained in D. We denote such an arc with [a,b]. Also we use the following notation: $(a,b] = [a,b] \setminus \{a\}, [a,b) = [a,b] \setminus \{b\},$ and $(a,b) = [a,b] \setminus \{a,b\}.$

Proposition 3.5. For every $\varepsilon > 0$ there exists $\delta > 0$ such that for any pair of points $a, b \in D$, $d(a, b) < \delta$ implies $diam([a, b]) < \varepsilon$.

Corollary 3.6. Let $\{a_n\}$ be a sequence in $D\setminus\{a\}$ such that $\lim_{n\to\infty} a_n = a$. Then

$$\lim_{n \to \infty} diam ([a_n, a]) = 0.$$

Proof. The result follows immediately from Proposition 3.5. \Box

Proposition 3.7. For every $\varepsilon > 0$ there exists $\delta > 0$ such that for any collection of points $a, b, u, v \in D$, if $d(a, u) < \delta$ and $d(b, v) < \delta$, then

$$H_d([a,b],[u,v]) < \varepsilon.$$

Proof. Let $\varepsilon > 0$. Let $a, b, u, v \in D$. By Proposition 3.5, there exists $\delta > 0$ such that if $d(a, u) < \delta$ and $d(b, v) < \delta$, then $diam([a, u]) < \varepsilon$ and $diam([b, v]) < \varepsilon$.

Consider the following sets:

$$J = [u, a] \cup [a, b] \cup [b, v]$$
 and $K = [u, a] \cup [u, v] \cup [b, v]$.

Note that J and K are both connected. It follows that

$$[u,v] \subset J$$
 and $[a,b] \subset K$.

Hence for each $x \in [u,v]$ there exists $t \in [a,b]$, $d(x,t) < \varepsilon$, and for each $y \in [a,b]$ there exists $s \in [u,v]$, $d(y,s) < \varepsilon$. Thus $H_d([a,b],[u,v]) < \varepsilon$. \square

Corollary 3.8. Let $\{a_n\}$ and $\{b_n\}$ be two sequences of points in D. Let $a, b \in D$ be two distinct points such that $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$.

- (1) Then $\lim [a_n, b_n] = [a, b]$.
- (2) For each arc $[s,t] \subset [a,b]$, $\{s,t\} \cap \{a,b\} = \emptyset$, there exists $\delta > 0$ such that for each pair of points $u,v \in D$ with $d(a,u) < \delta$ and $d(b,v) < \delta$, $[s,t] \subset [u,v]$.
- (3) For each arc $[s,t] \subset [a,b]$, $\{s,t\} \cap \{a,b\} = \emptyset$, there exists $n_0 \in \mathbb{N}$ such that for each $n \geq n_0$, $[s,t] \subset [a_n,b_n]$.
- (4) For each point $s \in (a,b)$, there exists $n_0 \in \mathbb{N}$ such that $[a,s] \subset [a,b_n]$ provided that $n \geq n_0$.

Proof. The first claim is an immediate consequence of Proposition 3.7.

To prove claim (2), let [s,t] and [a,b] be two arcs in D such that [s,t] is contained in [a,b] and $\{s,t\} \cap \{a,b\} = \emptyset$.

Let $\varepsilon > 0$ such that

$$\varepsilon < \min\{\min\{d(a, x) : x \in [s, t]\}, \min\{d(b, x) : x \in [s, t]\}\}.$$

By Proposition 3.5, there exists $\delta > 0$ with the property that for any pair of points $u, v \in D$, $d(u, a) < \delta$ and $d(v, b) < \delta$ imply $diam([a, u]) < \varepsilon$ and $diam([b, v]) < \varepsilon$.

Notice that

$$[a,b] \subset [a,u] \cup [u,v] \cup [v,b].$$

Since $[s,t] \cap ([a,u] \cup [v,b]) = \emptyset$, then $[s,t] \subset [u,v]$.

Claim (3) is a consequence of claim (2).

Proof of claim (4) is similar to the one given above to claim (2) (see also reference [7]).

Lemma 3.9. Let $U \subset D$, $U \neq D$, be a nonempty open connected set. Let $x_0 \in bd(U)$. Then for each $u \in U$,

$$[u, x_0] \cap U = [u, x_0).$$

Proof. Let us consider the arc $[u, x_0]$. There exists a sequence $\{x_n\}$, contained in U, such that $\lim_{n\to\infty} x_n = x_0$.

Let $v \in [u, x_0)$. By Corollary 3.8, there exists $n \in \mathbb{N}$ such that $[u, v] \subset [u, x_n] \subset U$. Thus $v \in U \cap [u, x_0) \subset U \cap [u, x_0]$.

Clearly $[u, x_0] \cap U \subset [u, x_0)$. Hence $[u, x_0] \cap U = [u, x_0)$.

4. Dynamics of dendrite homeomorphisms

We collect in this section some basic properties of dendrite homeomorphisms. Recall D represents a nondegenerate dendrite.

Proof of Proposition 4.1 can be found in [9].

Proposition 4.1. Let $f: D \to D$ be a homeomorphism. Then for each arc [a,b] contained in D, f([a,b]) = [f(a),f(b)].

Consider the unit interval [0,1]. If $f:[0,1] \to [0,1]$ is an increasing homeomorphism, then for each $x \in [0,1]$, o(x,f) is a monotone sequence. Therefore, $|\alpha(x,f)| = 1$ and $|\omega(x,f)| = 1$. Furthermore, if $Fix(f) \cap (0,1) = \emptyset$, then one of the following two conditions holds:

- For every $x \in (0,1)$, $\alpha(x,f) = \{0\}$ and $\omega(x,f) = \{1\}$, or
- for every $x \in (0,1)$, $\alpha(x,f) = \{1\}$ and $\omega(x,f) = \{0\}$.

Proposition 4.2. Let $f: D \to D$ be a homeomorphism. Let $u, v \in D$ be two points such that f(u) = u and f(v) = v. Then for each point x in the arc [u,v], $|\omega(x,f)| = 1$ and $|\alpha(x,f)| = 1$. Furthermore, if $Fix(f) \cap (u,v) = \emptyset$, then one of the following two conditions holds:

- (1) For every $x \in (u, v)$, $\alpha(x, f) = \{u\}$ and $\omega(x, f) = \{v\}$, or
- (2) for every $x \in (u, v)$, $\alpha(x, f) = \{v\}$ and $\omega(x, f) = \{u\}$.

Proof. Let $h:[0,1]\to [u,v]$ be a homeomorphism with h(0)=u and h(1)=v. Then $g:[0,1]\to [0,1]$ given by $g=h^{-1}\circ f\circ h$ is an increasing homeomorphism.

Notice that for each point $x \in [u, v]$, $h^{-1}(f(x)) = g(h^{-1}(x))$. Hence for each $x \in [u, v]$, $|\alpha(x, f)| = 1$ and $|\omega(x, f)| = 1$.

If $Fix(f) \cap (u,v) = \emptyset$, then $Fix(g) \cap (0,1) = \emptyset$. Now the proof of the second part follows immediately.

Corollary 4.3. Let $f: D \to D$ be a homeomorphism. Let $u, v \in D$ and $N \in \mathbb{N}$. If $f^N([u,v]) = [u,v]$, then for each $x \in [u,v]$, $|\alpha(x,f)| \leq 2N$ and $|\omega(x,f)| \leq 2N$.

Proof. The result is an immediate consequence of Proposition 4.2. \Box

Theorem 4.4 is one of the main results in [1].

Theorem 4.4. Let $f: D \to D$ be a homeomorphism and $x \in D$. Then $\omega(x, f)$ is either a periodic orbit or a Cantor set. Moreover, if $\omega(x, f)$ is a Cantor set, then f restricted to $\omega(x, f)$ is an adding machine.

Note that in both cases considered in Theorem 4.4, the limit set $\omega(x, f)$ is a minimal set of f.

Proposition 4.5. Let $f: D \to D$ be a homeomorphism and $x \in D$. Then

- $f(\alpha(x, f)) = \alpha(x, f)$.
- $\alpha(x, f)$ is a minimal set of f.

Proof. The result is an immediate consequence of $\alpha(x, f) = \omega(x, f^{-1})$ and of Theorem 4.4.

Corollary 4.6. Let $f: D \to D$ be a homeomorphism, and $x \in D$. Then $x \in \omega(x, f)$ if and only if $x \in \alpha(x, f)$. Furthermore, if $x \notin \omega(x, f)$, then for every $y \in D$, $x \notin (\omega(y, f) \cup \alpha(y, f))$.

Proof. The result is an immediate consequence of Proposition 4.5. \Box

Notice that corollary 4.6 says that for each dendrite homeomorphism, $\Lambda(f) \subset R(f)$. Therefore in this setting $R(f) = \Lambda(f)$.

In [9] the author proved the following two interesting and useful results (Propositions 4.7 and 4.8).

Proposition 4.7. Let $f: D \to D$ be a homeomorphism. Then

$$R(f) = \Lambda(f) = cl(Per(f)).$$

Proposition 4.8. Let $f: D \to D$ be a homeomorphism. If R(f) = D, then every cut point of D is a periodic point of f.

Proof of Lemma 4.9 can be found in [1].

Lemma 4.9. Let $f: D \to D$ be a homeomorphism. If x_0 is an end point of D such that $f(x_0) = x_0$, then $|Fix(f)| \ge 2$.

Lemma 4.10. Let $f: D \to D$ be a homeomorphism. Let a, b, c be three distinct end points of D. If $\{a, b, c\} \subset Fix(f)$, then there exists a cut point of D, say u, such that $u \in Fix(f)$.

Proof. Consider the arcs [a,b], [a,c] and [b,c]. Since a,b,c are three distinct end points of D, there exists $u \in (a,b)$ such that $[a,b] \cap [a,c] = [a,u]$. Therefore

$$\{u\} = [a, b] \cap [a, c] \cap [b, c].$$

Since f([a,b]) = [a,b], f([a,c]) = [a,c] and f([b,c]) = [b,c], it follows that f(u) = u.

Lemma 4.11. Let $f: D \to D$ be a homeomorphism. Let $a, b \in Fix(f)$, $a \neq b$. If a and b are end points of D and |Fix(f)| = 2, then one of the following two conditions holds:

- (1) For every $x \in (D \setminus \{a,b\})$, $\alpha(x,f) = \{a\}$ and $\omega(x,f) = \{b\}$. (2) For every $x \in (D \setminus \{a,b\})$, $\alpha(x,f) = \{b\}$ and $\omega(x,f) = \{a\}$.

Proof. The arc [a,b] is strongly invariant under f. If $x \in (a,b)$, then $f(x) \neq x$. Hence for every $x \in (a,b)$, $\alpha(x,f) = \{a\}$ and $\omega(x,f) = \{b\}$, or $\alpha(x, f) = \{b\} \text{ and } \omega(x, f) = \{a\}.$

Let us assume the first option: For every $x \in (a,b), \, \alpha(x,f) = \{a\}$ and $\omega(x,f)=\{b\}$ (the other case is similar). Let $u\in D, u\notin [a,b]$. Since a and b are end points of D, there exists $x \in (a, b)$ such that $[u, x] \cap [a, b] = \{x\}$.

Continuum D has no simple closed curves hence, for each $n \in \mathbb{N}$, the arc $f^n([u,x]) = [f^n(u), f^n(x)]$ is disjoint from the arc [u,x]. It implies that for every pair $n, m \in \mathbb{Z}$, with $n \neq m$, $f^n([u, x]) \cap f^m([u, x]) = \emptyset$.

Therefore

$$\lim_{n\to\infty} diam(f^n([u,x])) = 0 \quad \text{and} \quad \lim_{n\to-\infty} diam(f^n([u,x])) = 0.$$

Thus
$$\alpha(u, f) = \alpha(x, f) = \{a\}$$
 and $\omega(u, f) = \omega(x, f) = \{b\}.$

5. Topological entropy

In this section we recall the definition of topological entropy and some of its basic properties. Let X = (X, d) denote a nondegenerate compact metric space. Let $f: X \to X$ be a mapping.

Let $\varepsilon > 0$ and $n \in \mathbb{N}$. A subset $A \subset X$ is said to (n, ε) -span X if for any $x \in X$ there exists $a \in A$ with

$$d(f^{i}(x), f^{i}(a)) < \varepsilon$$
, for $0 \le i \le n - 1$.

Let $r(n,\varepsilon)$ denote the smallest cardinality of any (n,ε) -spanning set for X. Let

$$r(\varepsilon,f) = \limsup_{n \to \infty} \left(\frac{1}{n}\right) \log(r(n,\varepsilon)).$$

The $topological\ entropy$ of f is given by

$$ent(f) = \lim_{\varepsilon \to 0} r(\varepsilon, f).$$

Proofs of Propositions 5.1, 5.2 and 5.3 can be found in references [2] and [10]. Proposition 5.4 is proved in [3]

Proposition 5.1. Let $n \in \mathbb{N}$. Then $ent(f^n) = n \cdot ent(f)$. Furthermore, if $f: X \to X$ is a homeomorphism, then $ent(f^{-1}) = ent(f)$.

Proposition 5.2. Let $A \subset X$ be a closed and invariant set of $f: X \to X$. Then $ent(f) \ge ent(f|_A)$.

Proposition 5.3. Let X and Y be compact metric spaces, $f: X \to X$ and $g: Y \to Y$ be two mappings, and $h: X \to Y$ be a surjective mapping. If for every $x \in X$, h(f(x)) = g(h(x)), then $ent(f) \ge ent(g)$. If h is a homeomorphism, then ent(f) = ent(g).

Consider the space of 2 symbols,

$$\Sigma_2 = \{ \mathbf{t} = (\dots, t_{-2}, t_{-1} \cdot t_0, t_1, t_2, \dots) : t_n \in \{0, 1\}, n \in \mathbb{Z} \},$$

and the shift homeomorphism $\sigma_2: \Sigma_2 \to \Sigma_2$, given by

$$\sigma_2(\ldots, t_{-2}, t_{-1} \cdot t_0, t_1, t_2, \ldots) = (\ldots, t_{-2}, t_{-1}, t_0 \cdot t_1, t_2, \ldots).$$

Proposition 5.4. Then $ent(\sigma_2) = \log(2)$.

Theorem 5.5 is proved in [1]. It is also a direct consequence of Theorem 4.4.

Theorem 5.5. Let $f: D \to D$ be a dendrite homeomorphism. Then ent(f) = 0.

The following result is an immediate consequence of Theorem 17 in [5].

Theorem 5.6. Let $f: X \to X$ be a homeomorphism. If for some point $x \in X$,

$$x \notin (\alpha(x, f) \cup \omega(x, f)),$$

then $ent(2^f) \ge \log(2)$.

The proof we present to Theorem 5.7 follows, with slight changes, the proof given to Theorem 2 in [6]. For the sake of completeness we provide it here.

Theorem 5.7. Let $f: X \to X$ be a homeomorphism. Let $K, L \in 2^X$. If there exists an infinite countable set $A = \{a_0, a_1, a_2, \ldots\} \subset X$ such that

- for every $i \geq 0$, $\alpha(a_i, f) = K$ and $\omega(a_i, f) = L$,
- for every $i \geq 0$, $a_i \notin (K \cup L)$, and
- for every pair $i \neq j$, $i \geq 0$, $j \geq 0$,

$$\{f^k(a_i): k \in \mathbb{Z}\} \cap \{f^k(a_i): k \in \mathbb{Z}\} = \emptyset,$$

then $ent(2^f) = \infty$.

Proof. Let $N \in \mathbb{N}$. We claim that $ent(2^f) \geq N \cdot \log(2)$.

Step 1. Let
$$\Gamma_N = \prod_{k \in \mathbb{Z}} \{0, 1\}^N$$
.

We use the following notation. Let $\mathbf{u} \in \Gamma_N$,

$$\mathbf{u} = (\dots, (u_{-10}, \dots, u_{-1N-1}) \cdot (u_{00}, \dots, u_{0N-1}), (u_{10}, \dots, u_{1N-1}), \dots).$$

Note that Γ_1 is homeomorphic to Σ_2 .

Let $\varphi: \Gamma_N \to \Gamma_N$ be the mapping given by $\mathbf{v} = \varphi(\mathbf{u})$ where

$$\mathbf{v} = (\dots, (u_{-10}, \dots, u_{-1N-1}), (u_{00}, \dots, u_{0N-1}) \cdot (u_{10}, \dots, u_{1N-1}), \dots).$$

The map φ is a homeomorphism and, in a way we are going to see, it is connected with the shift map σ_2 .

Let $h: \Gamma_N \to \Sigma_2$ be a homeomorphism given in the following way: Let $i \in \mathbb{Z}$. There exists a unique pair of numbers $j \in \mathbb{Z}$ and $0 \le k \le N-1$ such that i = jN + k. Then the coordinate t_i of $\mathbf{t} = h(\mathbf{u})$ satisfy $t_i = u_{jk}$:

$$\mathbf{t} = (\dots, u_{-10}, \dots, u_{-1N-1} \cdot u_{00}, \dots, u_{0N-1}, u_{10}, \dots, u_{1N-1}, \dots).$$

That is, h simply erase most of the parenthesis in \mathbf{u} .

It is easy to see that for each $\mathbf{u} \in \Gamma_N$, $(\sigma_2)^N(h(\mathbf{u})) = h(\varphi(\mathbf{u}))$.

Thus $ent(\varphi) = ent((\sigma_2)^N) = N \cdot \log(2)$.

Step 2. Consider the first N elements of A, $\{a_0, a_1, a_2, \dots, a_{N-1}\}$. Let $M \subset X$,

 $M = \{ f^k(a_0) : k \in \mathbb{Z} \} \cup \{ f^k(a_1) : k \in \mathbb{Z} \} \cup \cdots \cup \{ f^k(a_{N-1}) : k \in \mathbb{Z} \},$ and $\mathcal{F} \subset 2^X$,

$$\mathcal{F} = \left\{ B \in 2^X : (K \cup L) \subset B \subset (K \cup L \cup M) \right\}.$$

It is not difficult to prove that collection \mathcal{F} is a compact subset of 2^X and it is strongly invariant under the induced homeomorphism $2^f: 2^X \to 2^X$.

Now let $g: \mathcal{F} \to \Gamma_N$ be the mapping given in this way: Take $B \in \mathcal{F}$. Then the coordinates of $\mathbf{u} = g(B)$, u_{jk} , $j \in \mathbb{Z}$, $0 \le k \le N-1$, are given by

$$u_{jk} = \begin{cases} 1, & \text{if } f^j(a_k) \in B, \\ 0, & \text{if } f^j(a_k) \notin B. \end{cases}$$

Notice that $g: \mathcal{F} \to \Gamma_N$ is a homeomorphism. Furthermore, for each element $B \in \mathcal{F}$, $\varphi(g(B)) = g((2^f)^{-1}(B))$.

Hence,

$$ent(2^f|_{\mathcal{F}}) = ent((2^f)^{-1}|_{\mathcal{F}}) = N \cdot \log(2).$$

It follows that for each $N \in \mathbb{N}$, $ent(2^f) \ge N \cdot \log(2)$. Thus $ent(2^f) = \infty$.

6. Entropy of induced homeomorphism $2^f:2^D\to 2^D$

Let D denote a nondegenerate dendrite. Let $f:D\to D$ be a homeomorphism. In order to show that the topological entropy of the induced homeomorphism $2^f:2^D\to 2^D$ has only two possible values, 0 or ∞ , we consider two cases:

- The set of recurrent points of f is a proper subset of D, $R(f) \neq D$.
- Every point of D is a recurrent point of f, R(f) = D.

With Proposition 6.1 and Theorem 6.3 we solve the first case. We consider the second case in Propositions 6.4 and 6.5 and in Theorem 6.6.

Proposition 6.1. Let $f: D \to D$ be a homeomorphism such that $R(f) \neq D$. Let $x_0 \in D \setminus R(f)$ and U be the component of $D \setminus R(f)$ that contains x_0 . Then for each $x \in U$,

$$\alpha(x, f) = \alpha(x_0, f)$$
 and $\omega(x, f) = \omega(x_0, f)$.

Proof. Let $x_0 \in D \setminus R(f)$ and U be the component of $D \setminus R(f)$ that contains the point x_0 . Note that the sets R(f) = cl(Per(f)) and $D \setminus R(f)$ are strongly invariant under f. Since $f: D \to D$ is a homeomorphism, for each $n \in \mathbb{Z}$, $f^n(U)$ is a component of $D \setminus R(f)$.

We consider two cases.

Case 1. There exists $n \in \mathbb{N}$ such that $f^n(U) = U$.

Let $N = \min\{n \in \mathbb{N} : f^n(U) = U\}$. Let $g: D \to D$ be the homeomorphism given by $g = f^N$ and let W = cl(U). Since g(U) = U, g(W) = W.

There exists a fixed point of g, say u_0 , in the dendrite W. Note that the point u_0 is not in U. Hence u_0 is an end point of W.

By Lemma 4.9, there exists another fixed point of g in W.

Let $u_1 \in Fix(g) \cap W$, $u_1 \neq u_0$. Note u_1 is an end point of W as well.

Notice that g cannot have a third fixed point in W. For, by Lemma 4.10, it implies that there exists a cut point u of W with g(u) = u, a contradiction.

Therefore g has exactly two fixed points in dendrite W. Both of them are end points of W.

By Lemma 4.11, for every point $x \in (W \setminus \{u_0, u_1\})$,

$$\alpha(x, f^N) = \alpha(x_0, f^N)$$
 and $\omega(x, f^N) = \omega(x_0, f^N)$.

It implies, by Lemma 2.2, that for each $x \in (W \setminus \{u_0, u_1\})$,

$$\alpha(x, f) = \alpha(x_0, f)$$
 and $\omega(x, f) = \omega(x_0, f)$.

Case 2. For every $n \in \mathbb{N}$, $f^n(U) \cap U = \emptyset$.

Hence for each pair $n, m \in \mathbb{Z}$, with $n \neq m$, $f^n(U) \cap f^m(U) = \emptyset$. By Proposition 3.4,

(6.1)
$$\lim_{n \to \infty} diam(f^n(U)) = 0 \quad \text{and} \quad \lim_{n \to -\infty} diam(f^n(U)) = 0.$$

Thus, for every
$$x \in U$$
, $\alpha(x, f) = \alpha(x_0, f)$ and $\omega(x, f) = \omega(x_0, f)$. \square

Corollary 6.2. Let $f: D \to D$ be a homeomorphism and $x \in X$. Then $\alpha(x, f)$ is finite if and only if $\omega(x, f)$ is finite.

Proof. Let $x \in D$. If $x \in R(f)$, then $\alpha(x, f) = \omega(x, f)$ and the conclusion readily follows.

Let us assume that $x \in D \setminus R(f)$. Let U be the open component of $D \setminus R(f)$ that contains x. According to Proposition 6.1, there are two cases: In the first one, when $f^N(U) = U$ for some $N \in \mathbb{N}$, it easy to see

that for every point $x \in U$, $|\alpha(x, f)| \le N$ and $|\omega(x, f)| \le N$. In fact, the cardinality of any of these two limit sets is a factor of N.

In the second case our claim is this: for every $x \in U$, $\alpha(x, f) = \omega(x, f)$. Take $y \in bd(U)$. By limits in (6.1), $\alpha(x, f) = \alpha(y, f)$ and $\omega(x, f) = \omega(y, f)$. Since $y \in R(f)$, $\alpha(y, f) = \omega(y, f)$.

Theorem 6.3. Let $f: D \to D$ be a homeomorphism such that $R(f) \neq D$. Then $ent(2^f) = \infty$.

Proof. Let U be a nonempty component of $D \setminus R(f)$. Note that U is an infinite uncountable set. Hence, it is possible to define an infinite countable set $A = \{a_0, a_1, a_2, \ldots\} \subset U$ such that for each pair $i \neq j$,

$$\{f^k(a_i): k \in \mathbb{Z}\} \cap \{f^k(a_j): k \in \mathbb{Z}\} = \emptyset.$$

By proposition 6.1, for each $i \geq 0$,

$$\alpha(a_i, f) = \alpha(a_0, f)$$
 and $\omega(a_i, f) = \omega(a_0, f)$.

Note that for each $i \geq 0$, $a_i \notin (\alpha(a_0, f) \cup \omega(a_0, f))$. Therefore, by Theorem 5.7, $ent(2^f) = \infty$.

Proposition 6.4. Let D be a dendrite. Let $\varepsilon > 0$. There exists a finite set $E \subset D$ of cut points of order 2 such that each component U of $D \setminus E$ has diameter $< \varepsilon$.

Proof. Let $\varepsilon > 0$. There are finitely many dendrites D_1, \ldots, D_n contained in D such that

- $diam(D_i) < \frac{\varepsilon}{4}$;
- $D = \bigcup_{i=1}^n D_i$; and
- for each i, $D_i \setminus (\bigcup_{j \neq i} D_j) \neq \emptyset$.

For each i, fix $x_i \in D_i \setminus (\bigcup_{j \neq i} D_j)$. Now for each set $\{i, j\}$ with $D_i \cap D_j = \emptyset$ take x_{ij} in the arc $[x_i, x_j]$ such that $x_{ij} \notin D_i \cup D_j$ and $ord(x_{ij}) = 2$ (see Corollary 3.3). Let E be the set whose elements are all such points x_{ij} .

Note the following: If $B \subset D$ is a connected set with

$$B \cap D_i \neq \emptyset$$
, $B \cap D_j \neq \emptyset$ and $D_i \cap D_j = \emptyset$,

then $x_{ij} \in B$.

Let U be a component of $D \setminus E$. Let k be such that $U \cap D_k \neq \emptyset$. Then for each l with $U \cap D_l \neq \emptyset$, $D_k \cap D_l \neq \emptyset$. Hence $diam(U) < \varepsilon$.

Proposition 6.5. Let D be a dendrite. Let $f: D \to D$ be a homeomorphism such that R(f) = D. Then for each $\varepsilon > 0$, there exists a finite collection of dendrites, $\{D_1, D_2, \ldots, D_m\}$, $D_i \subset D$, with the following properties:

- For each $i, 1 \le i \le m, diam(D_i) < \varepsilon$.
- For each i there exists j, $1 \le i, j \le m$, $f(D_i) = D_j$.

- If $i \neq j$, then $D_i \cap D_j = \emptyset$ or $|D_i \cap D_j| = 1$.
- If $D_i \cap D_j = \{x_0\}$, then $x_0 \in Per(f)$.
- If $i \neq j$, $i \neq k$ and $j \neq k$, then $D_i \cap D_j \cap D_k = \emptyset$.

Proof. Let $\varepsilon > 0$. According to Proposition 6.4 there exists a finite set $E \subset D$ of cut points of order 2 such that each component U of $D \setminus E$ has diameter $< \varepsilon$.

Notice that the boundary of each component U of $D \setminus E$ intersects E in a nonempty set. Each point of E is in the boundary of exactly two components of $D \setminus E$. Hence the cardinality of the collection of all components of $D \setminus E$ is finite.

Let $x \in E$. By Proposition 4.8, x is a periodic point of f. Since f is a homeomorphism, every $y \in o(x, f)$ is a cut point of D.

Let

$$F = \{ y \in D : y \in o(x, f), x \in E \}.$$

Note that F is a finite set and each point of F is of order 2. It follows that the cardinality of the collection of all components of $D \setminus F$ is finite.

Since $E \subset F$, for each component W of $D \setminus F$ there exists some component U of $D \setminus E$ such that $W \subset U$. Hence every component of $D \setminus F$ has diameter $< \varepsilon$.

Let $\{W_1, W_2, \ldots, W_m\}$ be the components of $D \setminus F$. For each $1 \leq i \leq m$, let us define $D_i = cl(W_i)$. Notice that each dendrite D_i has diameter $< \varepsilon$.

It is immediate that F and $D \setminus F$ are strongly invariant sets of the homeomorphism $f: D \to D$. The image under f of a component of $D \setminus F$ is a component of $D \setminus F$. Hence for each i there exists j, $1 \le i, j \le m$, such that $f(D_i) = D_j$.

Since D has no simple closed curves, for each $i \neq j$, $D_i \cap D_j = \emptyset$ or $|D_i \cap D_j| = 1$. If $i \neq j$ and $x \in D_i \cap D_j$, then $x \in F$ and $x \in Per(f)$.

Since each point of F is a cut point of order 2, $D_i \cap D_j \cap D_k = \emptyset$ provided that $i \neq j$, $i \neq k$ and $j \neq k$.

Theorem 6.6. Let D be a dendrite. Let $f: D \to D$ be a homeomorphism such that R(f) = D. Then $ent(2^f) = 0$.

Proof. Let $\varepsilon > 0$. Let $\{D_1, D_2, \dots, D_m\}$ be a finite collection of dendrites in D that satisfy the conditions of Proposition 6.5. Let

$$F = \{x \in D : \text{there exist } i \neq j, \ x \in D_i \cap D_j \}.$$

Let $G = \{A \in 2^D : A \subset F\}$. Since F is a finite set, G is a finite collection of points of 2^D . Let k = |G|.

Let $B \in 2^D$. Consider an element $A \in G$ with the following property: For each $i, 1 \le i \le m$,

$$B \cap D_i \neq \emptyset$$
 if and only if $A \cap D_i \neq \emptyset$.

Note that for each $i, 1 \leq i \leq m$, and for each each $n \geq 0$, there exists $1 \leq j \leq m$ such that

$$(f^n(B \cap D_i) \cup f^n(A \cap D_i)) \subset D_i$$
.

Therefore, for each i and n, $H_d(f^n(B \cap D_i), f^n(A \cap D_i)) < \varepsilon$. Since

$$f^{n}(B) = \bigcup_{i=1}^{m} f^{n}(B \cap D_{i})$$
 and $f^{n}(A) = \bigcup_{i=1}^{m} f^{n}(A \cap D_{i}),$

then

$$H_d(f^n(B), f^n(A)) < \varepsilon.$$

It follows that G is an (n,ε) -spanning set for 2^D and mapping 2^f . We have that for each $n\geq 0,$ $r(n,\varepsilon)\leq |G|=k$. Then

$$r(\varepsilon, 2^f) = \limsup_{n \to \infty} \left(\frac{1}{n}\right) \log(r(n, \varepsilon)) = 0.$$

Thus, $ent(2^f) = 0$.

Corollary 6.7. Let D be a dendrite. Let $f: D \to D$ be a homeomorphism. Then $ent(2^f)$ has only two possible values: 0 or ∞ . Furthermore, $ent(2^f) = \infty$ if and only if $R(f) \neq D$.

Proof. The result is an immediate consequence of Theorems 6.3 and 6.6.

7. FINAL PART

The next result is easy to prove.

Proposition 7.1. Let $f:[0,1] \to [0,1]$ be a homeomorphism. Then R(f) = [0,1] if and only if f^2 is the identity map.

Theorem 7.2 is due to M. Lampart and P. Raith, [6].

Theorem 7.2. Let $f:[0,1] \to [0,1]$ be a homeomorphism. Then $ent(2^f)$ has only two possible values: 0 or ∞ . Furthermore, $ent(2^f) = \infty$ if and only if $f^2 \neq id$.

Proof. The result immediately follows from Corollary 6.7 and Proposition 7.1. \Box

Conjecture 7.3 and Question 7.4 propose some interesting paths to follow. Both of them are due to M. Lampart and P. Raith as well, [6].

Conjecture 7.3. Let X be a continuum and $f: X \to X$ be a homeomorphism. Then entropy of induced map $2^f: 2^X \to 2^X$ has only two possible values: 0 or ∞ .

Question 7.4. Which topological spaces X satisfy that $ent(2^f) \in \{0, \infty\}$ for all continuous maps f (for all homeomorphisms f)?

ACKNOWLEDGEMENT

The first author acknowledges the support by CONACyT scholarship for Ph. D. studies CVU no. 262726.

References

- [1] G. Acosta, P. Eslami and L. Oversteegen, On open maps between dendrites, Houston Journal of Mathematics, Vol. 33 (2007), 753-770.
- [2] L. S. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Mathematics, 1513, Springer Verlag, New York, 1992.
- [3] M. Brin and G. Stuck, *Introduction to Dynamical Systems*, Cambridge University Press, Cambridge, 2002.
- [4] A. Illanes and S. B. Nadler Jr., Hyperspaces, Fundamentals and Recent Advances, Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, Inc., New York, 1999.
- [5] D. Kwietniak and P. Oprocha, Topological entropy and chaos for maps induced on hyperspaces, Chaos, Solitons and Fractals, Vol. 33 (2007), 76–86.
- [6] M. Lampart and P. Raith, Topological entropy for set valued maps, Nonlinear Analysis, Vol. 73, No. 6 (2010), 1533–1537.
- [7] J. Mai and E. Shi, $\overline{R} = \overline{P}$ for maps of dendrites X with Card(End(X)) < c, International Journal of Bifurcation and Chaos, Vol. 19, No. 4 (2009), 1391–1396.
- [8] S. B. Nadler Jr., Continuum Theory. Pure and Applied Mathematics, 158, Marcel Dekker, Inc., New York, 1992.
- [9] I. Naghmouchi, Dynamical properties of monotone dendrite maps, Topology and its Applications, Vol. 159 (2012), 144–149.
- [10] P. Walters, An Introduction to Ergodic Theory. Springer Verlag, New York, 1982.

(Hernández and Méndez) DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, UNAM, CIUDAD UNIVERSITARIA, C.P. 04510, D. F. MEXICO.

 $E\text{-}mail\ address,\ Hern\'{a}ndez:\ \mathtt{paloma_hz@yahoo.com.mx}$

 $E ext{-}mail\ address, \ ext{M\'endez: hml@ciencias.unam.mx}$