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ENTROPY OF INDUCED DENDRITE
HOMEOMORPHISMS

PALOMA HERNÁNDEZ AND HÉCTOR MÉNDEZ

Abstract. Let f : D → D be a dendrite homeomorphism. Let
2D denote the hyperspace of all nonempty compact subsets of D
endowed with the Hausdorff metric. Let 2f : 2D → 2D be the
induced homeomorphism. We show in this note that the topological
entropy of 2f has only two possible values: 0 or ∞. This claim
generalizes a result due to M. Lampart and P. Raith.

1. Introduction and some definitions

A continuum is a nonempty compact and connected metric space.
Let X = (X, d) be a continuum. Let 2X be the collection of all

nonempty compact subsets of X endowed with the Hausdorff metric Hd

induced by metric d. If Y is a continuum and Y ⊂ X then Y is a subcon-
tinuum of X.

It is said that X is
• an arc provided that it is homeomorphic to the unit interval [0, 1],
• a simple closed curve provided that it is homeomorphic to the

circle S1 =
{
(x, y) ∈ R2 : x2 + y2 = 1

}
,

• a dendrite provided that it is a locally connected and contains no
simple closed curves.

Let N denote the set of all positive integers. A mapping is a continuous
function. Let f : X → X be a mapping.

Let 2f : 2X → 2X be the mapping induced in 2X by f . For each n ∈ N
and for each A ∈ 2X ,

(
2f

)n
(A) = fn(A).
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In section 5 we recall the definition of topological entropy of a mapping
f : X → X and some of its basic properties.

In year 2010 M. Lampart and P. Raith, [6], proved the following result.

Theorem 1.1. Let I = [0, 1] be the unit interval and f : I → I be a
homeomorphism. Then

• topological entropy of 2f : 2I → 2I has only two possible values:
0 or ∞;

• topological entropy of 2f : 2I → 2I is ∞ if and only if f ◦ f is not
the identity map.

Our main result is the following: Let D be a dendrite and f : D → D
be a homeomorphism. Then

• topological entropy of 2f : 2D → 2D has only two possible values:
0 or ∞;

• topological entropy of 2f : 2D → 2D is ∞ if and only if the set of
recurrent points of f is distinct from D.

2. Preliminary results

Let X = (X, d) be a compact metric space. From now on we assume
that X is nondegenerate (it contains more than one point). Let f : X →
X be a mapping. Given a point x in X, the orbit of x under f is the
sequence

o(x, f) = {fn(x) : n ≥ 0},
where f0 denotes the identity map in X, f1 = f , and for each n ∈ N,
fn+1 = f ◦ fn. If there exists n ∈ N with fn(x) = x, then x is a periodic
point of f . If f(x) = x, then x is a fixed point of f . Let Per(f) and
Fix(f) denote the set of all periodic points and of all fixed points of f ,
respectively. If x ∈ Per(f), then n0 = min {n ∈ N : fn(x) = x} is the
period of x.

The omega limit set of x under f is the set

ω(x, f) =
{
y ∈ X : ∃ {n1 < n2 < · · · } with lim

i→∞
fni(x) = y

}
.

If x ∈ ω(x, f), then it is said that x is a recurrent point of f . Let
R(f) denote the set of all recurrent points of f . It is known that for each
N ∈ N, R(fN ) = R(f). See [2].

Let Λ(f) = ∪{ω(x, f) : x ∈ X}. Note that

Fix(f) ⊂ Per(f) ⊂ R(f) ⊂ Λ(f).

If f is a homeomorphism, the alpha limit set of x under f is the set

α(x, f) = ω(x, f−1).



ENTROPY OF INDUCED DENDRITE HOMEOMORPHISMS 193

If ε > 0, then B(x, ε) denotes the open ball around x ∈ X with radius
ε. If A ⊂ X, then the symbols cl(A), int(A) and bd(A) stand for the
closure, the interior and the boundary of A in X. Furthermore, if A ̸= ∅,
N(A, ε) = {y ∈ X : there is x ∈ A, d(y, x) < ε} = ∪{B(x, ε) : x ∈ A} ,

and diam(A) = sup {d(x, y) : x and y in A}. Symbol |A| stands for the
cardinality of A.

A nonempty subset A ⊂ X is invariant under f : X → X if f(A) ⊂ A;
it is strongly invariant provided that f(A) = A. It is said that A is a
minimal set of f if it is closed, invariant and for any closed subset B ⊂ A,
B ̸= ∅, that is invariant under f , we have that B = A.

Proposition 2.1 contains some basic properties of ω(x, f). See [2].

Proposition 2.1. Let x in X.
• ω(x, f) is closed and nonempty.
• ω(x, f) is strongly invariant.
• For each m ∈ N, f(ω(x, fm)) = ω(f(x), fm).
• For each m ∈ N,

ω(x, f) = ω(x, fm) ∪ ω(f(x), fm) ∪ · · · ∪ ω(fm−1(x), fm).

Thus, ω(x, f) is finite if and only if for some m, ω(x, fm) is finite.
• Let y ∈ X. If limn→∞ d(fn(x), fn(y)) = 0, then ω(x, f) =
ω(y, f).

• If cardinality of ω(x, f) is finite, say N , then there exists y ∈
Per(f) of period N with

ω(x, f) =
{
y, f(y), f2(y), . . . , fN−1(y)

}
.

Therefore, if ω(x, f) is finite, then it is a minimal set of f .

Proof of Lemma 2.2 is a direct consequence of Proposition 2.1.

Lemma 2.2. Let x, y ∈ X. If for some N ∈ N, ω(x, fN ) = ω(y, fN ),
then ω(x, f) = ω(y, f).

Let X be a continuum. Let A and B be two elements of 2X . Then

Hd(A,B) = inf {ε > 0 : A ⊂ N(B, ε) and B ⊂ N(A, ε)}
defines a metric in 2X , the Hausdorff metric. See [4] and [8].

Let {An} be a sequence in 2X and A ∈ 2X . If limn→∞ Hd(An, A) = 0,
then we write limAn = A.

3. Dendrites

In this section we recall some basic properties of dendrites and of maps
defined on dendrites. Let D denote a nondegenerate dendrite. Proofs of
Theorems 3.1 and 3.2 can be found in [8].
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Theorem 3.1. The following conditions hold:
• Every connected subset of D is arcwise connected.
• Each subcontinuum of D is a dendrite.
• The intersection of any two connected subsets of D is connected.
• For each ε > 0, there are finitely many dendrites D1, . . . , Dn

contained in D such that diam(Di) < ε and D = ∪n
i=1Di.

• For every dendrite mapping f : D → D, there is a point x ∈ D
such that f(x) = x.

Let x ∈ D. It is said that x is an end point of D provided that D \ {x}
is connected; x is a cut point of D if D \ {x} is not connected. The order
of x, ord(x), is the cardinality of the set of all components of D \ {x}.
Each point of D is of order ≤ ℵ0 (see [8]). If ord(x) ≥ 3, it is said that x
is a branch point of D.

Theorem 3.2. The following conditions hold:
• Each nondegenerate subcontinuum of D contains uncountably many

cut points.
• The set of all branch points of D is countable.

Corollary 3.3. Each nondegenerate subcontinuum of D contains cut
points of order 2.

Proof. The result follows immediately from Theorem 3.2. �

Propositions 3.4 and 3.5 are proved in [7].

Proposition 3.4. Let {An} be a sequence of nonempty connected subsets
of D such that for each pair n ̸= m, An ∩Am = ∅. Then

lim
n→∞

diam (An) = 0.

Given two distinct points a and b in D, there is only one arc from a
to b contained in D. We denote such an arc with [a, b]. Also we use the
following notation: (a, b] = [a, b] \ {a}, [a, b) = [a, b] \ {b}, and (a, b) =
[a, b] \ {a, b}.

Proposition 3.5. For every ε > 0 there exists δ > 0 such that for any
pair of points a, b ∈ D, d(a, b) < δ implies diam([a, b]) < ε.

Corollary 3.6. Let {an} be a sequence in D\{a} such that limn→∞ an =
a. Then

lim
n→∞

diam ([an, a]) = 0.

Proof. The result follows immediately from Proposition 3.5. �



ENTROPY OF INDUCED DENDRITE HOMEOMORPHISMS 195

Proposition 3.7. For every ε > 0 there exists δ > 0 such that for any
collection of points a, b, u, v ∈ D, if d(a, u) < δ and d(b, v) < δ, then

Hd([a, b], [u, v]) < ε.

Proof. Let ε > 0. Let a, b, u, v ∈ D. By Proposition 3.5, there exists
δ > 0 such that if d(a, u) < δ and d(b, v) < δ, then diam([a, u]) < ε and
diam([b, v]) < ε.

Consider the following sets:

J = [u, a] ∪ [a, b] ∪ [b, v] and K = [u, a] ∪ [u, v] ∪ [b, v].

Note that J and K are both connected. It follows that

[u, v] ⊂ J and [a, b] ⊂ K.

Hence for each x ∈ [u, v] there exists t ∈ [a, b], d(x, t) < ε, and for each
y ∈ [a, b] there exists s ∈ [u, v], d(y, s) < ε. Thus Hd([a, b], [u, v]) < ε. �

Corollary 3.8. Let {an} and {bn} be two sequences of points in D. Let
a, b ∈ D be two distinct points such that limn→∞an = a and limn→∞bn =
b.

(1) Then lim[an, bn] = [a, b].
(2) For each arc [s, t] ⊂ [a, b], {s, t} ∩ {a, b} = ∅, there exists δ > 0

such that for each pair of points u, v ∈ D with d(a, u) < δ and
d(b, v) < δ, [s, t] ⊂ [u, v].

(3) For each arc [s, t] ⊂ [a, b], {s, t} ∩ {a, b} = ∅, there exists n0 ∈ N
such that for each n ≥ n0, [s, t] ⊂ [an, bn].

(4) For each point s ∈ (a, b), there exists n0 ∈ N such that [a, s] ⊂
[a, bn] provided that n ≥ n0.

Proof. The first claim is an immediate consequence of Proposition 3.7.
To prove claim (2), let [s, t] and [a, b] be two arcs in D such that [s, t]

is contained in [a, b] and {s, t} ∩ {a, b} = ∅.
Let ε > 0 such that

ε < min{min{d(a, x) : x ∈ [s, t]}, min{d(b, x) : x ∈ [s, t]}}.
By Proposition 3.5, there exists δ > 0 with the property that for any

pair of points u, v ∈ D, d(u, a) < δ and d(v, b) < δ imply diam([a, u]) < ε
and diam([b, v]) < ε.

Notice that
[a, b] ⊂ [a, u] ∪ [u, v] ∪ [v, b].

Since [s, t] ∩ ([a, u] ∪ [v, b]) = ∅, then [s, t] ⊂ [u, v].
Claim (3) is a consequence of claim (2).
Proof of claim (4) is similar to the one given above to claim (2) (see

also reference [7]). �
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Lemma 3.9. Let U ⊂ D, U ̸= D, be a nonempty open connected set. Let
x0 ∈ bd(U). Then for each u ∈ U ,

[u, x0] ∩ U = [u, x0).

Proof. Let us consider the arc [u, x0]. There exists a sequence {xn},
contained in U , such that limn→∞ xn = x0.

Let v ∈ [u, x0). By Corollary 3.8, there exists n ∈ N such that [u, v] ⊂
[u, xn] ⊂ U . Thus v ∈ U ∩ [u, x0) ⊂ U ∩ [u, x0].

Clearly [u, x0] ∩ U ⊂ [u, x0). Hence [u, x0] ∩ U = [u, x0). �

4. Dynamics of dendrite homeomorphisms

We collect in this section some basic properties of dendrite homeomor-
phisms. Recall D represents a nondegenerate dendrite.

Proof of Proposition 4.1 can be found in [9].

Proposition 4.1. Let f : D → D be a homeomorphism. Then for each
arc [a, b] contained in D, f([a, b]) = [f(a), f(b)].

Consider the unit interval [0, 1]. If f : [0, 1] → [0, 1] is an increasing
homeomorphism, then for each x ∈ [0, 1], o(x, f) is a monotone sequence.
Therefore, |α(x, f)| = 1 and |ω(x, f)| = 1. Furthermore, if Fix(f) ∩
(0, 1) = ∅, then one of the following two conditions holds:

• For every x ∈ (0, 1), α(x, f) = {0} and ω(x, f) = {1}, or
• for every x ∈ (0, 1), α(x, f) = {1} and ω(x, f) = {0}.

Proposition 4.2. Let f : D → D be a homeomorphism. Let u, v ∈ D be
two points such that f(u) = u and f(v) = v. Then for each point x in
the arc [u, v], |ω(x, f)| = 1 and |α(x, f)| = 1. Furthermore, if Fix(f) ∩
(u, v) = ∅, then one of the following two conditions holds:

(1) For every x ∈ (u, v), α(x, f) = {u} and ω(x, f) = {v}, or
(2) for every x ∈ (u, v), α(x, f) = {v} and ω(x, f) = {u}.

Proof. Let h : [0, 1] → [u, v] be a homeomorphism with h(0) = u and
h(1) = v. Then g : [0, 1] → [0, 1] given by g = h−1 ◦ f ◦ h is an increasing
homeomorphism.

Notice that for each point x ∈ [u, v], h−1(f(x)) = g(h−1(x)). Hence
for each x ∈ [u, v], |α(x, f)| = 1 and |ω(x, f)| = 1.

If Fix(f) ∩ (u, v) = ∅, then Fix(g) ∩ (0, 1) = ∅. Now the proof of the
second part follows immediately. �
Corollary 4.3. Let f : D → D be a homeomorphism. Let u, v ∈ D and
N ∈ N. If fN ([u, v]) = [u, v], then for each x ∈ [u, v], |α(x, f)| ≤ 2N and
|ω(x, f)| ≤ 2N .

Proof. The result is an immediate consequence of Proposition 4.2. �
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Theorem 4.4 is one of the main results in [1].

Theorem 4.4. Let f : D → D be a homeomorphism and x ∈ D. Then
ω(x, f) is either a periodic orbit or a Cantor set. Moreover, if ω(x, f) is
a Cantor set, then f restricted to ω(x, f) is an adding machine.

Note that in both cases considered in Theorem 4.4, the limit set ω(x, f)
is a minimal set of f .

Proposition 4.5. Let f : D → D be a homeomorphism and x ∈ D. Then
• f(α(x, f)) = α(x, f).
• α(x, f) is a minimal set of f .

Proof. The result is an immediate consequence of α(x, f) = ω(x, f−1)
and of Theorem 4.4. �
Corollary 4.6. Let f : D → D be a homeomorphism, and x ∈ D. Then
x ∈ ω(x, f) if and only if x ∈ α(x, f). Furthermore, if x /∈ ω(x, f), then
for every y ∈ D, x /∈ (ω(y, f) ∪ α(y, f)).

Proof. The result is an immediate consequence of Proposition 4.5. �
Notice that corollary 4.6 says that for each dendrite homeomorphism,

Λ(f) ⊂ R(f). Therefore in this setting R(f) = Λ(f).
In [9] the author proved the following two interesting and useful results

(Propositions 4.7 and 4.8).

Proposition 4.7. Let f : D → D be a homeomorphism. Then

R(f) = Λ(f) = cl(Per(f)).

Proposition 4.8. Let f : D → D be a homeomorphism. If R(f) = D,
then every cut point of D is a periodic point of f .

Proof of Lemma 4.9 can be found in [1].

Lemma 4.9. Let f : D → D be a homeomorphism. If x0 is an end point
of D such that f(x0) = x0, then |Fix(f)| ≥ 2.

Lemma 4.10. Let f : D → D be a homeomorphism. Let a, b, c be three
distinct end points of D. If {a, b, c} ⊂ Fix(f), then there exists a cut
point of D, say u, such that u ∈ Fix(f).

Proof. Consider the arcs [a, b], [a, c] and [b, c]. Since a, b, c are three dis-
tinct end points of D, there exists u ∈ (a, b) such that [a, b]∩ [a, c] = [a, u].

Therefore
{u} = [a, b] ∩ [a, c] ∩ [b, c].

Since f([a, b]) = [a, b], f([a, c]) = [a, c] and f([b, c]) = [b, c], it follows
that f(u) = u. �
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Lemma 4.11. Let f : D → D be a homeomorphism. Let a, b ∈ Fix(f),
a ̸= b. If a and b are end points of D and |Fix(f)| = 2, then one of the
following two conditions holds:

(1) For every x ∈ (D \ {a, b}), α(x, f) = {a} and ω(x, f) = {b}.
(2) For every x ∈ (D \ {a, b}), α(x, f) = {b} and ω(x, f) = {a}.

Proof. The arc [a, b] is strongly invariant under f . If x ∈ (a, b), then
f(x) ̸= x. Hence for every x ∈ (a, b), α(x, f) = {a} and ω(x, f) = {b}, or
α(x, f) = {b} and ω(x, f) = {a}.

Let us assume the first option: For every x ∈ (a, b), α(x, f) = {a} and
ω(x, f) = {b} (the other case is similar). Let u ∈ D, u /∈ [a, b]. Since a and
b are end points of D, there exists x ∈ (a, b) such that [u, x]∩ [a, b] = {x}.

Continuum D has no simple closed curves hence, for each n ∈ N, the
arc fn([u, x]) = [fn(u), fn(x)] is disjoint from the arc [u, x]. It implies
that for every pair n,m ∈ Z, with n ̸= m, fn([u, x]) ∩ fm([u, x]) = ∅.

Therefore

lim
n→∞

diam(fn([u, x])) = 0 and lim
n→−∞

diam(fn([u, x])) = 0.

Thus α(u, f) = α(x, f) = {a} and ω(u, f) = ω(x, f) = {b}. �

5. Topological entropy

In this section we recall the definition of topological entropy and some
of its basic properties. Let X = (X, d) denote a nondegenerate compact
metric space. Let f : X → X be a mapping.

Let ε > 0 and n ∈ N. A subset A ⊂ X is said to (n, ε)-span X if for
any x ∈ X there exists a ∈ A with

d(f i(x), f i(a)) < ε, for 0 ≤ i ≤ n− 1.

Let r(n, ε) denote the smallest cardinality of any (n, ε)-spanning set
for X. Let

r(ε, f) = lim sup
n→∞

(
1

n

)
log(r(n, ε)).

The topological entropy of f is given by

ent(f) = lim
ε→0

r(ε, f).

Proofs of Propositions 5.1, 5.2 and 5.3 can be found in references [2]
and [10]. Proposition 5.4 is proved in [3].

Proposition 5.1. Let n ∈ N. Then ent(fn) = n · ent(f). Furthermore,
if f : X → X is a homeomorphism, then ent(f−1) = ent(f).

Proposition 5.2. Let A ⊂ X be a closed and invariant set of f : X → X.
Then ent(f) ≥ ent(f |A ).
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Proposition 5.3. Let X and Y be compact metric spaces, f : X → X
and g : Y → Y be two mappings, and h : X → Y be a surjective mapping.
If for every x ∈ X, h(f(x)) = g(h(x)), then ent(f) ≥ ent(g). If h is a
homeomorphism, then ent(f) = ent(g).

Consider the space of 2 symbols,

Σ2 = {t = (. . . , t−2, t−1 · t0, t1, t2, . . .) : tn ∈ {0, 1} , n ∈ Z} ,
and the shift homeomorphism σ2 : Σ2 → Σ2, given by

σ2(. . . , t−2, t−1 · t0, t1, t2, . . .) = (. . . , t−2, t−1, t0 · t1, t2, . . .).

Proposition 5.4. Then ent(σ2) = log(2).

Theorem 5.5 is proved in [1]. It is also a direct consequence of Theorem
4.4.

Theorem 5.5. Let f : D → D be a dendrite homeomorphism. Then
ent(f) = 0.

The following result is an immediate consequence of Theorem 17 in [5].

Theorem 5.6. Let f : X → X be a homeomorphism. If for some point
x ∈ X,

x /∈ (α (x, f) ∪ ω(x, f)) ,

then ent(2f ) ≥ log(2).

The proof we present to Theorem 5.7 follows, with slight changes, the
proof given to Theorem 2 in [6]. For the sake of completeness we provide
it here.

Theorem 5.7. Let f : X → X be a homeomorphism. Let K,L ∈ 2X . If
there exists an infinite countable set A = {a0, a1, a2, . . .} ⊂ X such that

• for every i ≥ 0, α(ai, f) = K and ω(ai, f) = L,
• for every i ≥ 0, ai /∈ (K ∪ L), and
• for every pair i ̸= j, i ≥ 0, j ≥ 0,{

fk(ai) : k ∈ Z
}
∩
{
fk(aj) : k ∈ Z

}
= ∅,

then ent(2f ) = ∞.

Proof. Let N ∈ N. We claim that ent(2f ) ≥ N · log(2).
Step 1. Let ΓN =

∏
k∈Z{0, 1}N .

We use the following notation. Let u ∈ ΓN ,

u = (. . . , (u−10, . . . , u−1N−1) · (u00, . . . , u0N−1), (u10, . . . , u1N−1), . . .) .

Note that Γ1 is homeomorphic to Σ2.
Let φ : ΓN → ΓN be the mapping given by v = φ(u) where

v = (. . . , (u−10, . . . , u−1N−1), (u00, . . . , u0N−1) · (u10, . . . , u1N−1), . . .) .
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The map φ is a homeomorphism and, in a way we are going to see, it
is connected with the shift map σ2.

Let h : ΓN → Σ2 be a homeomorphism given in the following way: Let
i ∈ Z. There exists a unique pair of numbers j ∈ Z and 0 ≤ k ≤ N − 1
such that i = jN +k. Then the coordinate ti of t = h(u) satisfy ti = ujk:

t = (. . . , u−10, . . . , u−1N−1 · u00, . . . , u0N−1, u10, . . . , u1N−1, . . .) .

That is, h simply erase most of the parenthesis in u.
It is easy to see that for each u ∈ ΓN , (σ2)

N (h(u)) = h(φ(u)).
Thus ent(φ) = ent((σ2)

N ) = N · log(2).
Step 2. Consider the first N elements of A, {a0, a1, a2, . . . , aN−1}.
Let M ⊂ X,

M = {fk(a0) : k ∈ Z} ∪ {fk(a1) : k ∈ Z} ∪ · · · ∪ {fk(aN−1) : k ∈ Z},
and F ⊂ 2X ,

F =
{
B ∈ 2X : (K ∪ L) ⊂ B ⊂ (K ∪ L ∪M)

}
.

It is not difficult to prove that collection F is a compact subset of 2X
and it is strongly invariant under the induced homeomorphism 2f : 2X →
2X .

Now let g : F → ΓN be the mapping given in this way: Take B ∈ F .
Then the coordinates of u = g(B), ujk, j ∈ Z, 0 ≤ k ≤ N − 1, are given
by

ujk =

 1, if f j(ak) ∈ B,

0, if f j(ak) /∈ B.

Notice that g : F → ΓN is a homeomorphism. Furthermore, for each
element B ∈ F , φ(g(B)) = g((2f )−1(B)).

Hence,
ent(2f |F ) = ent((2f )−1|F ) = N · log(2).

It follows that for each N ∈ N, ent(2f ) ≥ N · log(2).
Thus ent(2f ) = ∞. �

6. Entropy of induced homeomorphism 2f : 2D → 2D

Let D denote a nondegenerate dendrite. Let f : D → D be a homeo-
morphism. In order to show that the topological entropy of the induced
homeomorphism 2f : 2D → 2D has only two possible values, 0 or ∞, we
consider two cases:

• The set of recurrent points of f is a proper subset of D, R(f) ̸= D.
• Every point of D is a recurrent point of f , R(f) = D.

With Proposition 6.1 and Theorem 6.3 we solve the first case. We
consider the second case in Propositions 6.4 and 6.5 and in Theorem 6.6.
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Proposition 6.1. Let f : D → D be a homeomorphism such that R(f) ̸=
D. Let x0 ∈ D \R(f) and U be the component of D \R(f) that contains
x0. Then for each x ∈ U ,

α(x, f) = α(x0, f) and ω(x, f) = ω(x0, f).

Proof. Let x0 ∈ D \ R(f) and U be the component of D \ R(f) that
contains the point x0. Note that the sets R(f) = cl(Per(f)) and D\R(f)
are strongly invariant under f . Since f : D → D is a homeomorphism,
for each n ∈ Z, fn(U) is a component of D \R(f).

We consider two cases.
Case 1. There exists n ∈ N such that fn(U) = U .
Let N = min{n ∈ N : fn(U) = U}. Let g : D → D be the homeomor-

phism given by g = fN and let W = cl(U). Since g(U) = U , g(W ) = W .
There exists a fixed point of g, say u0, in the dendrite W . Note that

the point u0 is not in U . Hence u0 is an end point of W .
By Lemma 4.9, there exists another fixed point of g in W .
Let u1 ∈ Fix(g) ∩W , u1 ̸= u0. Note u1 is an end point of W as well.
Notice that g cannot have a third fixed point in W . For, by Lemma

4.10, it implies that there exists a cut point u of W with g(u) = u, a
contradiction.

Therefore g has exactly two fixed points in dendrite W . Both of them
are end points of W .

By Lemma 4.11, for every point x ∈ (W \ {u0, u1}),

α(x, fN ) = α(x0, f
N ) and ω(x, fN ) = ω(x0, f

N ).

It implies, by Lemma 2.2, that for each x ∈ (W \ {u0, u1}),

α(x, f) = α(x0, f) and ω(x, f) = ω(x0, f).

Case 2. For every n ∈ N, fn(U) ∩ U = ∅.
Hence for each pair n,m ∈ Z, with n ̸= m, fn(U) ∩ fm(U) = ∅.
By Proposition 3.4,

(6.1) lim
n→∞

diam(fn(U)) = 0 and lim
n→−∞

diam(fn(U)) = 0.

Thus, for every x ∈ U , α(x, f) = α(x0, f) and ω(x, f) = ω(x0, f). �

Corollary 6.2. Let f : D → D be a homeomorphism and x ∈ X. Then
α(x, f) is finite if and only if ω(x, f) is finite.

Proof. Let x ∈ D. If x ∈ R(f), then α(x, f) = ω(x, f) and the conclusion
readily follows.

Let us assume that x ∈ D \ R(f). Let U be the open component of
D \ R(f) that contains x. According to Proposition 6.1, there are two
cases: In the first one, when fN (U) = U for some N ∈ N, it easy to see
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that for every point x ∈ U , |α(x, f)| ≤ N and |ω(x, f)| ≤ N . In fact, the
cardinality of any of these two limit sets is a factor of N .

In the second case our claim is this: for every x ∈ U , α(x, f) = ω(x, f).
Take y ∈ bd(U). By limits in (6.1), α(x, f) = α(y, f) and ω(x, f) =
ω(y, f). Since y ∈ R(f), α(y, f) = ω(y, f). �
Theorem 6.3. Let f : D → D be a homeomorphism such that R(f) ̸= D.
Then ent(2f ) = ∞.

Proof. Let U be a nonempty component of D \ R(f). Note that U is
an infinite uncountable set. Hence, it is possible to define an infinite
countable set A = {a0, a1, a2, . . .} ⊂ U such that for each pair i ̸= j,{

fk(ai) : k ∈ Z
}
∩
{
fk(aj) : k ∈ Z

}
= ∅.

By proposition 6.1, for each i ≥ 0,

α(ai, f) = α(a0, f) and ω(ai, f) = ω(a0, f).

Note that for each i ≥ 0, ai /∈ (α(a0, f) ∪ ω(a0, f)). Therefore, by
Theorem 5.7, ent(2f ) = ∞. �
Proposition 6.4. Let D be a dendrite. Let ε > 0. There exists a finite
set E ⊂ D of cut points of order 2 such that each component U of D \E
has diameter < ε.

Proof. Let ε > 0. There are finitely many dendrites D1, . . . , Dn contained
in D such that

• diam(Di) <
ε
4 ;

• D = ∪n
i=1Di; and

• for each i, Di \ (∪j ̸=iDj) ̸= ∅.
For each i, fix xi ∈ Di\(∪j ̸=iDj). Now for each set {i, j} with Di∩Dj =

∅ take xij in the arc [xi, xj ] such that xij /∈ Di∪Dj and ord(xij) = 2 (see
Corollary 3.3). Let E be the set whose elements are all such points xij .

Note the following: If B ⊂ D is a connected set with

B ∩Di ̸= ∅, B ∩Dj ̸= ∅ and Di ∩Dj = ∅,
then xij ∈ B.

Let U be a component of D \E. Let k be such that U ∩Dk ̸= ∅. Then
for each l with U ∩Dl ̸= ∅, Dk ∩Dl ̸= ∅. Hence diam(U) < ε. �
Proposition 6.5. Let D be a dendrite. Let f : D → D be a homeomor-
phism such that R(f) = D. Then for each ε > 0, there exists a finite
collection of dendrites, {D1, D2, . . . , Dm}, Di ⊂ D, with the following
properties:

• For each i, 1 ≤ i ≤ m, diam(Di) < ε.
• For each i there exists j, 1 ≤ i, j ≤ m, f(Di) = Dj.



ENTROPY OF INDUCED DENDRITE HOMEOMORPHISMS 203

• If i ̸= j, then Di ∩Dj = ∅ or |Di ∩Dj | = 1.
• If Di ∩Dj = {x0}, then x0 ∈ Per(f).
• If i ̸= j, i ̸= k and j ̸= k, then Di ∩Dj ∩Dk = ∅.

Proof. Let ε > 0. According to Proposition 6.4 there exists a finite set
E ⊂ D of cut points of order 2 such that each component U of D \E has
diameter < ε.

Notice that the boundary of each component U of D \ E intersects
E in a nonempty set. Each point of E is in the boundary of exactly
two components of D \ E. Hence the cardinality of the collection of all
components of D \ E is finite.

Let x ∈ E. By Proposition 4.8, x is a periodic point of f . Since f is a
homeomorphism, every y ∈ o(x, f) is a cut point of D.

Let

F = {y ∈ D : y ∈ o(x, f), x ∈ E} .

Note that F is a finite set and each point of F is of order 2. It follows
that the cardinality of the collection of all components of D \ F is finite.

Since E ⊂ F , for each component W of D \ F there exists some com-
ponent U of D \ E such that W ⊂ U . Hence every component of D \ F
has diameter < ε.

Let {W1,W2, . . . ,Wm} be the components of D \ F . For each 1 ≤ i ≤
m, let us define Di = cl(Wi). Notice that each dendrite Di has diameter
< ε.

It is immediate that F and D \ F are strongly invariant sets of the
homeomorphism f : D → D. The image under f of a component of D \F
is a component of D \ F . Hence for each i there exists j, 1 ≤ i, j ≤ m,
such that f(Di) = Dj .

Since D has no simple closed curves, for each i ̸= j, Di ∩ Dj = ∅ or
|Di ∩Dj | = 1. If i ̸= j and x ∈ Di ∩Dj , then x ∈ F and x ∈ Per(f).

Since each point of F is a cut point of order 2, Di ∩ Dj ∩ Dk = ∅
provided that i ̸= j, i ̸= k and j ̸= k. �

Theorem 6.6. Let D be a dendrite. Let f : D → D be a homeomorphism
such that R(f) = D. Then ent(2f ) = 0.

Proof. Let ε > 0. Let {D1, D2, . . . , Dm} be a finite collection of dendrites
in D that satisfy the conditions of Proposition 6.5. Let

F = {x ∈ D : there exist i ̸= j, x ∈ Di ∩Dj} .

Let G =
{
A ∈ 2D : A ⊂ F

}
. Since F is a finite set, G is a finite

collection of points of 2D. Let k = |G|.
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Let B ∈ 2D. Consider an element A ∈ G with the following property:
For each i, 1 ≤ i ≤ m,

B ∩Di ̸= ∅ if and only if A ∩Di ̸= ∅.

Note that for each i, 1 ≤ i ≤ m, and for each each n ≥ 0, there exists
1 ≤ j ≤ m such that

(fn(B ∩Di) ∪ fn(A ∩Di)) ⊂ Dj .

Therefore, for each i and n, Hd(f
n(B ∩Di), f

n(A ∩Di)) < ε.
Since

fn(B) = ∪m
i=1f

n(B ∩Di) and fn(A) = ∪m
i=1f

n(A ∩Di),

then
Hd(f

n(B), fn(A)) < ε.

It follows that G is an (n, ε)-spanning set for 2D and mapping 2f .
We have that for each n ≥ 0, r(n, ε) ≤ |G| = k. Then

r(ε, 2f ) = lim sup
n→∞

(
1

n

)
log(r(n, ε)) = 0.

Thus, ent(2f ) = 0. �

Corollary 6.7. Let D be a dendrite. Let f : D → D be a homeomor-
phism. Then ent(2f ) has only two possible values: 0 or ∞. Furthermore,
ent(2f ) = ∞ if and only if R(f) ̸= D.

Proof. The result is an immediate consequence of Theorems 6.3 and 6.6.
�

7. Final part

The next result is easy to prove.

Proposition 7.1. Let f : [0, 1] → [0, 1] be a homeomorphism. Then
R(f) = [0, 1] if and only if f2 is the identity map.

Theorem 7.2 is due to M. Lampart and P. Raith, [6].

Theorem 7.2. Let f : [0, 1] → [0, 1] be a homeomorphism. Then ent(2f )
has only two possible values: 0 or ∞. Furthermore, ent(2f ) = ∞ if and
only if f2 ̸= id.

Proof. The result immediately follows from Corollary 6.7 and Proposition
7.1. �

Conjecture 7.3 and Question 7.4 propose some interesting paths to
follow. Both of them are due to M. Lampart and P. Raith as well, [6].
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Conjecture 7.3. Let X be a continuum and f : X → X be a home-
omorphism. Then entropy of induced map 2f : 2X → 2X has only two
possible values: 0 or ∞.

Question 7.4. Which topological spaces X satisfy that ent(2f ) ∈ {0,∞}
for all continuous maps f (for all homeomorphisms f)?
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