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EXTENSIONS OF ULTRAMETRIC SPACES

COLLINS AMBURO AGYINGI

Abstract. The concept of the tight span of a metric space was
introduced and studied by Dress. It is known that his (Dress)
theory is equivalent to the theory of the injective hull of a metric
space independently discussed by Isbell some years earlier. Dress
showed in particular that for a metric space X the tight extension
TX is maximal among the tight extensions of X. In a paper by
Bayod et al., it was shown that Isbell’s approach can be modified
to work similarly for ultrametric spaces. They went ahead and
constructed the tight extension for an arbitrary ultrametric space
X, which in this article we shall call the ultrametric tight (um-
tight) extension of X and is denoted uTX . Continuing that work we
show in the present paper that large parts of the theory developed
by Dress do not use the triangle inequality of the metric and when
appropriately modified will hold unchanged for ultrametric spaces.
In particular we shall show that for an ultrametric space X, uTX

is a maximal (among the um-tight) extensions of X.

1. Introduction

We say that a metric space Y is “injective” if every mapping which
increases no distance from a subspace of any metric space X to Y can be
extended, increasing no distance, over X. These spaces were introduced in
[2] by Aronszajn and Panitchpakdi, and they called them “hyperconvex.”
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Isbell [6] proved that every metric space X has an “injective hull,” i.e., an
isometric embedding e : X → E such that E is injective and no injective
proper subspace of E contains e(X). Later on Dress [14] independently
introduced the concept of “tight extension” of a metric space X and proved
that a “tight span” (i.e., a maximal tight extension) of X is the same as
an injective envelope of X.

In this paper we are going to consider the case of ultrametric spaces. It
should be noted at this point that ultrametric spaces have applications in
pure mathematics as well as in Physics (check for instance the excellent
survey [3] and the references given there, in order to get a feeling of the
way and the depth in which ultrametric concepts play a role in some parts
of modern physics).

It can be shown that no ultrametric space with more than one point
is injective (use [4, pp. 46-48]). Thus we shall restrict ourselves to the
following weaker definition: An ultrametric space Y is said to be ultra-
metrically injective if every contractive mapping from a subspace of any
ultrametric space X to Y can be extended to a contraction over X.

In [10] the concept of tight extension was studied for ultrametric spaces.
In particular such an extension was constructed and it was shown that a
compact ultrametric space is ultrametrically hyperconvex if and only if it
is spherically complete. The last statement implies that every compact
ultrametric space will be equal to its corresponding hyperconvex hull.
Recall [8, Definition 4.1] that a (ultra)metric space (X, d) is said to be
hyperconvex if for any indexed class of closed balls B(xi, ri), i ∈ I, of X
which satisfy

d(xi, xj) ≤ ri + rj , i, j ∈ I,

it is necessarily the case that∩
i∈I

B(xi, ri) ̸= ∅.

We will show in this article that every ultrametric space X has a um-
tight extension uTX which is maximal among the um-tight extensions of
X.

2. Preliminaries

In this section we start by recalling some basic concepts from the theory
of ultrametric spaces that will be useful in the development of this article.

In Section 3 we present a summary of the construction of an extension
of an ultrametric space according to [10] and which is tight (in the sense
of Dress [14]).

We remark here that ultrametric spaces are also known in the literature
as non Archimedean metric spaces.
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Example 2.1. ([9, Page 7]) Let X = [0,∞). Define n(x, y) = max{x, y}
if x ̸= y and n(x, y) = 0 if x = y. Then it is easy to see that (X,n) is an
ultrametric space.

In some cases we will replace [0,∞) with [0,∞] and in this case we
shall speak of an extended ultrametric.

Lemma 2.2. (compare [9, Proposition 2.1]) Let α, β, γ ∈ [0,∞). Then
the following are equivalent:

(a) n(α, β) ≤ γ
(b) α ≤ max{β, γ}.

Proof. (a) ⇒ (b)
To reach a contradiction, suppose that α > max{β, γ}. Since α > β, we
have n(α, β) = α ≤ γ by part (a) and the way n was defined. Thus we
have that α ≤ max{β, γ} < α and this is a contradiction.

(b) ⇒ (a)
Suppose on the contrary that n(α, β) > γ. Then n(α, β) = α and α > β
and hence α > γ which implies that α > max{β, γ}. We have by (b) that
α ≤ max{β, γ} which is a contradiction. �

We have the following corollaries.

Corollary 2.3. Let (X, d) be an ultrametric space. Consider a map f :
X → [0,∞) and let x, y ∈ X. Then the following are equivalent:

(a) n(f(x), f(y)) ≤ d(x, y)
(b) f(x) ≤ max{f(y), d(x, y)}.

Definition 2.4. A map f : (X, dX) → (Y, dY ) between two (ultra-)
metric spaces (X, dX) and (Y, dY ) is called nonexpansive provided that
dY (f(x), f(y)) ≤ dX(x, y) whenever x, y ∈ X.

Corollary 2.5. Let (X, d) be an ultrametric space. Then the map f :
(X, d) → ([0,∞), n) is a nonexpansive map if and only if f(x) ≤
max{f(y), d(x, y)} whenever x, y ∈ X.

Definition 2.6. A map f : (X, dX) → (Y, dY ) between two (ultra-)
metric spaces (X, dX) and (Y, dY ) is said to be an isometry provided that
dY (f(x), f(y)) = dX(x, y) whenever x, y ∈ X. Two (ultra-) metric spaces
(X, dX) and (Y, dY ) are said to be isometric provided that there exists a
bijective isometry between them.

3. Ultrametrically injective hulls of ultrametric
spaces

In this section, we shall recall some results from the theory of hyper-
convex hulls of ultrametric spaces due to [10].
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We shall proceed by recalling the construction, by Bayod et al. ([10]),
of an ultrametrically injective hull for any arbitrary ultrametric space X.

Definition 3.1. Let (X, d) be an ultrametric space and let F(X, d) be
the set of all functions f on (X, d) where f : X → [0,∞).

For any such functions f and g set N(f, f) = 0 and

N(f, g) = inf{max{f(x), g(x)} : x ∈ X}.

Then one sees immediately that N is an extended ultrametric on F(X, d).
Let (X, d) be an ultrametric space. We shall say that a function f ∈

F(x, d) is ultra-ample if for all x, y∈X, we have d(x, y)≤max{f(x), f(y)}.
Let us denote by UPX the set of all ultra-ample functions on an ultra-

metric space (X, d). The proof of the following lemma is obvious.

Lemma 3.2. Let (X, d) be an ultrametric space. For each a∈X, fa(x) :=
d(x, a) whenever x ∈ X, is an ultra-ample function belonging to UPX .

Let (X, d) be an ultrametric space. We say that a function f is minimal
among the ultra-ample functions on (X, d) if it is an ultra-ample function
and if g is ultra-ample on (X, d) and for each x ∈ X, g(x) ≤ f(x) then
f = g. By UTX we shall denote the set of all minimal functions on (X, d)
equipped with the restriction of N to UTX , which we shall still denote by
N . Note that the restriction of N to UTX is indeed an ultrametric on
UTX (check part (a) of Theorem 3.10 below). In the following we shall
call (UTX , N) the ultra-metrically injective hull of (X, d).

Lemma 3.3. ([10, Lemma 3]) Let (X, d) be an ultrametric space. Then
we have the following:

(a) For each z ∈ X, the map fz : X → R defined by fz(x) = d(x, z)
belongs to UTX .

(b) If f is ultra-ample on (X, d) and x, y ∈ X, then the map h : X →
[0,∞) defined by h(z) = f(z) when x ̸= z and h(x) = sup{d(x, y) : y ∈
X and d(x, y) > f(y)} is also ultra-ample on (X, d).

Lemma 3.4. ([10, Lemma 4]) Let (X, d) be an ultrametric space. Then
we have that for f ∈ UTX and x, y ∈ X one has f(x) < max{d(x, y), f(y)}
and therefore one has either f(x) = f(y) > d(x, y) or f(x) = d(x, y) >
f(y) or f(y) = d(x, y) > f(x).

Lemma 3.5. Let (X, d) be an ultrametric space and suppose that f is a
minimal ultra-ample function on (X, d). Then

f(x) = sup{d(x, y) : y ∈ X and d(x, y) > f(y)}
= sup{fx(y) : y ∈ X and fx(y) > f(y)}

whenever x ∈ X.
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Proof. Let x ∈ X. We see that sup{d(x, y) : y ∈ X and d(x, y) > f(y)} ≤
f(x), since d(x, y) ≤ max{f(y), f(x)} by ultra-ampleness of f .

Suppose now that there is x0 ∈ X such that sup{d(x0, y) : y ∈
X and d(x0, y) > f(y)} < f(x0). Set h(x) = f(x) if x ∈ X and x ̸= x0,
and h(x0) = sup{d(x0, y) : y ∈ X and d(x0, y) > f(y)}. Then by part (c)
of Lemma 3.3, we have that h is ultra-ample. Moreover one can see also
that h < f . This however contradicts the fact that f is minimal ultra-
ample. Thus we conclude that f(x) = sup{d(x, y) : y ∈ X and d(x, y) >
f(y)} whenever x ∈ X. �

Thus we have that

UPX = {f : X → [0,∞) : ∀ x, y ∈ X, d(x, y) ≤ max{f(x), f(y)},

UTX = {f ∈ UPX : ∀ x ∈ X, f(x) = sup{d(x, y) : f(y) < d(x, y)}},
where the last supremum is understood to be zero in case f(y) ≥ d(x, y).

Proposition 3.6. Let f be an ultra-ample function on an ultrametric
space (X, d) such that

f(x) ≤ max{f(y), d(y, x)}
whenever x, y ∈ X. Furthermore let us suppose that there is a sequence
(an)n∈N in X with limn→∞ f(an) = 0. Then the function f is minimal
ultra-ample.

Proof. Suppose that this is not the case. This means that there is an
ultra-ample function h such that h < f . Let us assume without loss of
generality that there is x0 ∈ X such that h(x0) < f(x0). Therefore we
have that 0 < f(x0) ≤ max{f(an), d(x0, an)} whenever n ∈ N (by our as-
sumption above). Since h is ultra-ample and h < f , we will also have that
d(x0, an) ≤ max{h(x0), f(an)} whenever n ∈ N. Since limn→∞ f(an) = 0,
we conclude that f(x0) ≤ h(x0) - which is a contradiction. Therefore we
deduce that the function f is minimal ultra-ample. �

Proposition 3.7. (Compare [14, Section 1.3]) Let (X, d) be an ultramet-
ric space. Then UTX consists of all functions which are “minimal" in
UPX .

Proof. To prove this Proposition, we prove that there is no g ∈ UPX with
g < f but g ̸= f . This is so since on the one hand, g ≤ f ∈ UTX and
g ∈ UPX implies

f(x) = sup{d(x, y) : y ∈ X and d(y, x) > f(y) ≥ g(y)}
= sup{d(y, x) : y ∈ X and d(y, x) ≥ g(y)}
≤ g(x).
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Thus

(3.1) f(x) ≤ g(x).

Using 3.1 and the condition that g ≤ f , we have thus shown that f = g.
On the other hand, suppose that for some x ∈ X and f ∈ UPX , we

have that f(x) > sup{d(y, x) : y ∈ X and d(y, x) > f(y)}.
For each x ∈ X and f ∈ UPX set (px(f))(z) = f(z) if z ∈ X \ {x} and

(px(f))(x) = sup{d(x, y) : y ∈ X and d(x, y) > f(y)}.

To show that px(f) is ultra-ample, we shall consider the following cases:
Case 1: If z = x and y = x, then the result holds since d(x, x) = 0.
Case 2: If z ̸= x and y ̸= x, then (px(f))(z) = f(z) so that

max{(px(f))(z), (px(f))(y)} = max{f(z), f(y)} ≥ d(z, y).

Case 3: z = x and y ̸= x. In this case (px(f))(y) = f(y) and
(px(f))(z) = sup{d(z, y) : y ∈ X and d(z, y) > f(y)} so that

max{(px(f))(z), ((px)(f))(y)}=max

{
sup
y∈X

{d(z, y) : d(z, y) >f(y)}, f(y)
}

≥ d(z, y).

Case 4: In a manner similar to case 3, the result can be shown.
Thus px(f) is ultra-ample and also satisfies px(f) ≤ f by the way it

was constructed.
Thus by taking g = px(f), we can conclude that for any f ∈ UPX , g ≤

f . �

Lemma 3.8. Let (X, d) be an ultrametric space. If for each x ∈ X and
f1, f2, g1, g2 ∈ UPX we have that f1(x) ≤ f2(x) and g1(x) ≤ g2(x), then
N(f1, f2) ≤ N(g1, g2).

The proof of the next theorem follows from Lemma 3.8.

Theorem 3.9. Let (X, d) be an ultrametric space. If for each x ∈ X and
f, g ∈ UPX we define px(f) as in the proof of Proposition 3.7, then we
have that N(px(f), px(g)) ≤ N(f, g).

Theorem 3.10. ([10, Theorem 5]) Let (X, d) be an ultrametric space.
Then we have the following.

(a) N is an ultrametric on UTX .
(b) For f ∈ UTX and z ∈ X, N(f, fz) = f(z).
(c) The map φ : X → UTX defined by φ(z) = fz is an isometric

embedding of X into UTX .

Theorem 3.11. ([10, Theorem 6]) For any ultrametric space (X, d), the
space (UTX , N) is an ultramerically injective hull of X.



EXTENSIONS OF ULTRAMETRIC SPACES 213

4. Ultrametric tight extensions

In this section we generalize some crucial results about tight extensions
of metric spaces from [14] to ultrametric spaces.

Lemma 4.1. (compare [14, Theorem 1]) Let (X, d) be an ultrametric
space. Then for any f, g ∈ UTX , we have that

N(f, g)=sup{d(x1, x2) :x1, x2∈X, d(x1, x2)>f(x1) and d(x1, x2)>g(x2)}.

Proof. Assume on the one hand that for some f, g ∈ UTX we have that
N(f, g) > 0. Then we have by the definition of N that

N(f, g) = inf{max{f(x), g(x)} : x ∈ X}
≤ inf{max{f(x), g(x)} : x ∈ X and g(x) > f(x)}
= inf{g(x) : x ∈ X and g(x) > f(x)}
≤ sup{g(x) : x ∈ X and g(x) > f(x)}.

Thus we have that

N(f, g) ≤ sup{g(x) : x ∈ X and g(x) > f(x)}.

Notice that {g(x) : x ∈ X and g(x) > f(x)} ≠ ∅. Indeed, if that was the
case, then we will have that g(x) ≤ f(x) for every x ∈ X and then by
minimality g = f , so Nf, g) = 0.

Let α = sup{g(x) : x ∈ X and g(x) > f(x)}. This means that for any
ϵ > 0 we can find x1 ∈ X such that g(x1) > f(x1) and α− ϵ < g(x1) (by
the supremum characterization of α). Define ϵ1 = min{g(x1)−f(x1), ϵ} >
0. Since g(x1) > 0 (this is so by our assumption above that g(x1) >
f(x1) > 0), we have by Lemma 3.5 that there is x2 ∈ X with d(x1, x2) >
g(x2) and g(x1)−ϵ1 < d(x1, x2). Notice that ϵ1 ≤ g(x1)−f(x1). Therefore
we get that f(x1) ≤ g(x1) − ϵ1 < d(x1, x2). Thus α − ϵ − ϵ1 < d(x1, x2)
with d(x1, x2) > g(x2) and d(x1, x2) > f(x1).

Since ϵ was arbitrary, we have shown that

α ≤ sup{d(x1, x2) : x1, x2 ∈ X, d(x1, x2) > f(x1) and d(x1, x2) > g(x2)}.

Hence we have that

N(f, g) ≤ sup
x1,x2∈X

{d(x1, x2) : d(x1, x2) > f(x1) and d(x1, x2) > g(x2)}

which also holds in the remaining case where for f, g ∈ UTX we have
N(f, g) = 0.
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We have by the triangle inequality that

N(fx1 , fx2) ≤ max{N(fx1 , f), N(f, g), N(g, fx2)} =
= max{f(x1), N(f, g), g(x2)}

whenever f, g ∈ UTX and x1, x2 ∈ X; thus N(fx1 , fx2) ≤ N(f, g) when-
ever N(fx1 , fx2) > f(x1) and N(fx1 , fx2) > g(x2). We have therefore
shown that for any f, g ∈ UTX

sup{d(x1, x2) : x1, x2 ∈ X, d(x1, x2) > f(x1) and d(x1, x2) > g(x2)} ≤
≤ N(f, g).

This establishes the equality

N(f, g) = sup{d(x1, x2) : x1, x2 ∈ X, d(x1, x2) > f(x1) and d(x1, x2) >
> g(x2)}

whenever f, g ∈ UTX . �

Proposition 4.2. (Compare [14, Section 1.9]) Let (X, d) be an ultramet-
ric space. There exists a retraction map p : UPX → UTX , i.e., a map
that satisfies the following conditions

(a) N(p(f), p(g)) ≤ N(f, g) whenever f, g ∈ UPX .
(b) p(f) ≤ f whenever f ∈ UPX .
(In particular we have that p(f) = f whenever f ∈ UTX .)

Proof. We will proceed by the use of Zorn’s Lemma.
Indeed, let (X, d) be an ultrametric space and let P be the set of all

maps from UPX to UPX satisfying conditions (a) and (b) in Proposition
4.2.

Order P by

p ≼ q ⇔ p(f) ≤ q(f) and N(p(f), p(g)) ≤ N(q(f), q(g))

for all f, g ∈ UPX and p, q ∈ P. Then P ̸= ∅ since the identity map
belongs to P.

We have to check now that ≼ is actually a partial order.
Reflexivity is obvious since every map is equal to itself.
Let now p, q ∈ P such that p ≼ q and q ≼ p.

p ≼ q ⇒ p(f) ≤ q(f) and N(p(f), p(g)) ≤ N(q(f), q(g)), for f, g ∈ UPX

q ≼ p ⇒ q(f) ≤ p(f) and N(q(f), q(g)) ≤ N(p(f), p(g)), for f, g ∈ UPX

p(f) ≤ q(f) and q(f) ≤ p(f) implies that p(f) = q(f) so that we can
conclude that p = q.
Also N(p(f), p(g)) ≤ N(q(f), q(g)) and N(q(f), q(g)) ≤ N(p(f), p(g))
implies that p = q. This shows that ≼ is anti-symmetric.



EXTENSIONS OF ULTRAMETRIC SPACES 215

Suppose now that p, q, s ∈ P such that p ≼ q and q ≼ s.

p ≼ q ⇒ p(f) ≤ q(f) and N(p(f), p(g)) ≤ N(q(f), q(g)), for f, g ∈ UPX

q ≼ s ⇒ q(f) ≤ s(f) and N(q(f), q(g)) ≤ N(s(f), s(g)), for f, g ∈ UPX

p(f) ≤ q(f) and q(f) ≤ s(f) implies that p(f) ≤ s(f) by transitivity of
[0,∞) as a subset of R with the usual ordering ≤.

Also N(p(f), p(g)) ≤ N(q(f), q(g)) and N(q(f), q(g)) ≤ N(s(f), s(g))
implies that N(p(f), p(g)) ≤ N(s(f), s(g)). Thus p ≼ s. This shows that
≼ is transitive. Therefore (P,≼) is a partially ordered set.

To complete the proof, we have to show that every chain in P has a
lower bound.

Let ∅ ̸= K ⊂ P be a chain and define s : UPX → UPX by

s(f)(x) := inf
k∈K

(k(f))(x)

whenever x ∈ X. Since k(f) ∈ P, we have that s(f) ∈ P.
Indeed observe that s(f) ≤ k(f) ≤ f, ∀ f ∈ UPX . Thus s(f) ≤ f and

condition (b) is satisfied.
To check condition (a), we check that N(s(f), s(g)) ≤ N(k(f), k(g)) ≤

N(f, g). But this follows from Lemma 3.8 since s(f) ≤ k(f) and k(f) ≤ f .
Thus we have that condition (a) is satisfied and since s is a map from

UPX to UPX , we conclude that s ∈ P and s is a lower bound of the chain
K by construction. We therefore appeal to Zorn’s lemma to conclude that
P has a minimal element, say m, with respect to the partial order ≼.

To complete the proof, it suffices to show that m(f) ∈ UTX whenever
f ∈ UPX .

For each x ∈ X, we obviously have that px ◦m ∈ P and px ◦m ≼ m
(where px is as defined in Proposition 3.7). Hence by minimality of m, we
have px ◦m = m. It therefore follows that for each x ∈ X, px(m(f)) =
m(f) whenever f ∈ UPX . Thus by the definition of elements in UTX , we
conclude that m(f) ∈ UTX whenever f ∈ UPX . �

Proposition 4.3. (compare [1, Proposition 3]) Let (Y, d) be an ultra-
metric space and ∅ ̸= X be a subspace of (Y, d). Then there exists an
isometric embedding τ : UTX → UTY such that τ(f)|X = f whenever
f ∈ UTX .

Proof. Let us fix x0 ∈ X and choose a retraction p : UPY → UTY

satisfying the conditions of Proposition 4.2. Also let s : UTX → UPY

be defined as s(f) = f ′ where f ′(y) = f(y) whenever y ∈ X, and
f ′(y) = max{f(x0), d(x0, y)} whenever y ∈ Y \X.

We shall consider the following cases to prove that f ′ belongs to UPY .
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Case 1: x ∈ X and y ∈ X.
Then max{f ′(x), f ′(y)} = max{f(x), f(y)} ≥ d(x, y).

Case 2: x ∈ Y \X and y ∈ Y \X.
Then max{f ′(x), f ′(y)} = max{f(x0), f(x0), d(x, x0), d(x0, y)} ≥

≥ max{d(x, x0), d(x0, y)} ≥ d(x, y).

Case 3: x ∈ X and y ∈ Y \X.
Then max{f ′(x), f ′(y)} = max{f(x), f(x0), d(x0, y)} ≥

≥ max{d(x, x0), d(x0, y)} ≥ d(x, y).

Case 4: x ∈ Y \X and y ∈ X.
Then max{f ′(x), f ′(y)} = max{f(x0), f(y), d(x, x0)} ≥

≥ max{d(x, x0), d(x0, y)} ≥ d(x, y).

Thus f ′ ∈ UPY .
Define the map τ = p ◦ s. Then τ(f)|X = p(f ′)|X = f whenever

f ∈ UTX since p(f ′) ≤ f ′. Thus p(f ′)|X ≤ f ′|X = f , and f is minimal
on X.

Moreover for any f, g ∈ UTX , we have

N(f, g) = N(τ(f)|X , τ(g)|X)

≤ N(τ(f), τ(g))

= N(p(f ′), p(g′))

≤ N(f ′, g′)

≤ N(f, g).

Hence we have that τ is an isometric map. �

Definition 4.4. (compare [12, Remark 7]) Let X be a subspace of an
ultrametric space (Y, dY ). Then (Y, dY ) is called a um-tight extension of
X if for any ultrametric ρ on Y that satisfies ρ ≤ dY and agrees with dY
on X ×X, we have that ρ = dY .

Remark 4.5. For any ultrametric um-tight extension Y1 of X, any ul-
trametric extension (Y2, d) of X and any nonexpansive map φ : Y1 → Y2

satisfying φ(x) = x whenever x ∈ X must necessarily be an isometric
map.

Indeed if that is not the case then the ultrametric ρ : Y1 ×Y1 → [0,∞)
defined by (x, y) 7→ ρ(x, y) = d(φ(x), φ(y)) would contradict the um-
tightness of the extension Y1 of X.

As was shown above, the map eX : (X, d) → (UTX , N) from an
ultrametric space (X, d) to its ultra-metrically injective hull (UTX , N)
defined by eX(a) = fa whenever a ∈ X is an isometric embedding.
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We shall proceed now with the help of Lemma 4.1 to show that the
embedding is um-tight, that is, UTX is a um-tight extension of eX(X).

Proposition 4.6. Let (X, d) be an ultrametric space and eX : X → UTX

be as defined above. Then UTX is a um-tight extension of eX(X).

Proof. Let ρ be an ultrametric on UTX such that ρ ≤ N and ρ(fx, fy) =
N(fx, fy) whenever x, y ∈ X. By Lemma 4.1 and the fact that ρ ≤ N ,
for any f, g ∈ UTX , we have

N(f, g) = sup
x1,x2∈X

{N(fx1 , fx2) : N(fx1 , fx2) > N(fx1 , f), N(g, fx2)}

≤ sup
x1,x2∈X

{ρ(fx1 , fx2) : ρ(fx1 , fx2) > ρ(fx1 , f), ρ(g, fx2)}

≤ ρ(f, g) since ρ(fx1 , fx2) ≤ max{ρ(fx1 , f), ρ(f, g), ρ(g, fx2)}.
Thus ρ = N . �

Proposition 4.7. (compare [14, Section 1.13]) Let (Y, d) be an ultramet-
ric um-tight extension of X. Then the restriction map defined by f 7→ f |X
whenever f ∈ UTY is a bijective isometric map UTY → UTX .

Proof. Let us choose a retraction map p : UPX → UTX that satisfies
the conditions of Proposition 4.2 and let φ : UTY → UTX : f 7→ p(f |X)
denote the composition of the restriction map with the retraction map p.
It is easy to check that φ is nonexpansive. Thus by Remark 4.5, φ must
be an isometry, because UTY is a um-tight extension of X (this is so since
UTY is a um-tight extension of Y and Y is a um-tight extension of X).

We can find an isometric embedding τ : UTX → UTY such that
τ(f)|X = f for every f ∈ UTX (compare Proposition 4.3). We there-
fore have

φ(τ(f)) = p(τ(f)|X) = p(f) = f for every f ∈ UTX .

This implies that φ is surjective. Injectivity of φ is clear. Thus φ is
bijective. In this case, φ has to be the inverse of τ and hence for any
f ∈ UTY , we have f |X = τ(φ(f))|X = φ(f) ∈ UTX , that is the map

UTY → UPX : f 7→ f |X
maps UTY onto UTX , without it being composed with p. Hence for any
ultrametric um-tight extension Y of X, the map

UTY → UTX : f 7→ f |X
is a bijective isometry between UTX and UTY . �

Theorem 4.8. (compare [1, Proposition 5]) Let X be a subspace of the
ultrametric space (Y, d). Then the following are equivalent:

(a) Y is an ultrametric um-tight extension of X.
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(b) d(y1, y2) = sup{d(x1, x2) : x1, x2 ∈ X, d(x1, x2) > d(x1, y1), d(x1, x2) >

d(x2, y2)} whenever y1, y2 ∈ Y .
(c) fy|X(x) = d(x, y), x ∈ X is minimal on X whenever y ∈ Y and the

map (Y, d) → (UTX , N) defined by y 7→ fy|X is an isometric embedding.

Proof. (a) ⇒ (b)
Let Y be an ultrametric um-tight extension of X. By Proposition 4.7, the
restriction map UTY → UTX is a bijective isometry between UTY and
UTX . Thus the extension Y ⊆ UTY satisfies condition (b), since UTX

satisfies it by Lemma 4.1.
(b) ⇒ (c)

Let x1, x2∈X and y1∈Y . Then we have that d(x1, x2)≤max{d(x1, y1), d(y1, x2)}.
Thus by condition (b) we have that d(x1, x2) ≤ d(y1, x2). Consequently for
y1, y2 ∈ Y we have by (b) that

d(y1, y2) = sup{d(x1, x2) : x1, x2∈X, d(x1, x2) >d(x1, y1), d(x1, x2)>d(y2, x2)}
≤ sup{d(y1, x2) : x2 ∈ X, d(y1, x2) > d(x2, y2)}
≤ d(y1, y2).

Similarly we have that d(x1, x2) ≤ max{d(x1, y2), d(y2, x2)} whenever x1, x2 ∈
X and y2 ∈ Y so that by condition (b) we get d(x1, x2) ≤ d(x1, y2). Thus for
y1, y2 ∈ Y we see by (b) that

d(y1, y2) = sup{d(x1, x2) : x1, x2 ∈ X, d(x1, x2)>d(x1, y1), d(x1, x2)>d(x2, y2)}
≤ sup{d(x1, y2) : x1 ∈ X, d(x1, y2) > d(x1, y1)}
≤ d(y1, y2).

Thus we conclude that d(y1, y2) = N(fy1 |X , fy2 |X).
As we have above, for any y1, y2 ∈ Y

(4.1) d(y1, y2) = sup{d(y1, x2) : x2 ∈ X, d(y1, x2) > d(x2, y2)}

and

(4.2) d(y1, y2) = sup{d(x1, y2) : x1 ∈ X, d(x1, y2) > d(x1, y1)}.

Notice that if we substitute x1 ∈ X for y1 and x2 ∈ X for y2, respectively,
we obtain the following equations
(4.3)
fy1(x2) = d(y1, x2) = sup{d(x1, x2) : x1 ∈ X and d(x1, x2) > d(x2, y2)}

whenever y1 ∈ Y, x2 ∈ X and
(4.4)
fy2(x1) = d(x1, y2) = sup{d(x1, x2) : x2 ∈ X and d(x1, x2) > d(x2, y2)}

whenever y2 ∈ Y, x1 ∈ X. We have therefore that the restriction fy|X is
minimal on X whenever y ∈ Y .
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(c) ⇒ (a)
Let ρ be an ultrametric on Y such that ρ(y1, y2) ≤ d(y1, y2) whenever
y1, y2 ∈ Y and ρ(x1, x2) = d(x1, x2) whenever x1, x2 ∈ X. Then according
to part (c) and the fact that fy|X is minimal whenever y ∈ X, we have

d(y1, y2) = N(fy1 |X , fy2 |X)

= sup{d(y1, x) : x ∈ X, d(y1, x) > d(x, y2)} by Equation (4.1)
= sup{d(x, y2) : x ∈ X, d(x, y2) > d(x, y1)} by Equation (4.2).

By substituting

d(x1, y2) = sup{d(x1, x2) : x2 ∈ X and d(x1, x2) > d(x2, y2)}

from Equation (4.4) into the formula

d(y1, y2) = sup{d(x1, y2) : x1 ∈ X and d(x1, y2) > d(x1, y1)}
from Equation (4.2) we obtain
d(y1, y2) =

= sup{d(x1, y2) : x1 ∈ X and d(x1, y2) > d(x1, y1)}
= sup{d(x1, x2) : x1, x2 ∈ X and d(x1, x2) > d(x1, y1), d(x1, x2) > d(x2, y2)}
= sup{ρ(x1, x2) : x1, x2 ∈ X and ρ(x1, x2) > ρ(x1, y1), ρ(x1, x2) > ρ(x2, y2)}
≤ ρ(y1, y2)

whenever y1, y2 ∈ Y . The last inequality holds by the light of the inequal-
ity

ρ(x1, x2) ≤ max{ρ(x1, y1), ρ(y1, y2), ρ(x2, y2)}
and the fact that ρ(x1, x2) > ρ(x1, y1) and ρ(x1, x2) > ρ(x2, y2). Thus,
we have that ρ(y1, y2) = d(y1, y2) whenever y1, y2 ∈ Y and hence (a)
follows. �

Remark 4.9. We see from Theorem 4.8 that there is only one isometric
embedding φ : Y → UTX satisfying φ(x) = fx whenever x ∈ X, since for
such an embedding we have

fy|X(x) = d(x, y) = N(φ(x), φ(y)) = N(fx, φ(y)) = (φ(y))(x).

Therefore fy|X = φ(y).
Thus one sees easily that the um-tight extension Y of X can be under-

stood as a subspace of the extension UTX of X. Hence UTX is maximal
among the ultrametric um-tight extensions of X.
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