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EXTENSIONS OF ULTRAMETRIC SPACES

COLLINS AMBURO AGYINGI

Abstract. The concept of the tight span of a metric space was
introduced and studied by Dress. It is known that his (Dress)
theory is equivalent to the theory of the injective hull of a metric
space independently discussed by Isbell some years earlier. Dress
showed in particular that for a metric space X the tight extension
TX is maximal among the tight extensions of X. In a paper by
Bayod et al., it was shown that Isbell’s approach can be modified
to work similarly for ultrametric spaces. They went ahead and
constructed the tight extension for an arbitrary ultrametric space
X, which in this article we shall call the ultrametric tight (um-
tight) extension of X and is denoted uTX . Continuing that work we
show in the present paper that large parts of the theory developed
by Dress do not use the triangle inequality of the metric and when
appropriately modified will hold unchanged for ultrametric spaces.
In particular we shall show that for an ultrametric space X, uTX

is a maximal (among the um-tight) extensions of X.

1. Introduction

We say that a metric space Y is “injective” if every mapping which
increases no distance from a subspace of any metric space X to Y can be
extended, increasing no distance, over X. These spaces were introduced in
[2] by Aronszajn and Panitchpakdi, and they called them “hyperconvex.”
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