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ON THE SUBMETRIZABILITY NUMBER AND
i-WEIGHT OF QUASI-UNIFORM SPACES AND
PARATOPOLOGICAL GROUPS

TARAS BANAKH AND ALEX RAVSKY

ABsTrRACT. We derive many upper bounds on the submetrizabil-
ity number and i-weight of paratopological groups and topologi-
cal monoids with open shifts. In particular, we prove that each
first countable Hausdorff paratopological group is submetrizable
thus answering a problem of Arhangelskii posed in 2002. Also
we construct an example of a zero-dimensional (and hence reg-
ular) Hausdorff paratopological abelian group G with countable
pseudocharacter which is not submetrizable. In fact, all results
on the i-weight and submetrizability are derived from more gen-
eral results concerning normally quasi-uniformizable and bi-quasi-
uniformizable spaces.

INTRODUCTION

This paper was motivated by the following problem of Arhangelskii [1,
3.11] (also repeated by Tkachenko in his survey [26, 2.1]): Does every
first countable Hausdorff paratopological group admit a weaker metrizable
topology? A surprisingly simple answer to this problem was given by
the authors in [4]. We just observed that each Hausdorff paratopological
group G carries a natural uniformity generated by the base consisting of
entourages {(z,y) € G x G :y € UzU"' NU 12U} where U runs over
open neighborhoods of the unit e in G. In [4] this uniformity was called the
quasi-Roelcke uniformity on G and denoted by Q. If G is first-countable,
then the quasi-Roelcke uniformity Q is metrizable, which implies that the
space G is submetrizable. Moreover, if the quasi-Roelcke uniformity Q is
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w-bounded, then the topology generated by the uniformity Q is metrizable
and separable, which implies that G has countable i-weight, i.e., admits
a continuous injective map onto a metrizable separable space.

In fact, for the submetrizability of G it suffices to require the count-
ability of the pseudocharacter ¥(Q) of Q, i.e., the existence of a count-
able subfamily &/ C Q such that U = Ax. So, the aim of the pa-
per is to detect paratopological groups G whose quasi-Roelcke uniformity
Q has countable pseudocharacter. For this we shall find some upper
bounds on the pseudocharacter ¥(Q). These bounds will give us upper
bounds on the submetrizability number sm(G) and the i-weight iw(G)
of a paratopological group G. In fact, the obtained upper bounds on
sm(G) and iw(G) have uniform nature and depends on the properties of
the two canonical quasi-uniformities £ and R on G called the left and
right quasi-uniformities of G. These quasi-uniformities are studied in
Sections 5 and 6. In Sections 3 and 4 we study properties of topological
spaces whose topology is generated by two quasi-uniformities which are
compatible in some sense (more precisely, are +-subcommuting or nor-
mally £-subcommuting). In Section 4 we prove that any two normally
+-subcommuting quasi-uniformities are normal in the sense of [4]. This
motivates the study of topological spaces whose topology is generated by
a normal quasi-uniformity. For such spaces we obtain some upper bounds
on the ¢-weight, which is done in Section 4. Section 1 has preliminary
character. It contains the necessary information of topological spaces,
quasi-uniform spaces, and their cardinal characteristics. In Section 7 we
present two counterexamples to some natural conjectures concerning sub-
metrizable paratopological groups.

1. PRELIMINARIES

In this section we collect known information on topological spaces,
quasi-uniformities, and their cardinal characteristics. For a set X by | X]|
we denote its cardinality. By w we denote the set of all finite ordinals and
by N =w \ {0} the set of natural numbers.

For a cardinal « by log(x) we denote the smallest cardinal A such that
2X > k.

1.1. Topological spaces and their cardinal characteristics. For a
subset A of a topological space X by A, A° and A° we denote the closure,
interior and interior of the closure of the set A in X, respectively.

A family N of subsets of a topological space X is called a network of
the topology of X if each open set U C X can be written as the union
JU of some subfamily & C N. If each set N € N is open in X, then N
is a base of the topology of X.
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A subset D of a topological space X is called strongly discrete if each
point € D has a neighborhood U,, C X such that the family (U, ).ep is
discrete in the sense that each point z € X has a neighborhood that meets
at most one set U,, z € D. It is easy to see that each strongly discrete
subset of (a Tj-space) X is discrete (and closed) in X. A topological space
X is called (strongly) o-discrete if X can be written as the countable union
X = U, ep, Xn of (strongly) discrete subsets of X.

A topological space X is called

e Hausdorff if any two distinct points z,y € X have disjoint open
neighborhoods O, > z and O, > y;

o collectively Hausdorff if each closed discrete subset of X is strongly
discrete in X;

o functionally Hausdorff if for any two distinct points z,y € X
there is a continuous function f : X — R such that f(x) # f(y);

o regular if for any point € X and a neighborhood O, C X there
is a neighborhood V,, C X of x such that V, C Og;

o completely regular if for any point x € X and a neighborhood
O, C X there is a continuous function f : X — [0,1] such that
f(z) =0and f~1([0,1)) C O;

o quasi-reqular if each non-empty open set U C X contains the
closure V' of another non-empty open set V C X;

o submetrizable if X admits a continuous metric (or equivalently,
admits a continuous injective map into a metrizable space).

It is clear that each submetrizable space is functionally Hausdorff.
In Section 7 will shall need the following property of strongly o-discrete
spaces.

Proposition 1.1. FEach strongly o-discrete Tychonoff space X is zero-
dimensional and submetrizable. Moreover, X admits an injective contin-
uous map into the Cantor cube {0,1}" of weight k = log(]X]).

Proof. The proposition trivially holds if X is discrete. So, we assume
that X is not discrete and hence infinite. Write X as the countable union
X = U,co, Xn of pairwise disjoint strongly discrete non-empty subsets
X, of X. Let BX be the Stone-Cech compactification of X. Using the
strong discreteness of each X,,, we can extend each continuous bounded
function f : X,, — R to a continuous bounded function on X. This implies
that the closure X,, of X,, in X is homeomorphic to the Stone-Cech
compactification SX,, of the discrete space X,, and hence has covering
dimension dim(8X,) = 0 (see [10, 3.6.7 and 7.1.17]). By the Countable
Sum Theorem |11, 3.1.8] for covering dimension in normal spaces, the o-
compact (and hence normal) space Z = J,, ., X, has covering dimension
dim(Z) = 0, which implies that its subspace X = J, . Xn is zero-
dimensional.

necw



224 TARAS BANAKH AND ALEX RAVSKY

Now we prove that X is submetrizable. For every n € w and every
x € X,, we can choose a closed-and-open neighborhood U, C X of x such
that U, N Uy.,, Xx = 0 and the indexed family (U,).ex, is discrete in
X. Then the union | J,cy, U, is a closed-and-open subset in X and the
function d,, : X x X — {0,1} defined by

0, ifz,y €U, for some z € X,, or 2,y ¢ U,cx, U

dn(x?y) = {

1, otherwise,

is a continuous pseudometric on X. Consequently, the function d =
maxpcy Q%dn is a continuous metric on X, which implies that X is sub-
metrizable.

It follows that the space X admits a continuous injective map into the
countable product Hnew D,, of discrete spaces D,, of cardinality |D,| =
1+ |X,| <|X|. By definition of the cardinal x = log(|X|), every discrete
space Dy, n € w, admits an injective (and necessarily continuous) map
into the Cantor cube {0,1}*. Then [], .., D, and hence X also admits a
continuous injective map into {0, 1}*~. |

For a cover U of a set X and a subset A C X we put St°(A;U) = A
and St" (A U) = {U e U : UNSt"(A;U) # 0} for n > 0.

1.2. Cardinal characteristics of topological spaces, I. For a topo-
logical space X let

e nw(X) = min{|N]: NV is a network of the topology of X} be the
network weight of X;

e d(X)=min{|]A|: AC X, A= X} be the density of X;

o hd(X)=sup{d(Y):Y C X} the hereditary density of X;

e 5(X) =sup{|D|: D is a discrete subspace of X} be the spread of

X;
e ¢(X) = sup{|D| : D is a closed discrete subspace of X} be the
extent of X;

o ¢(X) =sup{|U| : U is a disjoint family of non-empty open sets in
X} be the cellularity of X;

o de(X) =sup{|U| : U is a discrete family of non-empty sets in X'}
be the discrete extent of X;

o de(X) = sup{|U| : U is a discrete family of non-empty open sets
in X} be the discrete cellularity of X;

e [(X), the Lindelof number of X, be the smallest cardinal x such
that each open cover U of X has a subcover V C U of cardinality
V| < ks
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e [(X), the weak Lindeldf number of X, be the smallest cardinal &
such that each open cover U of X contains a subcollection V C U
of cardinality |V| < k with dense union [V in X;

e [*(X), the weak extent of X, be the smallest cardinal x such that
for each open cover U of X there is a subset A C X of cardinality
|A| < k such that X = St(A;U).

The cardinal characteristics nw, d, s, e, ¢, [ are well-known in General Topol-
ogy (see [10], [14]) whereas I, [* are relatively new and notations for these
cardinal characteristics are not fixed yet. For example, the weak Lindelof
number [ often is denoted by wL, but in [14, §3] it is denoted by wc and
called the weak covering number. According to [23], the weak extent [*
can be called the star cardinality. Spaces with countable weak extent are
called star-Lindelof in [22] and strongly star-Lindelof in [9]. Observe that
e < de and e(X) = de(X) for any Tj-space X.

The relations between the above cardinal invariants are described in
the following version of Hodel’s diagram [14]. In this diagram an arrow
f — g (resp f --» g) indicates that f(X) < g(X) for any (T3-) space X.

rx de l hi

In fact, the cardinal characteristics d, [, [, [* are initial representatives
of the hierarchy of cardinal characteristics [*™ and [*", n € %N , describing
star-covering properties of topological spaces (see the survey paper [22]
of Matveev for more information on this subject).

For a topological space X and an integer number n > 0 let

e [*"(X) be the smallest cardinal x such that for every open cover
U of X there is a subset A C X of cardinality |A| < & such that
St"(A;U) = X

e [*"(X) be the smallest cardinal s such that for every open cover
U of X there is a subset A C X of cardinality |A| < x such that
St™(A;U) is dense in X;

o "z (X) be the smallest cardinal x such that every open cover U
of X contains a subfamily V C U of cardinality |V| < x such that
St"(UV;U) = X
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o "z (X) be the smallest cardinal % such that every open cover U
of X contains a subfamily V C U of cardinality |V| < & such that
St"(UV;U) is dense in X;

o ["(X) = min,e, I*(X) and [** = min, ¢, [*"(X).

Observe that [*0 = | .|, 0 = d, I*z =, [*2 =, and [*! = [*.

In [7] the cardinal characteristics I*" and I*"2 are denoted by st,-l and
sty 1-1, respectively. In [9] spaces X with countable 173 (X)) and [*"(X)
are called n-star-Lindeldf and strongly n-star Lindeldf, respectively.

The following diagram describes provable inequalities between cardi-
nal characteristics 1*, I*", [*"2, and [*"2 for n € N. For two cardinal
characteristics f,g an arrow f — ¢ indicates that f(X) < g(X) for any
topological space X.

P9 o) k) pen o e s *E =] — s b

The unique non-trivial inequalities {*! < de and [*12 < dc in this
diagram follow from the next proposition whose proof can be found in [5].

Proposition 1.2. Any topological space X has I"'(X) < de(X) and
12 (X) < de(X).

For quasi-regular spaces many star-covering properties are equivalent.
Let us recall that a topological space X is called quasi-regular if each
non-empty open set U C X contains the closure V of another non-empty
open set V in X. The following proposition was proved in [5] (and for
regular spaces in [9]).

Proposition 1.3. Let X be a quasi-reqular space. Then

(1) de(X) =112 (X) = I*(X).

(2) If X is normal, then de(X) = I*1(X).

(3) If X is perfectly normal, then de(X) = ¢(X) = I*2(X).
(4) If X is collectively Hausdorff, then de(X) = de(X) = I*}(X).
(5) If X is paracompact, then de(X) = 1(X).

(6)

If X is perfectly paracompact, then de(X) = hl(X).

Proposition 1.3 implies that for quasi-regular spaces the diagram de-
scribing the relations between the cardinal characteristics simplifies to the
following form.
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12 ¥ I de 1"t =] —>hl
de —— l*“’\ >< s <nw
13 A I ¢ 0=d——>hd

Next, we consider some local cardinal characteristics of topological
spaces. Let X be a topological space,  be a point of X, and N, be
the family of all open neighborhoods of z in X.

e The character x,(X) of X at x is the smallest cardinality of a
neighborhood base at x.
e The pseudocharacter ¥, (X) of X at x is the smallest cardinality
of a subfamily & C N, such that U = N,.
e The closed pseudocharacter 1, (X) of X at x is the smallest car-
dinality of a subfamily & C N, such that Ny, U = Nyen, V-
It is easy to see that for any point x of a Hausdorff topological space X
we get
Vo (X) < (X) < Xa(X).
The cardinals
X(X) = sup xz(X), ¥(X)=supp,(X), and ¥(X)= sup¢,(X)
zeX zeX z€X
are called the character, the pseudocharacter, and the closed pseudochar-
acter of X, respectively. It follows that

(X)) < P(X) < x(X)
for any Hausdorff topological space X.

The (closed) pseudocharacter is upper bounded by the (closed) diago-
nal number defined as follows. Let X be a Hausdorff topological space.
By Ax = {(z,y) € X x X : x = y} we denote the diagonal of the square
X x X.

e The diagonal number A(X) of X is the smallest cardinality of a
family U of open subsets of X x X such that (U = Ax.
e The closed diagonal number A(X) of X is the smallest cardinality
of a family U of open subsets of X x X such that [, U = Ax.
It is easy to see that ¥(X) < A(X) < A(X) and ¥(X) < A(X) for any
Hausdorff space X.

Following [13, §2.1] we say that a space X has (regular) Gs-diagonal if
A(X) <w (resp. A(X) < w).

The (closed) diagonal number of a functionally Hausdorff space X is
upper bounded by
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e the submetrizability number sm(X) of X, defined as the smallest
number of continuous pseudometrics which separate points of X,
and

o the i-weight iw(X) of X, defined as the smallest number of con-
tinuous real-valued functions that separate points of X.

The following diagram describes relations between these cardinal char-
acteristics. In this diagram for two cardinal characteristics f, g an arrow
f — g indicates that f(X) < ¢g(X) for any functionally Hausdorff topo-

logical space X.
P A
X ¥ A

The unique non-trivial inequality 1w < sm - logdc in this diagram is
proved in the following proposition.

_—

sm w sm - logdc

Proposition 1.4. Fach infinite functionally Hausdorff space X has
w(X) - w=sm(X)-log(de(X)) and |X|< de(X)smX) < gwiw(X),

Proof. The inequality sm(X) - log(dc(X)) < iw(X) - w follows from the
inequalities sm(X) < iw(X) and de(X) < |X| < |[0,1]w(X)| = 20w (X)-w,
the latter of which implies log(de(X)) < log(2°*()«) < jw(X) - w.

Now we prove the inequalities iw(X) - w < sm(X) - log(de(X)) and
|X| < de(X)“*™X) The definition of the submetrizability number im-
plies that X admits a continuous injective map f : X — Haesm(X) M,
into the Tychonoff product of sm(X) many metric spaces M,. We lose
no generality assuming that each metric space M, is a continuous image
of X and hence d(M,) = dc(M,) < de(X) and [My| < d(My)¥. Then

X[< JI Mal< [T da)< < ] de(x)® =de(x)==m),
agsm(X) acsm(X) aesm(X)

By [10, 4.4.9], for every a € sm(X) the metric space M, admits a
topological embedding into the countable power H of the hedgehog H,, =
{(zi)iex €10,1)" : |{i € K : x; # 0}| <1} with k = de(X) > d(M,) many
spines. The hedgehog H,, can be thought as a cone over a discrete space D
of cardinality x. The discrete space D admits an injective continuous map
into the Tychonoff cube [0, 1]103("). Consequently, H,, admits an injective
continuous map into the cone over the Tychonoff cube [0, 1]'°8(%) which
implies that iw(Hy) < log(k) = log(de(X)) and iw(HY) < log(de(X)) -
w = log(de(X)). Then iw(X) < sm(X) - iw(HyY) < sm(X) - log(de(X)).
This completes the proof of the equality iw(X) - w = sm(X) - log(dc(X)).
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To complete the proof of the proposition, observe that
|X| SdC(X)wsm(X) < (210g dc(X))W'Sm(X) _ 210g(dc(X))-w-sm(X) _ 2wzw(X)
(]

1.3. Pre-uniform spaces and their cardinal characteristics. By an
entourage on a set X we understand any subset U C X x X containing the
diagonal Ax = {(z,y) € X x X : x =y} of X x X. For an entourage U
on X, point z € X and subset A C X let B(z;U) ={y € X : (z,y) € U}
be the U-ball centered at z, and B(A;U) = (J,ca B(a;U) be the U-
neighborhood of A in X.

Now we define some operations on entourages. For two entourages U, V
on X let

U™t ={(z,y) € X x X : (y,2) €U}

be the nverse entourage and
UV ={(x,z) € X x X : Jy € X such that (z,y) € U and (y,2) € V}

be the composition of U and V. It is easy to see that (UV)~! = V-1U~1.
For every entourage U on X define its powers U™, n € Z, by the formula:
U = Ax and U™ = U"U, U™ ! = UU"! for n € w. Define
also the alternating powers U™ and UT" of U by the recursive formulas:
U0 = UFO = Ay, and UE("HD) = gyFn, gF0tl) — gy=1y+" for n > 0.
If U is an entourage on a topological space X, then put U = Uex Bla;U)
be the closure of U in the product X4 x X where X is the set X endowed
with the discrete topology.

The following lemma proved in [5] shows that the alternating power
U7T?2 on an entourage U is equivalent to taking the star with respect to
the cover U = {B(z;U) : x € X }.

Lemma 1.5. For any entourage U on a set X and a point x € X we
get B(x; UTU) = St(z;U) where U = {B(x;U) : & € X}. Consequently,
B(z;UF2") = B(x; (UU)") = St"(a;U) for every n € N.

A family U of entourages on a set X is called a uniformity on X if it
satisfies the following four axioms:

(U1) for any U € U, every entourage V C X x X containing U belongs
to U;

(U2) for any entourages U,V € U there is an entourage W € U such
that W CcUNV,

(U3) for any entourage U € U there is an entourage V € U such that
VvV cU;

(U4) for any entourage U € U there is an entourage V € U such that
VcUu
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A family U of entourages on X is called a quasi-uniformity (resp. pre-
uniformity) on X if it satisfies the axioms (U1)—(U3) (resp. (U1)-(U2) ).
So, each uniformity is a quasi-uniformity and each quasi-uniformity is a
pre-uniformity. Observe that a pre-uniformity is just a filter of entourages
on X.

A subfamily B C U is called a base of a pre-uniformity & on X if
each entourage U € U contains some entourage B € B. FEach base of
a preuniformity satisfies the axiom (U2). Conversely, each family B of
entourages on X satisfying the axiom (U2) is a base of a unique pre-
uniformity (B) consisting of entourages U C X x X containing some
entourage B € B. If the base B satisfies the axiom (U3) (and (U4)), then
the pre-uniformity (B) is a quasi-uniformity (and a uniformity).

Next we define some operations over preuniformities. Given two pre-
uniformities U,V onaset X pptt UL ={U1: U eU},UNV ={UUV :
Ueld, VeVhuvyv={UnV: :Uec€lU, V eV} and let UV be
the pre-uniformity generated by the base {UV : U € U, V € V}. For
every n € w let U, UF™ U, U™ be the pre-uniformities generated
by the bases {U*" : U € U}, {UT" : U e U}, {U U UT : U € U},
{U*" NUT" . U € U}, respectively. Observe that U\ = U™ AUT™ and
UV™ = Y*" v YT, For a pre-uniformity U on a topological space X let
U be the pre-uniformity generated by the base {U : U € U}.

The pre-uniformities U*™, UF™, UN", U™ feet into the following dia-
gram (in which an arrow ¥V — W indicates that V C W):

u\/(nJrl) > Y uvn 5 u/\(nfl)
U

We shall say that a preuniformity &/ on X is

o +tn-separated if U™ = Ax;

e Fn-separated if UT" = Ax;

e n-separated if U is both £n-separated and Fn-separated.
Observe that for an odd number n a pre-uniformity U is n-separated if
and only if it is +n-separated if and only if it is Fn-separated (this follows
from the equality (U+")~! = UT" holding for every entourage U).

This equivalence does not hold for even n:

Example 1.6. For every m € N consider the entourage U,, = {(z,y) €
Ry xRy :y € {z}U[x+m,00)} on the half-line R} = [0,00). The family
{Um }men is a base of a quasi-uniformity & on Ry which is F2-separated
but not +2-separated.
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Each pre-uniformity I/ on a set X generates a topology 774 consisting of
all subsets W C X such that for each point x € W there is an entourage
U € U with B(z;U) C W, see [8]. This topology 7, will be referred to as
the topology generated by the pre-uniformity U. If U is a quasi-uniformity,
then for each point x € X the family of balls {B(z;U) : U € U} is
a neighborhood base of the topology 7y at x. This implies that for a
quasi-uniformity & on a set X the topology 7, is Hausdorff if and only
if for any distinct points z,y € X there is an entourage U € U such
that B(z;U) N B(y;U) = 0 if and only if UU™' = Ax if and only
if the quasi-uniformity U is +2-separated. It is known (see [18] or [19])
that the topology of each topological space X is generated by a suitable
quasi-uniformity (namely, the Pervin quasi-uniformity, generated by the
subbase consisting of the entourages (U x U) U ((X \ U) x X) where U
runs over open sets in X).

Now we consider some cardinal characteristics of pre-uniformities. Let
U be a pre-uniformity on a topological space X.

o The boundedness number {(U) of U is defined as the smallest car-
dinal x such that for any entourage U € U there is a subset A C X
of cardinality |A| < k such that B(4;U) = X

e the weak boundedness number {(U) of U is defined as the smallest
cardinal x such that for any entourage U € U there is a subset
A C X of cardinality |A| < x such that B(A4;U) is dense in X;

e the character x(U) of U is the smallest cardinality of a subfamily
V C U such that each entourage U € U contains some entourage
V ey,

e the pseudocharacter ¥(U) of U is the smallest cardinality of a
subfamily ¥V C U such that "V = "U;

e the closed pseudocharacter ¥(U) of U is the smallest cardinal-
ity of a subfamily V C U such that for every z € X we get

Nvev B(@; V) = Nyey B(a; U) (so, pU) = p(U) );

o the local pseudocharacter )(U) of U is the smallest cardinal & such
that for every x € X there is a subfamily V, C U of cardinality
|Vi| <k such that ey, B(2;V) =gy Bl; U).

For any Hausdorff topological space X and a quasi-uniformity U gen-
erating the topology of X we get the inequalities /(X ) = ¢ (U) < p(U),
P(X) < P(U) and x(X) < x(U), which fit into the following diagram (in
which an arrow a — b indicates that a < b).

P(X) — (X)) —x(X)

L

Y(U) ——=DU) ——xU)
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The boundedness number ¢(U/) combined with the pseudocharacter
¥ F2(U) can be used to produce a simple upper bound on the cardinality
of a F2-separated pre-uniform space (cf. [6, 4.3]).

Proposition 1.7. Any set X has cardinality | X| < (U™ @ for any
F2-separated pre-uniformity U on a set X.

Proof. The pre-uniformity ¢¥2, being separated, contains a subfamily
V C U of cardinality |V| = 1 (UF?) such that (., V'V = Ax. By the
definition of the boundedness number £(U), for every entourage V € V
there is a subset Ly C X of cardinality |Ly| < ¢(U) such that X =
B(Ly;V). For every x € X choose a function f, € []y ¢y, Lv assigning
to every entourage V' € V a point f,(V) € Ly such that z € B(f,(V); V).
We claim that for any distinct points z,y € X the functions f;, f, are
distinct. Indeed, the choice of the family V yields an entourage V € V
such that (z,y) ¢ V='V. Then f,(V) # f,(V) and hence f, # f,. This
implies that

X] < Tlyey [Lv] < 6OV = e @™, 0

Following [4] we define a quasi-uniformity & on a topological space X
to be normal if for any subset A C X and entourage U € U we get A C
B(A;U )O. A topological space X is called normally quasi-uniformizable
if the topology of X is generated by a normal quasi-uniformity. Normally
quasi-uniformizable spaces possess the following important normality-

type property proved in [4].

Theorem 1.8. Let X be a topological space and U be a mormal quasi-
uniformity generating the topology of X. Then for every subset A C X
and entourage U € U there exists a continuous function f : X — [0,1]
such that A C f~(0) and f([0,1)) C B(A4; U)O.

1.4. Cardinal characteristics of topological spaces, II. Let X be a
topological space. An entourage U on X is called a neighborhood assign-
ment if for every x € X the U-ball B(x;U) is a neighborhood of z. The
family plUx of all neighborhood assignments on a topological space X is a
pre-uniformity called the universal pre-uniformity on X. It contains any
pre-uniformity generating the topology of X and is equal to the union of
all pre-uniformities generating the topology of X.

The universal pre-uniformity pl{x contains

e the universal quasi-uniformity qUx = J{U C pUx : U is a quasi-
uniformity on X}, and

o the universal uniformity Ux = |J{U C pUx : U is a uniformity on
X}
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of X. It is clear that Ux C qUx C pUx. The interplay between the
universal pre-uniformities pldx, ¢ix and Ux are studied in [5].

Since the topology of any topological space is generated by a quasi-
uniformity, the universal quasi-uniformity gl{x generates the topology of
X. In contrast, the universal uniformity Ux generates the topology of X
if and only if the space X is completely regular.

Cardinal characteristics of the pre-uniformities pldx, gdx and Ux or
their alternating powers can be considered as cardinal characteristics of
the topological space X. In particular, for a Hausdorff space X we have
the equalities:

X(X) = x(pUUx), $(X) = ¢(pUUx), (X) = d(pUx), AX) = p(pUTF?).

The last equality follows from Lemma 1.5. On the other hand, the bound-
edness number £(plx) of pUx coincides with the Lindel6f number [(X)
of X.

Observe that for the universal pre-uniformity pl{x on a Hausdorff topo-
logical space X the upper bound |X| < z(pux)¢<1)“§2> proved in Propo-
sition 1.7 turns into the known upper bound |X| < I(X)2(X).

Having in mind the equality I(X) = ¢(plx), for every n € N let us
define the following cardinal characteristics:

X)) = (U™, (X)) = 0(pUR™), gl (X) = L(qU™),
(X)) = L(pUFET™), (X)) = L(pUL™), T (X) = L(qgUF"),
(X)) = LpUR"™) X)) = ApURT), g (X)) = (gUR™),
(X)) =AU, (X)) = pUX"), gl (X)) = A(gUR™).
Let also

(X)) =min""(X), ¢*(X)=mingl""(X), and ul(X)="L0Ux).

neN neN

Observe that wl(X) = (UL™) = LUE™) = LUL™) = (UY™) for every
n € N (this follows from the equality Ux = Z/l)ﬂ?" = UF" holding for every
n € N).

The above cardinal characteristics were introduced and studied in [5].

Some inequalities between the cardinal characteristics ¢*7, (¥ (/"
OV qUE g F g™ g0V and wl are described in the following diagram
in which an arrow a — b indicates that a(X) < b(X) for any topological
space X.
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E\/n

qg\/n

\
/

E:Fn VARL ng:n ul qZ:I:n g:ﬁ:n Z:i:n

/
\

qg/\n

g/\n

It turns out that the cardinal invariants [**, [*"2, [*", and [*"% can be
expressed via the cardinal invariants (™, (£ ¢Fm ¢Em for a suitable
number m. The following proposition is proved in [5] (or can be easily
derived from the definitions).

Proposition 1.9. For every n € w we have the equalities:

= gIQn’ = ZIQn’ l*n% — gi(2n+1) ¥ ny _ g:t(2n+1).

The following proposition (proved in [5]) describes the relation of the
cardinal invariants ¢£7, ¢¥" to classical cardinal invariants.

Proposition 1.10. Let X be a topological space. Then

(1) MH(X) < s5(X) < gV (X) < £71(X) < nw(X);

(2) e(X) < de(X) < gf*'(X) < £71(X) = U(X);

(3) e(X) < qfFH(X) < £FHX) < d(X);

(4) If X is quasi-regular, then (F3(X) = [*'2 (X)) = (%(X) = de(X);

(5) If X is completely regular, then ¢f*>(X) = ¢¢*(X) = ul(X) =
de(X).

Taking into account Propositions 1.3, 1.9 and 1.10, we see that for
quasi-regular spaces the cardinal characteristics (=7, ¢Fn, ¥ ¢/ gvn
relate to other cardinal characteristics of topological spaces as follows.
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[ 12 %1% 1+ ¥ — | — Rl

s 1, [
N Nl

N NN
| | L

73 — 5 772 — 1

de = (¥ =

rw

For Tychonoff spaces we can add to this diagram the cardinal charac-
teristics qéi", gl*", qfV", and ul:

1 1
13 lE

I — hl

l
Z
w r\ M
414 L/IQ qéil
/w 4/1 \/\/1 /\/1 ZA’% /\/3 /\/34’ [AZ IV'Z» [Al q/A s »q[\/ /\/1 - s nw
\\Z / \\ / // %ﬁl
73 c — ﬁ'
l l *0

Zix — M3 772 — " €i1

l” [%:f

——d— hd

Question 1.11. Which cardinal characteristics in the above diargams are
pairwise distinct?

2. i-WEIGHT OF NORMALLY QUASI-UNIFORMIZABLE
TOPOLOGICAL SPACES

In this section we apply Theorem 1.8 to derive some upper bounds on
the i-weight of a normally quasi-uniformizable space.

Proposition 2.1. Let X be a topological space whose topology is generated
by a normal quasi-uniformity U. The space X has i-weight iw(X) < k
for some cardinal k if there exists a family of subsets {Aq}ack of X and
a family of entourages {Uq}ack C U such that for any distinct points
x,y € X there is a € K such that x € A, and y ¢ B(Aq; Uy).

Proof. For every a € k apply Theorem 1.8 to construct a continuous map
fa : X —[0,1] such that f,(As) C {0} and f;1([0,1)) C B(Aa;Ua). It
follows that the family of continuous maps {f,}acwx separates points of
X. So, iw(X) < k. O

This proposition will be used to prove:
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Theorem 2.2. A Hausdorff space X has i-weight iw(X) < ¥ (A~AU) -
L(A) for any normal quasi-uniformity U generating the topology of X and
any pre-uniformity A on X such that (VATTAU = Ax.

Proof. If the cardinal ¥(A~'AU) is finite, then (A~1AU) = 1, which
implies that A~'AU = Ax = A = U for some A € A and U € Y. In this
case {(A) = |X| and hence iw(X) < |X| < £(A).

So, we assume that the cardinal x = ¥(A~1AU) is infinite. Since
NA-1AU = Ax, we can choose subfamilies (A4 )aer C A and (Uy)aecx C
U such that ﬂan(x,A;lAaUa) = {z} for every x € X. For every
a < k choose a subset Z, C X of cardinality |Z,| < ¢(A) such that X =
B(Z4; An). Consider the family of sets Z = (J,c, {B(2;4a) : 2 € Za}.
We claim that for any distinct points x,y € X there is a set Z € Z and
ordinal o € k such that z € Z and y ¢ B(Z;U,).

By the choice of the families (A,), (Uy), for the points x,y there is an
index « € K such that y ¢ B(m;A;lAaUa). Since X = B(Z4; Aa), we
can find a point z € Z, such that z € B(z; A,) and hence z € B(x; AY).
We claim that the set Z = B(z;A,) € Z has the required proper-
ties: x € Z and y ¢ B(Z;U,). To derive a contradiction, assume
that y € B(Z;U,) which implies y € B(Z;U,) = B(B(z;44);Us) =
B(z; AaUs) C B(B(2;A3Y); AyUy) = B(x; Ag' ALUy,). But this contra-
dicts the choice of the index a.

This contradiction allows us to apply Proposition 2.1 and conclude that

(X)) < |2 k5 < aen | Zal - 5 < B2 0(A) = GATAU) - ((A). O

Applying Theorem 2.2 to some concrete pre-uniformities A, we get the
following corollary.

Corollary 2.3. Let X be a functionally Hausdorff space and U be a
normal quasi-uniformity generating the topology of X. If for some n € N
the quasi-uniformity U is

(1) £(4n — 2)-separated, then iw(X) < pUFE=3)) . gVEr-1) <
X(U) - gV (X);

(2) F(4n — 1)-separated, then iw(X) < PUTE=2)) . pY*+Cn-1)) <
X(U) - g+ =1(X);

(3) £(4n)-separated, then iw(X) < pUTE=D) gV M) < x(U) -
qEV(Q”) (X),

(4) F(4n+1)-separated, then iw(X) < YUTE)) - LUFE) < x(U)-
T (X).
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Proof. 1. If U is £(4n — 2)-separated, then for the pre-uniformity A =
UEC=1)  (yF2n=1) e get

./471./4]/{ C u:t(anl)u:t(anl)u — Z/{:I:(4n73)u — u:‘:(4n73)
and hence NATAU Cc NATAUU = (U2 = Ax. Applying
Theorem 2.2 to the pre-uniformity A = UY2"~1 we get

ZU}(X) < E(ui(éln—?))) . g(u\/(2n—1)) < X(U) _qg\/(2n—l)(X).

2. If U is F(4n — 1)-separated, then for the pre-uniformity A =
UTCP=D) we get
A—IAU — u¥(2n—l)ui(2n—l)u — uI(4n—2)u — u¥(4n—2)
and hence NATAU ¢ NATAUU = NUFTE=D = Ax. Applying
Theorem 2.2 to the pre-uniformity A = U*?*~D we get
zw(X) < a(uq:(4nf2)) .E(u:t(anl)) < X(U) .qut(2n71)(X).

3. If U is 4(4n)-separated, then for the pre-uniformity A = UV we
get
A_lAu C ui(Qn)uI(Qn)u _ ui(4n—1)u _ ui(4n—1)
and hence N A-TAU C NATTAUU = (U = Ax. Applying
Theorem 2.2 to the pre-uniformity A = UV, we get

zw(X) < @(ui(@t—l)) . E(ui(Qn) vu¥(2n)> < X(U) . qZV(Q") (X)

4. IfU is F(4n + 1)-separated, then for the pre-uniformity A = 4/F(")
we get
AT AY = YTy T2y — 14F(4n)
and hence NATAU ¢ NATAUU~' = NUTEHD = Ax. Applying
Theorem 2.2 to the pre-uniformity A = UF2") | we get

iw(X) < @(z,ﬁ(%)) .g(uﬂF@n)) < x(U) - qg:F(Qn)(X)_ 0
Corollary 2.3 implies:

Corollary 2.4. If X is a Hausdorff space and U is a normal quasi-
uniformity generating the topology of X, then the space X has i-weight
iw(X) < pU) - LUV U < xU) - LUYY). Moreover, if the quasi-
uniformity U is

(1) F3-separated, then iw(X) < Y(UT?) - LU) < x(U) - ¢fFH(X);

(2) +4-separated, then iw(X) < Y(UE) - 0UV?) < x(U) - ¢V (X);
(3) Fb5-separated, then iw(X) < pUTH) - LUT?) < x(U) - ¢T3 (X);
(4) +6-separated, then iw(X) < pUT®) - LUY3) < x(U) - ¢fV3(X);
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(5) F7-separated, then iw(X) < YUTS) - LUT3) < x(U) - ¢fF3(X);
(6) +8-separated, then iw(X) < Y(UET) - LUV*) < x(U) - ¢fV*(X);
(7) F9-separated, then iw(X) < P(UT®) - LUTY) < xU) - ¢fTH(X);
(8) £10-separated, then iw(X) < pU?) - LUV?) < x(U) - de(X)

3. BI-QUASI-UNIFORMIZABLE SPACES

In this section we introduce so-called bi-quasi-uniformizable spaces and
obtain some upper bounds on the submetrizability number and i-weight
of such spaces. As a motivation, consider the following characterization.

Proposition 3.1. For two quasi-uniformities L and R on a set X the
following conditions are equivalent:

(1) LR CcRIL;

(2) R£ c LTIR;

(3) L s a quasi-uniformity;

4) R is a quasi-uniformity.

Proof. (1) & (2) and (3) < (4): Since (ﬁR‘l)_l = RL™L, the inclusion
LR™Y c R7IL is equivalent to RL™! € £L7'R. By the same reason,
LR~ is a quasi-uniformity if and only if RL™! is a quasi-uniformity.

(1) = (3): f LR~ € R™1L, then
LRI=(LL(RT'R Y =LLRHRICLR LR '=(LR (LR,
which means that the pre-uniformity LR ! is a quasi-uniformity.

(3) = (1): If LR™! is a quasi-uniformity, then LR™1 = LR™ILR™! C
R7IL. 0

Motivated by Proposition 3.1 let us introduce the following

Definition 3.2. Two quasi-uniformities £ and R on a set X are called

o commuting if LR = RL;
o +-subcommuting if LR™' C R™'L and RL™! C L7'R.

A topological space X is defined to be bi-quasi-uniformizable if the topol-
ogy of X is generated by two +-subcommuting quasi-uniformities.

Commuting pairs of (quasi-)uniformities were studied in [29], [30] (and
[15]).

Theorem 3.3. For any £-subcommuting quasi-uniformities L, R gen-
erating the topology T of a topological space X the pre-uniformity Q =
LRV RL is a uniformity generating a completely regular topology
To, weaker than the topology T of X. If the space X is Hausdorff, then
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the topology To generated by the uniformity Q is Tychonoff, the space X
is functionally Hausdorff and has submetrizability number

sm(X) < P(Q) < x(£) -x(R)
and i-weight
iw(X) < P(Q) -1og(¢(Q)) < x(£) - x(R) - log(de(X)).

Proof. By Proposition 3.1, the pre-uniformity Q is a quasi-uniformity.
Since Q7! = Q, it is a uniformity. Then the topology 7o generated by
the uniformity Q is Tychonoff (see [10, 8.1.13]) Since Q C L, the topology
Tg is weaker than the topology 7, = 7 of the space X.

Now assume that the topology 7 is Hausdorff. In this case for any
distinct points x,y € X we can find entourages L € £ and R € R such
that B(z; L)NB(y; R) = 0. Theny ¢ B(x; LR™') and hence (y,z) ¢ ) Q,
which means that the uniformity Q is separated and the topology 7¢
generated by Q is Tychonoff. Consequently, the space X is functionally
Hausdorft.

To show that sm(X) < ¢(Q), fix a subfamily V C Q of cardinality
[V| = ¥(Q) such that |V = Ax. By [10, 8.1.11], for every entourage
V' € V there exists a continuous pseudometric dy on X such that the
entourage [dyv]<1 = {(z,y) € X x X : dy(z,y) < 1} is contained in V.
Then the family of pseudometrics D = {dy }v¢y separates points of X,
which implies that sm(X) < |D| < |V| = (Q).

Taking into account that the topological weight of a metric space is
equal to its boundedness number, which does not exceed the discrete
cellularity, and applying Proposition 1.4, we conclude that

iw(X) < (Q)-1log(l(Q)) < x(Q) -log(de(X)) < x(£L) - X(R) - log(de(X)).
|
Theorem 3.3 implies:

Corollary 3.4. Each Hausdorff bi-quasi-uniformizable topological space
is functionally Hausdorff.

We do not know if this corollary can be reversed.

Problem 3.5. Is each functionally Hausdorff space bi-quasi-uniformiz-
able?

Proposition 3.6. Let L, R be two +-subcommuting quasi-uniformities
generating the same Hausdorff topology on X. If the quasi-uniformities
L7 R~ generate the same topology on X, then the quasi-uniformities
L and R are 3-separated.
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Proof. Given two distinct points x,y € X we shall find an entourage
R € R such that (z,y) ¢ R"'RR™'. Since the topology generated by
the quasi-uniformities £ and R on X is Hausdorff, there are two en-
tourages L € £ and R € R such that B(z; R) N B(y; LL) = §) and hence
(z,y) ¢ RL™YL~!. Replacing R by a smaller entourage, we can addi-
tionally assume that B(y; R) C B(y; L). Then B(x; R) N B(y; RL) = 0
and hence y ¢ B(x; RL™'R™'). Since the quasi-uniformities £ and R
are t+-subcommuting, for the entourages L and R there are entourages
Lel and R € R such that LR c RL'. Since quasi-uniformities £
and R~ generate the same topology on X, for the entourage L~! there
is an entourage R € R such that B(z; R~ ) C B(x; L=1). Then for the
entourage R = RNRNR we get B(z; R"'RR™') € B(x; R"'RR™Y) C
B(z; L'RR™) € B(z; RL™'R") and hence y ¢ B(xz; R"'RR™"). So,
NRIRR™! = Ax and after inversion, (YRR 'R = Ax, which means
that the quasi-uniformity R is 3-separated. By analogy we can prove that
the quasi-uniformity £ is 3-separated. d

4. NORMALLY BI-QUASI-UNIFORMIZABLE SPACES

Observe that for two quasi-uniformities £, R on a set X the inclusion
LR™YCRILis equivalent to the existence for every entourages L € £
and R € R two entourages L e £ and R € R such that R"'L ¢ LR
Changing the order of quantifiers in this property we obtain the following
notion.

Definition 4.1. A topological space X is called normally bi-quasi-uni-
formizable if its topology is generated by quasi-uniformities £ and R sat-
isfying the following properties:
eVLef 3L e L YReR IR € R such that R~'L € LR~ and
L7'RC RL™; ) o
e VReR JReR VL € L IL € L such that L7'R C RL™! and
R'Lc RL7..
In this case we shall say that the quasi-uniformities £ and R are normally
+-subcommuting.

By analogy we can introduce normally commuting quasi-uniformities.

Definition 4.2. Two quasi-uniformities £ and R on a set X are defined
to be normally commuting if they satisfy the following two conditions:

eVL e £ 3L e L YReR IR € R such that RL C LR and
LR C RL;
eVReR 3ReR VL e L 3L € L such that LR C RL and
RL C RL.
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Proposition 4.3. Any two normally £-subcommuting quasi-uniformities
L, R generating the same topology on a set X are normal. Consequently,
each normally bi-quasi-uniformizable topological space is normally quasi-
uniformizable.

Proof. To show that £ is normal, fix a subset A C X and entourage L € L.
Since £ and R are normally +-subcommuting, for the entourage L there
exists an entourage L € £ such that for every entourage R € R there is an
entourage R € R with L~'R ¢ RL~'. We claim that B(A; L) C B(A; L).
Given any point € B(A; L), we need to show that € B(A; L). Given
any neighborhood O, C X of z, find an entourage R € R such that
B(xz; R) C O,. By the choice of the entourage L, for the entourage R
there is an entourage R € R such that L~ 'R ¢ RL™!. It follows from
x € B(A;L) that B(z; L") N A # § and hence 0§ # B(z; L 'R)N A C
B(x; RL™Y) N A. Then () # B(z;R) N B(A4;L) C O, N B(A; L), which
means = € B(A;L). So, B(A;L) ¢ B(A; L) and hence A ¢ B(A;L)° C
B(A4; L)o, which means that £ is normal. By analogy we can prove the
normality of the quasi-uniformity R. O

Theorem 4.4. If L and R are two normally +-subcommuting quasi-
uniformities generating the topology of a Hausdorff topological space X,
then the quasi-uniformities LR~ and RL™' are 1-separated and have
pseudocharacter

(1) (LR =(RLT) < (LLT) - U(L™Y) S P(LLTY) - qfTH(X);

(2) (LR = p(RLTY) < P(LTL) - U(L) < P(LTL) - gl (X) if
LY R are normally +-subcommuting and generate the same
topology on X ;

(3) Y(LR™Y) = Y(RL™Y) < Y(LLTL)L(LLTIVLTIL) < P(LLTIL):
qlV?(X) if the quasi-uniformities £ and R are normally commut-
ing and LLL = Ax;

(4) YLRY) = H(RL) < H(ALAL) - £(A) - (£2(X) for amy pre-
uniformity A on X such that (ALAL = Ax.

Proof. First we show that the quasi-uniformities LR~! and RL™! are
1-separated. Since the topology of X is Hausdorff, for any distinct points
z,y € X we can find two disjoint open sets O, > x and O, > y. Taking
into account that the quasi-uniformities £ and R generate the topology of
X, we can find two entourages L € £ and R € R such that B(z; L) C O,
and B(y; R) C O,. Then B(z; L)NB(y; R) = 0 and hence y ¢ B(x; LR™1)
and z ¢ B(y; RL™!'), which implies that LR = Ax = RL™.
So, the quasi-uniformities LR ™! and RL ™! are 1-separated. Taking into
account that (ER_l)_l = RL™! we conclude that )(LR™L) = »(RL™L).
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1. Now we shall prove the inequality ¥(£LR™1) < (LL™Y) - £(L71).
Fix a family of entourages A C £ of cardinality |A| < ¥(LL~1) such that
Niea LL7!' = Ax. Replacing every L € A by a smaller entourage, we
can assume that (), o, (LL)(LL)™" = Ax.

Since the quasi-uniformities £ and R are normally +-subcommuting,
for the entourage L € L there exists an entourage L € L such that
for any entourage R € R there exists an entourage R € R such that
L 'R c RL™!. Replacing L by L N L, we can assume that L C L. For
the entourage L choose a subset Z;, C X of cardinality | Zy,| < ¢(£~") such
that X = B(ZL;E_l). For every z € Zj choose an entourage R, € R
such that B(z; R.) C B(z; L). By the choice of L, for the entourage R,
there exists an entourage R. € R such that L~ 1R C R.L™'. Consider
the family

P = U{(L,Rz):ZEZL}CﬁxR.
LeA

We claim that for any distinct points ,y € X there is a pair (L, R,)eP
such that B(x; L) N B(y; R,) = 0. By the choice of the family A, there
is an entourage L € A such that ¢ B(y; LLL™'L™'). Since yeX =
B(Zp; L"), there exists a point z € Z, such that y € B(z; L") and
hence z € B(y; L). We claim that the pair (L,R.) € P has the desired
property: B(z; L)NB(y; R.) = 0. Assuming that B(z; L) N B(y; R.) # 0,
we would conclude that

z€ By R.L™) € B L' R.L™") C Bz R.LT'L))
C B(z~LL71L*1) C B(y;ELLflLfl) - B(y,LLLilLfl)

which contradicts the choice of L. So B(x; L) N B(y; R.) = 0, which is
equivalent to y ¢ B(z; LR;'). Then

LR S|Pl <D 1 Zel S IA[-6LTY) S p(LL™t) - 4L,
LeA

2. If the quasi-uniformities £~! and R ! are normally £-subcommuting
and generate the same topology on X, then by Proposition 3.6, this
topology is Hausdorff, which allows us to apply the first item to the
quasi-uniformities £71,R~! and obtain the upper bound (L 'R) <
Y(L7LL) - 4(L). The d-subcommutativity of £=! and R~! implies that
BRLT) < Y(LIR). So,

YLR™Y) = p(RLTY) < Y(LTIR) < (L7L)(L) < P(L71L)-qlF (X).
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3. Next, assuming that the quasi-uniformities £ and R are normally
commuting and (JLL 1L = Ax, we prove the inequality ¥(RL™!) =
YLR™Y) < (LL7IL) - H(LL™Y vV L7IL). Fix a subfamily A C £ of
cardinality |A| = ¢(LL7L) such that (., LL™'L = Ax. Replac-
ing every entourage L € A by a smaller entourage, we can assume that
MNiea L?’L73L = Ax.

Since the quasi-uniformities £ and R are normally commuting and
normally +-subcommuting, for every entourage L € A there exists an
entourage L € £, L C L, such that for every entourage R € R there
exists an entourage R € R such that LR ¢ RL and L~'R c RL~.

By the definition of the boundedness number ¢(LL~VLTIL), for every
L € A there exists a subset A;, C X of cardinality |Ar| < {(LL7VLTL)
such that X = B(Ap; LL-'NL~'L).

For every point a € Ap choose an entourage R, € R such that

B(a; Rq) C B(a; L). By the choice of L for the entourage R, there exists
an entourage R, € £ such that LR, C R, L, and for the entourage R, € R
there is an entourage R, € R such that L='R, € R,L~'. Consider the
family of pairs

P=J{L.R):ac AL} CLXR.
LeA
We claim that for any distinct points x,y € X there exists a pair (L, R) €
P such that B(z; L) N B(y; R) = 0. Given two distinct points z,y € X,
find an entourage L € A such that (z,y) ¢ L?L—3L.

Since y € X = B(AL,Ei N L 'L), we can find a point a € Ay
such that y € B(a; LL~' N L~'L) and hence y € B(a; LL Y and a €
B(y; L"'L) ¢ B(y; L™'L). We claim that B(; L) N B(y; Ra) = 0. To
derive a contradiction, assume that B(x; L) N B(y; Ra) # 0. Observe that

B(y;R,) € B(a; LL™'R,) € B(a;LR,L™ ') C B(a; R,LL™") C
B(a; LLL™Y) ¢ B(y; L"'LLLL™Y).

Then § # B(z; L) N B(y; Ry) € B(x; L) N B(y; L-'LLLL™") implies y ¢
B(z; L?L~3L), which contradicts the choice of the entourage L. This
contradiction shows that B(z; L) N B(y; R,) = # and hence

YRLT) = (LR <Pl < Y [Av] S @(LLT'L) - H(LL™VLTL).

LeA

4. Finally we prove that $(LR™!) = Y(RL™) < (A TAL) - ((A) -
¢*2(X) for any pre-uniformity A on X such that N A—TAU = Ax. If
Y(ALAL) is finite, then ¥(A~1AL) = 1, which implies that A~1AL =
Ax = A =L for some A € Aand L € £. In this case ¢(A) = |X]|
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and the topological space X is discrete. Then for every point z € X
we can choose an entourage R, € R such that B(z;R,) = {z}. Then
Noex BeL™ = Nyex Re = Ax and hence (RL™Y) < |X| = ((A) <
P(ATLAL) - U(A) - 1F2(X).

So, we assume that the cardinal k = (A1 AU) is infinite. Since
N A-LAL = Ax, we can choose subfamilies (A4 )aer C A and (Ly)acx C
L such that ., B(z, Az' Ao L3) = {z} for every z € X.

For every a < k consider the entourage A, € A and find a subset
Zo C X of cardinality |Z,| < £(A) such that X = B(Z,; As). Since
the quasi-uniformities £ and R are normally +-subcommuting, for the
entourage L, there is an entourage L, such that for every R € R there
is R, € R such that L;'R C RL;".

Now fix any point z € Z,. The normality of the quasi-uniformity £
(proved in Proposition 4.3) guarantees that B(z; Ao, L2) C B(z; Ao L3) .
Put W, . = B(z;AaLg)o. For every point y € X \ W, . choose an
entourage R, € R such that B(y; RyR,) N B(z; AoL%) = 0 and hence
B(y; R2ZL,Y) N B(z; AgLa) = 0. For every y € X \ B(z; AoL3) we can
replace R, by a smaller entourage and assume additionally that B(y; R,)
is disjoint with B(z; A, L3).

By the choice of the entourage L, for every y € X \ W, , there is an
entourage Ry € R such that Ry C Ry and Z;lfay C RyL;*'. For every
y € W, choose an entourage Ry € R such that B(y; Ry) C Ws,.. Now
consider the neighborhood assignment V' = {J,cx{y} x B(y; R, N Ly).
By the definition of ££2(X), there exists a subset A4, , C X of cardinality
|Aq 2| < £F2(X) such that X = B(A,.; VV ™).

Consider the family P = ¢, U.cz. {(La, R):a€Ay.} CLXR.
We claim that for any distinct points x,y € X there is a pair (L, R) € P
such that B(x; L) N B(y; R) = 0.

Indeed, for the points z,y € X we can find an ordinal « € k such that
y ¢ B(x; Aot ALL3). Since X = B(Z,; Ay), there is a point z € Z,, such
that = € B(z; A,). Then y ¢ B(z; A,L3) and hence B(y, R,) C B(y; R,)
is disjoint with B(z; A, L2) by the choice of the entourage R,,.

Since y € X = B(Aa,.; VV 1), there is a point a € A, . such that y €
B(a; VV 1), which implies that § # B(y; V)N B(a; V) = B(y; R, N La)N
B(a; RyN L) and hence y € B(a; R, L;"). Since B(y, R,) is disjoint with
Wz, the choice of the entourage R, guarantees that a ¢ W, , and hence
B(a; RaR,)NB(2; Ao L2) = 0 and B(a; RaRo L, )NB(2; Ay Ly) = . Now
observe that the R,-ball B(y; R,) C B(a;VV™'R,) C B(a; R,L;'R,) C
B(a; R R, L") is disjoint with the L,-ball B(x; L) C B(z; AqLa).
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The family P witnesses that
P(LR™Y) = p(RLTY) < |P| S p(ATTAL) - U(A) - £2(X). O

Taking into account that ¥(LR™* VvV RL™) <4 (LR™1), and applying
Theorem 4.4 we obtain:

Theorem 4.5. Let X be a Hausdorff topological space and L, R be two
normally £-subcommuting quasi-uniformities generating the topology of
X. Then the uniformity Q = LR~V RL™ has pseudocharacter:

(1) ¥(Q) <W(L)- fLve” b F2(X);
(2) $(Q) SY(LLT) - L(L™) < P(LF?) - qfTH(X).

Moreover, if the quasi-uniformity L is

(3) F3-separated, then ¥(Q) < Y(LIL) - £(L) - 1F2(X) < P(LTF?) -
g:ﬁ:l (X),
(4) +4-separated, then ¥(Q) < Y(LLTL)L(LLTIVLTIL)4F2(X) <
a<£i3) . EVQ(X);
(5) F5-separated, then ¥(Q)
P(LTH) - qfT2(X) - 02(X);
(6) +6-separated, then (Q) < W(LLTILLTIL) - 1F2(X) = (LFD) -
F2(X).
If the quasi-uniformities L and R are normally commuting and 3-separated,
then

(7) $(Q) SY(LLTL) M(LLTHV LTIL) < (LF2) - qfV*(X).

If the quasi-uniformities £L=1, R~ are normally %-subcommuting and
generate the same topology on X, then

(8) ¥(Q) <WY(LTIL) - (L) < P(LF?) - gfF(X) and
(9) ¥(Q) < Y(LLT'V LTIL) - L(L) - UL < P(LY?) - g+ (X)) -
glFH(X).

< BLLLTL) - ULIL) - (X)) <

Proof. 1. The first inequality follows from Theorem 4.4(4) applied to the
pre-uniformity A =U vU 1.

2. The second item follows from Theorem 4.4(1).

3-6. The items (3)—(6) follow from Theorem 4.4(4) applied to the
pre-uniformities £, LL~'V L71L, L71L, and LL!, respectively.

7. The seventh item follows from Theorem 4.4(3).

8, 9. Assume that the quasi-uniformities £7!, R~! are normally -

subcommuting and generate the same topology on X. The inequalities
P(Q) < W(LTIL) - 4(L) < Y(LF?) - ¢f*(X) follow from Theorem 4.4(2).
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To prove that ¥(Q) < (LL™LV L7IL) - 4(L) - £(L71), fix a subset
A C L of cardinality [A| = ¢(LL™" V L71L) such that (., LL™' N
L7'L = Ax. Replacing every L € A by a smaller entourage, we can
assume that (., L°L™2 N L72L? = Ax. Since the quasi-uniformities
L, R are normally +-subcommuting and the quasi-uniformities £=!, R ™!
are normally +-subcommuting, for every L € A there exists an entourage
L € L with L C L such that for every R € R there is R € R such that

L'Rc RL™' and LR~ c R'L.

For every L € A fix asubset Z;, C X of cardinality | 21| < £(L£)+4(L71)
such that X = B(Zy; L) = B(Zy; L~"). Since the quasi-uniformities £,
R generate the same topology on X and £7!, R~! generate the same
topology on X, for every z € Zp we can choose an entourage R, eR
such that B(z; R,) C B(z;L) and B(z; R;') C B(z; L™!). By the choice
of L for the entourage R, there is an entourage R, € R such that R, C R,
LR, c R.L " and LR L'c R;'L. For the entourage R, there is an
entourage R, € R with R, C RZ such that LR;' C R;'L, which is
equivalent to R,L~!' ¢ L™'R,.

We claim that the family P = {(L,R.) : L€ L, z € Z1} C LXR
has (\; pyep LR™'NRL™! = Ax. Given any distinct points z, y find an
entourage L € A such that (z,y) ¢ L2L=2N L~2L? and hence (z,y) ¢
L?L~2% or (x,y) ¢ L™2L>

If (a, y) ¢ L>L™2 then B(y; L*) N B(z;L?) = 0. Since y € X =
B(Zp;L™Y), there is z € Zp, such that y € B(z;L') C B(z; LY.
Then z € B(y;L) and the L-ball B(z;L) C B(y; LL) does not inter-
sect B(z; L?), which implies B(z; LL™') N B(z; L) = Observe that
B(y;R.) € B(z L 'R,) ¢ B(z;R.L™') C B(z and hence
B(y;R.) N B(x; L) € B(z;LL™Y) N B(x; L) = 0. So7 ( z,y) ¢ LR
and hence (x,y) ¢ LR, .

If (z,y) ¢ L72L? then B(y; L7°) N B(a;L7%) = 0. Since y € X =
(Zp; L), there is z € Z, such that y € B(z;L). Then z € B(y; L™') C
(y; L71) and the L~1-ball B(z;L~') C B(y; L™2) does not intersect
(x; L=2), which implies B(z; L7'L) N B(z; L7!) = (Z) Observe that
(y,Rz_ ) C B(z;LR;') ¢ B(z;R;'L) C B(z;L7'L) and hence
B(y; R;)NB(w; L) € B(z; L L)NB(w; L) = 0. S (z,y) ¢ L'R,.
Since R.L™' ¢ L™'R., we get also (z,y) ¢ R.L™!
This completes the proof of the equality ﬂ( L.R)e
which implies the desired inequality

Do mw

LR INRL~! = Ay,

W(Q) <Pl < YpealZul S9(LLTHV LTIL) (L) - 4(L71). O
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In Section 6 we shall need the following upper bound on the local
pseudocharacters ¥(£L~1) and ¥(RR™!) of normally 4-subcommuting
quasi-uniformities £ and R.

Proposition 4.6. If the topology of a Hausdorff space X is generated by
two mormally +-subcommuting quasi-uniformities L and R, then
Y(LLTY) < P(X) - £F2(X) and Y(RR™Y) < (X)) - 1F2(X).

Proof. First we prove that ¢(££7') < P(X) - /¥2(X). Fix any point
x € X. Since the topology of X is generated by the quasi-uniformity R,
we can fix a subfamily R, C R of cardinality |R.| < 1, (X) < 1(X) such
that (zer, B(z; RRR) = {z}.

By the normality of the quasi-uniformity R, for every R € R, we get
B(z;RR) C B(z; RRR). Then for every point z € X \ B(z; RRR)
we can find an entourage L, € £ such that B(z;L,L,) N B(z; RR) = 0.
For every point z € B(x; RRR)O choose an entourage L, € L such that
B(z; L,L,) C B(:E;RRR)O. Since the quasi-uniformities £ and R are
normally +-subcommuting, for the entourage R € R there is an entourage
R € R such that for every entourage L € £ there is an entourage L € £
such that R~'L ¢ LR™'. In particular, for every z € Z there is an
entourage L. € £ such that R~'L, ¢ L.R™!. Replacing L. by a smaller
entourage we can assume that L, C L, and B(x; L,) C B(z; R).

By the definition of ¢*2(X), for the neighborhood assignment Np =
U.ex 12} x B(z; L. N R) there is a subset Zp C X of cardinality |Zg| <
(*2(X) such that X = B(Zgr; NgNy").

We claim that the subfamily £’ = Upcr. (L. : 2z € Zg} C L has
the required property: (1, B(xz;LL™Y) = {x} Given any point y €
X \ {z}, find an entourage R € R, such that y ¢ B(z; RRR). Since y €
X = B(Zgr; NrNz'), there is a point z € Zg such that y € B(z; NpNy")
and hence B(y; L,NR)NB(z; L.NR) = B(y; Ng)NB(z; Ng) # @ and y €
B(z; L.R™Y). Since y ¢ B(x; RRR)O7 the choice of the entourages Ly, L,
implies that z ¢ B(x; RRR)O. We claim that B(y; L.)NB(z; L.) = 0. To
derive a contradiction, assume that B(y; L.) N B(x; L) # 0. Then

0 # B(y; L.)NB(x; L.) € B(z; L.R™'L.)NB(2; R) C B(z; L.L.R™")NB(x; R)

and hence B(z; L,L,)NB(z; RR) # (), which contradicts the choice of the
entourage L,. This contradiction completes the proof of the inequality
G(LLT) < P(X) - £22(X).

By analogy (or changing £ and R by their places) we can prove that
H(RR™Y) <9(X) - ££2(X). 0
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5. QUASI-UNIFORMITIES ON TOPOLOGICAL MONOIDS

A topological monoid is a topological semigroup X possessing a (nec-
essarily unique) two-sided unit e € X. We shall say that a topological
monoid S has open shifts if for any elements a,b € X the two-sided shift
Sap: X =+ X, Sqp T axd, is an open map.

A typical example of a topological monoid with open shifts is a paratopo-
logical group, i.e., a group endowed with a topology making the group
operation G x G — G, (z,y) — xy, continuous.

The closed half-line [0, o) endowed the Sorgenfrey topology (generated
by the base B = {[a,b) : 0 < a < b < o}) and the operation of addition
of real numbers is a topological monoid with open shifts, which is not a
(paratopological) group.

Each topological monoid X carries five natural quasi-uniformities:

e the left quasi-uniformity L, generated by the base {{(z,y) € X x
X:yecaU}:UeN},

e the right quasi-uniformity R, generated by the base {{(z,y) €
XxX:yeUx}:UENe},

e the two-sided quasi-uniformity £ V R, generated by the base
H{z,y) e X xX:yeUznaU}:U € N.},

e the Roelcke quasi-uniformity RL = LR, generated by the base
{{z,y) e X x X :y € UzU}: U € N}, and

e the quasi-Roelcke uniformity @ = RL™' VvV LR, generated by
the base
H@y) e X x X :UzsnyU #0#UynaU}:U €N}

Here by N, we denote the family of all open neighborhoods of the unit e
in X. The quasi-uniformities £, R, LV R, and RL are well-known in the
theory of topological and paratopological groups (see [24, Ch.2], [2, §1.8]).
The quasi-Roelcke uniformity was recently introduced in [4]. It should
be mentioned that on topological groups the quasi-Roelcke uniformity
coincides with the Roelcke (quasi-)uniformity. The following diagram
describes the relation between these five quasi-uniformities (an arrow U —
V in the diagram indicates that U C V).

L,
N

Q
L
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If a topological monoid X has open shifts, then the quasi-uniformities
L, R, LV R and RL generate the original topology of X (see [17],
[20]) whereas the quasi-Roelcke uniformity Q generates a topology 7o,
which is (in general, strictly) weaker than the topology 7 of X. If X
is a paratopological group, then the topology 7¢ on G coincides with
the joint 75 V (771)5 of the second oscillator topologies considered by the
authors in [3]. The topology 7o turns the paratopological group into a
quasi-topological group, i.e., a group endowed with a topology in which
the inversion and all shifts are continuous (see Proposition 6.3).

Proposition 5.1. On each topological monoid X with open shifts the
quasi-uniformities £ and R are normally commuting, normally +-sub-
commuting, and normal. The topology of X is Hausdorff if and only if
the quasi-Roelcke uniformity Q = LRIV RL™! on X is separated.

Proof. To see that the quasi-uniformities £ and R are normally commut-
ing and normally +-subcommuting, fix any entourage L € £ and find a
neighborhood U C G of the unit e such that L = {(z,y) e X x X :y €
2U} C L. Given any entourage R € R, find a neighborhood V' C G of
the unit e such that R = {(z,y) € X x X : y € Va} C R. Then

LR = {(z,y) € X x X : 3z € X such that (z,2) € L and (z,y) € R} =
={(z,y) € X x X : 3z € X such that z € 2U and y € Vz} =
={(z,y) e X xX:yeV(@U)}={(z,y) e X x X :ye (Va)U} =

=RL C RLNLR.

This implies that the quasi-uniformities £ and R are normally com-
muting.

Next, we prove that L~'R ¢ RL~* ¢ RL~'. Given any pair (z,y) €
L7'R, find a point z € X such that (z,2) € L=! and (z,y) € R. Then
x € zU and y € Vz. So, we can find points v € U and v € V such that
r = zu and y = vz. Multiplying z = zu by v, we get v = vzu = yu
and hence (z,vz) € R and (y,vz) = (y,yu) € L, which implies that
(z,y) € RL~' ¢ RL™'. So, L"'R ¢ RL™' ¢ RL™'. By analogy we can
prove that R~'L ¢ LR™' ¢ LR~

By Proposition 4.3, the quasi-uniformities £ and R, being normally
+-subcommuting, are normal.

If X is Hausdorff, then for any distinct points z,y € X we can find a
neighborhood U C X of the unit e such that Uz N yU = @. Then for the
entourages L = {(z,y) € Xty € 2U} € Land R = {(z,y) € X x X :
y € Uz} we get y ¢ B(x; RL™Y) D B(z; RL™* N LR™'). This means that
N Q = Ax and the quasi-Roelcke uniformity Q is separated.
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Now assume that the quasi-Roelcke uniformity Q is separated. Given
two distinct points z,y € X, find two entourages L € £ and R € R such
that (z,y) ¢ LR~ N RL™! and hence (x,y) ¢ LR™* or (z,y) ¢ RL™L.
For the entourages L, R, find a neighborhood U C X of e such that
{(z,y) e X xX:y€eaU}C Land {(z,y) e X x X :ye Uz} CR If
(r,y) ¢ LR™!, then zUNUy = 0. If (z,y) € RL™!, then UzNyU = 0. In
both cases the points x,y has disjoint neighborhoods in X, which means
that X is Hausdorff. |

Proposition 5.1 and Theorem 3.3 imply:

Theorem 5.2. Fach Hausdorff topological monoid X with open shifts is
functionally Hausdorff and has submetrizability number sm(X) < ¢¥(Q) <
xX(X) and i-weight iw(X) < (Q) - log(£(Q)) < x(X) -log(de(X)).
Observe that for a paratopological group G the quasi-Roelcke unifor-
mity Q generates the topology of G if and only if G is a topological group.

Problem 5.3. Study properties of topological monoids S with open shifts
whose topology is generated by the quasi-Roelcke uniformity Q.

6. THE SUBMETRIZABILITY NUMBER AND ¢-WEIGHT OF
PARATOPOLOGICAL GROUPS

In this section we apply the results of the preceding sections to paratopo-
logical groups, i.e., groups G endowed with a topology making the group
operation G X G — G, (z,y) — xy, continuous. It is easy to see that
the inversion map G — G, x — z !, is a uniform homeomorphism of the
quasi-uniform spaces (G, £~!) and (G, R) and also a uniform homeomor-
phism of the quasi-uniform spaces (G, R~!) and (G, £). This observation
combined with Propositions 3.6 and 5.1 implies:

Proposition 6.1. On each paratopological group G
(1) the quasi-uniformities L and R are normally commuting, nor-
mally +-subcommuting, and normal;
(2) the quasi-uniformities L1 and R~' are normally commuting,
normally +-subcommuting, and generate the same topology on G.
If the topology of G is Hausdorff, then the quasi-uniformities L and R
are 3-separated and the quasi-Roelcke uniformity Q@ = LRV RL™! is
separated.

Next, we prove that a paratopological group endowed with the quasi-
Roelcke uniformity is a uniform quasi-topological group.

Definition 6.2. A uniform quasi-topological group is a group G endowed
with a uniformity ¢/ such that the inversion G — G, z + 271, is uniformly
continuous and for every a,b € G the shifts s, , : G = G, 54, : © — azb,
is uniformly continuous.
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Proposition 6.3. Any paratopological group G endowed with the quasi-
Roelcke uniformity Q@ = LR~V RL™! is a uniform quasi-topological
group.

Proof. Observe that for any neighborhood V' € N, and points z,y € G
the inclusion y € VaV~! N V=12V is equivalent to y~! € Va=lV—1n
V1271V, which implies that the inversion map G — G, = + z7 !, is
uniformly continuous.

Next, we show that for every a,b € G the shift s, : G = G, sqp :
2 + azb, is uniformly continuous. Fix any neighborhood V € N, of e.
By the continuity of the shifts on G, there exists a neighborhood U C V'
of e such that aU C Va, Ub C bV, Ua™' C a='V, and b~'U C Vb~ L.
Inverting the two latter inclusions, we get aU ™' C V~lq and U~1b C
bV 1. Then for any points z,y € G with y € U 'zU N UzU !, we get
ayb € aU'zUb N aUzU~'b C V" laxbV N VaxbV ~!, which means that

the shift s, is uniformly continuous. O
The following theorem is a partial case of Theorem 5.2.

Theorem 6.4. Fach Hausdorff paratopological group G is functionally
Hausdorff and has submetrizability number sm(G) < ¥(Q) < x(G) and

i-weight iw(G) < (Q) - log(4(Q)) < x(G) - log(de(G)).

In light of this theorem it is important to have upper bound on the pseu-
docharacter (Q) of the quasi-Roelcke uniformity. Such upper bounds are
given in the following theorem, which unifies or generalizes the results of
[25] and [21].

Theorem 6.5. For any Hausdorff paratopological group G its quasi-
Roelcke uniformity @ = LRV RL™Y has pseudocharacter

(1) $(Q) <min{p(LL™Y) - L(L™),p(LTIL)-U(L)} <P(G)-1F3(G) -
min{{(£), (L")} < Y(G) - £2(G) - min{gl=!(G), ¢tF(G)};

(2) ¥(Q) < Y(LLTIV LTIL) - ULTY) - U(L) < P(LY?) - ¢fTHG) -
q(il(G);

(3) ¥(Q) SY(LLTL) - U(LLTV LTIL) < (LFD) - gl (G).

Moreover, if the quasi-uniformity L is

(4) F4-separated, then ¥(Q) < Y(LTILLTIL) - 4(L7IL) - 12(X) <
BEF) - g7 (X) - 2(G);

(5) +6-separated, then (Q) < Y(LLTILLTIL) - F2(G) = (LPD) -
*2(@G).

Proof. 1. The inequality ¥(Q) <
rem 4.5(2), which also implies 9)(
¢(L). By Proposition 4.6, ¢¥(LL™

YLL™) - 5(/5_ ) follows from Theo-
Q) < YRR 6(73—1) = P(L7IL) -
Y = 9(LL7h) < P(G) - ££3(G) and
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Y(LTIL) = Y(RR™Y) = H(RR™Y) < 9(Q) - +2(@), which implies
min{y)(LLT)L(LTY), p(L7L)-L(L)} < $(G)-¢(G)min{e(L), £(L71)}.

2, 3. The upper bounds from the second and third items follow from
Theorem 4.5(9,7) and Proposition 6.1.

4. Assume that the quasi-uniformity £ is F4-separated. Then we
can choose a subfamily «U C N, of cardinality [U| = ¢(L71LLTIL)
such that (¢, U 'UU'U = {e}. Replacing every U by a smaller
neighborhood of e, we can assume that (o, U 2UU'U = {e}. Since
U-UU-'U c UH(U'UUU), we conclude that (o, U'UU~'U =
{e}and (L1LLTIL) < [U| = (L71LL7IL). Applying Theorem 4.4(4)
to the pre-uniformity A = £L~1£, we get the upper bound

_ V(Q) < Y(ATLAU) - U(A) - (F2(G) =
G(LTVLLTILL) - U(LTIL) - 2 (G) = (LT LLTIL) - U(LTIL) - 42(G).

5. The fifth item follows from Theorem 4.5(6). O

7. TWO COUNTEREXAMPLES

In this section we construct two examples of paratopological groups
that have some rather unexpected properties.

7.1. A paratopological group with countable pseudocharacter
which is not submetrizable. In Theorem 6.5(1) we proved that for
each Hausdorff paratopological group G its quasi-Roelcke uniformity has
pseudocharacter 1(Q) < ¥(G) - £*2(G) - min{¢(L), (L~} Tt is natural
to ask if this upper bound can be improved to 1(Q) < ¥(G). In this
section we show that this inequality is not true in general. Namely, we
present an example of a zero-dimensional (and hence) Hausdorff abelian
paratopological group which has countable pseudocharacter but is not
submetrizable. Some properties of this group can be proved only under
Martin Axiom [31], whose topological equivalent says that each count-
ably cellular compact Hausdorff space is xk-Baire for every cardinal k < c.
We say that a topological space X is k-Baire if for any family ¢ consist-
ing of kK many open dense subsets of X the intersection (U is dense in
X. Under Martin’s Axiom for o-centered posets, each separable compact
Hausdorff space is k-Baire for every cardinal k < ¢. This implies that
under Martin’s Axiom (for o-centered posets) the space Z* endowed with
the Tychonoff product topology is k-Baire for every cardinal k < ¢. Here
¢ stands for the cardinality of continuum. In the statement (4) of the
following theorem by ? we denote the cofinality of the partially ordered
set (N¥,<). It is known [28] that w; < 9 < ¢ and ? = ¢ under Martin’s
Axiom (for countable posets).
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Let k¥ be an uncountable cardinal. On the group Z" of all functions
g : K = Z consider the shift-invariant topology 7 whose neighborhood
base at the zero function e : kK — Z consists of the sets

Wrm = {g € Z" : g|F =0, g(r) C {0} U[m,00)}

where m € N and F runs over finite subsets of k. The group Z* endowed
with the topology 74 is a paratopological group, denoted by 1Z". Since
the group 17" is abelian, the fours standard uniformities of 17" coincide
(iie., L =R = LV R = RL) whereas the quasi-Roelcke uniformity Q
coincides with the pre-uniformities ££~' and RR~!.

Theorem 7.1. For any uncountable cardinal k the paratopological group
G = 17" has the following properties:
(1) G is a zero-dimensional (and hence regular) Hausdorff abelian
paratopological group;
(2) the topology on G induced by the quasi-Roelcke uniformity Q co-
incides with the Tychonoff product topology T on Z";
) ¥(Q) =x(G) =k but Y(G) = P(G) = w;
) £(Q) =w but (L) >0 > w;
) ¢(G) > k but de(G) = w;
) w(G) - w = sm(G) - w > log(2").
) If 2% > ¢, then G is not submetrizable.
) If the space Z" is k-Baire, then G fails to have Gs-diagonal and
hence is not submetrizable.

Proof. 1. It is clear that the topology 7+ on 1Z" is stronger than the
Tychonoff product topology 7 on Z*. This implies that the paratopologi-
cal group G = 1Z" is Hausdorff. Observing that each basic neighborhood
Wgm of the zero function e € Z" is 7-closed, we conclude that it is 74-
closed, which implies that the space 1Z" is zero-dimensional and hence
regular.

2. Observe that for every basic neighborhood Wg , of zero, the set
Wgm — Wg, coincides with the basic neighborhood Wp = {g € Z* :
g|F = 0} of zero in the Tychonoff product topology 7. This implies that
7 coincides with the topology induced by the quasi-Roelcke uniformity Q.

3. The equality x(G) = k = ¢(Q) easily follows from the definition of
the topology 7+ and the fact that the quasi-Roelcke uniformity Q generates
the Tychonoff product topology on Z*. To see that ¥(G) = ¥(G) = w,
observe that (), oy Wo,m = {e}.

4. To see that ¢(Q) = w, take any basic open neighborhood Wg,, of
zero in the group G and observe that Z = {g € Z* : g|x \ F = 0} is
a countable subgroup of G such that G = ZF + (Wem — W), which
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implies that £(Q) < w. On the other hand, the boundedness number ¢(L)
of the left quasi-uniformity on the paratopological group 1Z* is equal to
the cofinality of the partially ordered set (N®,<) which is not smaller
than 0, the cofinality of the partially ordered set (N¥, <).

5. For every = € k denote by §, : k — {0,1} C Z the character-
istic function of the singleton {z} and let U, = 6, + Wy,} 2 be a ba-
sic neighborhood of d,. We claim that for any distinct points =,y € &
the sets U, and U, are disjoint. To derive a contradiction, assume that
U, N U, contains some function f € Z". The inclusion f € U, im-
plies that f(z) = d,(x) = 1. On the other hand, f € U, implies
f(x) € {0, (z)}U[dy(x)+2,00) = {0}U[2,00) # 1. So, the closed-and-open
sets Uy, © € K, are pairwise disjoint and hence ¢(G) > {U, }rex| = k-

By Proposition 1.10, dc(G) = ¢*4(G). So, it suffices to prove that
(*4(@) = w. Given a neighborhood assignment V' on G, we need to find
a countable subset C' C G such that B(C;VV~1VV~1) = G. Using
Zorn’s Lemma, find a maximal subset C' C G such that B(z;VV 1) N
B(y;VV~=1) = ( for any distinct points z,y € C. By the maximality
of C, for every x € G there is a point ¢ € C such that B(c;VV~=1)n
B(x; VV 1) # 0, which implies z € B(C; VV~1VV~!) and hence X =
B(C;VV=VV~1). It remains to prove that the set C' is countable. To
derive a contradiction, assume that C' is uncountable. For every x € G
find a finite subset F, C k and a positive number m, € N such that
x4+ Wg, m, C B(x; V). By the A-system Lemma [16, 16.1], the uncount-
able set C contains an uncountable subset D C C such that the family
(Fy)zep is a A-system with kernel K, which means that F, N F}, = K for
any distinct points x,y € D. For every n € N and f € Z¥ consider the
subset D,y ={x € D : 2|K = f, my <n, sup,cp, |r(a)] <n} of D and
observe that D = U, cyUjezi Dn,p. By the Pigeonhole Principle, for
somen € Nand f € ZX the set D,,, ¢ is uncountable. Consider the clopen
subset Z"(f) = {x € Z" : x| K = f} of Z*. Since Z"(f) is a Baire space,
for some m € N the set X,,, = {z € Z"(f) : m; = m} is not nowhere
dense in Z*(f). Consequently, there is a finite subset K C & containing
K and a function f : K — Z such that the set X,, N Z*(f) is dense in
Z5(f) = {x € 2" : x|K = f}. Since the family (F, \ K),ep is disjoint,
the set {z € D : (F, \ K) N K # (0} is finite, so we can find two functions
x,y € Dy 5 such that (F, U Fy) NK =K. Put K = F, UF, UK and
choose any function f : K — Z such that f|[K = f and f(a) < —n—m
for any a € K \ K. The function f determines a non-empty open set

Z5(f) = {z € Z" : z|K = f}, which contains some function z € X,,

(by the density of X,,, NZ"(f) in Z*(f)). Choose a function Z € Z" such
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that Z|F, = z|F, and Z(«a) > max{m + z(a), m, + x(a)} for every a €
K\ Fy. Then Z € (24+Wp, 1) N (x+Wr, m,) C B(z;V)NB(z; V), which
implies z € B(z; VV~1). By analogy we can prove that z € B(y; VV ~1).
So, B(z;VV~1) N B(y; VV 1) # (), which contradicts the choice of the
set C' 5 x,y. This contradiction shows that C is countable and hence
de(G) = 1H4(G) = w.

6. By Proposition 1.4, iw(G) - w = sm(G) - log(de(G)) = sm(G) - w.
On the other hand, 2% = |G| < [[0,1](@)| = |27%(®)«| implies that
log(2") < iw(G) - w.

7. If 25 > ¢, then sm(G) - w > log(2") > log(¢") > w, which implies
that sm(G) > w and hence G is not submetrizable.

8. Suppose that the space Z" is k-Baire. Assuming that the space
G = 17" has Gs-diagonal, we can apply Theorem 2.2 in [13] and find a
countable family (Uy,),en open covers of G, which separates the points
of G in the sense that for every distinct points f,g € G there isn € N
such that no set U € U,, contains both points f and g. Since the space G
is zero-dimensional, we can assume that each set U € |J,,,, Un is closed-
and-open in G. Put Uy = {G}.

We shall construct an increasing sequence (Fy, ), e, of finite subsets and
a sequence f, € Z', n € w, of functions such that for every n € w the
clopen set Z*(f,) = {f € Z" : f|F,, = fy} is contained in U, N Z"(f,_1)
for some set U,, € U,,.

We start the inductive construction letting Fy = @ and fy : 0 — Z
be the unique function. Then Z*(fy) = Z* € Uy. Assume that for some
n € Z we have defined a finite set F,,_; C x and a function f,,_; € Z»—
such that Z"(fn,—1) C U,—1 for some U,,_1 € Up—1.

The F being the family of all triples (F, f, m) where F' is a finite subset
of k containing F,_ 1, f : F — Z is a function extending the function
fn—1 and m € N is a positive integer. Observe that |F| = k. For every
function g € 1Z" choose a closed-and-open subset U, € U,, containing
g and choose a finite subset F,;, C x containing Fj,_; and a number m,
such that g + Wg, ,», C U,. For every triple (F, f,m) € F consider the
subset Z(p, m) = {g € 12" : (Fy, g|Fy,my) = (F, f,m)} and observe that
2" (fn—1) = U(F7f7m)€}- ZF,f,m- Since the space Z"(f,—1) is k-Baire, there
is a triple (F, f,m) € F such that the set Zp f,,) is not nowhere dense
in Z*(fn—1). Consequently we can find a finite set F,, C x and a function
fn € Z¥" such that for the basic open set Z*(f,) = {g € Z* : g|F}, = fu}
the intersection Z"(fn) N Z(F,fm) is dense in Z*(f,). It follows that
F, D F D F,_1and f,|F = f. Choose any point g € Z(g, m) N Z"(fn).
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We claim that Z*(f,) C U, € U. Assuming that Z"(f,) ¢ U, choose
a function h € Z"(f,) \ U, and find a basic neighborhood h + Wg,; C
Z5(fn) \ Ugy of h. It follows from the inclusion h + Wg; C Z"(f,) that
E D F, D F and h|F,, = f,. Then h|F = f,|F = f. Choose a function
h : k — Z such that h|E = h|E and h(z) > max{g(z) + m, h(z) + [} for
every z € k\E. Then h € (h+Wg )N (g+Wpm) C (Z5(f,)\Uy)NU, = 0,
which is a desired contradiction completing the inductive step.

After completing the inductive construction, consider the countable
set Fi, = U,c,, Fn and the function f, : F, — Z such that f,|F, = f,
for all n € w. Since the complement « \ F,, is not empty, the “cube”
2"(fw) ={9 € Z* : g|Z, = f,} contains two distinct functions f,g. By
the choice of the family (U,,)necw there is a number n € w such that no set
U € U, contains both points f and g. On the other hand, by the inductive
construction, f,g € Z"(f,) C Z"(fn) C U, for some set U,, € U, which is
a desired contradiction completing the proof of the theorem. O

Corollary 7.2. For every cardinal k > ¢ the paratopological group 17"
has countable pseudocharacter but fails to be submetrizable.

It is known [31] that under Martin’s Axiom the space Z* is k-Baire for
every cardinal x < ¢. This fact combined with Theorem 7.6 (7, 8) implies
the following MA-improvement of Corollary 7.2.

Corollary 7.3. Under Martin’s Axiom, for any uncountable cardinal k
the paratopological group 172" has countable pseudocharacter but fails to
be submetrizable.

Problem 7.4. Can the space 1Z** be submetrizable in some model of
ZFC?

In Theorem 7.1 we proved that the paratopological group G = 1Z"
has d(G) > ¢(G) > k and de(G) = w. By Propositions 1.3 and 1.10,
(F4(G) = 1"2(G) = de(G) = w. It would be interesting to know the
values of some other cardinal characteristics of G, intermediate between

dc(G) and ¢(G).

Problem 7.5. For the paratopological group G = 17" calculate the values
of cardinal characteristics (*"(G), £¥7(G), £"*(Q), £V"(G) for alln € N.

7.2. A submetrizable paratopological group whose quasi-Roelcke
uniformity has uncountable pseudocharacter. By Theorem 6.4, each
Hausdorff paratopological group G has submetrizability number sm(G) <
1¥(Q). This inequality can be strict as shown by an example constructed
in this subsection.
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Given an uncountable cardinal k in the paratopological group 172"
consider the subgroup H = {f € 1Z" : |supp(f)| < w} consisting of
functions f : K — Z that have finite support supp(f) = {« € k : f(a) #
0}. A neighborhood base of H at zero consists of the sets

Wgm ={h € H:h|F =0, h(k) € {0} U[m,c0)}
where F' runs over finite subsets of x and m € N.

Theorem 7.6. For any uncountable cardinal k the paratopological group
H has the following properties:

(1) H is a zero-dimensional (and hence reqular) Hausdorff abelian
paratopological group;

) H is strongly o-discrete and submetrizable;

) iw(H) - w = log(r);

1) ¥(Q) = X(H) = & but $(H) = B(H) = w;

) £(Q) =w but (L) =dc(H) = k.

Proof. The items (1), (4), (5) follow (or can be proved by analogy with)
the corresponding items of Theorem 7.1.

(2)—(3): To see that the space H is strongly o-discrete, write H as
H =, mew Hnm where Hy ,,, = {h € 12 : |supp(h)| = n, ||h|| < m}
and ||h|| = SUP,¢, |P(a)|. We claim that each set H, ., is strongly discrete
in H. To each function h € H, ,, assign the neighborhood U, = h +
Waupp(h),m+1- Given any two distinct functions g,h € Hp m, we shall
prove that U, N Up, = (). Assuming that Uy N Uj contains some function
f € H, we would conclude that f|supp(g) = g|supp(g) and f|supp(h) =
h|supp(h). So, g|supp(g) N supp(h) = h|supp(g) N supp(h) and g # h
implies that supp(g) # supp(h). Since |supp(g)| = |supp(h)| = n, there
is @ € supp(g) \ supp(h) such that g(a) # 0 = h(a). Then f(a) €
{g9(@)}N[m+1,00) C [-m,m]N[m+1,00) = B, which is a contradiction
showing that the indexed family (Ux)nen,, ,, is disjoint.

To show that this family (Upn)nemn, ,, is discrete, for every function
9 € H\ Upep, . Un consider its neighborhood Uy = g + Wupp(g),m+1-
We claim that yUg NU, = 0 for every h € Hy, ;. Assume conversely
that for some h € H, , the intersection Uy N U contains a function
f € H. Then flsupp(g) = g|supp(g) and f|supp(h) = h|supp(h), which
implies supp(g) # supp(h). If supp(h) \ supp(g) # @, then we can find
a € supp(h) \ supp(g) and conclude that f(a) = h(a) # 0 = g(«) and
hence f(a) € {h(a)} € [-m,m]N[m+1,00) = (), which is a contradiction.
So, supp(h) C supp(g) and g|supp(h) = hlsupp(h). It follows from g ¢ Uy,
that for some a € « \ supp(h) we get g(o) ¢ {0} U [m + 1,00). Then
a € supp(g) and f(a) = g(a) ¢ [m + 1,00). On the other hand, the
inclusion f € Uy, and f(a) # 0 = h(a) implies f(a) € [m + 1,00).

~
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This contradiction completes the proof of the equality U, N U, = (), which
shows that the family (Un)nem, is discrete in H and the set H, ,, is
strongly discrete in H. Then the space H = Un’m@) H,, , is strongly o-
discrete. By Proposition 1.1 it is submetrizable and has i-weight iw(H) -
w = log(|H|) = log(k). O
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