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ON THE SUBMETRIZABILITY NUMBER AND
i-WEIGHT OF QUASI-UNIFORM SPACES AND

PARATOPOLOGICAL GROUPS

TARAS BANAKH AND ALEX RAVSKY

Abstract. We derive many upper bounds on the submetrizabil-
ity number and i-weight of paratopological groups and topologi-
cal monoids with open shifts. In particular, we prove that each
first countable Hausdorff paratopological group is submetrizable
thus answering a problem of Arhangelskii posed in 2002. Also
we construct an example of a zero-dimensional (and hence reg-
ular) Hausdorff paratopological abelian group G with countable
pseudocharacter which is not submetrizable. In fact, all results
on the i-weight and submetrizability are derived from more gen-
eral results concerning normally quasi-uniformizable and bi-quasi-
uniformizable spaces.

Introduction

This paper was motivated by the following problem of Arhangelskii [1,
3.11] (also repeated by Tkachenko in his survey [26, 2.1]): Does every
first countable Hausdorff paratopological group admit a weaker metrizable
topology? A surprisingly simple answer to this problem was given by
the authors in [4]. We just observed that each Hausdorff paratopological
group G carries a natural uniformity generated by the base consisting of
entourages {(x, y) ∈ G × G : y ∈ UxU−1 ∩ U−1xU} where U runs over
open neighborhoods of the unit e inG. In [4] this uniformity was called the
quasi-Roelcke uniformity on G and denoted by Q. If G is first-countable,
then the quasi-Roelcke uniformity Q is metrizable, which implies that the
space G is submetrizable. Moreover, if the quasi-Roelcke uniformity Q is
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ω-bounded, then the topology generated by the uniformityQ is metrizable
and separable, which implies that G has countable i-weight, i.e., admits
a continuous injective map onto a metrizable separable space.

In fact, for the submetrizability of G it suffices to require the count-
ability of the pseudocharacter ψ(Q) of Q, i.e., the existence of a count-
able subfamily U ⊂ Q such that

⋂
U = ∆X . So, the aim of the pa-

per is to detect paratopological groups G whose quasi-Roelcke uniformity
Q has countable pseudocharacter. For this we shall find some upper
bounds on the pseudocharacter ψ(Q). These bounds will give us upper
bounds on the submetrizability number sm(G) and the i-weight iw(G)
of a paratopological group G. In fact, the obtained upper bounds on
sm(G) and iw(G) have uniform nature and depends on the properties of
the two canonical quasi-uniformities L and R on G called the left and
right quasi-uniformities of G. These quasi-uniformities are studied in
Sections 5 and 6. In Sections 3 and 4 we study properties of topological
spaces whose topology is generated by two quasi-uniformities which are
compatible in some sense (more precisely, are ±-subcommuting or nor-
mally ±-subcommuting). In Section 4 we prove that any two normally
±-subcommuting quasi-uniformities are normal in the sense of [4]. This
motivates the study of topological spaces whose topology is generated by
a normal quasi-uniformity. For such spaces we obtain some upper bounds
on the i-weight, which is done in Section 4. Section 1 has preliminary
character. It contains the necessary information of topological spaces,
quasi-uniform spaces, and their cardinal characteristics. In Section 7 we
present two counterexamples to some natural conjectures concerning sub-
metrizable paratopological groups.

1. Preliminaries

In this section we collect known information on topological spaces,
quasi-uniformities, and their cardinal characteristics. For a set X by |X|
we denote its cardinality. By ω we denote the set of all finite ordinals and
by N = ω \ {0} the set of natural numbers.

For a cardinal κ by log(κ) we denote the smallest cardinal λ such that
2λ ≥ κ.

1.1. Topological spaces and their cardinal characteristics. For a
subset A of a topological space X by A, A◦ and A

◦
we denote the closure,

interior and interior of the closure of the set A in X, respectively.
A family N of subsets of a topological space X is called a network of

the topology of X if each open set U ⊂ X can be written as the union⋃
U of some subfamily U ⊂ N . If each set N ∈ N is open in X, then N

is a base of the topology of X.
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A subset D of a topological space X is called strongly discrete if each
point x ∈ D has a neighborhood Ux ⊂ X such that the family (Ux)x∈D is
discrete in the sense that each point z ∈ X has a neighborhood that meets
at most one set Ux, x ∈ D. It is easy to see that each strongly discrete
subset of (a T1-space) X is discrete (and closed) in X. A topological space
X is called (strongly) σ-discrete ifX can be written as the countable union
X =

⋃
n∈ωXn of (strongly) discrete subsets of X.

A topological space X is called
• Hausdorff if any two distinct points x, y ∈ X have disjoint open

neighborhoods Ox 3 x and Oy 3 y;
• collectively Hausdorff if each closed discrete subset ofX is strongly

discrete in X;
• functionally Hausdorff if for any two distinct points x, y ∈ X

there is a continuous function f : X → R such that f(x) 6= f(y);
• regular if for any point x ∈ X and a neighborhood Ox ⊂ X there

is a neighborhood Vx ⊂ X of x such that V x ⊂ Ox;
• completely regular if for any point x ∈ X and a neighborhood
Ox ⊂ X there is a continuous function f : X → [0, 1] such that
f(x) = 0 and f−1

(
[0, 1)

)
⊂ Ox;

• quasi-regular if each non-empty open set U ⊂ X contains the
closure V of another non-empty open set V ⊂ X;
• submetrizable if X admits a continuous metric (or equivalently,

admits a continuous injective map into a metrizable space).
It is clear that each submetrizable space is functionally Hausdorff.

In Section 7 will shall need the following property of strongly σ-discrete
spaces.
Proposition 1.1. Each strongly σ-discrete Tychonoff space X is zero-
dimensional and submetrizable. Moreover, X admits an injective contin-
uous map into the Cantor cube {0, 1}κ of weight κ = log(|X|).

Proof. The proposition trivially holds if X is discrete. So, we assume
that X is not discrete and hence infinite. Write X as the countable union
X =

⋃
n∈ωXn of pairwise disjoint strongly discrete non-empty subsets

Xn of X. Let βX be the Stone-Čech compactification of X. Using the
strong discreteness of each Xn, we can extend each continuous bounded
function f : Xn → R to a continuous bounded function onX. This implies
that the closure X̄n of Xn in βX is homeomorphic to the Stone-Cech
compactification βXn of the discrete space Xn and hence has covering
dimension dim(βXn) = 0 (see [10, 3.6.7 and 7.1.17]). By the Countable
Sum Theorem [11, 3.1.8] for covering dimension in normal spaces, the σ-
compact (and hence normal) space Z =

⋃
n∈ω X̄n has covering dimension

dim(Z) = 0, which implies that its subspace X =
⋃
n∈ωXn is zero-

dimensional.
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Now we prove that X is submetrizable. For every n ∈ ω and every
x ∈ Xn we can choose a closed-and-open neighborhood Ux ⊂ X of x such
that Ux ∩

⋃
k<nXk = ∅ and the indexed family (Ux)x∈Xn is discrete in

X. Then the union
⋃
x∈Xn Ux is a closed-and-open subset in X and the

function dn : X ×X → {0, 1} defined by

dn(x, y) =

{
0, if x, y ∈ Ux for some x ∈ Xn or x, y /∈

⋃
z∈Xn Uz,

1, otherwise,

is a continuous pseudometric on X. Consequently, the function d =
maxn∈ω

1
2n dn is a continuous metric on X, which implies that X is sub-

metrizable.
It follows that the space X admits a continuous injective map into the

countable product
∏
n∈ωDn of discrete spaces Dn of cardinality |Dn| =

1 + |Xn| ≤ |X|. By definition of the cardinal κ = log(|X|), every discrete
space Dn, n ∈ ω, admits an injective (and necessarily continuous) map
into the Cantor cube {0, 1}κ. Then

∏
n∈ωDn and hence X also admits a

continuous injective map into {0, 1}κ. �

For a cover U of a set X and a subset A ⊂ X we put St0(A;U) = A
and Stn+1(A;U) =

⋃
{U ∈ U : U ∩ Stn(A;U) 6= ∅} for n ≥ 0.

1.2. Cardinal characteristics of topological spaces, I. For a topo-
logical space X let

• nw(X) = min{|N | : N is a network of the topology of X} be the
network weight of X;

• d(X) = min{|A| : A ⊂ X, A = X} be the density of X;
• hd(X) = sup{d(Y ) : Y ⊂ X} the hereditary density of X;
• s(X) = sup{|D| : D is a discrete subspace of X} be the spread of
X;

• e(X) = sup{|D| : D is a closed discrete subspace of X} be the
extent of X;

• c(X) = sup{|U| : U is a disjoint family of non-empty open sets in
X} be the cellularity of X;

• de(X) = sup{|U| : U is a discrete family of non-empty sets in X}
be the discrete extent of X;

• dc(X) = sup{|U| : U is a discrete family of non-empty open sets
in X} be the discrete cellularity of X;

• l(X), the Lindelöf number of X, be the smallest cardinal κ such
that each open cover U of X has a subcover V ⊂ U of cardinality
|V| ≤ κ;
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• l̄(X), the weak Lindelöf number of X, be the smallest cardinal κ
such that each open cover U of X contains a subcollection V ⊂ U
of cardinality |V| ≤ κ with dense union

⋃
V in X;

• l∗(X), the weak extent of X, be the smallest cardinal κ such that
for each open cover U of X there is a subset A ⊂ X of cardinality
|A| ≤ κ such that X = St(A;U).

The cardinal characteristics nw, d, s, e, c, l are well-known in General Topol-
ogy (see [10], [14]) whereas l̄, l̄∗ are relatively new and notations for these
cardinal characteristics are not fixed yet. For example, the weak Lindelöf
number l̄ often is denoted by wL, but in [14, §3] it is denoted by wc and
called the weak covering number. According to [23], the weak extent l∗
can be called the star cardinality. Spaces with countable weak extent are
called star-Lindelöf in [22] and strongly star-Lindelöf in [9]. Observe that
e ≤ de and e(X) = de(X) for any T1-space X.

The relations between the above cardinal invariants are described in
the following version of Hodel’s diagram [14]. In this diagram an arrow
f → g (resp f 99K g) indicates that f(X) ≤ g(X) for any (T1-) space X.

l∗ // de //

��@@@@@@@@

��

��
)

l // hl

!!CCCCCCCCC

dc

>>}}}}}}}}

  AAAAAAAA e

OO

s

??~~~~~~~~

��???????? nw // w

l̄ // c

??�������� // d // hd

==||||||||

In fact, the cardinal characteristics d, l, l̄, l∗ are initial representatives
of the hierarchy of cardinal characteristics l∗n and l̄∗n, n ∈ 1

2N, describing
star-covering properties of topological spaces (see the survey paper [22]
of Matveev for more information on this subject).

For a topological space X and an integer number n ≥ 0 let

• l∗n(X) be the smallest cardinal κ such that for every open cover
U of X there is a subset A ⊂ X of cardinality |A| ≤ κ such that
Stn(A;U) = X;
• l̄∗n(X) be the smallest cardinal κ such that for every open cover
U of X there is a subset A ⊂ X of cardinality |A| ≤ κ such that
Stn(A;U) is dense in X;
• l∗n1

2 (X) be the smallest cardinal κ such that every open cover U
of X contains a subfamily V ⊂ U of cardinality |V| ≤ κ such that
Stn(∪V;U) = X;
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• l̄∗n1
2 (X) be the smallest cardinal κ such that every open cover U

of X contains a subfamily V ⊂ U of cardinality |V| ≤ κ such that
Stn(∪V;U) is dense in X;
• l∗ω(X) = minn∈ω l

∗n(X) and l̄∗ω = minn∈ω l̄
∗n(X).

Observe that l∗0 = | · |, l̄∗0 = d, l∗
1
2 = l, l̄∗

1
2 = l̄, and l∗1 = l∗.

In [7] the cardinal characteristics l∗n and l∗n
1
2 are denoted by stn-l and

stn 1
2
-l, respectively. In [9] spaces X with countable l∗n

1
2 (X) and l∗n(X)

are called n-star-Lindelöf and strongly n-star Lindelöf, respectively.
The following diagram describes provable inequalities between cardi-

nal characteristics l∗n, l̄∗n, l∗n
1
2 , and l̄∗n

1
2 for n ∈ N. For two cardinal

characteristics f, g an arrow f → g indicates that f(X) ≤ g(X) for any
topological space X.

l∗ω // · · · // l∗(n+1) //

��99999999999999999 l∗(n+ 1
2 ) //

��9999999999999999 l∗n // · · · // l∗1 = l∗ //

##GGGGGGGGGGGGGGGGGGGGG de //

##GGGGGGGGGG l∗
1
2 = l // hl

��
dc

;;wwwwwwwwww

##GGGGGGGGGG s //

;;wwwwwwwwww

##GGGGGGGGGG nw

l̄∗ω // · · · // l̄∗(n+ 1
2 ) //

BB����������������
l̄∗n //

BB����������������
l̄∗(n−

1
2 ) //

55kkkkkkkkkkkkkkkkk
· · · // l̄∗

1
2 = l̄ //

;;wwwwwwwwwwwwwwwwwwwww
c //

;;wwwwwwwwww
l̄∗0 = d // hd

OO

The unique non-trivial inequalities l∗1 ≤ de and l̄∗1
1
2 ≤ dc in this

diagram follow from the next proposition whose proof can be found in [5].

Proposition 1.2. Any topological space X has l∗1(X) ≤ de(X) and
l̄∗1

1
2 (X) ≤ dc(X).

For quasi-regular spaces many star-covering properties are equivalent.
Let us recall that a topological space X is called quasi-regular if each
non-empty open set U ⊂ X contains the closure V of another non-empty
open set V in X. The following proposition was proved in [5] (and for
regular spaces in [9]).

Proposition 1.3. Let X be a quasi-regular space. Then

(1) dc(X) = l̄∗1
1
2 (X) = l∗ω(X).

(2) If X is normal, then dc(X) = l̄∗1(X).
(3) If X is perfectly normal, then dc(X) = c(X) = l̄∗

1
2 (X).

(4) If X is collectively Hausdorff, then dc(X) = de(X) = l∗1(X).
(5) If X is paracompact, then dc(X) = l(X).
(6) If X is perfectly paracompact, then dc(X) = hl(X).

Proposition 1.3 implies that for quasi-regular spaces the diagram de-
scribing the relations between the cardinal characteristics simplifies to the
following form.
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l∗2 //

��2
22222222222222 l∗1

1
2 //

��2
22222222222222 l∗1 //

""DDDDDDDDDDDDDDDDDDDD de //

##GGGGGGGGGG l∗
1
2 = l // hl

��
dc l∗ω

DDDDDDDD

DDDDDDDD

==zzzzzzzz
s

;;wwwwwwwwww

##GGGGGGGGGG nw

l̄∗1
1
2 //

EE���������������
l̄∗1 //

FF���������������
l̄∗

1
2 //

<<zzzzzzzzzzzzzzzzzzzz
c //

;;wwwwwwwwww
l̄∗0 = d // hd

OO

Next, we consider some local cardinal characteristics of topological
spaces. Let X be a topological space, x be a point of X, and Nx be
the family of all open neighborhoods of x in X.

• The character χx(X) of X at x is the smallest cardinality of a
neighborhood base at x.

• The pseudocharacter ψx(X) of X at x is the smallest cardinality
of a subfamily U ⊂ Nx such that

⋂
U =

⋂
Nx.

• The closed pseudocharacter ψx(X) of X at x is the smallest car-
dinality of a subfamily U ⊂ Nx such that

⋂
U∈U U =

⋂
V ∈Nx V .

It is easy to see that for any point x of a Hausdorff topological space X
we get

ψx(X) ≤ ψx(X) ≤ χx(X).

The cardinals

χ(X) = sup
x∈X

χx(X), ψ(X) = sup
x∈X

ψx(X), and ψ(X) = sup
x∈X

ψx(X)

are called the character, the pseudocharacter, and the closed pseudochar-
acter of X, respectively. It follows that

ψ(X) ≤ ψ(X) ≤ χ(X)

for any Hausdorff topological space X.
The (closed) pseudocharacter is upper bounded by the (closed) diago-

nal number defined as follows. Let X be a Hausdorff topological space.
By ∆X = {(x, y) ∈ X ×X : x = y} we denote the diagonal of the square
X ×X.

• The diagonal number ∆(X) of X is the smallest cardinality of a
family U of open subsets of X ×X such that

⋂
U = ∆X .

• The closed diagonal number ∆(X) of X is the smallest cardinality
of a family U of open subsets of X ×X such that

⋂
U∈U U = ∆X .

It is easy to see that ψ(X) ≤ ∆(X) ≤ ∆(X) and ψ(X) ≤ ∆(X) for any
Hausdorff space X.

Following [13, §2.1] we say that a space X has (regular) Gδ-diagonal if
∆(X) ≤ ω (resp. ∆(X) ≤ ω).

The (closed) diagonal number of a functionally Hausdorff space X is
upper bounded by
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• the submetrizability number sm(X) of X, defined as the smallest
number of continuous pseudometrics which separate points of X,
and

• the i-weight iw(X) of X, defined as the smallest number of con-
tinuous real-valued functions that separate points of X.

The following diagram describes relations between these cardinal char-
acteristics. In this diagram for two cardinal characteristics f, g an arrow
f → g indicates that f(X) ≤ g(X) for any functionally Hausdorff topo-
logical space X.

ψ //

��

∆

��
χ ψoo // ∆ // sm // iw // sm · log dc

The unique non-trivial inequality iw ≤ sm · log dc in this diagram is
proved in the following proposition.

Proposition 1.4. Each infinite functionally Hausdorff space X has

iw(X) · ω = sm(X) · log(dc(X)) and |X| ≤ dc(X)ω·sm(X) ≤ 2ω·iw(X).

Proof. The inequality sm(X) · log(dc(X)) ≤ iw(X) · ω follows from the
inequalities sm(X) ≤ iw(X) and dc(X) ≤ |X| ≤ |[0, 1]iw(X)| = 2iw(X)·ω,
the latter of which implies log(dc(X)) ≤ log(2iw(X)·ω) ≤ iw(X) · ω.

Now we prove the inequalities iw(X) · ω ≤ sm(X) · log(dc(X)) and
|X| ≤ dc(X)ω·sm(X). The definition of the submetrizability number im-
plies that X admits a continuous injective map f : X →

∏
α∈sm(X)Mα

into the Tychonoff product of sm(X) many metric spaces Mα. We lose
no generality assuming that each metric space Mα is a continuous image
of X and hence d(Mα) = dc(Mα) ≤ dc(X) and |Mα| ≤ d(Mα)ω. Then

|X| ≤
∏

α∈sm(X)

|Mα| ≤
∏

α∈sm(X)

d(Mα)ω ≤
∏

α∈sm(X)

dc(X)ω =dc(X)ω·sm(X).

By [10, 4.4.9], for every α ∈ sm(X) the metric space Mα admits a
topological embedding into the countable powerHω

κ of the hedgehogHκ =
{(xi)i∈κ ∈ [0, 1]κ : |{i ∈ κ : xi 6= 0}| ≤ 1} with κ = dc(X) ≥ d(Mα) many
spines. The hedgehogHκ can be thought as a cone over a discrete spaceD
of cardinality κ. The discrete space D admits an injective continuous map
into the Tychonoff cube [0, 1]log(κ). Consequently, Hκ admits an injective
continuous map into the cone over the Tychonoff cube [0, 1]log(κ), which
implies that iw(Hk) ≤ log(κ) = log(dc(X)) and iw(Hω

κ ) ≤ log(dc(X)) ·
ω = log(dc(X)). Then iw(X) ≤ sm(X) · iw(Hω

k ) ≤ sm(X) · log(dc(X)).
This completes the proof of the equality iw(X) ·ω = sm(X) · log(dc(X)).
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To complete the proof of the proposition, observe that

|X| ≤dc(X)ω·sm(X) ≤
(
2log dc(X)

)ω·sm(X)
= 2log(dc(X))·ω·sm(X) = 2ω·iw(X).

�

1.3. Pre-uniform spaces and their cardinal characteristics. By an
entourage on a set X we understand any subset U ⊂ X×X containing the
diagonal ∆X = {(x, y) ∈ X ×X : x = y} of X ×X. For an entourage U
on X, point x ∈ X and subset A ⊂ X let B(x;U) = {y ∈ X : (x, y) ∈ U}
be the U -ball centered at x, and B(A;U) =

⋃
a∈AB(a;U) be the U -

neighborhood of A in X.
Now we define some operations on entourages. For two entourages U, V

on X let
U−1 = {(x, y) ∈ X ×X : (y, x) ∈ U}

be the inverse entourage and

UV = {(x, z) ∈ X ×X : ∃y ∈ X such that (x, y) ∈ U and (y, z) ∈ V }
be the composition of U and V . It is easy to see that (UV )−1 = V −1U−1.
For every entourage U on X define its powers Un, n ∈ Z, by the formula:
U0 = ∆X and Un+1 = UnU , U−n−1 = U−nU−1 for n ∈ ω. Define
also the alternating powers U±n and U∓n of U by the recursive formulas:
U±0 = U∓0 = ∆X , and U±(n+1) = UU∓n, U∓(n+1) = U−1U±n for n ≥ 0.
If U is an entourage on a topological spaceX, then put U =

⋃
x∈X B(x;U)

be the closure of U in the product Xd×X where Xd is the set X endowed
with the discrete topology.

The following lemma proved in [5] shows that the alternating power
U∓2 on an entourage U is equivalent to taking the star with respect to
the cover U = {B(x;U) : x ∈ X}.

Lemma 1.5. For any entourage U on a set X and a point x ∈ X we
get B(x;U−1U) = St(x;U) where U = {B(x;U) : x ∈ X}. Consequently,
B(x;U∓2n) = B(x; (U−1U)n) = Stn(x;U) for every n ∈ N.

A family U of entourages on a set X is called a uniformity on X if it
satisfies the following four axioms:
(U1) for any U ∈ U , every entourage V ⊂ X×X containing U belongs

to U ;
(U2) for any entourages U, V ∈ U there is an entourage W ∈ U such

that W ⊂ U ∩ V ;
(U3) for any entourage U ∈ U there is an entourage V ∈ U such that

V V ⊂ U ;
(U4) for any entourage U ∈ U there is an entourage V ∈ U such that

V ⊂ U−1.
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A family U of entourages on X is called a quasi-uniformity (resp. pre-
uniformity) on X if it satisfies the axioms (U1)–(U3) (resp. (U1)–(U2) ).
So, each uniformity is a quasi-uniformity and each quasi-uniformity is a
pre-uniformity. Observe that a pre-uniformity is just a filter of entourages
on X.

A subfamily B ⊂ U is called a base of a pre-uniformity U on X if
each entourage U ∈ U contains some entourage B ∈ B. Each base of
a preuniformity satisfies the axiom (U2). Conversely, each family B of
entourages on X satisfying the axiom (U2) is a base of a unique pre-
uniformity 〈B〉 consisting of entourages U ⊂ X × X containing some
entourage B ∈ B. If the base B satisfies the axiom (U3) (and (U4)), then
the pre-uniformity 〈B〉 is a quasi-uniformity (and a uniformity).

Next we define some operations over preuniformities. Given two pre-
uniformities U ,V on a set X put U−1 = {U−1 : U ∈ U}, U ∧V = {U ∪V :
U ∈ U , V ∈ V}, U ∨ V = {U ∩ V : U ∈ U , V ∈ V} and let UV be
the pre-uniformity generated by the base {UV : U ∈ U , V ∈ V}. For
every n ∈ ω let U±n, U∓n, U∧n, U∨n be the pre-uniformities generated
by the bases {U±n : U ∈ U}, {U∓n : U ∈ U}, {U±n ∪ U∓n : U ∈ U},
{U±n ∩U∓n : U ∈ U}, respectively. Observe that U∧n = U±n ∧ U∓n and
U∨n = U±n ∨ U∓n. For a pre-uniformity U on a topological space X let
U be the pre-uniformity generated by the base {U : U ∈ U}.

The pre-uniformities U±n, U∓n, U∧n, U∨n feet into the following dia-
gram (in which an arrow V → W indicates that V ⊂ W):

U±n

""FFFFFFFF

U∨(n+1) // U∧n

<<xxxxxxxx

""FFFFFFFF U∨n // U∧(n−1)

U∓n

<<xxxxxxxx

We shall say that a preuniformity U on X is
• ±n-separated if

⋂
U±n = ∆X ;

• ∓n-separated if
⋂
U∓n = ∆X ;

• n-separated if U is both ±n-separated and ∓n-separated.
Observe that for an odd number n a pre-uniformity U is n-separated if
and only if it is ±n-separated if and only if it is ∓n-separated (this follows
from the equality (U±n)−1 = U∓n holding for every entourage U).

This equivalence does not hold for even n:
Example 1.6. For every m ∈ N consider the entourage Um = {(x, y) ∈
R+×R+ : y ∈ {x}∪ [x+m,∞)} on the half-line R+ = [0,∞). The family
{Um}m∈N is a base of a quasi-uniformity U on R+ which is ∓2-separated
but not ±2-separated.
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Each pre-uniformity U on a set X generates a topology τU consisting of
all subsets W ⊂ X such that for each point x ∈ W there is an entourage
U ∈ U with B(x;U) ⊂W , see [8]. This topology τU will be referred to as
the topology generated by the pre-uniformity U . If U is a quasi-uniformity,
then for each point x ∈ X the family of balls {B(x;U) : U ∈ U} is
a neighborhood base of the topology τU at x. This implies that for a
quasi-uniformity U on a set X the topology τU is Hausdorff if and only
if for any distinct points x, y ∈ X there is an entourage U ∈ U such
that B(x;U) ∩ B(y;U) = ∅ if and only if

⋂
UU−1 = ∆X if and only

if the quasi-uniformity U is ±2-separated. It is known (see [18] or [19])
that the topology of each topological space X is generated by a suitable
quasi-uniformity (namely, the Pervin quasi-uniformity, generated by the
subbase consisting of the entourages (U × U) ∪

(
(X \ U) ×X

)
where U

runs over open sets in X).
Now we consider some cardinal characteristics of pre-uniformities. Let

U be a pre-uniformity on a topological space X.
• The boundedness number `(U) of U is defined as the smallest car-

dinal κ such that for any entourage U ∈ U there is a subset A ⊂ X
of cardinality |A| ≤ κ such that B(A;U) = X;

• the weak boundedness number ¯̀(U) of U is defined as the smallest
cardinal κ such that for any entourage U ∈ U there is a subset
A ⊂ X of cardinality |A| ≤ κ such that B(A;U) is dense in X;

• the character χ(U) of U is the smallest cardinality of a subfamily
V ⊂ U such that each entourage U ∈ U contains some entourage
V ∈ V;

• the pseudocharacter ψ(U) of U is the smallest cardinality of a
subfamily V ⊂ U such that

⋂
V =

⋂
U ;

• the closed pseudocharacter ψ(U) of U is the smallest cardinal-
ity of a subfamily V ⊂ U such that for every x ∈ X we get⋂
V ∈V B(x;V ) =

⋂
U∈U B(x;U) (so, ψ(U) = ψ(U) );

• the local pseudocharacter ψ̇(U) of U is the smallest cardinal κ such
that for every x ∈ X there is a subfamily Vx ⊂ U of cardinality
|Vx| ≤ κ such that

⋂
V ∈Vx B(x;V ) =

⋂
U∈U B(x;U).

For any Hausdorff topological space X and a quasi-uniformity U gen-
erating the topology of X we get the inequalities ψ(X) = ψ̇(U) ≤ ψ(U),
ψ(X) ≤ ψ(U) and χ(X) ≤ χ(U), which fit into the following diagram (in
which an arrow a→ b indicates that a ≤ b).

ψ(X) //

��

ψ(X) //

��

χ(X)

��
ψ(U) // ψ(U) // χ(U)
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The boundedness number `(U) combined with the pseudocharacter
ψ∓2(U) can be used to produce a simple upper bound on the cardinality
of a ∓2-separated pre-uniform space (cf. [6, 4.3]).

Proposition 1.7. Any set X has cardinality |X| ≤ `(U)ψ
∓2(U) for any

∓2-separated pre-uniformity U on a set X.

Proof. The pre-uniformity U∓2, being separated, contains a subfamily
V ⊂ U of cardinality |V| = ψ(U∓2) such that

⋂
V ∈V V

−1V = ∆X . By the
definition of the boundedness number `(U), for every entourage V ∈ V
there is a subset LV ⊂ X of cardinality |LV | ≤ `(U) such that X =
B(LV ;V ). For every x ∈ X choose a function fx ∈

∏
V ∈V LV assigning

to every entourage V ∈ V a point fx(V ) ∈ LV such that x ∈ B(fx(V );V ).
We claim that for any distinct points x, y ∈ X the functions fx, fy are
distinct. Indeed, the choice of the family V yields an entourage V ∈ V
such that (x, y) /∈ V −1V . Then fx(V ) 6= fy(V ) and hence fx 6= fy. This
implies that

|X| ≤
∏
V ∈V |LV | ≤ `(X)|V| = `(U)ψ(U∓2). �

Following [4] we define a quasi-uniformity U on a topological space X
to be normal if for any subset A ⊂ X and entourage U ∈ U we get A ⊂
B(A;U)

◦
. A topological space X is called normally quasi-uniformizable

if the topology of X is generated by a normal quasi-uniformity. Normally
quasi-uniformizable spaces possess the following important normality-
type property proved in [4].

Theorem 1.8. Let X be a topological space and U be a normal quasi-
uniformity generating the topology of X. Then for every subset A ⊂ X
and entourage U ∈ U there exists a continuous function f : X → [0, 1]

such that A ⊂ f−1(0) and f
(
[0, 1)

)
⊂ B(A;U)

◦
.

1.4. Cardinal characteristics of topological spaces, II. Let X be a
topological space. An entourage U on X is called a neighborhood assign-
ment if for every x ∈ X the U -ball B(x;U) is a neighborhood of x. The
family pUX of all neighborhood assignments on a topological space X is a
pre-uniformity called the universal pre-uniformity on X. It contains any
pre-uniformity generating the topology of X and is equal to the union of
all pre-uniformities generating the topology of X.

The universal pre-uniformity pUX contains

• the universal quasi-uniformity qUX =
⋃
{U ⊂ pUX : U is a quasi-

uniformity on X}, and
• the universal uniformity UX =

⋃
{U ⊂ pUX : U is a uniformity on

X}
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of X. It is clear that UX ⊂ qUX ⊂ pUX . The interplay between the
universal pre-uniformities pUX , qUX and UX are studied in [5].

Since the topology of any topological space is generated by a quasi-
uniformity, the universal quasi-uniformity qUX generates the topology of
X. In contrast, the universal uniformity UX generates the topology of X
if and only if the space X is completely regular.

Cardinal characteristics of the pre-uniformities pUX , qUX and UX or
their alternating powers can be considered as cardinal characteristics of
the topological space X. In particular, for a Hausdorff space X we have
the equalities:

χ(X) = χ(pUX), ψ(X) = ψ(pUX), ψ(X) = ψ(pUX), ∆(X) = ψ(pU∓2
X ).

The last equality follows from Lemma 1.5. On the other hand, the bound-
edness number `(pUX) of pUX coincides with the Lindelöf number l(X)
of X.

Observe that for the universal pre-uniformity pUX on a Hausdorff topo-
logical space X the upper bound |X| ≤ `(pUX)ψ(pU∓2

X ) proved in Propo-
sition 1.7 turns into the known upper bound |X| ≤ l(X)∆(X).

Having in mind the equality l(X) = `(pUX), for every n ∈ N let us
define the following cardinal characteristics:

`±n(X) := `(pU±nX ), ¯̀±n(X) := ¯̀(pU±nX ), q`±n(X) := `(qU±nX ),

`∓n(X) := `(pU∓nX ), ¯̀∓n(X) := ¯̀(pU∓nX ), q`∓n(X) := `(qU∓nX ),

`∧n(X) := `(pU∧nX ) ¯̀∧n(X) := ¯̀(pU∧nX ), q`∧n(X) := `(qU∧nX ),

`∨n(X) := `(pU∨nX ), ¯̀∨n(X) := ¯̀(pU∨nX ), q`∨n(X) := `(qU∨nX ).

Let also

`ω(X) = min
n∈N

`∨n(X), q`ω(X) = min
n∈N

q`∨n(X), and u`(X) = `(UX).

Observe that u`(X) = `(U±nX ) = `(U∓nX ) = `(U∧nX ) = `(U∨nX ) for every
n ∈ N (this follows from the equality UX = U±nX = U∓nX holding for every
n ∈ N).

The above cardinal characteristics were introduced and studied in [5].
Some inequalities between the cardinal characteristics `±n, `∓n, `∧n,

`∨n, q`±n, q`∓n, q`∧n, q`∨n, and u` are described in the following diagram
in which an arrow a → b indicates that a(X) ≤ b(X) for any topological
space X.
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`∨n

q`∨n

OO

¯̀∓n // `∓n

<<xxxxxxxxxxxxxxxxxxxxx
q`∓noo

<<xxxxxxxx
u`

��

OO

oo // q`±n //

bbFFFFFFFF

`±n

bbFFFFFFFFFFFFFFFFFFFFF
¯̀±noo

q`∧n

��

<<xxxxxxxx

bbFFFFFFFF

`∧n

<<xxxxxxxxxxxxxxxxxxxxx

bbFFFFFFFFFFFFFFFFFFFFF

It turns out that the cardinal invariants l∗n, l∗n
1
2 , l̄∗n, and l̄∗n

1
2 can be

expressed via the cardinal invariants `∓m, `±m, `∓m, `±m for a suitable
number m. The following proposition is proved in [5] (or can be easily
derived from the definitions).

Proposition 1.9. For every n ∈ ω we have the equalities:

l∗n = `∓2n, l̄∗n = ¯̀∓2n, l∗n
1
2 = `±(2n+1), l̄∗n

1
2 = ¯̀±(2n+1).

The following proposition (proved in [5]) describes the relation of the
cardinal invariants `±n, `∓n to classical cardinal invariants.

Proposition 1.10. Let X be a topological space. Then

(1) `∧1(X) ≤ s(X) ≤ q`∨1(X) ≤ `∨1(X) ≤ nw(X);
(2) e(X) ≤ de(X) ≤ q`±1(X) ≤ `±1(X) = l(X);
(3) c(X) ≤ q`∓1(X) ≤ `∓1(X) ≤ d(X);
(4) If X is quasi-regular, then ¯̀±3(X) = l̄∗1

1
2 (X) = `ω(X) = dc(X);

(5) If X is completely regular, then q ¯̀±3(X) = q`ω(X) = u`(X) =
dc(X).

Taking into account Propositions 1.3, 1.9 and 1.10, we see that for
quasi-regular spaces the cardinal characteristics `±n, `∓n, ¯̀∓n, `∧n, `∨n
relate to other cardinal characteristics of topological spaces as follows.
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l̄∗ω ¯̀±3 l̄∗1
1
2 - ¯̀∓2 = l̄∗1 - ¯̀±1 = l̄∗

1
2 = l̄

��
�
�*

- l̄∗0 d - hd

6

l∗ω - l∗2 - l∗1
1
2 - l∗1

HH
HHHj

- l∗
1
2 l - hl

?

`±4
���

`∓3
���

?

`±2
���

?

c
�
��

- `∓1
���

?

`∓4

@
@
@
@

`±3

@
@R

`∓2

@
@R

de

@
@R

- `±1

@
@R

dc `ω `∧4

@
@@@

�
��

`∨4 - `∧3
�
��

@
@R

`∨3 - `∧2
�
��

@
@R

`∨2 - `∧1
�
��

@
@R

- s
�
�
�
�
��

@
@
@
@
@R

- `∨1 - nw

For Tychonoff spaces we can add to this diagram the cardinal charac-
teristics q`±n, q`∓n, q`∨n, and u`:

l̄∗ω ¯̀±3 l̄∗1
1
2 - ¯̀∓2 l̄∗1 - ¯̀±1 l̄∗

1
2 l̄ -��
�
��*

l̄∗0 d - hd

6

dc `±4
�
�
�
�7

`∓3
�
�
�
�7

?

`±2
�
�
�
�7

?

c
�
�
�
���

- `∓1
�
�
���

?

q`±4
��7

q`∓3
��7

?

q`±2
��7

?

q`∓1
��

?

`ω `∧4
�
�
�
�7

S
S
S
S

S
S
S
S

q`∧4
��7

SSSS

q`∨4
@R

- `∨4- `∧3
�
�
�
�7

S
S
S
Sw

q`∧3
��7

SSw

� q`∨3- `∨3-

��

`∧2
�
�
�
�7

S
S
S
Sw

q`∧2
��7

SSw

� q`∨2
@R

- `∨2- `∧1
�
�
�
��

@
@
@
@R

q`∧1
���

@
@R

� - s
�
�
�
�
�
�
��

@
@
@
@
@
@
@R

- q`∨1- `∨1 - nw

q`∓4

SSSS

6
q`±3

SSw

6
q`∓2

SSw

6
q`±1

@@R

6

u` `∓4

S
S
S
S

S
S
S
S

`±3

S
S
S
Sw

`∓2

S
S
S
Sw

de

@
@
@
@R

- `±1

@
@
@
@R

l∗ω - l∗2 - l∗1
1
2 - l∗1

HHH
HHj

- l∗
1
2 l - hl

?

Question 1.11. Which cardinal characteristics in the above diargams are
pairwise distinct?

2. i-Weight of normally quasi-uniformizable
topological spaces

In this section we apply Theorem 1.8 to derive some upper bounds on
the i-weight of a normally quasi-uniformizable space.

Proposition 2.1. Let X be a topological space whose topology is generated
by a normal quasi-uniformity U . The space X has i-weight iw(X) ≤ κ
for some cardinal κ if there exists a family of subsets {Aα}α∈κ of X and
a family of entourages {Uα}α∈κ ⊂ U such that for any distinct points
x, y ∈ X there is α ∈ κ such that x ∈ Aα and y /∈ B(Aα;Uα).

Proof. For every α ∈ κ apply Theorem 1.8 to construct a continuous map
fα : X → [0, 1] such that fα(Aα) ⊂ {0} and f−1

α

(
[0, 1)

)
⊂ B(Aα;Uα). It

follows that the family of continuous maps {fα}α∈κ separates points of
X. So, iw(X) ≤ κ. �

This proposition will be used to prove:
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Theorem 2.2. A Hausdorff space X has i-weight iw(X) ≤ ψ(A−1AU) ·
`(A) for any normal quasi-uniformity U generating the topology of X and
any pre-uniformity A on X such that

⋂
A−1AU = ∆X .

Proof. If the cardinal ψ(A−1AU) is finite, then ψ(A−1AU) = 1, which
implies that A−1AU = ∆X = A = U for some A ∈ A and U ∈ U . In this
case `(A) = |X| and hence iw(X) ≤ |X| ≤ `(A).

So, we assume that the cardinal κ = ψ(A−1AU) is infinite. Since⋂
A−1AU = ∆X , we can choose subfamilies (Aα)α∈κ ⊂ A and (Uα)α∈κ ⊂

U such that
⋂
α<κB(x,A−1

α AαUα) = {x} for every x ∈ X. For every
α ≤ κ choose a subset Zα ⊂ X of cardinality |Zα| ≤ `(A) such that X =
B(Zα;Aα). Consider the family of sets Z =

⋃
α∈κ{B(z;Aα) : z ∈ Zα}.

We claim that for any distinct points x, y ∈ X there is a set Z ∈ Z and
ordinal α ∈ κ such that x ∈ Z and y /∈ B(Z;Uα).

By the choice of the families (Aα), (Uα), for the points x, y there is an
index α ∈ κ such that y /∈ B(x;A−1

α AαUα). Since X = B(Zα;Aα), we
can find a point z ∈ Zα such that x ∈ B(z;Aα) and hence z ∈ B(x;A−1

α ).
We claim that the set Z = B(z;Aα) ∈ Z has the required proper-
ties: x ∈ Z and y /∈ B(Z;Uα). To derive a contradiction, assume
that y ∈ B(Z;Uα) which implies y ∈ B(Z;Uα) = B(B(z;Aα);Uα) =

B(z;AαUα) ⊂ B(B(x;A−1
α );AαUα) = B(x;A−1

α AαUα). But this contra-
dicts the choice of the index α.

This contradiction allows us to apply Proposition 2.1 and conclude that

iw(X) ≤ |Z| · κ ≤
∑
α∈κ |Zα| · κ ≤ κ2 · `(A) = ψ(A−1AU) · `(A). �

Applying Theorem 2.2 to some concrete pre-uniformities A, we get the
following corollary.

Corollary 2.3. Let X be a functionally Hausdorff space and U be a
normal quasi-uniformity generating the topology of X. If for some n ∈ N
the quasi-uniformity U is

(1) ±(4n − 2)-separated, then iw(X) ≤ ψ(U±(4n−3)) · `(U∨(2n−1)) ≤
χ(U) · q`∨(2n−1)(X);

(2) ∓(4n − 1)-separated, then iw(X) ≤ ψ(U∓(4n−2)) · `(U±(2n−1)) ≤
χ(U) · q`±(2n−1)(X);

(3) ±(4n)-separated, then iw(X) ≤ ψ(U±(4n−1)) · `(U∨(2n)) ≤ χ(U) ·
q`∨(2n)(X);

(4) ∓(4n+1)-separated, then iw(X) ≤ ψ(U∓(4n)) · `(U∓(2n)) ≤ χ(U) ·
q`∓(2n)(X).
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Proof. 1. If U is ±(4n − 2)-separated, then for the pre-uniformity A =
U±(2n−1) ∨ U∓(2n−1) we get

A−1AU ⊂ U±(2n−1)U±(2n−1)U = U±(4n−3)U = U±(4n−3)

and hence
⋂
A−1AU ⊂

⋂
A−1AUU−1 =

⋂
U±(4n−2) = ∆X . Applying

Theorem 2.2 to the pre-uniformity A = U∨(2n−1), we get

iw(X) ≤ ψ(U±(4n−3)) · `(U∨(2n−1)) ≤ χ(U) · q`∨(2n−1)(X).

2. If U is ∓(4n − 1)-separated, then for the pre-uniformity A =
U±(2n−1) we get

A−1AU = U∓(2n−1)U±(2n−1)U = U∓(4n−2)U = U∓(4n−2)

and hence
⋂
A−1AU ⊂

⋂
A−1AUU−1 =

⋂
U∓(4n−1) = ∆X . Applying

Theorem 2.2 to the pre-uniformity A = U±(2n−1), we get

iw(X) ≤ ψ(U∓(4n−2)) · `(U±(2n−1)) ≤ χ(U) · q`±(2n−1)(X).

3. If U is ±(4n)-separated, then for the pre-uniformity A = U∨(2n) we
get

A−1AU ⊂ U±(2n)U∓(2n)U = U±(4n−1)U = U±(4n−1)

and hence
⋂
A−1AU ⊂

⋂
A−1AUU−1 =

⋂
U±(4n) = ∆X . Applying

Theorem 2.2 to the pre-uniformity A = U∨(2n), we get

iw(X) ≤ ψ(U±(4n−1)) · `(U±(2n) ∨ U∓(2n)) ≤ χ(U) · q`∨(2n)(X).

4. If U is ∓(4n+ 1)-separated, then for the pre-uniformity A = U∓(2n)

we get
A−1AU = U∓(2n)U∓(2n)U = U∓(4n)

and hence
⋂
A−1AU ⊂

⋂
A−1AUU−1 =

⋂
U∓(4n+1) = ∆X . Applying

Theorem 2.2 to the pre-uniformity A = U∓(2n), we get

iw(X) ≤ ψ(U∓(4n)) · `(U∓(2n)) ≤ χ(U) · q`∓(2n)(X). �

Corollary 2.3 implies:

Corollary 2.4. If X is a Hausdorff space and U is a normal quasi-
uniformity generating the topology of X, then the space X has i-weight
iw(X) ≤ ψ(U) · `(U ∨ U−1) ≤ χ(U) · `(U∨1). Moreover, if the quasi-
uniformity U is

(1) ∓3-separated, then iw(X) ≤ ψ(U∓2) · `(U) ≤ χ(U) · q`±1(X);
(2) ±4-separated, then iw(X) ≤ ψ(U±3) · `(U∨2) ≤ χ(U) · q`∨2(X);
(3) ∓5-separated, then iw(X) ≤ ψ(U∓4) · `(U∓2) ≤ χ(U) · q`∓2(X);
(4) ±6-separated, then iw(X) ≤ ψ(U±5) · `(U∨3) ≤ χ(U) · q`∨3(X);
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(5) ∓7-separated, then iw(X) ≤ ψ(U∓6) · `(U±3) ≤ χ(U) · q`±3(X);
(6) ±8-separated, then iw(X) ≤ ψ(U±7) · `(U∨4) ≤ χ(U) · q`∨4(X);
(7) ∓9-separated, then iw(X) ≤ ψ(U∓8) · `(U∓4) ≤ χ(U) · q`∓4(X);
(8) ±10-separated, then iw(X) ≤ ψ(U±9) · `(U∨5) ≤ χ(U) · dc(X).

3. Bi-quasi-uniformizable spaces

In this section we introduce so-called bi-quasi-uniformizable spaces and
obtain some upper bounds on the submetrizability number and i-weight
of such spaces. As a motivation, consider the following characterization.

Proposition 3.1. For two quasi-uniformities L and R on a set X the
following conditions are equivalent:

(1) LR−1 ⊂ R−1L;
(2) RL−1 ⊂ L−1R;
(3) LR−1 is a quasi-uniformity;
(4) RL−1 is a quasi-uniformity.

Proof. (1)⇔ (2) and (3)⇔ (4): Since
(
LR−1

)−1
= RL−1, the inclusion

LR−1 ⊂ R−1L is equivalent to RL−1 ⊂ L−1R. By the same reason,
LR−1 is a quasi-uniformity if and only if RL−1 is a quasi-uniformity.

(1)⇒ (3): If LR−1 ⊂ R−1L, then

LR−1=(LL)(R−1R−1)=L(LR−1)R−1⊂L(R−1L)R−1=(LR−1)(LR−1),

which means that the pre-uniformity LR−1 is a quasi-uniformity.
(3)⇒ (1): If LR−1 is a quasi-uniformity, then LR−1 = LR−1LR−1 ⊂

R−1L. �

Motivated by Proposition 3.1 let us introduce the following

Definition 3.2. Two quasi-uniformities L and R on a set X are called
• commuting if LR = RL;
• ±-subcommuting if LR−1 ⊂ R−1L and RL−1 ⊂ L−1R.

A topological space X is defined to be bi-quasi-uniformizable if the topol-
ogy of X is generated by two ±-subcommuting quasi-uniformities.

Commuting pairs of (quasi-)uniformities were studied in [29], [30] (and
[15]).

Theorem 3.3. For any ±-subcommuting quasi-uniformities L,R gen-
erating the topology τ of a topological space X the pre-uniformity Q =
LR−1 ∨ RL−1 is a uniformity generating a completely regular topology
τQ, weaker than the topology τ of X. If the space X is Hausdorff, then
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the topology τQ generated by the uniformity Q is Tychonoff, the space X
is functionally Hausdorff and has submetrizability number

sm(X) ≤ ψ(Q) ≤ χ(L) · χ(R)

and i-weight

iw(X) ≤ ψ(Q) · log(`(Q)) ≤ χ(L) · χ(R) · log(dc(X)).

Proof. By Proposition 3.1, the pre-uniformity Q is a quasi-uniformity.
Since Q−1 = Q, it is a uniformity. Then the topology τQ generated by
the uniformity Q is Tychonoff (see [10, 8.1.13]) Since Q ⊂ L, the topology
τQ is weaker than the topology τL = τ of the space X.

Now assume that the topology τ is Hausdorff. In this case for any
distinct points x, y ∈ X we can find entourages L ∈ L and R ∈ R such
that B(x;L)∩B(y;R) = ∅. Then y /∈ B(x;LR−1) and hence (y, x) /∈

⋂
Q,

which means that the uniformity Q is separated and the topology τQ
generated by Q is Tychonoff. Consequently, the space X is functionally
Hausdorff.

To show that sm(X) ≤ ψ(Q), fix a subfamily V ⊂ Q of cardinality
|V| = ψ(Q) such that

⋂
V = ∆X . By [10, 8.1.11], for every entourage

V ∈ V there exists a continuous pseudometric dV on X such that the
entourage [dV ]<1 = {(x, y) ∈ X × X : dV (x, y) < 1} is contained in V .
Then the family of pseudometrics D = {dV }V ∈V separates points of X,
which implies that sm(X) ≤ |D| ≤ |V| = ψ(Q).

Taking into account that the topological weight of a metric space is
equal to its boundedness number, which does not exceed the discrete
cellularity, and applying Proposition 1.4, we conclude that

iw(X) ≤ ψ(Q) · log(`(Q)) ≤ χ(Q) · log(dc(X)) ≤ χ(L) ·χ(R) · log(dc(X)).

�

Theorem 3.3 implies:

Corollary 3.4. Each Hausdorff bi-quasi-uniformizable topological space
is functionally Hausdorff.

We do not know if this corollary can be reversed.

Problem 3.5. Is each functionally Hausdorff space bi-quasi-uniformiz-
able?

Proposition 3.6. Let L,R be two ±-subcommuting quasi-uniformities
generating the same Hausdorff topology on X. If the quasi-uniformities
L−1,R−1 generate the same topology on X, then the quasi-uniformities
L and R are 3-separated.
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Proof. Given two distinct points x, y ∈ X we shall find an entourage
R ∈ R such that (x, y) /∈ R−1RR−1. Since the topology generated by
the quasi-uniformities L and R on X is Hausdorff, there are two en-
tourages L ∈ L and R̂ ∈ R such that B(x; R̂) ∩ B(y;LL) = ∅ and hence
(x, y) /∈ R̂L−1L−1. Replacing R̂ by a smaller entourage, we can addi-
tionally assume that B(y; R̂) ⊂ B(y;L). Then B(x; R̂) ∩ B(y; R̂L) = ∅
and hence y /∈ B(x; R̂L−1R̂−1). Since the quasi-uniformities L and R
are ±-subcommuting, for the entourages L and R̂ there are entourages
L̃ ∈ L and R̃ ∈ R such that L̃−1R̃ ⊂ R̂L−1. Since quasi-uniformities L−1

and R−1 generate the same topology on X, for the entourage L̃−1 there
is an entourage Ř ∈ R such that B(x; Ř−1) ⊂ B(x; L̃−1). Then for the
entourage R = Ř ∩ R̃ ∩ R̂ we get B(x;R−1RR−1) ⊂ B(x; Ř−1R̃R̂−1) ⊂
B(x; L̃−1R̃R̂−1) ⊂ B(x; R̂L−1R̂−1) and hence y /∈ B(x;R−1RR−1). So,⋂
R−1RR−1 = ∆X and after inversion,

⋂
RR−1R = ∆X , which means

that the quasi-uniformity R is 3-separated. By analogy we can prove that
the quasi-uniformity L is 3-separated. �

4. Normally bi-quasi-uniformizable spaces

Observe that for two quasi-uniformities L,R on a set X the inclusion
LR−1 ⊂ R−1L is equivalent to the existence for every entourages L ∈ L
and R ∈ R two entourages L̃ ∈ L and R̃ ∈ R such that R̃−1L̃ ⊂ LR−1.
Changing the order of quantifiers in this property we obtain the following
notion.

Definition 4.1. A topological space X is called normally bi-quasi-uni-
formizable if its topology is generated by quasi-uniformities L and R sat-
isfying the following properties:

• ∀L ∈ L ∃L̃ ∈ L ∀R ∈ R ∃R̃ ∈ R such that R̃−1L̃ ⊂ LR−1 and
L̃−1R̃ ⊂ RL−1;
• ∀R ∈ R ∃R̃ ∈ R ∀L ∈ L ∃L̃ ∈ L such that L̃−1R̃ ⊂ RL−1 and
R̃−1L̃ ⊂ RL−1.

In this case we shall say that the quasi-uniformities L and R are normally
±-subcommuting.

By analogy we can introduce normally commuting quasi-uniformities.

Definition 4.2. Two quasi-uniformities L and R on a set X are defined
to be normally commuting if they satisfy the following two conditions:

• ∀L ∈ L ∃L̃ ∈ L ∀R ∈ R ∃R̃ ∈ R such that R̃L̃ ⊂ LR and
L̃R̃ ⊂ RL;
• ∀R ∈ R ∃R̃ ∈ R ∀L ∈ L ∃L̃ ∈ L such that L̃R̃ ⊂ RL and
R̃L̃ ⊂ RL.
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Proposition 4.3. Any two normally ±-subcommuting quasi-uniformities
L,R generating the same topology on a set X are normal. Consequently,
each normally bi-quasi-uniformizable topological space is normally quasi-
uniformizable.

Proof. To show that L is normal, fix a subset A ⊂ X and entourage L ∈ L.
Since L and R are normally ±-subcommuting, for the entourage L there
exists an entourage L̃ ∈ L such that for every entourage R ∈ R there is an
entourage R̃ ∈ R with L̃−1R̃ ⊂ RL−1. We claim that B(Ā; L̃) ⊂ B(A;L).
Given any point x ∈ B(Ā; L̃), we need to show that x ∈ B(A;L). Given
any neighborhood Ox ⊂ X of x, find an entourage R ∈ R such that
B(x;R) ⊂ Ox. By the choice of the entourage L̃, for the entourage R
there is an entourage R̃ ∈ R such that L̃−1R̃ ⊂ RL−1. It follows from
x ∈ B(Ā; L̃) that B(x; L̃−1) ∩ Ā 6= ∅ and hence ∅ 6= B(x; L̃−1R̃) ∩ A ⊂
B(x;RL−1) ∩ A. Then ∅ 6= B(x;R) ∩ B(A;L) ⊂ Ox ∩ B(A;L), which
means x ∈ B(A;L). So, B(Ā; L̃) ⊂ B(A;L) and hence Ā ⊂ B(Ā; L̃)◦ ⊂
B(A;L)

◦
, which means that L is normal. By analogy we can prove the

normality of the quasi-uniformity R. �

Theorem 4.4. If L and R are two normally ±-subcommuting quasi-
uniformities generating the topology of a Hausdorff topological space X,
then the quasi-uniformities LR−1 and RL−1 are 1-separated and have
pseudocharacter

(1) ψ(LR−1) = ψ(RL−1) ≤ ψ(LL−1) · `(L−1) ≤ ψ(LL−1) · q`∓1(X);
(2) ψ(LR−1) = ψ(RL−1) ≤ ψ(L−1L) · `(L) ≤ ψ(L−1L) · q`±1(X) if
L−1,R−1 are normally ±-subcommuting and generate the same
topology on X;

(3) ψ(LR−1) = ψ(RL−1) ≤ ψ(LL−1L)·`(LL−1∨L−1L) ≤ ψ(LL−1L)·
q`∨2(X) if the quasi-uniformities L and R are normally commut-
ing and

⋂
LL−1L = ∆X ;

(4) ψ(LR−1) = ψ(RL−1) ≤ ψ(A−1AL) · `(A) · `±2(X) for any pre-
uniformity A on X such that

⋂
A−1AL = ∆X .

Proof. First we show that the quasi-uniformities LR−1 and RL−1 are
1-separated. Since the topology of X is Hausdorff, for any distinct points
x, y ∈ X we can find two disjoint open sets Ox 3 x and Oy 3 y. Taking
into account that the quasi-uniformities L and R generate the topology of
X, we can find two entourages L ∈ L and R ∈ R such that B(x;L) ⊂ Ox
and B(y;R) ⊂ Oy. Then B(x;L)∩B(y;R) = ∅ and hence y /∈ B(x;LR−1)
and x /∈ B(y;RL−1), which implies that

⋂
LR−1 = ∆X =

⋂
RL−1.

So, the quasi-uniformities LR−1 and RL−1 are 1-separated. Taking into
account that

(
LR−1

)−1
= RL−1 we conclude that ψ(LR−1) = ψ(RL−1).
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1. Now we shall prove the inequality ψ(LR−1) ≤ ψ(LL−1) · `(L−1).
Fix a family of entourages Λ ⊂ L of cardinality |Λ| ≤ ψ(LL−1) such that⋂
L∈Λ LL

−1 = ∆X . Replacing every L ∈ Λ by a smaller entourage, we
can assume that

⋂
L∈Λ(LL)(LL)−1 = ∆X .

Since the quasi-uniformities L and R are normally ±-subcommuting,
for the entourage L ∈ L there exists an entourage L̃ ∈ L such that
for any entourage R ∈ R there exists an entourage R̃ ∈ R such that
L̃−1R̃ ⊂ RL−1. Replacing L̃ by L̃ ∩ L, we can assume that L̃ ⊂ L. For
the entourage L̃ choose a subset ZL ⊂ X of cardinality |ZL| ≤ `(L−1) such
that X = B(ZL; L̃−1). For every z ∈ ZL choose an entourage Rz ∈ R
such that B(z;Rz) ⊂ B(z;L). By the choice of L̃, for the entourage Rz
there exists an entourage R̃z ∈ R such that L̃−1R̃z ⊂ RzL

−1. Consider
the family

P =
⋃
L∈Λ

{(L, R̃z) : z ∈ ZL} ⊂ L ×R.

We claim that for any distinct points x, y ∈ X there is a pair (L, R̃z) ∈ P
such that B(x;L) ∩ B(y; R̃z) = ∅. By the choice of the family Λ, there
is an entourage L ∈ Λ such that x /∈ B(y;LLL−1L−1). Since y ∈ X =

B(ZL; L̃−1), there exists a point z ∈ ZL such that y ∈ B(z; L̃−1) and
hence z ∈ B(y; L̃). We claim that the pair (L̃, R̃z) ∈ P has the desired
property: B(x;L)∩B(y; R̃z) = ∅. Assuming that B(x;L)∩B(y; R̃z) 6= ∅,
we would conclude that

x ∈ B(y; R̃zL
−1) ⊂ B(z; L̃−1R̃zL

−1) ⊂ B(z;RzL
−1L−1) ⊂

⊂ B(z;LL−1L−1) ⊂ B(y; L̃LL−1L−1) ⊂ B(y, LLL−1L−1)

which contradicts the choice of L. So B(x;L) ∩ B(y; R̃z) = ∅, which is
equivalent to y /∈ B(x;LR̃−1

z ). Then

ψ(LR−1) ≤ |P| ≤
∑
L∈Λ

|ZL| ≤ |Λ| · `(L−1) ≤ ψ(LL−1) · `(L−1).

2. If the quasi-uniformities L−1 andR−1 are normally±-subcommuting
and generate the same topology on X, then by Proposition 3.6, this
topology is Hausdorff, which allows us to apply the first item to the
quasi-uniformities L−1,R−1 and obtain the upper bound ψ(L−1R) ≤
ψ(L−1L) · `(L). The ±-subcommutativity of L−1 and R−1 implies that
ψ(RL−1) ≤ ψ(L−1R). So,

ψ(LR−1) = ψ(RL−1) ≤ ψ(L−1R) ≤ ψ(L−1L)·`(L) ≤ ψ(L−1L)·q`±1(X).
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3. Next, assuming that the quasi-uniformities L and R are normally
commuting and

⋂
LL−1L = ∆X , we prove the inequality ψ(RL−1) =

ψ(LR−1) ≤ ψ(LL−1L) · `(LL−1 ∨ L−1L). Fix a subfamily Λ ⊂ L of
cardinality |Λ| = ψ(LL−1L) such that

⋂
L∈Λ LL

−1L = ∆X . Replac-
ing every entourage L ∈ Λ by a smaller entourage, we can assume that⋂
L∈Λ L

2L−3L = ∆X .
Since the quasi-uniformities L and R are normally commuting and

normally ±-subcommuting, for every entourage L ∈ Λ there exists an
entourage L̃ ∈ L, L̃ ⊂ L, such that for every entourage R ∈ R there
exists an entourage R̃ ∈ R such that L̃R̃ ⊂ RL and L̃−1R̃ ⊂ RL−1.

By the definition of the boundedness number `(LL−1∨L−1L), for every
L ∈ Λ there exists a subset AL ⊂ X of cardinality |AL| ≤ `(LL−1∨L−1L)

such that X = B(AL; L̃L̃−1 ∩ L̃−1L̃).
For every point a ∈ AL choose an entourage Ra ∈ R such that

B(a;Ra) ⊂ B(a;L). By the choice of L̃ for the entourage Ra there exists
an entourage Řa ∈ L such that L̃Řa ⊂ RaL, and for the entourage Řa ∈ R
there is an entourage R̃a ∈ R such that L̃−1R̃a ⊂ ŘaL

−1. Consider the
family of pairs

P =
⋃
L∈Λ

{(L, R̃a) : a ∈ AL} ⊂ L ×R.

We claim that for any distinct points x, y ∈ X there exists a pair (L,R) ∈
P such that B(x;L) ∩ B(y;R) = ∅. Given two distinct points x, y ∈ X,
find an entourage L ∈ Λ such that (x, y) /∈ L2L−3L.

Since y ∈ X = B(AL; L̃L̃−1 ∩ L̃−1L̃), we can find a point a ∈ AL
such that y ∈ B(a; L̃L̃−1 ∩ L̃−1L̃) and hence y ∈ B(a; L̃L̃−1) and a ∈
B(y; L̃−1L̃) ⊂ B(y;L−1L). We claim that B(x;L) ∩ B(y; R̃a) = ∅. To
derive a contradiction, assume that B(x;L)∩B(y; R̃a) 6= ∅. Observe that

B(y; R̃a) ⊂ B(a; L̃L̃−1R̃a) ⊂ B(a; L̃ŘaL
−1) ⊂ B(a;RaLL

−1) ⊂
B(a;LLL−1) ⊂ B(y;L−1LLLL−1).

Then ∅ 6= B(x;L) ∩ B(y; R̃a) ⊂ B(x;L) ∩ B(y;L−1LLLL−1) implies y /∈
B(x;L2L−3L), which contradicts the choice of the entourage L. This
contradiction shows that B(x;L) ∩B(y; R̃a) = ∅ and hence

ψ(RL−1) = ψ(LR−1) ≤ |P| ≤
∑
L∈Λ

|AV | ≤ ψ(LL−1L) · `(LL−1∨L−1L).

4. Finally we prove that ψ(LR−1) = ψ(RL−1) ≤ ψ(A−1AL) · `(A) ·
`±2(X) for any pre-uniformity A on X such that

⋂
A−1AU = ∆X . If

ψ(A−1AL) is finite, then ψ(A−1AL) = 1, which implies that A−1AL =
∆X = A = L for some A ∈ A and L ∈ L. In this case `(A) = |X|
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and the topological space X is discrete. Then for every point x ∈ X
we can choose an entourage Rx ∈ R such that B(x;Rx) = {x}. Then⋂
x∈X RxL

−1 =
⋂
x∈X Rx = ∆X and hence ψ(RL−1) ≤ |X| = `(A) ≤

ψ(A−1AL) · `(A) · `±2(X).
So, we assume that the cardinal κ = ψ(A−1AU) is infinite. Since⋂
A−1AL = ∆X , we can choose subfamilies (Aα)α∈κ ⊂ A and (Lα)α∈κ ⊂

L such that
⋂
α<κB(x,A−1

α AαL3
α) = {x} for every x ∈ X.

For every α < κ consider the entourage Aα ∈ A and find a subset
Zα ⊂ X of cardinality |Zα| ≤ `(A) such that X = B(Zα;Aα). Since
the quasi-uniformities L and R are normally ±-subcommuting, for the
entourage Lα there is an entourage L̃α such that for every R ∈ R there
is R̃α ∈ R such that L̃−1

α R̃ ⊂ RL−1
α .

Now fix any point z ∈ Zα. The normality of the quasi-uniformity L
(proved in Proposition 4.3) guarantees that B(z;AαL2

α) ⊂ B(z;AαL3
α)
◦
.

Put Wα,z = B(z;AαL3
α)
◦
. For every point y ∈ X \ Wα,z choose an

entourage Ry ∈ R such that B(y;RyRy) ∩ B(z;AαL2
α) = ∅ and hence

B(y;R2
yL
−1
α ) ∩ B(z;AαLα) = ∅. For every y ∈ X \ B(z;AαL3

α) we can
replace Ry by a smaller entourage and assume additionally that B(y;Ry)

is disjoint with B(z;AαL3
α).

By the choice of the entourage L̃α for every y ∈ X \Wα,z there is an
entourage R̃y ∈ R such that R̃y ⊂ Ry and L̃−1

α R̃y ⊂ RyL
−1
α . For every

y ∈ Wα,z choose an entourage R̃y ∈ R such that B(y; R̃y) ⊂ Wα,z. Now
consider the neighborhood assignment V =

⋃
y∈X{y} × B(y; R̃y ∩ L̃α).

By the definition of `±2(X), there exists a subset Aα,z ⊂ X of cardinality
|Aα,z| ≤ `±2(X) such that X = B(Aα,z;V V

−1).
Consider the family P =

⋃
α∈κ

⋃
z∈Zα{(Lα, R̃a) : a ∈ Aα,z} ⊂ L × R.

We claim that for any distinct points x, y ∈ X there is a pair (L,R) ∈ P
such that B(x;L) ∩B(y;R) = ∅.

Indeed, for the points x, y ∈ X we can find an ordinal α ∈ κ such that
y /∈ B(x;A−1

α AαL3
α). Since X = B(Zα;Aα), there is a point z ∈ Zα such

that x ∈ B(z;Aα). Then y /∈ B(z;AαL3
α) and hence B(y, R̃y) ⊂ B(y;Ry)

is disjoint with B(z;AαL3
α) by the choice of the entourage Ry.

Since y ∈ X = B(Aα,z;V V
−1), there is a point a ∈ Aα,z such that y ∈

B(a;V V −1), which implies that ∅ 6= B(y;V )∩B(a;V ) = B(y; R̃y ∩ L̃α)∩
B(a; R̃a∩L̃α) and hence y ∈ B(a; R̃aL̃

−1
α ). Since B(y, R̃y) is disjoint with

Wα,z, the choice of the entourage Ra guarantees that a /∈Wα,z and hence
B(a;RaRa)∩B(z;AαL2

α) = ∅ andB(a;RaRaL
−1
α )∩B(z;AαLα) = ∅. Now

observe that the R̃a-ball B(y; R̃a) ⊂ B(a;V V −1R̃a) ⊂ B(a;RaL̃
−1
α R̃a) ⊂

B(a;RaRaL
−1
α ) is disjoint with the Lα-ball B(x;Lα) ⊂ B(z;AαLα).
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The family P witnesses that

ψ(LR−1) = ψ(RL−1) ≤ |P| ≤ ψ(A−1AL) · `(A) · `±2(X). �

Taking into account that ψ(LR−1 ∨RL−1) ≤ ψ(LR−1), and applying
Theorem 4.4 we obtain:

Theorem 4.5. Let X be a Hausdorff topological space and L,R be two
normally ±-subcommuting quasi-uniformities generating the topology of
X. Then the uniformity Q = LR−1 ∨RL−1 has pseudocharacter:

(1) ψ(Q) ≤ ψ(L) · `(L ∨ L−1) · `±2(X);
(2) ψ(Q) ≤ ψ(LL−1) · `(L−1) ≤ ψ(L±2) · q`∓1(X).

Moreover, if the quasi-uniformity L is

(3) ∓3-separated, then ψ(Q) ≤ ψ(L−1L) · `(L) · `±2(X) ≤ ψ(L∓2) ·
`±1(X);

(4) ±4-separated, then ψ(Q) ≤ ψ(LL−1L)·`(LL−1∨L−1L)·`±2(X) ≤
ψ(L±3) · `∨2(X);

(5) ∓5-separated, then ψ(Q) ≤ ψ(L−1LL−1L) · `(L−1L) · `±2(X) ≤
ψ(L∓4) · q`∓2(X) · `±2(X);

(6) ±6-separated, then ψ(Q) ≤ ψ(LL−1LL−1L) · `±2(X) = ψ(L±5) ·
`±2(X).

If the quasi-uniformities L and R are normally commuting and 3-separated,
then

(7) ψ(Q) ≤ ψ(LL−1L) · `(LL−1 ∨ L−1L) ≤ ψ(L±3) · q`∨2(X).

If the quasi-uniformities L−1, R−1 are normally ±-subcommuting and
generate the same topology on X, then

(8) ψ(Q) ≤ ψ(L−1L) · `(L) ≤ ψ(L∓2) · q`±1(X) and
(9) ψ(Q) ≤ ψ(LL−1 ∨ L−1L) · `(L) · `(L−1) ≤ ψ(L∨2) · q`±1(X) ·

q`∓1(X).

Proof. 1. The first inequality follows from Theorem 4.4(4) applied to the
pre-uniformity A = U ∨ U−1.

2. The second item follows from Theorem 4.4(1).

3–6. The items (3)–(6) follow from Theorem 4.4(4) applied to the
pre-uniformities L, LL−1 ∨ L−1L, L−1L, and LL−1, respectively.

7. The seventh item follows from Theorem 4.4(3).

8, 9. Assume that the quasi-uniformities L−1, R−1 are normally ±-
subcommuting and generate the same topology on X. The inequalities
ψ(Q) ≤ ψ(L−1L) · `(L) ≤ ψ(L∓2) · q`±1(X) follow from Theorem 4.4(2).
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To prove that ψ(Q) ≤ ψ(LL−1 ∨ L−1L) · `(L) · `(L−1), fix a subset
Λ ⊂ L of cardinality |Λ| = ψ(LL−1 ∨ L−1L) such that

⋂
L∈Λ LL

−1 ∩
L−1L = ∆X . Replacing every L ∈ Λ by a smaller entourage, we can
assume that

⋂
L∈Λ L

2L−2 ∩ L−2L2 = ∆X . Since the quasi-uniformities
L,R are normally ±-subcommuting and the quasi-uniformities L−1, R−1

are normally ±-subcommuting, for every L ∈ Λ there exists an entourage
L̃ ∈ L with L̃ ⊂ L such that for every R ∈ R there is R̃ ∈ R such that
L̃−1R̃ ⊂ RL−1 and L̃R̃−1 ⊂ R−1L.

For every L ∈ Λ fix a subset ZL ⊂ X of cardinality |ZL| ≤ `(L)+`(L−1)

such that X = B(ZL; L̃) = B(ZL; L̃−1). Since the quasi-uniformities L,
R generate the same topology on X and L−1, R−1 generate the same
topology on X, for every z ∈ ZL we can choose an entourage Rz ∈ R
such that B(z;Rz) ⊂ B(z;L) and B(z;R−1

z ) ⊂ B(z;L−1). By the choice
of L̃ for the entourageRz there is an entourage R̃z ∈ R such that R̃z ⊂ Rz,
L̃−1R̃z ⊂ RzL

−1 and L̃R̃−1
z ⊂ R−1

z L. For the entourage R̃z there is an
entourage Řz ∈ R with Řz ⊂ R̃z such that L̃Ř−1

z ⊂ R̃−1
z L, which is

equivalent to ŘzL̃−1 ⊂ L−1R̃z.
We claim that the family P = {(L̃, Řz) : L ∈ L, z ∈ ZL} ⊂ L × R

has
⋂

(L,R)∈P LR
−1 ∩RL−1 = ∆X . Given any distinct points x, y find an

entourage L ∈ Λ such that (x, y) /∈ L2L−2 ∩ L−2L2 and hence (x, y) /∈
L2L−2 or (x, y) /∈ L−2L2.

If (x, y) /∈ L2L−2, then B(y;L2) ∩ B(x;L2) = ∅. Since y ∈ X =

B(ZL; L̃−1), there is z ∈ ZL such that y ∈ B(z; L̃−1) ⊂ B(z;L−1).
Then z ∈ B(y;L) and the L-ball B(z;L) ⊂ B(y;LL) does not inter-
sect B(x;L2), which implies B(z;LL−1) ∩ B(x;L) = ∅. Observe that
B(y; R̃z) ⊂ B(z; L̃−1R̃z) ⊂ B(z;RzL

−1) ⊂ B(z;LL−1) and hence
B(y; R̃z) ∩ B(x;L) ⊂ B(z;LL−1) ∩ B(x;L) = ∅. So, (x, y) /∈ LR̃−1

z

and hence (x, y) /∈ LŘ−1
z .

If (x, y) /∈ L−2L2, then B(y;L−2) ∩ B(x;L−2) = ∅. Since y ∈ X =

B(ZL; L̃), there is z ∈ ZL such that y ∈ B(z; L̃). Then z ∈ B(y; L̃−1) ⊂
B(y;L−1) and the L−1-ball B(z;L−1) ⊂ B(y;L−2) does not intersect
B(x;L−2), which implies B(z;L−1L) ∩ B(x;L−1) = ∅. Observe that
B(y; R̃−1

z ) ⊂ B(z; L̃R̃−1
z ) ⊂ B(z;R−1

z L) ⊂ B(z;L−1L) and hence
B(y; R̃−1

z )∩B(x;L−1) ⊂ B(z;L−1L)∩B(x;L−1) = ∅. So, (x, y) /∈ L−1R̃z.
Since ŘzL̃−1 ⊂ L−1R̃z, we get also (x, y) /∈ ŘzL̃−1.

This completes the proof of the equality
⋂

(L,R)∈P LR
−1∩RL−1 = ∆X ,

which implies the desired inequality

ψ(Q) ≤ |P| ≤
∑
L∈Λ |ZL| ≤ ψ(LL−1 ∨ L−1L) · `(L) · `(L−1). �
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In Section 6 we shall need the following upper bound on the local
pseudocharacters ψ̇(LL−1) and ψ̇(RR−1) of normally ±-subcommuting
quasi-uniformities L and R.

Proposition 4.6. If the topology of a Hausdorff space X is generated by
two normally ±-subcommuting quasi-uniformities L and R, then
ψ̇(LL−1) ≤ ψ(X) · `±2(X) and ψ̇(RR−1) ≤ ψ(X) · `±2(X).

Proof. First we prove that ψ̇(LL−1) ≤ ψ(X) · `±2(X). Fix any point
x ∈ X. Since the topology of X is generated by the quasi-uniformity R,
we can fix a subfamily Rx ⊂ R of cardinality |Rx| ≤ ψx(X) ≤ ψ(X) such
that

⋂
R∈Rx B(x;RRR) = {x}.

By the normality of the quasi-uniformity R, for every R ∈ Rx we get
B(x;RR) ⊂ B(x;RRR)

◦
. Then for every point z ∈ X \ B(x;RRR)

◦

we can find an entourage Lz ∈ L such that B(z;LzLz) ∩ B(x;RR) = ∅.
For every point z ∈ B(x;RRR)

◦
choose an entourage Lz ∈ L such that

B(z;LzLz) ⊂ B(x;RRR)
◦
. Since the quasi-uniformities L and R are

normally ±-subcommuting, for the entourage R ∈ R there is an entourage
R̃ ∈ R such that for every entourage L ∈ L there is an entourage L̃ ∈ L
such that R̃−1L̃ ⊂ LR−1. In particular, for every z ∈ Z there is an
entourage L̃z ∈ L such that R̃−1L̃z ⊂ LzR−1. Replacing L̃z by a smaller
entourage we can assume that L̃z ⊂ Lz and B(x; L̃z) ⊂ B(x;R).

By the definition of `±2(X), for the neighborhood assignment NR =⋃
z∈X{z} × B(z; L̃z ∩ R̃) there is a subset ZR ⊂ X of cardinality |ZR| ≤

`±2(X) such that X = B(ZR;NRN
−1
R ).

We claim that the subfamily L′ =
⋃
R∈Rx{L̃z : z ∈ ZR} ⊂ L has

the required property:
⋂
L∈L′ B(x;LL−1) = {x}. Given any point y ∈

X \ {x}, find an entourage R ∈ Rx such that y /∈ B(x;RRR). Since y ∈
X = B(ZR;NRN

−1
R ), there is a point z ∈ ZR such that y ∈ B(z;NRN

−1
R )

and hence B(y;Ly∩R̃)∩B(z;Lz∩R̃) = B(y;NR)∩B(z;NR) 6= ∅ and y ∈
B(z;LzR̃

−1). Since y /∈ B(x;RRR)
◦
, the choice of the entourages Ly, Lz

implies that z /∈ B(x;RRR)
◦
. We claim that B(y; L̃z)∩B(x; L̃z) = ∅. To

derive a contradiction, assume that B(y; L̃z) ∩B(x; L̃z) 6= ∅. Then

∅ 6= B(y; L̃z)∩B(x; L̃z) ⊂ B(z; L̃zR̃
−1L̃z)∩B(x;R) ⊂ B(z; L̃zLzR

−1)∩B(x;R)

and hence B(z;LzLz)∩B(x;RR) 6= ∅, which contradicts the choice of the
entourage Lz. This contradiction completes the proof of the inequality
ψ̇(LL−1) ≤ ψ(X) · `±2(X).

By analogy (or changing L and R by their places) we can prove that
ψ̇(RR−1) ≤ ψ(X) · `±2(X). �
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5. Quasi-uniformities on topological monoids

A topological monoid is a topological semigroup X possessing a (nec-
essarily unique) two-sided unit e ∈ X. We shall say that a topological
monoid S has open shifts if for any elements a, b ∈ X the two-sided shift
sa,b : X → X, sa,b : x 7→ axb, is an open map.

A typical example of a topological monoid with open shifts is a paratopo-
logical group, i.e., a group endowed with a topology making the group
operation G×G→ G, (x, y) 7→ xy, continuous.

The closed half-line [0,∞) endowed the Sorgenfrey topology (generated
by the base B = {[a, b) : 0 ≤ a < b < ∞}) and the operation of addition
of real numbers is a topological monoid with open shifts, which is not a
(paratopological) group.

Each topological monoid X carries five natural quasi-uniformities:

• the left quasi-uniformity L, generated by the base
{
{(x, y) ∈ X×

X : y ∈ xU} : U ∈ Ne
}
,

• the right quasi-uniformity R, generated by the base
{
{(x, y) ∈

X ×X : y ∈ Ux} : U ∈ Ne
}
,

• the two-sided quasi-uniformity L ∨ R, generated by the base{
{(x, y) ∈ X ×X : y ∈ Ux ∩ xU} : U ∈ Ne

}
,

• the Roelcke quasi-uniformity RL = LR, generated by the base{
{(x, y) ∈ X ×X : y ∈ UxU} : U ∈ Ne

}
, and

• the quasi-Roelcke uniformity Q = RL−1 ∨ LR−1, generated by
the base{
{(x, y) ∈ X ×X : Ux ∩ yU 6= ∅ 6= Uy ∩ xU} : U ∈ Ne

}
.

Here by Ne we denote the family of all open neighborhoods of the unit e
in X. The quasi-uniformities L, R, L∨R, and RL are well-known in the
theory of topological and paratopological groups (see [24, Ch.2], [2, §1.8]).
The quasi-Roelcke uniformity was recently introduced in [4]. It should
be mentioned that on topological groups the quasi-Roelcke uniformity
coincides with the Roelcke (quasi-)uniformity. The following diagram
describes the relation between these five quasi-uniformities (an arrow U →
V in the diagram indicates that U ⊂ V).

L ∨R

L

<<yyyyyyyyy
Q //oo R

bbFFFFFFFFF

RL

bbEEEEEEEEE

<<xxxxxxxx
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If a topological monoid X has open shifts, then the quasi-uniformities
L, R, L ∨ R and RL generate the original topology of X (see [17],
[20]) whereas the quasi-Roelcke uniformity Q generates a topology τQ,
which is (in general, strictly) weaker than the topology τ of X. If X
is a paratopological group, then the topology τQ on G coincides with
the joint τ2 ∨ (τ−1)2 of the second oscillator topologies considered by the
authors in [3]. The topology τQ turns the paratopological group into a
quasi-topological group, i.e., a group endowed with a topology in which
the inversion and all shifts are continuous (see Proposition 6.3).

Proposition 5.1. On each topological monoid X with open shifts the
quasi-uniformities L and R are normally commuting, normally ±-sub-
commuting, and normal. The topology of X is Hausdorff if and only if
the quasi-Roelcke uniformity Q = LR−1 ∨RL−1 on X is separated.

Proof. To see that the quasi-uniformities L and R are normally commut-
ing and normally ±-subcommuting, fix any entourage L ∈ L and find a
neighborhood U ⊂ G of the unit e such that L̃ = {(x, y) ∈ X ×X : y ∈
xU} ⊂ L. Given any entourage R ∈ R, find a neighborhood V ⊂ G of
the unit e such that R̃ = {(x, y) ∈ X ×X : y ∈ V x} ⊂ R. Then

L̃R̃ = {(x, y) ∈ X ×X : ∃z ∈ X such that (x, z) ∈ L̃ and (z, y) ∈ R̃} =

= {(x, y) ∈ X ×X : ∃z ∈ X such that z ∈ xU and y ∈ V z} =

= {(x, y) ∈ X ×X : y ∈ V (xU)} = {(x, y) ∈ X ×X : y ∈ (V x)U} =

= R̃L̃ ⊂ RL ∩ LR.
This implies that the quasi-uniformities L and R are normally com-

muting.
Next, we prove that L̃−1R̃ ⊂ R̃L̃−1 ⊂ RL−1. Given any pair (x, y) ∈

L̃−1R̃, find a point z ∈ X such that (x, z) ∈ L̃−1 and (z, y) ∈ R̃. Then
x ∈ zU and y ∈ V z. So, we can find points u ∈ U and v ∈ V such that
x = zu and y = vz. Multiplying x = zu by v, we get vx = vzu = yu
and hence (x, vx) ∈ R̃ and (y, vx) = (y, yu) ∈ L̃, which implies that
(x, y) ∈ R̃L̃−1 ⊂ RL−1. So, L̃−1R̃ ⊂ R̃L̃−1 ⊂ RL−1. By analogy we can
prove that R̃−1L̃ ⊂ L̃R̃−1 ⊂ LR−1.

By Proposition 4.3, the quasi-uniformities L and R, being normally
±-subcommuting, are normal.

If X is Hausdorff, then for any distinct points x, y ∈ X we can find a
neighborhood U ⊂ X of the unit e such that Ux ∩ yU = ∅. Then for the
entourages L = {(x, y) ∈ X : y ∈ xU} ∈ L and R = {(x, y) ∈ X × X :
y ∈ Ux} we get y /∈ B(x;RL−1) ⊃ B(x;RL−1 ∩LR−1). This means that⋂
Q = ∆X and the quasi-Roelcke uniformity Q is separated.
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Now assume that the quasi-Roelcke uniformity Q is separated. Given
two distinct points x, y ∈ X, find two entourages L ∈ L and R ∈ R such
that (x, y) /∈ LR−1 ∩ RL−1 and hence (x, y) /∈ LR−1 or (x, y) /∈ RL−1.
For the entourages L,R, find a neighborhood U ⊂ X of e such that
{(x, y) ∈ X ×X : y ∈ xU} ⊂ L and {(x, y) ∈ X ×X : y ∈ Ux} ⊂ R. If
(x, y) /∈ LR−1, then xU ∩Uy = ∅. If (x, y) ∈ RL−1, then Ux∩yU = ∅. In
both cases the points x, y has disjoint neighborhoods in X, which means
that X is Hausdorff. �

Proposition 5.1 and Theorem 3.3 imply:
Theorem 5.2. Each Hausdorff topological monoid X with open shifts is
functionally Hausdorff and has submetrizability number sm(X) ≤ ψ(Q) ≤
χ(X) and i-weight iw(X) ≤ ψ(Q) · log(`(Q)) ≤ χ(X) · log(dc(X)).

Observe that for a paratopological group G the quasi-Roelcke unifor-
mity Q generates the topology of G if and only if G is a topological group.
Problem 5.3. Study properties of topological monoids S with open shifts
whose topology is generated by the quasi-Roelcke uniformity Q.

6. The submetrizability number and i-weight of
paratopological groups

In this section we apply the results of the preceding sections to paratopo-
logical groups, i.e., groups G endowed with a topology making the group
operation G × G → G, (x, y) 7→ xy, continuous. It is easy to see that
the inversion map G→ G, x 7→ x−1, is a uniform homeomorphism of the
quasi-uniform spaces (G,L−1) and (G,R) and also a uniform homeomor-
phism of the quasi-uniform spaces (G,R−1) and (G,L). This observation
combined with Propositions 3.6 and 5.1 implies:
Proposition 6.1. On each paratopological group G

(1) the quasi-uniformities L and R are normally commuting, nor-
mally ±-subcommuting, and normal;

(2) the quasi-uniformities L−1 and R−1 are normally commuting,
normally ±-subcommuting, and generate the same topology on G.

If the topology of G is Hausdorff, then the quasi-uniformities L and R
are 3-separated and the quasi-Roelcke uniformity Q = LR−1 ∨ RL−1 is
separated.

Next, we prove that a paratopological group endowed with the quasi-
Roelcke uniformity is a uniform quasi-topological group.
Definition 6.2. A uniform quasi-topological group is a group G endowed
with a uniformity U such that the inversion G→ G, x 7→ x−1, is uniformly
continuous and for every a, b ∈ G the shifts sa,b : G→ G, sa,b : x 7→ axb,
is uniformly continuous.
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Proposition 6.3. Any paratopological group G endowed with the quasi-
Roelcke uniformity Q = LR−1 ∨ RL−1 is a uniform quasi-topological
group.

Proof. Observe that for any neighborhood V ∈ Ne and points x, y ∈ G
the inclusion y ∈ V xV −1 ∩ V −1xV is equivalent to y−1 ∈ V x−1V −1 ∩
V −1x−1V , which implies that the inversion map G → G, x 7→ x−1, is
uniformly continuous.

Next, we show that for every a, b ∈ G the shift sa,b : G → G, sa,b :
x 7→ axb, is uniformly continuous. Fix any neighborhood V ∈ Ne of e.
By the continuity of the shifts on G, there exists a neighborhood U ⊂ V
of e such that aU ⊂ V a, Ub ⊂ bV , Ua−1 ⊂ a−1V , and b−1U ⊂ V b−1.
Inverting the two latter inclusions, we get aU−1 ⊂ V −1a and U−1b ⊂
bV −1. Then for any points x, y ∈ G with y ∈ U−1xU ∩ UxU−1, we get
ayb ∈ aU−1xUb ∩ aUxU−1b ⊂ V −1axbV ∩ V axbV −1, which means that
the shift sa,b is uniformly continuous. �

The following theorem is a partial case of Theorem 5.2.

Theorem 6.4. Each Hausdorff paratopological group G is functionally
Hausdorff and has submetrizability number sm(G) ≤ ψ(Q) ≤ χ(G) and
i-weight iw(G) ≤ ψ(Q) · log(`(Q)) ≤ χ(G) · log(dc(G)).

In light of this theorem it is important to have upper bound on the pseu-
docharacter ψ(Q) of the quasi-Roelcke uniformity. Such upper bounds are
given in the following theorem, which unifies or generalizes the results of
[25] and [21].

Theorem 6.5. For any Hausdorff paratopological group G its quasi-
Roelcke uniformity Q = LR−1 ∨RL−1 has pseudocharacter

(1) ψ(Q) ≤ min{ψ(LL−1) · `(L−1), ψ(L−1L) · `(L)} ≤ ψ(G) · `±2(G) ·
min{`(L), `(L−1)} ≤ ψ(G) · `±2(G) ·min{q`±1(G), q`∓1(G)};

(2) ψ(Q) ≤ ψ(LL−1 ∨ L−1L) · `(L−1) · `(L) ≤ ψ(L∨2) · q`∓1(G) ·
q`±1(G);

(3) ψ(Q) ≤ ψ(LL−1L) · `(LL−1 ∨ L−1L) ≤ ψ(L±3) · q`∨2(G).
Moreover, if the quasi-uniformity L is

(4) ∓4-separated, then ψ(Q) ≤ ψ(L−1LL−1L) · `(L−1L) · `±2(X) ≤
ψ(L∓4) · q`∓2(X) · `±2(G);

(5) ±6-separated, then ψ(Q) ≤ ψ(LL−1LL−1L) · `±2(G) = ψ(L±5) ·
`±2(G).

Proof. 1. The inequality ψ(Q) ≤ ψ(LL−1) · `(L−1) follows from Theo-
rem 4.5(2), which also implies ψ(Q) ≤ ψ(RR−1) · `(R−1) = ψ(L−1L) ·
`(L). By Proposition 4.6, ψ(LL−1) = ψ̇(LL−1) ≤ ψ(G) · `±2(G) and
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ψ(L−1L) = ψ(RR−1) = ψ̇(RR−1) ≤ ψ(G) · `±2(G), which implies

min{ψ(LL−1)·`(L−1), ψ(L−1L)·`(L)} ≤ ψ(G)·`±2(G)·min{`(L), `(L−1)}.
2, 3. The upper bounds from the second and third items follow from

Theorem 4.5(9,7) and Proposition 6.1.
4. Assume that the quasi-uniformity L is ∓4-separated. Then we

can choose a subfamily U ⊂ Ne of cardinality |U| = ψ(L−1LL−1L)
such that

⋂
U∈U U

−1UU−1U = {e}. Replacing every U by a smaller
neighborhood of e, we can assume that

⋂
U∈U U

−2UU−1U = {e}. Since
U−1UU−1U ⊂ U−1(U−1UU−1U), we conclude that

⋂
U∈U U

−1UU−1U =

{e} and ψ(L−1LL−1L) ≤ |U| = ψ(L−1LL−1L). Applying Theorem 4.4(4)
to the pre-uniformity A = L−1L, we get the upper bound

ψ(Q) ≤ ψ(A−1AU) · `(A) · `±2(G) =
ψ(L−1LL−1LL) · `(L−1L) · `±2(G) = ψ(L−1LL−1L) · `(L−1L) · `±2(G).

5. The fifth item follows from Theorem 4.5(6). �

7. Two counterexamples

In this section we construct two examples of paratopological groups
that have some rather unexpected properties.

7.1. A paratopological group with countable pseudocharacter
which is not submetrizable. In Theorem 6.5(1) we proved that for
each Hausdorff paratopological group G its quasi-Roelcke uniformity has
pseudocharacter ψ(Q) ≤ ψ(G) · `±2(G) ·min{`(L), `(L−1}. It is natural
to ask if this upper bound can be improved to ψ(Q) ≤ ψ(G). In this
section we show that this inequality is not true in general. Namely, we
present an example of a zero-dimensional (and hence) Hausdorff abelian
paratopological group which has countable pseudocharacter but is not
submetrizable. Some properties of this group can be proved only under
Martin Axiom [31], whose topological equivalent says that each count-
ably cellular compact Hausdorff space is κ-Baire for every cardinal κ < c.
We say that a topological space X is κ-Baire if for any family U consist-
ing of κ many open dense subsets of X the intersection

⋂
U is dense in

X. Under Martin’s Axiom for σ-centered posets, each separable compact
Hausdorff space is κ-Baire for every cardinal κ < c. This implies that
under Martin’s Axiom (for σ-centered posets) the space Zκ endowed with
the Tychonoff product topology is κ-Baire for every cardinal κ < c. Here
c stands for the cardinality of continuum. In the statement (4) of the
following theorem by d we denote the cofinality of the partially ordered
set (Nω,≤). It is known [28] that ω1 ≤ d ≤ c and d = c under Martin’s
Axiom (for countable posets).
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Let κ be an uncountable cardinal. On the group Zκ of all functions
g : κ → Z consider the shift-invariant topology τ↑ whose neighborhood
base at the zero function e : κ→ Z consists of the sets

WF,m =
{
g ∈ Zκ : g|F = 0, g(κ) ⊂ {0} ∪ [m,∞)

}
where m ∈ N and F runs over finite subsets of κ. The group Zκ endowed
with the topology τ↑ is a paratopological group, denoted by ↑Zκ. Since
the group ↑Zκ is abelian, the fours standard uniformities of ↑Zκ coincide
(i.e., L = R = L ∨ R = RL) whereas the quasi-Roelcke uniformity Q
coincides with the pre-uniformities LL−1 and RR−1.

Theorem 7.1. For any uncountable cardinal κ the paratopological group
G = ↑Zκ has the following properties:

(1) G is a zero-dimensional (and hence regular) Hausdorff abelian
paratopological group;

(2) the topology on G induced by the quasi-Roelcke uniformity Q co-
incides with the Tychonoff product topology τ on Zκ;

(3) ψ(Q) = χ(G) = κ but ψ(G) = ψ(G) = ω;
(4) `(Q) = ω but `(L) ≥ d > ω;
(5) c(G) ≥ κ but dc(G) = ω;
(6) iw(G) · ω = sm(G) · ω ≥ log(2κ).
(7) If 2κ > c, then G is not submetrizable.
(8) If the space Zκ is κ-Baire, then G fails to have Gδ-diagonal and

hence is not submetrizable.

Proof. 1. It is clear that the topology τ↑ on ↑Zκ is stronger than the
Tychonoff product topology τ on Zκ. This implies that the paratopologi-
cal group G = ↑Zκ is Hausdorff. Observing that each basic neighborhood
WF,m of the zero function e ∈ Zκ is τ -closed, we conclude that it is τ↑-
closed, which implies that the space ↑Zκ is zero-dimensional and hence
regular.

2. Observe that for every basic neighborhood WF,m of zero, the set
WF,m −WF,m coincides with the basic neighborhood WF = {g ∈ Zκ :
g|F = 0} of zero in the Tychonoff product topology τ . This implies that
τ coincides with the topology induced by the quasi-Roelcke uniformity Q.

3. The equality χ(G) = κ = ψ(Q) easily follows from the definition of
the topology τ↑ and the fact that the quasi-Roelcke uniformityQ generates
the Tychonoff product topology on Zκ. To see that ψ(G) = ψ(G) = ω,
observe that

⋂
m∈NW∅,m = {e}.

4. To see that `(Q) = ω, take any basic open neighborhood WF,m of
zero in the group G and observe that ZF = {g ∈ Zκ : g|κ \ F = 0} is
a countable subgroup of G such that G = ZF + (WF,m −WF,m), which
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implies that `(Q) ≤ ω. On the other hand, the boundedness number `(L)
of the left quasi-uniformity on the paratopological group ↑Zκ is equal to
the cofinality of the partially ordered set (Nκ,≤) which is not smaller
than d, the cofinality of the partially ordered set (Nω,≤).

5. For every x ∈ κ denote by δx : κ → {0, 1} ⊂ Z the character-
istic function of the singleton {x} and let Ux = δx + W{x},2 be a ba-
sic neighborhood of δx. We claim that for any distinct points x, y ∈ κ
the sets Ux and Uy are disjoint. To derive a contradiction, assume that
Ux ∩ Uy contains some function f ∈ Zκ. The inclusion f ∈ Ux im-
plies that f(x) = δx(x) = 1. On the other hand, f ∈ Uy implies
f(x) ∈ {δy(x)}∪[δy(x)+2,∞) = {0}∪[2,∞) 63 1. So, the closed-and-open
sets Ux, x ∈ κ, are pairwise disjoint and hence c(G) ≥ |{Ux}x∈κ| = κ.

By Proposition 1.10, dc(G) = `±4(G). So, it suffices to prove that
`±4(G) = ω. Given a neighborhood assignment V on G, we need to find
a countable subset C ⊂ G such that B(C;V V −1V V −1) = G. Using
Zorn’s Lemma, find a maximal subset C ⊂ G such that B(x;V V −1) ∩
B(y;V V −1) = ∅ for any distinct points x, y ∈ C. By the maximality
of C, for every x ∈ G there is a point c ∈ C such that B(c;V V −1) ∩
B(x;V V −1) 6= ∅, which implies x ∈ B(C;V V −1V V −1) and hence X =
B(C;V V −1V V −1). It remains to prove that the set C is countable. To
derive a contradiction, assume that C is uncountable. For every x ∈ G
find a finite subset Fx ⊂ κ and a positive number mx ∈ N such that
x+WFx,mx ⊂ B(x;V ). By the ∆-system Lemma [16, 16.1], the uncount-
able set C contains an uncountable subset D ⊂ C such that the family
(Fx)x∈D is a ∆-system with kernel K, which means that Fx ∩Fy = K for
any distinct points x, y ∈ D. For every n ∈ N and f ∈ ZK consider the
subset Dn,f = {x ∈ D : x|K = f, mx ≤ n, supα∈Fx |x(α)| ≤ n} of D and
observe that D =

⋃
n∈N

⋃
f∈ZK Dn,f . By the Pigeonhole Principle, for

some n ∈ N and f ∈ ZK the set Dn,f is uncountable. Consider the clopen
subset Zκ(f) = {x ∈ Zκ : x|K = f} of Zκ. Since Zκ(f) is a Baire space,
for some m ∈ N the set Xm = {x ∈ Zκ(f) : mx = m} is not nowhere
dense in Zκ(f). Consequently, there is a finite subset K̄ ⊂ κ containing
K and a function f̄ : K̄ → Z such that the set Xm ∩ Zκ(f̄) is dense in
Zκ(f̄) = {x ∈ Zκ : x|K̄ = f̄}. Since the family (Fx \K)x∈D is disjoint,
the set {x ∈ D : (Fx \K) ∩ K̄ 6= ∅} is finite, so we can find two functions
x, y ∈ Dn,f such that (Fx ∪ Fy) ∩ K̄ = K. Put K̃ = Fx ∪ Fy ∪ K and
choose any function f̃ : K̃ → Z such that f̃ |K̄ = f̄ and f(α) < −n −m
for any α ∈ K̃ \ K̄. The function f̃ determines a non-empty open set
Zκ(f̃) = {z ∈ Zκ : z|K̃ = f̃}, which contains some function z ∈ Xm

(by the density of Xm ∩ Zκ(f̄) in Zκ(f̄)). Choose a function z̃ ∈ Zκ such
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that z̃|Fx = x|Fx and z̃(α) ≥ max{m + z(α),mx + x(α)} for every α ∈
κ \Fx. Then z̃ ∈ (z+WFz,m)∩ (x+WFx,mx) ⊂ B(z;V )∩B(x;V ), which
implies z ∈ B(x;V V −1). By analogy we can prove that z ∈ B(y;V V −1).
So, B(x;V V −1) ∩ B(y;V V −1) 6= ∅, which contradicts the choice of the
set C 3 x, y. This contradiction shows that C is countable and hence
dc(G) = `±4(G) = ω.

6. By Proposition 1.4, iw(G) · ω = sm(G) · log(dc(G)) = sm(G) · ω.
On the other hand, 2κ = |G| ≤ |[0, 1]iw(G)| = |2iw(G)·ω| implies that
log(2κ) ≤ iw(G) · ω.

7. If 2κ > c, then sm(G) · ω ≥ log(2κ) ≥ log(c+) > ω, which implies
that sm(G) > ω and hence G is not submetrizable.

8. Suppose that the space Zκ is κ-Baire. Assuming that the space
G = ↑Zκ has Gδ-diagonal, we can apply Theorem 2.2 in [13] and find a
countable family (Un)n∈N open covers of G, which separates the points
of G in the sense that for every distinct points f, g ∈ G there is n ∈ N
such that no set U ∈ Un contains both points f and g. Since the space G
is zero-dimensional, we can assume that each set U ∈

⋃
n∈ω Un is closed-

and-open in G. Put U0 = {G}.
We shall construct an increasing sequence (Fn)n∈ω of finite subsets and

a sequence fn ∈ ZFn , n ∈ ω, of functions such that for every n ∈ ω the
clopen set Zκ(fn) = {f ∈ Zκ : f |Fn = fn} is contained in Un ∩ Zκ(fn−1)
for some set Un ∈ Un.

We start the inductive construction letting F0 = ∅ and f0 : ∅ → Z
be the unique function. Then Zκ(f0) = Zκ ∈ U0. Assume that for some
n ∈ Z we have defined a finite set Fn−1 ⊂ κ and a function fn−1 ∈ ZFn−1

such that Zκ(fn−1) ⊂ Un−1 for some Un−1 ∈ Un−1.
The F being the family of all triples (F, f,m) where F is a finite subset

of κ containing Fn−1, f : F → Z is a function extending the function
fn−1 and m ∈ N is a positive integer. Observe that |F| = κ. For every
function g ∈ ↑Zκ choose a closed-and-open subset Ug ∈ Un containing
g and choose a finite subset Fg ⊂ κ containing Fn−1 and a number mg

such that g + WFg,mg ⊂ Ug. For every triple (F, f,m) ∈ F consider the
subset Z(F,f,m) = {g ∈ ↑Zκ : (Fg, g|Fg,mg) = (F, f,m)} and observe that
Zκ(fn−1) =

⋃
(F,f,m)∈F ZF,f,m. Since the space Zκ(fn−1) is κ-Baire, there

is a triple (F, f,m) ∈ F such that the set Z(F,f,m) is not nowhere dense
in Zκ(fn−1). Consequently we can find a finite set Fn ⊂ κ and a function
fn ∈ ZFn such that for the basic open set Zκ(fn) = {g ∈ Zκ : g|Fn = fn}
the intersection Zκ(fn) ∩ Z(F,f,m) is dense in Zκ(fn). It follows that
Fn ⊃ F ⊃ Fn−1 and fn|F = f . Choose any point g ∈ Z(F,f,m) ∩ Zκ(fn).
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We claim that Zκ(fn) ⊂ Ug ∈ U . Assuming that Zκ(fn) 6⊂ Ug, choose
a function h ∈ Zκ(fn) \ Ug and find a basic neighborhood h + WE,l ⊂
Zκ(fn) \ Ug of h. It follows from the inclusion h + WE,l ⊂ Zκ(fn) that
E ⊃ Fn ⊃ F and h|Fn = fn. Then h|F = fn|F = f . Choose a function
h̃ : κ → Z such that h̃|E = h|E and h̃(x) ≥ max{g(x) + m,h(x) + l} for
every x ∈ κ\E. Then h̃ ∈ (h+WE,l)∩(g+WF,m) ⊂ (Zκ(fn)\Ug)∩Ug = ∅,
which is a desired contradiction completing the inductive step.

After completing the inductive construction, consider the countable
set Fω =

⋃
n∈ω Fn and the function fω : Fω → Z such that fω|Fn = fn

for all n ∈ ω. Since the complement κ \ Fω is not empty, the “cube”
Zκ(fω) = {g ∈ Zκ : g|Zω = fω} contains two distinct functions f, g. By
the choice of the family (Un)n∈ω there is a number n ∈ ω such that no set
U ∈ Un contains both points f and g. On the other hand, by the inductive
construction, f, g ∈ Zκ(fω) ⊂ Zκ(fn) ⊂ Un for some set Un ∈ U , which is
a desired contradiction completing the proof of the theorem. �

Corollary 7.2. For every cardinal κ ≥ c the paratopological group ↑Zκ
has countable pseudocharacter but fails to be submetrizable.

It is known [31] that under Martin’s Axiom the space Zκ is κ-Baire for
every cardinal κ < c. This fact combined with Theorem 7.6 (7, 8) implies
the following MA-improvement of Corollary 7.2.

Corollary 7.3. Under Martin’s Axiom, for any uncountable cardinal κ
the paratopological group ↑Zκ has countable pseudocharacter but fails to
be submetrizable.

Problem 7.4. Can the space ↑Zω1 be submetrizable in some model of
ZFC?

In Theorem 7.1 we proved that the paratopological group G = ↑Zκ
has d(G) ≥ c(G) ≥ κ and dc(G) = ω. By Propositions 1.3 and 1.10,
`±4(G) = l̄∗1

1
2 (G) = dc(G) = ω. It would be interesting to know the

values of some other cardinal characteristics of G, intermediate between
dc(G) and c(G).

Problem 7.5. For the paratopological group G = ↑Zκ calculate the values
of cardinal characteristics `±n(G), `∓n(G), `∧n(G), `∨n(G) for all n ∈ N.

7.2. A submetrizable paratopological group whose quasi-Roelcke
uniformity has uncountable pseudocharacter. By Theorem 6.4, each
Hausdorff paratopological group G has submetrizability number sm(G) ≤
ψ(Q). This inequality can be strict as shown by an example constructed
in this subsection.
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Given an uncountable cardinal κ in the paratopological group ↑Zκ
consider the subgroup H = {f ∈ ↑Zκ : |supp(f)| < ω} consisting of
functions f : κ → Z that have finite support supp(f) = {α ∈ κ : f(α) 6=
0}. A neighborhood base of H at zero consists of the sets

WF,m = {h ∈ H : h|F = 0, h(κ) ∈ {0} ∪ [m,∞)}
where F runs over finite subsets of κ and m ∈ N.

Theorem 7.6. For any uncountable cardinal κ the paratopological group
H has the following properties:

(1) H is a zero-dimensional (and hence regular) Hausdorff abelian
paratopological group;

(2) H is strongly σ-discrete and submetrizable;
(3) iw(H) · ω = log(κ);
(4) ψ(Q) = χ(H) = κ but ψ(H) = ψ(H) = ω;
(5) `(Q) = ω but `(L) = dc(H) = κ.

Proof. The items (1), (4), (5) follow (or can be proved by analogy with)
the corresponding items of Theorem 7.1.

(2)–(3): To see that the space H is strongly σ-discrete, write H as
H =

⋃
n,m∈ωHn,m where Hn,m = {h ∈ ↑Zκ : |supp(h)|= n, ‖h‖ ≤ m}

and ‖h‖ = supα∈κ |h(α)|. We claim that each setHn,m is strongly discrete
in H. To each function h ∈ Hn,m assign the neighborhood Uh = h +
Wsupp(h),m+1. Given any two distinct functions g, h ∈ Hn,m, we shall
prove that Ug ∩ Uh = ∅. Assuming that Ug ∩ Uh contains some function
f ∈ H, we would conclude that f |supp(g) = g|supp(g) and f |supp(h) =
h|supp(h). So, g|supp(g) ∩ supp(h) = h|supp(g) ∩ supp(h) and g 6= h
implies that supp(g) 6= supp(h). Since |supp(g)| = |supp(h)| = n, there
is α ∈ supp(g) \ supp(h) such that g(α) 6= 0 = h(α). Then f(α) ∈
{g(α)}∩ [m+ 1,∞) ⊂ [−m,m]∩ [m+ 1,∞) = ∅, which is a contradiction
showing that the indexed family (Uh)h∈Hn,m is disjoint.

To show that this family (Uh)h∈Hn,m is discrete, for every function
g ∈ H \

⋃
h∈Hn,m Uh consider its neighborhood Ug = g + Wsupp(g),m+1.

We claim that Ug ∩ Uh = ∅ for every h ∈ Hn,m. Assume conversely
that for some h ∈ Hn,m the intersection Ug ∩ Uh contains a function
f ∈ H. Then f |supp(g) = g|supp(g) and f |supp(h) = h|supp(h), which
implies supp(g) 6= supp(h). If supp(h) \ supp(g) 6= ∅, then we can find
α ∈ supp(h) \ supp(g) and conclude that f(α) = h(α) 6= 0 = g(α) and
hence f(α) ∈ {h(α)} ∈ [−m,m]∩[m+1,∞) = ∅, which is a contradiction.
So, supp(h) ⊂ supp(g) and g|supp(h) = h|supp(h). It follows from g /∈ Uh
that for some α ∈ κ \ supp(h) we get g(α) /∈ {0} ∪ [m + 1,∞). Then
α ∈ supp(g) and f(α) = g(α) /∈ [m + 1,∞). On the other hand, the
inclusion f ∈ Uh and f(α) 6= 0 = h(α) implies f(α) ∈ [m + 1,∞).
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This contradiction completes the proof of the equality Ug ∩Uh = ∅, which
shows that the family (Uh)h∈Hn is discrete in H and the set Hn,m is
strongly discrete in H. Then the space H =

⋃
n,m∈ωHn,m is strongly σ-

discrete. By Proposition 1.1 it is submetrizable and has i-weight iw(H) ·
ω = log(|H|) = log(κ). �
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