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CONCERNING GENERALIZED QUASIMETRIC AND
QUASI-UNIFORMITY FOR TOPOLOGICAL SPACES

M. N. MUKHERJEE, A. DEBRAY, AND S. SINHA

Abstract. In this paper, we give a construction of generalized
quasimetric for an arbitrary quasi-uniform space. Here we also note
that the generalized quasimetric in [5] for an arbitrary topological
space gives the Pervin’s quasi-uniformity for the space. Finally, we
study some categorical relations between quasi-uniform spaces and
generalized quasimetric spaces.

1. Introduction

It is well known that not every topological space is generated from some
metric space, i.e., there are topological spaces which are not metrizable.
Hence, untill now many mathematicians have constructed different kinds
of generalizations of metrics and have represented arbitrary topological
spaces in terms of those generalized versions of metrics (see [4], [5]). In
[5], Kopperman gave such a generalization and that was further modified
in [7]. Here, in this paper, we have considered this modified version
and have defined the quasi-uniformity, which arises quite naturally from
this generalized version of metric. Pervin [10] proved that the topology
τ of any topological space (X, τ) is induced by some transitive quasi-
uniformity, a subbase for which is given by the collection, {T (G,X \G) :
G ∈ τ}, where T (G,X \ G) stands for (X × X \ (G × (X \ G))). In
this context we have observed that the particular generalized quasimetric
construction for any arbitrary topological space in [5], actually gives rise
to the Pervin’s quasi-uniformity for that topological space. For detailed
discussion regarding quasi-uniformization of topological spaces [2] and [9]
may be consulted.
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At this point we have a generalized quasimetric structure for an ar-
bitrary topological space and this generalized quasimetric gives a quasi-
uniformity for the topological space. Again it is known that an arbitrary
topological space possesses a compatible quasi-uniform structure, e.g. the
Pervin’s quasi-uniformity. Then a natural question arises whether an ar-
bitrary quasi-uniform space possesses a generalized quasimetric structure,
compatible with the given quasi-uniformity. We answer it in the affirma-
tive and give a construction.

In the last section we consider three categories, namely QU of all quasi-
uniform spaces with quasi-uniformly continuous functions, QM of all gen-
eralized quasimetric spaces with continuous functions and QM∗ of all
generalized quasimetric spaces with uniformly continuous functions and
study some interrelations among these three. To arrive at these descrip-
tions, we briefly undertake towards the end of Section 3, certain discussion
on continuity and uniform continuity of functions between two generalized
quasimetric spaces, and quasi-uniform continuity of functions between two
quasi-uniform spaces.

2. Preliminaries

The concept of continuous lattice has been discussed in detail in [1]
and [3].

Definition 2.1. A lattice is a non-empty set L with a relation ‘≤’ such
that

(1) l ≤ l, ∀l ∈ L. (reflexive)
(2) l ≤ m,m ≤ l implies, l = m, ∀l,m ∈ L. (antisymmetric)
(3) l ≤ m,m ≤ n implies, l ≤ n, ∀l,m, n ∈ L. (transitive)
(4) any two elements of L have least upper bound.

Definition 2.2. A lattice (L,≤) is said to be a complete lattice if for any
non-empty subset A of L, supremum of A exists in A.

Definition 2.3. A non-empty set D with a relation ‘≤’ is said to be
directed if

(1) ‘≤’ is reflexive.
(2) ‘≤’ is transitive.
(3) for a, b ∈ D, ∃c ∈ D such that a ≤ c, b ≤ c.

Notation 2.4. In a complete lattice (L,≤),
(1) ‘l ≪ m’ means if m ≤ supD, for some directed subset D of L,

then ∃d ∈ D such that l ≤ d.
(2) {l ∈ L : l ≪ m} =⇓ m.
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Definition 2.5. A complete lattice (L,≤) is said to be a continuous
lattice if for each m ∈ L, ⇓ m is directed and m is its supremum.

Definition 2.6 ([6]). A set V with a binary operation ‘+’ and a relation
‘≤’ is said to be a value lattice if

(1) (V,≥) is a continuous lattice, where a ≥ b iff b ≤ a, for a, b ∈ V .
(2) (V,+) is a commutative semigroup.
(3) v + 0 = v, ∀v ∈ V , where ‘0’ is the least element of (V,≤).
(4) v + infA = inf{v + a : a ∈ A}, ∀v ∈ V and A ⊆ V with A ̸= ϕ.

Lemma 2.7 ([7]). The greatest element ‘∞’ of (V,≤) is the absorbing
element of (V,+) i.e., v +∞ = ∞, ∀v ∈ V .

Definition 2.8 ([7]). Let (V,≤) be a poset and P ⊆ V . Then P is said
to

(1) be an upper subset if p ∈ P and p ≤ q implies, q ∈ P , ∀p, q ∈ V .
(2) be separating if (V,≤,+) is a value lattice and P is an upper

subset, and if a ≤ b+ p, ∀p ∈ P implies, a ≤ b, ∀a, b ∈ V .
(3) filtered if p, q ∈ P implies, ∃r ∈ P such that r ≤ p, r ≤ q.
(4) have halves if (V,≤,+) is a value lattice and if for each p ∈ P ,

∃q ∈ P such that q + q ≤ p.
(5) be a set of positives if it is a filtered upper set with halves.

Definition 2.9 ([7]). A V -quasimetric space is a quadruple (X,V, P, d)
such that X is a non-empty set, V is a value lattice, P is a separating
upper subset of V and d : X ×X −→ V such that

(1) d(x, x) = 0, ∀x ∈ X.
(2) d(x, z) ≤ d(x, y) + d(y, z), ∀x, y, z ∈ X.

Here d is called a V -quasimetric.

Definition 2.10 ([7]). A generalized quasimetric space is a V -quasimetric
space for some value lattice V .

Definition 2.11 ([7]). Let (X,V, P, d) be a V -quasimetric space with P
a separating set of positives. Then, τ(d) = {G ⊆ X : x ∈ G ⇒ ∃p ∈ P
such that Np(x) = {y : d(x, y) ≤ p} ⊆ G} is a topology on X, and it is
called the topology generated by the generalized quasimetric d.

Lastly we recall a result (see [5], [7] for details) that is crucial for our
purpose. We also reproduce here a sketch of its proof, as we will need
to refer it, in the sequel, to the construction of the concerned generalized
quasimetric.

Theorem 2.12 ([7],[5]). Every topology is generated by some generalized
quasimetric.
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Proof. Let, (X, τ) be a topological space. Then consider the sets V = Rτ ,
P = {p = (pG)G∈τ : pG ∈ (0,∞],∀G ∈ τ and pG = ∞ for all but a finite
number of G’s} and ∀x, y ∈ X, the function d : X ×X −→ Rτ as,

(d(x, y))G = dG(x, y) =

{
q, if x ∈ G, y /∈ G

0, otherwise
where q ∈ (0,∞] is arbitrarily fixed.
Now, it can be shown that (V,+,≤) is a value lattice and P a separating

set of positives of V , where ‘+’ and ‘≤’ are defined coordinatewise. Then
(X,V, P, d) becomes a V -quasimetric space and the generalized quasimet-
ric d generates the topology τ . �

In the rest of this paper we require only those generalized quasi-metric
spaces (X,V, P, d), where P is a separating set of positives. So, hence-
forth by a generalized quasi-metric space we shall mean a generalized
quasimetric space with separating set of positives.

3. Generalized Quasimetric and Quasi-Uniformity

Theorem 3.1. Every generalized quasimetric space gives rise to a quasi-
uniform space and the corresponding topologies on the underlying set for
both the quasimetric and the quasi-uniformity are same.
Proof. Let, (X,V, P, d) be a generalized quasimetric space. Then it is easy
to see that the collection U = {{(x, y) ∈ X × X : d(x, y) ≤ p} : p ∈ P}
forms a base for some quasi-uniformity on X. It also is a routine check
that both d and U generate the same topology on X. �

The following result examplifies the above theorem.
Theorem 3.2. The generalized quasimetric of Theorem 2.12 induces
Pervin’s quasi-uniformity on any topological space (X, τ).
Proof. Consider the generalized quasimetric space described in Theorem
2.12. Now take p = (pG)G∈τ ∈ P and consider a typical basic mem-
ber U = {(x, y) ∈ X × X : d(x, y) ≤ p} of the quasi-uniformity U (as
in the proof of the above theorem). Then, U = {(x, y) ∈ X × X :
dG(x, y) ≤ pG, ∀G ∈ τ} =

∩
G∈τ

{(x, y) ∈ X × X : dG(x, y) ≤ pG} =

(
∩

G∈τ
pG ̸=∞

{(x, y) ∈ X × X : dG(x, y) ≤ pG})
∩
(

∩
G∈τ

pG=∞

{(x, y) ∈ X × X :

dG(x, y) ≤ pG}) = (
∩

G∈τ
pG ̸=∞

{(x, y) ∈ X × X : dG(x, y) ≤ pG})
∩
(X ×

X) = (
∩

G∈τ
pG ̸=∞

{(x, y) ∈ X × X : dG(x, y) ≤ pG} = (
∩

G∈τ
pG<q

{(x, y) ∈ X ×

X : dG(x, y) ≤ pG})
∩
(
∩

G∈τ
pG≥q

{(x, y) ∈ X × X : dG(x, y) ≤ pG}) =
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(
∩

G∈τ
pG<q

{(x, y) ∈ X×X : dG(x, y) ≤ pG})
∩
(X×X) =

∩
G∈τ
pG<q

{(x, y) ∈ X×X :

dG(x, y) ≤ pG} =
∩

G∈τ
pG<q

(X ×X \ (G× (X \G))) =
∩

G∈τ
pG<q

T (G,X \G), writ-

ing T (G,X \G) for (X ×X \ (G × (X \G))). Now, as {pG : pG < q} is
finite, S = {T (G,X \G) : G ∈ τ} turns out to be a subbase for the quasi-
uniformity U , induced by d and hence U is the Pervin’s quasi-uniformity
on (X, τ). �

Henceforth the quasi-uniformity generated by a generalized quasimetric
space (X,V, P, d) will be denoted by U(d).

Theorem 3.3. Each quasi-uniformity is generated by some generalized
quasimetric.

Proof. Let (X,U) be a quasi-uniform space, with a base B. Then consider
the sets V = RB, P = {p = (pB)B∈B : pB ∈ (0,∞], ∀B ∈ B and pB = ∞
for all but a finite number of B’s} and ∀x, y ∈ X, the function d : X ×
X −→ RB as,

(d(x, y))B = dB(x, y) =


q(1− 1/2n−1), if (x, y) ∈ Bn \Bn−1

for some n ∈ N
q, if (x, y) /∈ Bn for all n ∈ N

where 0 < q < ∞ is arbitrarily fixed.
Then (X,V, P, d) is a V -quasimetric space. Let the quasi-uniformity

generated by d be U(d). Now take p = (pB)B∈B ∈ P and consider a
typical basic member W = {(x, y) ∈ X ×X : d(x, y) ≤ p} of U(d). Then,
W = {(x, y) ∈ X ×X : dB(x, y) ≤ pB , ∀B ∈ B} =

∩
B∈B

{(x, y) ∈ X ×X :

dB(x, y) ≤ pB} = (
∩

B∈B
pB ̸=∞

{(x, y) ∈ X×X : dB(x, y) ≤ pB})
∩
(

∩
B∈B
pB=∞

{(x, y)

∈ X × X : dB(x, y) ≤ pB}) = (
∩

B∈B
pB ̸=∞

{(x, y) ∈ X × X : dB(x, y) ≤

pB})
∩
(X×X) =

∩
B∈B
pB ̸=∞

{(x, y) ∈ X×X : dB(x, y) ≤ pB} = (
∩

B∈B
pB<q

{(x, y) ∈

X × X : dB(x, y) ≤ pB})
∩
(
∩

B∈B
pB≥q

{(x, y) ∈ X × X : dB(x, y) ≤ pB}) =

(
∩

B∈B
pB<q

{(x, y) ∈ X × X : dB(x, y) ≤ pB})
∩
(X × X) =

∩
B∈B
pB<q

{(x, y) ∈

X ×X : dB(x, y) ≤ pB} =
∩

B∈B
pB<q

{(x, y) ∈ X ×X : (x, y) ∈ BnB , for some

nB ∈ N} =
∩

B∈B
pB<q

BnB , where nB ∈ N, ∀B ∈ B. Now, {pB : pB < q} is
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finite and hence W ∈ U . Thus U(d) ⊆ U . Again take an arbitrary B ∈ B
and p = (pB′)B′∈B ∈ P such that

pB′ =

{
q/4, if B′ = B

∞, if B′ ̸= B

Then clearly B = {(x, y) ∈ X × X : d(x, y) ≤ p} ∈ U(d). Thus,
U ⊆ U(d). Hence d induces the same quasi-uniformity U on X. �

Remark 3.4. If in the above Theorem, B is transitive then d takes the
following simple form:

(d(x, y))B = dB(x, y) =

{
0, if (x, y) ∈ B

q, if (x, y) /∈ Bn for any n ∈ N

Proof. The result follows trivially from the fact that as B is transitive, if
B ∈ B then Bn = B,∀n ∈ N. �

Definition 3.5 ([2]). Let (X,UX) and (Y,UY ) be two quasi-uniform
spaces. A function f : (X,UX) −→ (Y,UY ) is said to be quasi-uniformly
continuous if for each UY ∈ UY ,∃UX ∈ UX such that (x1, x2) ∈ UX =⇒
(f(x1), f(x2)) ∈ UY .

Definition 3.6 ([5], [7]). Let (X,VX , PX , dX) and (Y, VY , PY , dY ) be
two generalized quasimetric spaces. A function f : (X,VX , PX , dX) −→
(Y, VY , PY , dY ) is said to be continuous if for each x ∈ X and rY ∈
PY , ∃rX ∈ PX such that dX(x, x′) ≤ rX =⇒ dY (f(x), f(x

′)) ≤ rY , ∀x′ ∈
X.

Let us now define as follows.

Definition 3.7. Let (X,VX , PX , dX) and (Y, VY , PY , dY ) be two general-
ized quasimetric spaces. A function f : (X,VX , PX , dX) −→ (Y, VY , PY ,
dY ) is said to be uniformly continuous if for each rY ∈ PY , ∃rX ∈ PX

such that dX(x1, x2) ≤ rX =⇒ dY (f(x1), f(x2)) ≤ rY .

Theorem 3.8. Let (X,VX , PX , dX) and (Y, VY , PY , dY ) be two gener-
alized quasimetric spaces. If f : (X,VX , PX , dX) −→ (Y, VY , PY , dY ) is
uniformly continuous then it is continuous.

Proof. Immediate. �

Theorem 3.9. Let (X,UX) and (Y,UY ) be two quasi-uniform spaces,
and (X,VX , PX , dX) and (Y, VY , PY , dY ) be two generalized quasimetric
spaces, such that UX = U(dX) and UY = U(dY ). If f : (X,UX) −→
(Y,UY ) is quasi-uniformly continuous, then f : (X,VX , PX , dX) −→
(Y, VY , PY , dY ) is uniformly continuous and thus continuous.



CONCERNING QUASIMETRIC AND QUASI-UNIFORMITY... 267

Proof. Let rY ∈ PY . Put, {(y1, y2) ∈ Y × Y : dY (y1, y2) ≤ rY } = UY . So
UY ∈ UY . Now as f : (X,UX) −→ (Y,UY ) is quasi-uniformly continuous,
∃UX ∈ UX such that (a, b) ∈ UX =⇒ (f(a), f(b)) ∈ UY . Again, as UX =
U(dX), ∃rX ∈ PX such that {(a, b) ∈ X ×X : dX(a, b) ≤ rX} ⊆ UX , i.e.
dX(a, b) ≤ rX =⇒ dY (f(a), f(b)) ≤ rY . Thus, f : (X,VX , PX , dX) −→
(Y, VY , PY , dY ) is uniformly continuous and hence continuous by Theorem
3.8. �

Theorem 3.10. Let (X,VX , PX , dX) and (Y, VY , PY , dY ) be two gener-
alized quasimetric spaces and (X,U(dX)) and (Y,U(dY )) be the corre-
sponding quasi-uniform spaces generated by dX and dY respectively. If
f : (X,VX , PX , dX) −→ (Y, VY , PY , dY ) is uniformly continuous then
f : (X,U(dX)) −→ (Y,U(dY )) is quasi-uniformly continuous.

Proof. Let UY ∈ U(dY ). Then as U(dY ) is generated by dY , ∃rY ∈ PY

such that W = {(a, b) ∈ Y × Y : dY (a, b) ≤ rY } ⊆ UY . Now as f :
(X,VX , PX , dX) −→ (Y, VY , PY , dY ) is uniformly continuous, ∃rX ∈ PX

such that dX(x1, x2) ≤ rX =⇒ dY (f(x1), f(x2) ≤ rY . Put, {(x1, x2) ∈
X × X : dX(x1, x2) ≤ rX} = UX . Then clearly UX ∈ U(dX). Thus
(x1, x2) ∈ UX =⇒ (f(x1), f(x2)) ∈ W ⊆ UY . So, f : (X,U(dX)) −→
(Y,U(dY )) is quasi-uniformly continuous. �

Theorem 3.11. Let (X,V, P, d) be a generalized quasimetric space and
(X,U(d)) be the quasi-uniform space, generated by the generalized quasi-
metric d. If (X,VX , PX , dX) is the generalized quasimetric space gener-
ated by the quasi-uniformity U(d) (as in Theorem 3.3) then the identity
function 1X : (X,VX , PX , dX) −→ (X,V, P, d) is uniformly continuous.

Proof. Let r ∈ P . Then, U = {(x, y) ∈ X × X : d(x, y) ≤ r} ∈ U(d).
Again, U(d) = U(dX). So, ∃s ∈ PX such that Us = {(x, y) ∈ X × X :
dX(x, y) ≤ s} ⊆ U i.e., dX(x, y) ≤ s =⇒ d(x, y) ≤ r. Thus, 1X is
uniformly continuous. �

Note 3.12. From some of the above results it may seem that "quasi-
uniformly continuous =⇒ continuous" can be handled in a better way
by generalized quasimetric than by quasi-uniformities and their induced
topologies. However, we do not subscribe to that, and our intention here is
to describe a few results with their brief demonstrations, as prerequisites
for the development of the next section, where we will be concerned with
the notions of generalized quasimetric and its compatible quasi-uniformity
without giving much importance to the ambient topologies of the spaces,
under consideration. As a matter of fact, one does not need to go for
generalized quasimetric for proof of such a result.
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4. Interrelations among QU , QM and QM∗

In this section we define certain categories and discuss their interrela-
tions. Before we proceed, we list a few facts that can be verified easily.

Fact 4.1. (1) Composition of any two quasi-uniformly continuous
functions between two quasi-uniform spaces is quasi-uniformly con-
tinuous.

(2) The identity function on a quasi-uniform space is quasi-uniformly
continuous.

Fact 4.2. (1) Composition of any two continuous (uniformly continuous)
functions between generalized quasi-metric spaces is continuous
(respectively uniformly continuous).

(2) The identity function on a generalized quasimetric space is uni-
formly continuous (and hence continuous).

In view of Facts 4.1 and 4.2 we get the following categories:
(1) QU , the category of all quasi-uniform spaces and quasi-uniformly

continuous functions among them.
(2) QM , the category of all generalized quasimetric spaces and con-

tinuous functions among them.
(3) QM∗, the category of all generalized quasimetric spaces and uni-

formly continuous functions among them.

Theorem 4.3. F : QU −→ QM described by

(X,UX) 7−→

f

��

(X,VX , PX , dX)

F (f)=f

��
(Y,UY ) 7−→ (Y, VY , PY , dY )

is a faithful functor, where UX = U(dX), UY = U(dY ) and the generalized
quasi metric space (X,VX , PX , dX) and (Y, VY , PY , dY ) are constructed
as in Theorem 3.3.

Proof. Follows from Theorem 3.9. �

Remark 4.4. Consider the real line R. Clearly the usual metric d on
R is a generalized quasimetric and the uniformity generated by d is a
quasi-uniformity, say U , on R. There are plenty of real-valued continuous
functions on (R, d) which are not uniformly continuous. So the functor F
as described in Theorem 4.3 is not full in general.

Theorem 4.5. QM∗ is a subcategory, but not in general a full subcategory
of QM .
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Proof. From Theorem 3.8 it follows that QM∗ is a subcategory of QM
and by similar argument as in Remark 4.4, it follows that QM∗ is not a
full subcategory of QM . �

Theorem 4.6. The functor F : QU −→ QM∗ as described in Theorem
4.3, is a fully faithful functor.

Proof. It follows immediately from Theorem 3.10. �

Theorem 4.7. G : QM∗ −→ QU described by

(X,VX , PX , dX) 7−→

g

��

(X,UX)

G(g)=g

��
(Y, VY , PY , dY ) 7−→ (Y,UY )

is a fully faithful functor, where UX = U(dX) and UY = U(dY ).

Proof. Follows from Theorem 3.9 and Theorem 3.10. �

Definition 4.8 ([8]). Let C and D be two categories. An adjunction
from C to D is a triple < S, T, ϕ >: C → D, where S : C → D and
T : D → C are two functors and ϕ is a function which assigns to each
pair of objects C ∈ C and D ∈ D and each arrow f : S(C) → D, an
arrow ϕ(f) : C → T (D) in such a way that ϕ(k ◦ f) = T (k) ◦ ϕ(f) and
ϕ(f ◦ S(h)) = ϕ(f) ◦ h hold for all f and all arrows h : C ′ → C and
k : D → D′.

In such a case, S and T are called adjoint to each other.

Theorem 4.9. The two functors F and G described in Theorem 4.6 and
4.7 are adjoint to each other.

Proof. Let (X,UX) and (M,VM , PM , dM ) be two objects of QU and QM∗

respectively. Now consider g : F (X,UX) −→ (M,VM , PM , dM ). Then g :
(X,VX .PX , dX) −→ (M,VM , PM , dM ) is a uniformly continuous function.
Now take ϕ(g) : (X,UX) −→ G(M,VM , PM , dM ), i.e., ϕ(g) : (X,UX) −→
(M,U(dM )) as ϕ(g) = g. Then by Theorem 3.10, ϕ(g) is quasi-uniformly
continuous. Now let h : (X,UX) −→ (Y,UY ) be a quasi-uniformly con-
tinuous function and k : (M,VM , PM , dM ) −→ (N,VN , PN , dN ) be a uni-
formly continuous function. Then using Theorem 3.10 it can be easily
verified that, ϕ(k ◦ f) = G(k) ◦ ϕ(f) and ϕ(f ◦ F (h)) = ϕ(f) ◦ h. So, by
Definition 4.8, F and G are adjoint to each other. �

Definition 4.10 ([8]). Let C and D be two categories and S, T : C → D
be two functors. A natural transformation τ : S→̇T is a function which
assigns to each object C of C an arrow τC : S(C) → T (C) of D in such
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a way that for every arrow f : C → C ′ in C, the following diagram is
commutative.

C

f

��

S(C)
τC //

S(f)

��

T (C)

T (f)

��
C ′ S(C ′)

τC′
// T (C ′)

Definition 4.11 ([8]). Let C and D be two categories; S : C → D be a
functor and D be an object of D. A universal arrow from D to S is a
pair < C, g > consisting of an object C of C and an arrow g : D → S(C)
of D such that every pair < C ′, f > with an object C ′ of C and an arrow
f : D → S(C ′) of D, there is a unique arrow f ′ : C → C ′ of C such that
S(f ′) ◦ g = f .

Theorem 4.12. In Theorem 4.9, GF and FG are functors on QU and
QM∗ respectively.

Proof. It follows from Theorem 3.11 and the fact that GF (X,UX) =
(X,UX) = IQU (X,UX). �

Theorem 4.13. Consider the functors F and G as described in Theorem
4.6 and 4.7. Then the following hold:

(1) For each object (X,UX) of QU , if ηX : (X,UX) → GF (X,UX) is
the identity 1X then ηX is a universal arrow from (X,UX) to G
and η : IQU→̇GF is a natural transformation.

(2) For each object (M,VM , PM , dM ) of QM∗, if εM : FG(M,VM ,
PM , dM ) → (M,VM , PM , dM ) is the identity 1M then εM is a
universal arrow from F to (M,VM , PM , dM ) and ε : FG→̇IQM∗

is a natural transformation.
(3) G

ηG−−→ GFG
Gε−−→ G and F

Fη−−→ FGF
εF−−→ F are identities.

Proof. (1) From definition it follows that ηX is a universal arrow to
G from (X,UX).

Let (X,UX) and (Y,UY ) be two objects of QU and f : (X,UX)
→ (Y,UY ) be quasi-uniformly continuous. Then GF (X,UX) =
(X,UX) = IQU (X,UX), for all object (X,UX) of QU . Also,
IQU (f) = f = GF (f). Clearly, the following diagram commutes.:

(X,UX)

f

��

IQU (X,UX) = (X,UX)
ηX=1X//

f=IQU (f)

��

(X,UX) = GF (X,UX)

f=GF (f)

��
(Y,UY ) IQU (Y,UY ) = (Y,UY )

ηY =1Y
// (Y,UY ) = GF (Y,UY )
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Thus η is a natural transformation.
(2) and (3) can be done similarly and hence omitted.

�
Remark 4.14. In view of Theorem 4.13 we may conclude that η is the
unit and ε is the counit of the adjunction < F,G, ϕ > of Theorem 4.9.
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