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NEIGHT: THE NESTED WEIGHT OF A
TOPOLOGICAL SPACE

WILLIAM R. BRIAN

Abstract. The neight (nested weight) of a topological space X is
the smallest number of nests in X whose union provides a subbasis
for X. We explore some basic properties of this function, emphasiz-
ing the connections of neight with the small inductive dimension,
weight, character, and density of a space.

1. Definitions and Preliminaries

Let X be a topological space. A set N of subsets of X is called a nest
if N is totally ordered by ⊆. In this paper we consider the question: How
many nests does it take to generate a given topology?

For example, if X is a LOTS (Linearly Ordered Topological Space with
the order topology) then

NL = {(−∞, a) : a ∈ X} and NR = {(a,∞) : a ∈ X}
are two nests in X and NL ∪ NR provides a subbasis for X. A stronger
result, given as Theorem 2.2 in [2], is that (for T1 spaces) the topology of
X is generated by two nests if and only if X is a GO space (recall that a
GO space, or Generalized Order space, is any space that is homeomorphic
to a subspace of a LOTS).

It is trivially true that every topological space X has a subbasis that
can be written as a union of nests: for each open subset U of X, {U} is
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a nest in X. Therefore there is a least cardinal κ such that the topology
on X is generated by a subbasis that can be written as the union of κ
nests in X. This cardinal is called the nested weight or neight of X,
which we denote N(X). As any two homeomorphic spaces have the same
neight, N is a cardinal function in the usual sense of the term.

We will show in Section 2 that N(Rn) = n+ 1 for every n. This fact,
together with the above observation about GO spaces, might lead one
to consider the function X 7→ N(X) − 1 to be a measure of dimension.
Even more suggestive is the so-called halfdirectional dimension of J. Deák,
which we will consider in Section 2: as we will see, it is a topological
measure of dimension whose definition is very similar to that of neight.

In addition to exploring a few of the basic properties of nested weight,
we will also consider the question: In what ways is the function N(X)−1
a measure of dimension? In exploring this question we will focus mostly
on spaces with finite neight. Such spaces will be called FUN spaces,
since their topologies are generated by a Finite Union of Nests. We will
use the shorthand

N−(X) = N(X)− 1

whenever X is a FUN space.
Very roughly, the neight of a space tells us the complexity of conver-

gence in that space. This is borne out by the connections between neight
and dimension discussed in Section 2, and by the connections between
neight and other cardinal functions like weight, character, and density,
which will be discussed in Section 4.

The word “neight” was coined by Yurovetskĭı in [12], who explored some
of the basic properties of this function (his results are outlined below).
Similar notions have been defined and explored in detail by E. Deák and
J. Deák (see [3], [4], and [5]), and some of these will be discussed in
Section 2.

We begin with a lemma summarizing the work of Yurovetskĭı on the
basic properties of N:

Lemma 1.1 (Yurovetskĭı).
(i) N(X) = 0 if and only if X is indiscrete, and, if X is T1, then |X| ≥ 2
implies N(X) ≥ 2.
(ii) If Y ⊆ X then N(Y ) ≤ N(X).
(iii) N−(X × Y ) ≤ N−(X) +N−(Y ) + 1.
(iv) N(

∏
α∈I Xα) ≤

∑
α∈I N(Xα).

(v) If Y =
⊔

α∈I Xα, and some Xα has N(Xα) ≥ 2, then N(Y ) =
supα∈I N(Xα).
(vi) If X is metrizable then N(X) ≤ ℵ0.
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Proof. We will prove (i) in order to give the reader a taste for an ele-
mentary proof concerning the nested weight. Proofs for (ii)− (vi) can be
found in [12].

N(X) = 0 if and only if ∅ is a subbasis for the topology on X if and
only if X is indiscrete. Now suppose that X is T1 and that there is some
nest N that provides a subbasis for the topology on X. If a, b are two
distinct points of X then there are three possibilities:
Case 1: There is some U ∈ N such that a ∈ U and b /∈ U . Since N is a
nest, there is no member of N which contains b but does not contain a.
It follows that any finite intersection of members of N containing b must
also contain a. Since N is a subbasis for X, this contradicts the fact that
X is T1.
Case 2: There is some U ∈ N such that b ∈ U and a /∈ U . This case is
handled like Case 1.
Case 3: For each U ∈ N , either a ∈ U , b ∈ U or a /∈ U , b /∈ U . In
this case, any finite intersection of members of N either contains both a
and b or it contains neither a nor b. Since N is a subbasis for X, this
contradicts the fact that X is T0.

Thus any T1 space X with N(X) ≤ 1 consists of at most one point. �
Although (iii) is a special case of (iv), we have listed it separately

to emphasize that N− is not necessarily additive under products. In
Theorem 3.1 we will exhibit two fairly well-behaved spaces such that the
equality in (iii) holds. This tells us one way in which N− is badly behaved
as a measure of dimension. Part (i) gives us another: if X is a zero-
dimensional T1 space with more than one point, then N−(X) ≥ 1.

If C is a collection of nests in X, we define

#C =

{
n∩

i=0

Ui : n ∈ N, U0, ..., Un ∈
∪

C

}
.

We say that C generates the topology on X if and only if #C is a basis
for X, which is true if and only if

∪
C is a subbasis for X.

2. Dim, ind, and N−

J. Deák defines a halfdirection on X to be a set H of open subsets
of X such that (i) H is totally ordered by the relation U ≤ V ⇔ U ⊆ V
and (ii) If H′ ⊆ H then

∪
H′ ∈ H. (see [4]). Evidently, a halfdirection

is a special kind of nest that is closed under suprema and in which, in-
tuitively speaking, the “below” order has been replaced by a “way below”
order. When X has a topology that is generated by a finite collection of
halfdirections, the halfdirectional dimension of X, denoted Dim(X),
is defined so that Dim(X) + 1 is the least n such that some collection
of n halfdirections on X generates its topology; otherwise Dim(X) = ∞.
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This definition is essentially the same as our definition of N−, only with
“nest” replaced by “halfdirection”; thus we have
Proposition 2.1. N−(X) ≤ Dim(X) for every topological space X.

One of the most fundamental theorems concerning the halfdirectional
dimension, indeed the one justifying its name, is the following:
Theorem 2.2 (J. Deák). If X is a separable metrizable space then X
embeds in Rn if and only if Dim(X) ≤ n.
Proof. See [4], pp. 255-256. �

In addition to the halfdirectional dimension, J. Deák studies several
other related measures of dimension, most notably Dim, the directional
dimension, and O-Dim, the orderly directional dimension (see [5] for
an overview of these and more). The directional dimension was de-
fined originally by E. Deák and satisfies a theorem identical to Theo-
rem 2.2. All of these dimensions are similar in that they are all defined
in terms of subbases. Moreover, for any topological space X, we have
N−(X) ≤ Dim(X) ≤ Dim(X) ≤ O-Dim(X).

N−, Dim, Dim, and O-Dim all have in common that it is typically very
easy to find an upper bound for these functions on a particular space (one
only needs to produce a subbasis witnessing the upper bound), but lower
bounds are often harder to find. In a sense, our study of neight is justified
by this fact and by the inequality given in the previous paragraph. In this
section and the two following, we will prove and apply several theorems,
each of which gives a lower bound for N under certain circumstances.
Since N− is in turn a lower bound for Dim, Dim, and O-Dim, each of
these theorems also gives lower bounds for Dim, Dim, and O-Dim.

Before moving on to finding lower bounds for N, we point out that Dim
and N− agree on which T1 spaces have dimension 1:
Proposition 2.3. If X is a T1 space then N−(X) = 1 if and only if
Dim(X) = 1.
Proof. Assume X is T1. As always, N−(X) ≤ Dim(X). Also, N−(X) < 1
implies X is either empty or a singleton; in either case, Dim(X) < 1. It
suffices, then, to prove that if N−(X) = 1 then Dim(X) ≤ 1. For this it
suffices to prove that if two nests generate the topology on X then these
two nests are halfdirections.

Let L, R be two nests on X such that L ∪ R is a subbasis for X.
Begin by expanding L and R, if necessary, so that they are closed under
suprema, i.e., so that L and R each contain all unions of subsets of them-
selves. This does not change the topology generated by L∪R. By results
of van Dalen and Wattel (see [2], proof of Lemma 3.1), L and R induce
an order ≤ on X given by x ≤ y ⇔ ∃U ∈ L(x ∈ U ∧ y /∈ U); moreover,
the topology of X is at least as fine as the topology induced by this order.
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Using this fact, it is easy to see that if U ∈ L then U
X

is either U itself
or U together with one extra point. This implies that if U, V ∈ L with
U ⊆ V and U ̸= V then U ⊆ V . Thus L is a halfdirection for X and, by
a similar argument, so is R. �

The following example shows that the condition in proposition 2.3 that
X be T1 is necessary:

Proposition 2.4. There is a T0 space X such that N−(X) = 1 and
Dim(X) = ∞.

Proof. Let X = ω+1 with the following basis: {ω} is open in X and, for
each n, {n, ω} is open in X.

X has an infinite discrete subspace, so N−(X) ≥ 1 by Lemma 1.1
(i) and (ii). The two nests {n ∪ {ω} : n ∈ ω} and {X \ α : α ∈ ω + 1}
together provide a subbasis for X, so N−(X) = 1. (Here, as elsewhere,
we identify an ordinal number with the set of its predecessors.)

Any nonempty open subset of X is dense in X. Thus any halfdirection
in X can contain at most one set other than ∅ and X. Using this fact, it
is easy to see that Dim(X) = ∞. �

The argument of Proposition 2.3 does not extend to higher-dimensional
spaces, even if the condition that X is T1 is replaced with the much
stronger condition of metrizability:

Theorem 2.5. There is a metric space X such that N−(X) = 2 and
Dim(X) = ∞.

The proof of Theorem 2.5 is rather long and requires several auxil-
iary definitions and lemmas that we do not use elsewhere, so we have
postponed the proof until Section 5. The metric space used in the proof
of Theorem 2.5 is non-separable. It remains an open problem either to
find a separable metric space on which N− and Dim disagree, or to prove
that there is none. That is, it remains an open problem to show whether
J. Deák’s Theorem 2.2 holds under the weaker hypothesis that replaces
Dim with N−.

Recall the definition of the small inductive dimension (see, e.g.,
[10]): a space is n-dimensional if it has a basis of sets with (n − 1)-
dimensional boundaries. Formally, we begin by defining ind(∅) = −1.
A space X satisfies ind(X) ≤ n if and only if there is a basis B for X
such that each U ∈ B satisfies ind(∂U) ≤ n − 1. We say that the small
inductive dimension of X is equal to n, and write ind(X) = n, whenever
it is true that ind(X) ≤ n but it is false that ind(X) ≤ m for m < n. If
it is not true for any n that ind(X) ≤ n, then we write ind(X) = ∞.
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J. Deák proves that ind is a lower bound for Dim (see [4]); for separable
metric spaces, this is just a corollary of Theorem 2.2. In this section we
prove this result for N− as well, but with a few additional (fairly mild)
conditions.

Lemma 2.6. Let X be a separable metric space.
(i) If Y ⊆ X then ind(Y ) ≤ ind(X).
(ii) If C1, ..., Cn are closed subsets of X, then

ind

(
n∪

i=1

Ci

)
= max{ind(Ci) : i = 1, ..., n}.

Proof. See any reference on dimension theory, e.g. [10]. �
Lemma 2.7. Let X be a regular space and let a collection C of nests
generate the topology on X. If N ∈ C and U ∈ N , then C \{N} generates
the topology on ∂U , that is,

S = {V ∩ ∂U : V ∈ M ∈ C \ {N}}

is a subbasis for ∂U . In particular, if C is a collection of nests in X of
minimal cardinality such that

∪
C is a subbasis for X, and if U ∈

∪
C,

then N(∂U) ≤ N(X)− 1.

Proof. Let X be a regular space and let C be a collection of nests in X
that generates the topology on X. Let U ∈ N ∈ C and x ∈ ∂U . We show
that x has a neighborhood basis (in ∂U) consisting of finite intersections
of elements of S. Since #C is a basis for X, it suffices to show that,
for any V ∈ #C such that x ∈ V , there is some W ∈ #S such that
x ∈ W ∩ ∂U ⊆ V ∩ ∂U .

Since X is regular and #C is a basis for X, there is some V ′ ∈ #C such
that V ′ is a neighborhood of x and V ′ ⊆ V . Now

V ′ = U0 ∩ U1 ∩ ... ∩ Un

where, without loss of generality, U0 ∈ N ∪ {X} and U1, ..., Un /∈ N
(recall that N , hence N ∪ {X}, is a nest and thus is closed under finite
intersections). We claim that

(U1 ∩ ... ∩ Un) ∩ ∂U ⊆ V ∩ ∂U.

Suppose this is not the case and let z ∈ (U1 ∩ ... ∩ Un ∩ ∂U) \ V . Since
N is a nest, U,U0 ∈ N ∪ {X}, x ∈ U0, and x /∈ U , we have U ⊆ U0.
Thus, because z ∈ ∂U , either z ∈ U0 or z ∈ ∂U0. On the one hand, if
z ∈ U0 then z ∈ U0 ∩U1 ∩ ...∩Un = V ′ and z /∈ V , contradicting the fact
that V ′ ⊆ V . On the other hand, if z ∈ ∂U0 and z ∈ U1 ∩ ... ∩ Un, then
z ∈ ∂(U0 ∩ U1 ∩ ... ∩ Un) = ∂V ′. Since z /∈ V , this contradicts the fact
that V ′ ⊆ V . �
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Theorem 2.8. If X is a nonempty FUN separable metric space then

ind(X) ≤ N−(X).

Proof. The proof is by induction on N−(X). If N−(X) = 0 then, by
Lemma 1.1(i), X consists of at most one point, in which case ind(X) ≤ 0.
Now assume that the result is true for separable metric spaces Y such
that N−(Y ) < N−(X). Let C be a collection of nests that generates
the topology on X with |C| = N(X). We show that, for each U ∈ #C,
N−(∂U) ≤ N−(X) − 1. Let U = U0 ∩ ... ∩ Un, where U0, ..., Un ∈ C.
Clearly

∂U ⊆ ∂U0 ∪ ... ∪ ∂Un.

By Lemma 2.7, N−(∂Ui) ≤ N−(X) − 1 for each i = 0, ..., n. By the
inductive hypothesis, ind(∂Ui) ≤ N−(X)− 1 for each i = 0, ..., n. It now
follows from Lemma 2.6 that ind(∂U) ≤ N−(X)−1. Since this is true for
an arbitrary U ∈ #C, it follows from the definition of the small inductive
dimension that ind(X) ≤ N−(X). �

Corollary 2.9. For each n ∈ N, N−(Rn) = n.

Proof. It follows from Theorem 2.8 that N−(Rn) ≥ ind(Rn) = n. There-
fore it suffices to find, for each n, a collection of n+1 nests whose union is
a subbasis for Rn. This was done in [12]; even before that, J. Deák showed
in [4] that we may use n + 1 halfdirections to generate the topology of
Rn: simply take the n nests

{{(x1, . . . , xn) ∈ Rn : xi < r} : r ∈ R}

for 1 ≤ i ≤ n, plus the one additional nest

{{(x1, . . . , xn) ∈ Rn : x1 + . . . xn > r} : r ∈ R} . �

In general, we say that the finite sum theorem holds for X if, when-
ever A and B are closed subsets of X,

ind(A ∪B) = max{ind(A), ind(B)}.

Lemma 2.6(i) says that the finite sum theorem holds for separable met-
ric spaces. However, the finite sum theorem holds in many spaces that
are not separable metric spaces. This, along with the observation that
Theorem 2.8 really only uses the fact that X satisfies the finite sum the-
orem (not that X is a separable metric space), leads to the following
strengthening of Theorem 2.8:

Corollary 2.10. Let X be a regular FUN space and suppose that the
finite sum theorem holds in X. Then ind(X) ≤ N−(X).
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3. Bad behavior under products

We now prove that, even for fairly well-behaved spaces, the inequality
in Lemma 1.1(iii) cannot be improved. This example is similar to an
example used by Gerlits in the study of Dim (see [7], Example 3.1), and
the main idea of our proof is already present in his paper.

Theorem 3.1. There are compact LOTS X and Y such that

N−(X × Y ) = N−(X) +N−(Y ) + 1.

Proof. Let X be the totally ordered set obtained by adding a reversed
copy of ω1 to the end of ω + 1, sometimes denoted (ω + 1)⌢ω∗

1 . More
explicitly, X = {0} × (ω + 1) ∪ {1} × ω1 and

(i, α) ≤ (j, β) if and only if i < j or
i = j = 0 and α < β or
i = j = 1 and β < α.

Let X have the topology induced by ≤. Similarly, let Y = (ω2 + 1)⌢ω∗
3 ,

with the usual order topology. Both X and Y are compact LOTS. We
have already seen that every nontrivial LOTS has neight 2, so N−(X) =
N−(Y ) = 1.

We now show that N−(X×Y ) = 3. We already know from Lemma 1.1
(iii) that N−(X ×Y ) ≤ 3, so it suffices to show that no collection of only
3 nests can produce a subbasis for X × Y .

To this end, suppose that N0, . . . , Nn are nests in X × Y and that∪n
i=0 Ni is a subbasis for X × Y . Let p = ((0, ω), (0, ω2)) and, for each

i ≤ n, let
Ai = ⟨{U ∈ Ni : p ∈ U} ,⊇⟩.

Each Ai is a linear order, and we will show n ≥ 3 by a detailed consider-
ation of the cofinalities of these orders.

For each n ∈ ω, let Om = ((0,m),∞) × Y (as is customary with a
LOTS, we take ((0,m),∞) = {x ∈ X : (0,m) ≤ x}). ⟨Om⟩m<ω is a
nested sequence of open subsets of X ×Y . We now define simultaneously
by induction a sequence

⟨
U i
m : i ≤ ω

⟩
in Ai for each i ≤ n. Take U i

0 ∈ Ai

arbitrarily. Suppose we have U i
m−1 ∈ Ai for each i; since

∪
i≤n Ni is a

subbasis for X × Y , there are U i
n ∈ Ai such that U i

m ⊆ U i
m−1 for each i

and p ∈
∩

i≤n U
i
m ⊆ Om.

For each i ≤ n, m 7→ U i
m is a nondecreasing map ω → Ai. We

claim that, for at least one value of i, this map must be cofinal. If not,
there is for each i some U i

∞ ∈ Ai such that U i
m ⊇ U i

∞ for each m ∈ ω.
But then

∩
i≤n U

m
∞ is an open neighborhood of p contained in each Om.
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This is impossible because p is not in the interior of
∩

m∈ω Om. Thus one
of these maps is cofinal, so that one of the Ai has cofinality ω.

Next, for each α ∈ ω1, let Oα = (−∞, (1, α))×Y . As before, ⟨Oα⟩α<ω1

is a nested sequence of open subsets of X × Y . We will once again pick
sequences of sets from our subbasis to get inside the Oα, but now we must
do so in two stages.

Let I = {i ≤ n : cf(Ai) ≤ ω} and J = {i ≤ n : cf(Ai) > ω}. For each
i ∈ I, fix some cofinal sequence

⟨
W i

m : m < ω
⟩

in Ai (it is clear that we
lose no generality by assuming that cf(Ai) is infinite for every i). For
each α < ω1, choose a tuple tα ∈ ωI such that there exist sets U j

α, j ∈ J ,
with ∩

i∈I

W i
tα(i) ∩

∩
j∈J

U j
α ⊆ Oα.

Because ωI is countable there is some t ∈ ωI such that t = tα for un-
countably many α. But then, for any α < ω1, there exist sets U j

α, j ∈ J ,
such that

∩
i∈I W

i
t(i) ∩

∩
j∈J U j

α ⊆ Oα. For all α < ω1 and i ∈ I, set
V i
α = W i

t(i).
We now proceed to define V j

α ∈ Aj for each j ∈ J using transfinite
recursion. Pick V j

0 arbitrarily for each j ∈ J . Assuming V j
β has been

chosen for each β < α and j ∈ J , choose V j
α such that

V j
α ⊆

∩
β<α

V j
β for each j and

∩
j≤n

V j
α ⊆ Oα.

This is possible by our choice of the V i
α for i ∈ I and because ⟨Vβ : β < α⟩

cannot be cofinal in Aj if α < ω1.
For each j ∈ J , α 7→ V j

α is a nondecreasing map ω1 → Ai. We claim
that, for at least one value of j, this map must be cofinal. If not, there is
for each j ∈ J some V j

∞ ∈ Aj such that V j
α ⊇ V j

∞ for each α < ω1. Then∩
i∈I

V i
0 ∩

∩
j∈J

V j
∞ ⊆ Oα

for each α, which implies p ∈ Int
(∩

α<ω1
Oα

)
, a contradiction. Thus some

Ai has cofinality ω1.
Using the same technique, we can prove that some Ai has cofinality ω2

and that some Ai has cofinality ω3. Thus n ≥ 3. �

The proof of Theorem 3.1 generalizes in an obvious way to prove the
following more general result:

Theorem 3.2. Let p ∈ X and suppose that, for i = 0, ..., n, Ai is a nest
of open sets in X such that, for each i, p is in

∩
Ai but is not in the

interior of
∩

Ai. If cf(Ai) ̸= cf(Aj) whenever i ̸= j then N−(X) ≥ n.
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One would hope that a topological measure of dimension is additive
under products, or least products of sufficiently well-behaved spaces. The-
orem 3.1 says that N− fails this test, at least for compact LOTS. The
following few corollaries demonstrate a few other similar pathologies.

Corollary 3.3. For arbitrarily large n, there is a compact Hausdorff space
X with N−(X) = n and a point x ∈ X such that N−(X \ {x}) = 1.

Proof. Fix n and let Y be the disjoint union

Y =
n⊔

i=0

(ωi + 1)× {i}.

Let X be the quotient space obtained from Y by identifying the n + 1
points (ω0, 0), (ω1, 1), ..., (ωn, n). X is clearly a compact Hausdorff space,
and it follows from Theorem 3.2 that N−(X) ≥ n (in fact, N−(X) = n:
Gerlits shows this in Example 3.1(a) of [7]). Let x be the point in X
whose pre-image in Y is the set {(ω0, 0), (ω1, 1), ..., (ωn, n)}. X \ {x} is
(homeomorphic to) a disjoint union of LOTS, and hence is a GO space.
Thus N−(X \ {x}) = 1. �

Corollary 3.4. N− does not satisfy the finite sum theorem for compact
Hausdorff spaces. That is, for every n ≥ 1 there is a compact Hausdorff
space X, and closed subsets C0, ..., Cn of X, such that

N(X) > max{N(C0), ...,N(Cn)}.

Proof. The space X described in the previous proof can be divided into
a finite number of compact LOTS (overlapping only at the point x), each
of which is closed in X. �

The following corollary says that N− not only fails to be additive under
products, but for arbitrary finite powers it fails as badly as Lemma 1.1(iii)
allows.

Corollary 3.5. There is a compact LOTS X such that, for every n ∈ ω,
N−(Xn) has the maximum possible value of 2n− 1.

Proof. Let X =
⊔

n∈ω(ω2n + 1)⌢ω∗
2n+1 and apply Theorem 3.2 in the

natural way. �

4. Spaces that are not FUN

Theorems 2.8 and 3.2 give two different ways for finding lower bounds
for N(X) when X is a FUN space. In this section we will prove a theorem
that relates the neight of a space to its weight. This theorem will allow
us to get a lower bound on N for spaces with infinite neight and to prove
fairly easily that certain spaces are not FUN. Recall that w(X) denotes
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the weight of a space X, the smallest cardinal κ such that X has a base of
size κ, and χ(x) denotes the character of a point x, the smallest cardinal
κ such that x has a local base of size κ.

Lemma 4.1 (Yurovetskĭı). N(X) ≤ w(X).

Proof. If B is a basis for X then {{B} : B ∈ B} is a collection of nests on
X whose union is a subbasis for X. �
Theorem 4.2. If |X| < w(X) then N(X) = w(X).

Proof. Let x ∈ X. We will begin by showing that χ(x) ≤ N(X) · |X|.
By assumption, there is a collection C = {Nα : α < N(X)} of nests

that generates the topology on X. For each Nα ∈ C, let N x
α be the

restriction of Nα to sets containing x: N x
α = {U : x ∈ U ∈ Nα}. Each N x

α

is totally ordered by ⊇, and the cofinality of N x
α is at most |X|. To see

this, note that there must be a well-ordered, strictly decreasing sequence
⟨Uβ : β < cf(N x

α )⟩ of subsets of X, and (choosing xβ ∈ Uβ \Uβ+1) we may
use this sequence to find a subset of X of size cf(N x

α ).
For each α, let Kα ⊆ N x

α be cofinal in N x
α with |Kα| = cf(N x

α ) ≤ |X|.
Because each Kα is cofinal in N x

α ,{
n∩

i=0

Ui : n ∈ ω, α0, α1, ..., αn < N(X), and Ui ∈ Kα for each i

}
is a neighborhood basis for x. Since the cardinality of each Kα is at most
|X|, the cardinality of this neighborhood basis for x is at most N(X) · |X|.

For every x ∈ X, suppose Nx is a neighborhood basis for x of size at
most N(X)·|X|. Then

∪
x∈X Nx is a basis for X of size at most N(X)·|X|.

Hence w(X) ≤ N(X) · |X|. As we are assuming |X| < w(X), this proves
w(X) ≤ N(X).

Lemma 4.1 provides the opposite inequality and completes the proof
of the theorem. �

Combining this result with Lemma 1.1(ii), we have:

Corollary 4.3. If Y ⊆ X and |Y | < w(Y ) then N(X) ≥ w(Y ).

Corollary 4.4. Neither βω nor ω∗ is FUN: both have nested weight c.

Proof. Since ω∗ ⊆ βω and βω embeds in ω∗, these two spaces have the
same nested weight.

Let p ∈ βω \ ω be a point with character c (it was proved in [11]
that some such point exists). Consider the space X = ω ∪ {p} ⊆ βω.
X is countable, but the fact that χ(p) = c implies that w(X) = c. By
Corollary 4.3, N(βω) ≥ c. Since w(βω) = c, the result now follows from
Lemma 4.1. �
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A similar argument shows that, for any discrete space A, βA has neight
2|A|. A more general form of this argument will be given in Corollary 4.6.

Lemma 4.5. Let X be regular and let D be dense in X. If x ∈ X then
the character of x in X is the same as the character of x in D ∪ {x}.

Proof. See [6], Exercise 2.1.C(a). �

Corollary 4.6. If X is regular and separable but not first countable, then
N(X) is uncountable. More generally, if X is regular, D is dense in X,
and x ∈ X with χ(x) > |D|, then N(X) ≥ χ(x).

Proof. By Lemma 4.5, the character of x in D ∪ {x} is the same as its
character in X. Applying Corollary 4.3 to the space D ∪ {x}, we have
N(X) ≥ χ(x). �

The following lemma generalizes Exercise 3 on p. 86 of [9]:

Lemma 4.7. Let κ, λ be infinite cardinals with κ ≤ 2λ. Then [0, 1]κ has
a dense subset of size 2<λ.

The following result complements Corollary 2.9:

Corollary 4.8. N([0, 1]κ) = κ for every infinite κ.

Proof. That N([0, 1]κ) ≤ κ follows from Lemma 1.1(iv), so we must show
that N([0, 1]κ) ≥ κ.

First suppose κ is a successor cardinal, say κ = µ+. Let λ be the least
cardinal such that 2λ ≥ κ; then 2<λ ≤ µ < κ. By Lemma 4.7, [0, 1]κ

has a dense subset D of size 2<λ. However, every point of [0, 1]κ has
character κ and, by Lemma 4.5, every point of D has character κ. That
N([0, 1]κ) ≥ κ now follows from Corollary 4.6.

Next suppose κ is a limit cardinal. Let µ be any successor cardinal with
µ < κ. [0, 1]µ embeds naturally in [0, 1]κ. By Lemma 1.1(ii), N([0, 1]κ) ≥
N([0, 1]µ) = µ (the equality follows from Corollary 2.9 for finite µ and
from the previous paragraph for infinite µ). Because every limit cardinal
is a limit of successor cardinals, this proves N([0, 1]κ) ≥ κ. �

Recall that X is a Toronto space if X is homeomorphic to every
Y ⊆ X with |Y | = |X|. It is a stubborn open problem whether any
infinite, Hausdorff, non-discrete Toronto spaces can exist (it is known to
be consistent with ZFC that no such spaces exist, e.g. under GCH; see
[1], Proposition 2.6). The following corollary tells us about the neight of
certain Toronto spaces, should they ever be constructed.

Corollary 4.9. If X is a non-discrete Hausdorff Toronto space of size
ℵ1 then N(X) is uncountable.
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Proof. It is shown in [1] that, if X is such a space, then every limit
point x of X has a countable neighborhood and uncountable character.
Corollary 4.3 implies N(X) ≥ χ(x). �

5. The nested weight of a hedgehog

In this section we present a proof of Theorem 2.5, which we recall here
for the reader:

Theorem 2.5. There is a metric space X such that N−(X) = 2 and
Dim(X) = ∞.

We will prove this theorem through a sequence of lemmas. The space
X that we will use to prove the theorem is the metric hedgehog with ℵ1

spines. That is, X = ((0, 1]×ω1)∪{∗} with the topology generated by the
following metric: for every x, y, α, and β, we take d((x, α), (y, β)) = x+y
if α ̸= β, d((x, α), (y, α)) = |x− y| for any fixed α, and d((x, α), ∗) = x.

Lemma 5.1. N−(X) = 2.

Proof. The proof that N−(X) ≤ 2, i.e. that there are three nests that
together generate the topology on X, relies on the fact that X \ {∗} is
open in X and is a GO space. This allows us to generate the topology
of X \ {∗} with two nests, and we may take as our third nest any nested
neighborhood basis for {∗}. More explicitly, consider the following three
nests in X:

N0 =
{
L(x,α) = {(y, β) : β < α or β = α ∧ y < x} : x ∈ (0, 1], α ∈ ω1

}
N1 =

{
R(x,α) = {(y, β) : β > α or β = α ∧ y > x} : x ∈ (0, 1], α ∈ ω1

}
N2 =

{
B 1

n
(∗) : n ∈ ω

}
It is straightforward to check that N0 ∪ N1 is a subbasis for X \ {∗},
and it follows that N0 ∪ N1 ∪ N2 is a subbasis for X. This proves that
N−(X) ≤ 2.

For the opposite inequality, recall the theorem of van Dalen and Wattel
mentioned in the introduction ([2], Theorem 2.2): a T1 space X is a
GO space if and only if it has neight at most 2. Thus it is enough to
show that X is not a GO space. This follows from the well-known fact
that the letter Y (i.e., the space obtained from three copies of [0, 1] by
identifying the three left-hand endpoints) is not a GO space, together
with the observation that the letter Y embeds in X.

Alternatively, that N−(X) ≥ 2 follows from Proposition 2.3 and the
fact (whose proof we are about to undertake) that Dim(X) = ∞. �
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Halfdirections, or nests more generally, are totally ordered by ⊆, and
we begin the next part of our proof with a general fact about total orders.

A total order (X,≤) is separable if there is some countable Q ⊆ X
such that every nonempty interval of the form (a, b) contains a point
of Q. We will say that (X,≤) is strongly separable if there is some
countable Q ⊆ X such that every nonempty interval of the form (a, b] or
[a, b) contains a point of Q; such a Q will be called strongly dense. Note
that the notion of strong separability is strictly stronger than the notion
of separability (for strictness, consider the “double arrow” space).

Lemma 5.2. The following are equivalent for a total order (X,≤):
(i) (X,≤) is strongly separable.
(ii) (X,≤) is order isomorphic to a subset of R.
(iii) When endowed with the order topology, (X,≤) is second countable.

Proof.
(i) ⇒ (ii): Let X be strongly separable and let Q be a countable strongly
dense subset of X which, without loss of generality, contains the least
and greatest points of X (if they exist). Since Q is countable, Q is order
isomorphic to a subset of R. Let ϕ : Q → R be an order embedding,
and extend ϕ to all of X by taking suprema: for any x ∈ X, let ϕ(x) =
sup {ϕ(q) : q ∈ Q and q ≤ x}. Suppose a, b ∈ X with a < b. Since Q is
strongly dense, there is some q1 ∈ [a, b)∩Q and some q2 ∈ (q1, b]∩Q. We
then have ϕ(a) ≤ ϕ(q1) < ϕ(q2) ≤ ϕ(b), so ϕ(a) < ϕ(b). This shows that
ϕ is injective and order preserving. Thus ϕ is an order isomorphism onto
its image.
(ii) ⇒ (iii): If X ⊆ R, then X, endowed with the subspace topology, has
a countable subbasis S = {(q,∞) ∩X : q ∈ Q} ∪ {(−∞, q) ∩X : q ∈ Q}.
The order topology on X may be coarser than this subspace topology,
but it will have some subset of S as a subbasis (namely those elements of
S that are open in X).
(iii) ⇒ (i): If X is second countable, then for any subbasis S for X there
is a countable S ′ ⊆ S such that S ′ is a subbasis for X (this follows from
Theorem 1.1.15 in [6], pp. 17-18). Thus there is some countable Q ⊆ X
such that {(q,∞) : q ∈ Q} ∪ {(−∞, q) : q ∈ Q} is a subbasis for the order
topology on X. Let Q′ consist of the points of Q together with any points
in X that have an immediate successor or an immediate predecessor. If
there were uncountably many points of X with an immediate successor or
predecessor then the order topology on X would not be second countable,
so Q′ is countable. It is easy to check that Q′ is strongly dense in X. �

The equivalence of (i) and (ii) in the above lemma makes it clear that
strong separability is preserved by taking subspaces and quotients:



NEIGHT 293

Lemma 5.3. If X is a strongly separable linear order then so is any
subset of X.

Let us call a nest complete if it is closed under arbitrary unions. By
definition, every halfdirection is complete. Notice that every nest N has
a completion Ñ = {

∪
A : A ⊆ N} and that, if C is a collection of nests

in some space Y , then
∪
C is a subbasis for Y if and only if

∪
C̃ is, where

C̃ =
{
Ñ : N ∈ C

}
.

Lemma 5.4. Let Y be a topological space and suppose that C is an at
most countable collection of complete, strongly separable nests in Y . If C
generates the topology on Y , then Y is second countable.

Proof. For each N ∈ C fix some QN ⊆ N such that QN is countable and
strongly dense in N . We claim that S =

∪
{QN : N ∈ C} is a subbasis

for Y . The lemma follows directly from this claim: S is countable, so the
set of all finite intersections of elements of S is also countable and is a
basis for Y if S is a subbasis for Y .

Let y ∈ Y and let N ⊆ Y be an arbitrary neighborhood of y. As
∪
C

is a subbasis for Y , we may find N0, ...,Nn ∈ C and U0 ∈ N0, ..., Un ∈ Nn

such that y ∈
∩

i≤n Ui ⊆ N . For each i ≤ n, let Vi =
∪
{U ∈ Ni : y /∈ U}.

Since y ∈ Ui \ Vi and Ni is a nest, Vi ⊆ Ui. As QNi is strongly dense in
Ni, there is some Wi ∈ QNi such that Vi ( Wi ⊆ Ui (order theoretically,
Wi ∈ (Vi, Ui]). By our choice of Vi and Wi, y ∈ Wi, Wi ∈ QNi , and
Wi ⊆ Ui. This holds for all i ≤ n, so y ∈

∩
i≤n Wi ⊆

∩
i≤n Ui ⊆ N . This

proves that S is a subbasis for Y . �

Lemma 5.5. Every complete nest of open sets in a second countable space
is strongly separable.

Proof. Let Y be a second countable space and let B = {Bn : n ∈ ω} be a
countable basis for Y . Let N be a nest of open subsets of Y . For each
U ∈ N , let AU = {n ∈ ω : Bn ⊆ U}. Clearly U =

∪
{Bn : n ∈ AU} for

every U ∈ N , so the map U 7→ AU is an injection from N into 2ω. This
map is order preserving: U ⊆ V implies AU ⊆ AV . In particular, this
map is order preserving when we consider 2ω to have the lexicographic
order.

Note that 2ω with the lexicographic order is order isomorphic to a
subset of R, namely to the Cantor set. Thus, by the previous paragraph,
N is order isomorphic to a subset of R. Its strong separability now follows
from Lemma 5.2. �

If Y ⊆ X and N is a nest in X, define

N �Y = {U ∩ Y : U ∈ N and U ∩ Y ̸= ∅} .
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Lemma 5.6. If N is a strongly separable halfdirection on Y and Z ⊆ Y
then N �Z is a strongly separable halfdirection on Z.

Proof. It is obvious that if N is a halfdirection then so is N � Z. It
suffices, then, to show that N �Z is strongly separable if N is. For every
U ∈ N � Z, pick some f(U) ∈ N such that f(U) ∩ Z = U . Then f
is injective and {f(U) : U ∈ N �Z} is a subset of N that is clearly order
isomorphic to N �Z. By Corollary 5.3, N �Z is strongly separable. �

Lemma 5.7. If N is a halfdirection on X then there is an open neigh-
borhood V of ∗ such that N � V is a strongly separable halfdirection on
V .

Proof. Let N be a halfdirection in X. If V is any subspace of X then
clearly N �V is a halfdirection in V . Thus we must find an open V ∋ ∗
for which N �V is strongly separable. We consider three cases:

Case 1: Suppose ∗ /∈ U for every U ∈ N . The cases |N | = 0, 1, 2 are
trivial, so assume there is some nonempty, nonmaximal U ∈ N . Since N
is a halfdirection and U is not maximal, there is some U ′ ∈ N such that
U ⊆ U ′. Since ∗ /∈ U ′, ∗ /∈ U . Take V = X \ U .

Let α ∈ ω1 such that U ∩ ((0, 1] × {α}) ̸= ∅ (some such α must exist
as U is nonempty and ∗ /∈ U). Let Y = {∗}∪ ((0, 1]×{α}) and note that
Y is homeomorphic to [0, 1]. In particular, N �Y is strongly separable by
Lemma 5.5. Consider the map π : N → N �Y given by π(W ) = W ∩ Y .
This map is clearly an order preserving surjection.

If π is not injective then there exist W1,W2 ∈ N such that W1
X ⊆ W2

and W1 ∩ Y = W2 ∩ Y . Then W1 ∩ Y ⊆ W1 ∩ Y
Y ⊆ W

X

1 ∩ Y ⊆ W2 ∩
Y = W1 ∩ Y . Thus W1 ∩ Y = W1 ∩ Y

Y
. Since Y is connected and

W1 is open, this is only possible if W1 ∩ Y = ∅ or W1 ∩ Y = Y . The
latter is impossible by the assumption ∗ /∈ W1, so we have W1 ∩ Y = ∅,
which implies W2 ∩ Y = ∅ as well. Thus π(W1) = π(W2) if and only if
W1 ∩ Y = W2 ∩ Y = ∅. That is, π fails to be injective only on those pairs
of sets in N that miss Y .

Thus π provides an order isomorphism from a final segment of N ,
namely N ′ = {W ∈ N : Y ∩W ̸= ∅}, onto N �Y .

We claim next that N �V is isomorphic to a subset of N ′. If W ∈ N
and W ∩ V = W \ U ̸= ∅, then W ̸⊆ U and, using the fact N is a
nest, U ⊆ W . Because U ∩ Y ̸= ∅, we have W ∩ Y ̸= ∅, which implies
W ∩ Y ∈ N � Y . Thus we obtain a natural map from N � V to N � Y ,
namely W ∩ V 7→ W ∩ Y . This map is clearly order preserving, and it is
injective for the same reason that π is injective (if W1 ∩V = W2 ∩V ̸= ∅,
then supposing W1 ̸= W2 ultimately contradicts the connectedness of Y ).
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Therefore N �V is order isomorphic to a subset of N �Y . By Lemmas 5.6
and 5.3, N �V is strongly separable.

Case 2: Suppose ∗ ∈ U for every U ∈ N . This is similar to Case
1. Assume there is some V ∈ N such that V ̸= X, and pick some
(x, α) ∈ X \ {∗} such that (x, α) /∈ V .

Let Y = {∗} ∪ ((0, 1] × {α}), and consider the map π : N → N � Y
defined by π(U) = U ∩ Y . As in Case 1, if U,W ∈ N then π(U) = π(W )
if and only if U ∩ Y = W ∩ Y = ∅ or U ∩ Y = W ∩ Y = Y . The
former case is impossible since ∗ ∈ U ∩ Y for any U ∈ N . Thus π is an
injection from {U ∈ N : U ∩ Y ̸= Y } into N � Y . This proves, as above,
that {U ∈ N : U ∩ Y ̸= Y } is strongly separable. N �V is isomorphic to
a subset of this order, so that it too must be strongly separable.

Case 3: Suppose ∗ ∈ U for some U ∈ N and ∗ /∈ U ′ for some U ′ ∈ N .
Let N0 = {U ∈ N : ∗ /∈ U} and N1 = {U ∈ N : ∗ ∈ U}. N0 and N1 are
both complete halfdirections in X and, by Cases 1 and 2, each is strongly
separable. Therefore there are open neighborhoods V0 and V1 of ∗ such
that N0 � V0 and N1 � V1 are both strongly separable. Let V = V0 ∩ V1.
Since N0 � V and N1 � V are both strongly separable, it follows from
Lemma 5.2 that N �V = N0 �V ∪N1 �V is strongly separable. �

Suppose now that Dim(X) is finite and let N0, ...,Nn be a collection of
halfdirections on X whose union is a subbasis for X. By Lemma 5.7 we
may, for each i, find some open neighborhood Vi of ∗ such that Ni �Vi is a
strongly separable halfdirection on Vi. Moreover, setting V =

∩
i≤n Vi, V

is an open neighborhood of ∗ such that, for each i ≤ n, Ni �V is a strongly
separable halfdirection on V by Lemma 5.6. Recalling that halfdirection
is a special kind of nest, it follows from Lemma 5.4 that V is second
countable. This is a contradiction: it is clear that no neighborhood of ∗
in X can be second countable.

This completes the proof of Theorem 2.5. �

In conclusion, we point out that it is possible to pinpoint exactly the
number of halfdirections needed to generate the topology of the ℵ1-spined
metric hedgehog:

Corollary 5.8. If X denotes the metric hedgehog with ℵ1 spines as above,
then Dim(X) = Dim(X) = ℵ0.

Proof. Gerlits has given an upper bound of ℵ0 for Dim(X), the directional
dimension of X (see [7], Lemma 4.3). Recalling that Dim(X) ≤ Dim(X)
for any space X, Dim(X) ≤ ℵ0. Our Theorem 2.5 provides the opposite
inequality. �
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