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SELECTIVE STRONG SCREENABILITY AND A GAME

LILJANA BABINKOSTOVA AND MARION SCHEEPERS

Abstract. Selective versions of screenability and of strong screen-
ability coincide in a large class of spaces. We show that the cor-
responding games are not equivalent in even such standard metric
spaces as the closed unit interval. We identify sufficient conditions
for ONE to have a winning strategy (Theorem 3.3), and necessary
conditions for TWO to have a winning strategy (Theorem 4.6) in
the selective strong screenability game.

1. Introduction

Unless specified otherwise, all topological spaces in this paper are as-
sumed to be infinite. A collection A of subsets of a topological space
(X, τ) is discrete if there is for each x ∈ X a neighborhood U of x such
that |{A ∈ A : A ∩ U ̸= ∅}| ≤ 1. Note that a finite family of nonempty
sets whose closures are disjoint is a discrete family. An infinite family of
sets with pairwise disjoint closures need not be discrete, as illustrated by
the family {[ 1

2n+1 ,
1
2n ] : n ∈ N} of disjoint closed subsets of the real line.

A disjoint family of open sets covering a space is automatically a discrete
family of open sets.

A family A of sets refines a family B of sets if there is for each A ∈ A a
B ∈ B such that A ⊆ B. The symbol O denotes the collection of all open
covers of the space (X, τ). When Y is a subset of X, then OY denotes
the set of covers of Y by sets open in X.

R.H. Bing introduced the notions of screenable and strongly screenable
in [8]. A topological space (X, τ) is strongly screenable if there is for each
open cover U of X a sequence (Vn : n < ω) such that each Vn is a discrete
collection of sets, each Vn refines U , and

∪
{Vn : n < ω} is an open cover of

X.
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We obtain the notion of being screenable by replacing “discrete” in the
definition of strong screenability with “disjoint”.

Towards defining the selective version of strong screenability let A and
B be collections of families of subsets of a set S. Assume that the set S is
endowed with a topology. Then Sd(A,B) denotes the selection principle:

For each sequence (Un : n < ω) of elements of A there is
a sequence (Vn : n < ω) such that:
(1) For each n, Vn refines Un;
(2) For each n, Vn is a discrete collection of sets;
(3)

∪
{Vn : n < ω} is an element of B.

In this notation the property Sd(O,O) of a topological space is called
selective strong screenability of the space. If in (2) of the definition of
Sd(A,B) we replace discrete with disjoint we obtain the selection
principle Sc(A,B) that was introduced in [2]. The corresponding selec-
tion principle Sc(O, O) for a topological space is the selective version
of screenability, called selective screenability. Selective screenability was
introduced by Addis and Gresham in [1] under the name property C.

Screenability properties are related to several fundamental topological
notions, including paracompactness, metrizability and extensions of cov-
ering dimension. A family A of sets in a topological space (X, τ) has the
property of being locally finite if there is for each x ∈ X a neighborhood
U of x such that |{A ∈ A : A ∩ U ̸= ∅}| is finite. A topological space
is paracompact if for each given open cover there is a locally finite open
cover refining the given cover. In [13] Michael and, independently, in [14]
Nagami proved:

Theorem 1.1 (Michael, Nagami). A regular space is paracompact if, and
only if, it is strongly screenable.

Theorem 5 of [14] also proves1:

Theorem 1.2 (Nagami). A normal, countably paracompact space is screen-
able if, and only if, it is strongly screenable.

The hypothesis of countable paracompactness in Theorem 1.2 is nec-
essary. To justify this we first comment on the terminology zero dimen-
sional : According to Sierpinski [9] a space is zero-dimensional if each
element has a neighborhood basis consisting of sets that are both open
and closed. A space has covering dimension zero if each finite open
cover has a refinement by disjoint open sets, still covering the space.

1In personal communication Roman Pol and Elzbieta Pol pointed out that Nagami’s
result can be strengthened to show that selective screenability and selective strong
screenability coincide in normal countably paracompact spaces, and thus in metric
spaces.
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A space is ultraparacompact if each open cover has a refinement by dis-
joint open sets still covering the space. Covering dimension zero is also
called strongly zero dimensional.

Theorem 1.3 (Balogh, [7]). There is a strongly zerodimensional T4 space
that is screenable2 but not countably paracompact, and thus not strongly
screenable.

In [6] it was shown that for regular spaces paracompactness is equiva-
lent to a selective version of paracompactness. Although in these spaces
paracompactness is equivalent to strong screenability, (selective) para-
compactness does not imply selective screenability: The Hilbert Cube
H = [0, 1]N is compact and metrizable, but as it is strongly infinite di-
mensional, it is not selectively screenable.

In separable metric spaces selective screenability is related to dimen-
sion theory: With O2 denoting the family of open covers consisting of two
sets each, Sc(O2,O) corresponds to Alexandroff’s notion of weakly infi-
nite dimensional. It was an open problem whether Hurewicz’s notion of
countable dimensionality coincides with Alexandroff’s notion of weak infi-
nite dimensionality until R. Pol gave an example of a compact selectively
screenable metrizable space that is not countable dimensional [17].

In separable metrizable spaces dimension theoretic concepts have been
further clarified by the study of the selective screenability game: Let an
ordinal α > 0 be given. Then Gα

c (A,B) denotes the following game of
length α: In inning γ < α player ONE selects an element Aγ of A,
and TWO then responds with Bγ , a disjoint collection of sets that is
a refinement of Aγ . A play A0, B0, · · · , Aγ , Bγ , · · · γ < α is won by
TWO if

∪
{Bγ : γ < α} ∈ B; otherwise, ONE wins. It was proven in [3]

that a separable metrizable space X is
(1) of Lebesgue covering dimension n if, and only if, n is minimal

such that TWO has a winning strategy in Gn+1
c (O,O);

(2) countable dimensional (in the sense of Hurewicz) if, and only if,
TWO has a winning strategy in Gω

c (O,O).
These results inspired the notion of game dimension, explored in the pa-
pers [4] and [5]. Even though selective screenability and selective strong
screenability are equivalent concepts in normal countably paracompact
spaces, the corresponding games have very different characteristics, the
topic of this paper. In sections 3 and 4 we report findings regarding player
ONE and player TWO, respectively, on the length ω version of the se-
lective strong screenability game. In section 5 we consider other ordinal
lengths for the game.

2Balogh’s space is in fact selectively screenable.
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2. The selective strong screenability game

For ordinal α > 0 define the game Gα
d (A,B) as follows: In each inning

γ < α ONE first selects an Aγ from A, to which TWO responds with a
Bγ which is a discrete family of sets refining the family Aγ . A play

A0, B0, · · · , Aγ , Bγ , · · · γ < α

is won by TWO if
∪
{Bγ : γ < α} ∈ B; otherwise, ONE wins.

Aside from the following easily verified relationships the games Gα
d (A,B)

and Gα
c (A,B) are in fact very different from each other:
• If TWO has a winning strategy in Gα

d (A,B), then TWO has a
winning strategy in Gα

c (A,B).
• If ONE has a winning strategy in Gα

c (A,B), then ONE has a
winning strategy in Gα

d (A,B).
Moreover, certain monotonicity properties hold for this game:

• Assume that A′ ⊇ A and B′ ⊆ B: If ONE has a winning strat-
egy in the game Gα

d (A, B) then ONE has a winning strategy
in the game Gα

d (A′,B′). If TWO has a winning strategy in the
game Gα

d (A′, B′) then TWO has a winning strategy in the game
Gα
d (A,B).

• Let α < β be ordinal numbers. If ONE has a winning strategy in
the game Gβ

d (A, B) then ONE has a winning strategy in the game
Gα
d (A,B). If TWO has a winning strategy in the game Gα

d (A, B)
then TWO has a winning strategy in the game Gβ

d (A,B).
Also the following fact is easy to verify:

Proposition 2.1. Let (X, τ) be a topological space, let Y be a closed
subset of X and let α > 0 be an ordinal. If ONE has a winning strategy
in the game Gα

d (O,O) played on Y , then ONE has a winning strategy
in this game played on X. If TWO has a winning strategy in the game
Gα
d (O,O) played on X, then TWO has a winning strategy in this game

played on Y .

3. Winning strategies for player ONE

The following version of the Banach-Mazur game on a topological space
(X, τ) with specified subspace Y was defined in [16]: There is an inning
per finite ordinal. In the n-th inning ONE chooses a nonempty open
subset On of X and TWO responds with a nonempty open subset Tn of
X. The players must obey the rule that for each n, On ⊇ Tn ⊇ On+1.
ONE wins a play

O0, T0, O1, T1, . . . On, Tn, . . .
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if Y ∩ (
∩
{On : n < ω}) ̸= ∅. Otherwise, TWO wins the play.

In [10], p. 53, the special case of Y = X of this game is denoted MB(X).
We use the notation MB(Y,X) to denote this game in the general case.

Lemma 3.1. If X is a T1-space and U ̸= X is an open subset of X such
that |U | > 1, then there is an open cover U of X such that for each V ∈ U
we have U ̸⊆ V .

Proof. With U and X as given, choose distinct elements x and y in U .
Then as X is T1 the sets X \ {x} and X \ {y} are open. The open cover
U = {X \ {x}, X \ {y}} is as required. �
Lemma 3.2. A space is connected if, and only if, it is not a union of a
discrete collection consisting of more than one nonempty proper subsets.

Proof. Suppose X is a space and that F is a collection of nonempty
proper subsets of X such that F is a discrete family, |F| > 1 and X =∪
F . Then also G = {F : F ∈ F} is a discrete family of subsets of

X that covers X, and |G| > 1. Choose U ∈ G. Then U is nonempty
and closed, and as G is a discrete family, also V =

∪
(G \ {U}) is closed.

But then X = U ∪ V and U and V are disjoint nonempty open sets,
whence X is not connected. Conversely, if X is not connected then a
family {U, V } of disjoint nonempty open sets with union X is a discrete
collection consisting of more than one nonempty set. �

From now on call a connected set nontrivial if it has more than one
element. Recall that a family P of nonempty open subsets of a topological
space is said to be a π-base if there is for each nonempty open subset U
of the space an element V of P such that V ⊆ U .

Theorem 3.3. Let X be a T1 topological space and let Y be a subspace
of X such that

(1) X has a π-base consisting of nontrivial connected sets, and
(2) ONE has a winning strategy in the game MB(Y,X).

Then ONE has a winning strategy in the game Gω
d (O,OY ).

Proof. Let σ be ONE’s winning strategy in the game MB(Y,X). We may
assume that σ calls on ONE to play elements of a fixed π-base consisting
of nontrivial connected open sets. Define a strategy F for ONE of the
game Gω

d (O,O) as follows:
To begin, consider O0 = σ(X), and apply Lemma 3.1 to define F (∅),

ONE’s first move in Gω
d (O,O), to be an open cover for which no element

contains O0 as a subset. If TWO’s response is the discrete open refinement
T0, by Lemma 3.2 the discrete family {T : T ∈ T0} does not cover O0. Let
TWO of the game MB(Y,X) play T0 = O0 \

∪
{T : T ∈ T0} a nonempty

open set.
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Let O1 = σ(T0) be ONE’s response in the game MB(Y,X). ONE’s
move F (T0) in the strong screenability game is an open cover of X for
which no member has O1 as a subset. TWO’s response, T1 is a discrete
open refinement of F (T0). As {T : T ∈ T1} does not cover O1, T1 =
O1 \

∪
{T : T ∈ T1} is a legal move for TWO in the game MB(Y,X).

In the next inning ONE of the game MB(Y,X) responds with O2 =
σ(T0, T1). ONE’s move F (T0, T1) in the strong screenability game is an
open cover of X (as in Lemma 3.1) for which no member has O2 as a
subset. TWO’s response, T2 is a discrete open refinement of F (T0, T1).
By Lemma 3.2 {T : T ∈ T2} cannot cover O2, whence T2 = O2 \

∪
{T :

T ∈ T2 is a legal move for TWO of the game MB(Y,X). Then O3 =
σ(T0, T1, T2} is a legal move for ONE in the Banach-Mazur game, and
so on.

This outlines a definition of a strategy F for ONE in the strong screen-
abilty game. Corresponding to an F play we have a sequence

O0 ⊇ T0 ⊇ O1 ⊇ T1 ⊇ O2 ⊇ T2 ⊇ O3 ⊇ · · ·

of nonempty open sets such that for each n the open set
∪
(T1 ∪ . . .∪ Tn)

is disjoint from On+1. Since σ is a winning strategy for ONE of the game
MB(Y,X), Y ∩ (

∩
n<∞ On) is nonempty. Thus

∪
n<∞ Tn is not a cover of

Y , and TWO looses F -plays of Gω
d (O,OY ). �

Corollary 3.4. If X is a compact locally connected T1-space, then ONE
has a winning strategy in the game Gω

d (O,O).

Examples of compact locally connected spaces abound. A metrizable
compact connected locally connected space is called a Peano space. The
unit interval is an example of a Peano space. By the Hahn-Mazurkiewicz
Theorem a T2 space is a Peano space if, and only if, it is a continuous
image of the closed unit interval.

Observe that if Y is a dense Gδ set in the space X, then ONE has a
winning strategy in MB(X) if, and only if, ONE has a winning strategy
in MB(Y,X).

Corollary 3.5. Let Y be a dense Gδ subspace of the T1-space X such
that

(1) X has a π-base consisting of nontrivial connected sets, and
(2) ONE has a winning strategy in the game on MB(X).

Then ONE has a winning strategy in the game Gω
d (O,OY ) on X.

P, the set of irrational numbers, is a dense Gδ subset of R, the real
line. Corollary 3.5 implies that ONE has a winning strategy in the game
Gω
d (O,OP) on the real line.
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4. Player TWO

Lemma 4.1. For a topological space X the following are equivalent:

(1) X is an ultraparacompact space.
(2) TWO has a winning strategy in the game G1

d(O,O).

With S the Sorgenfrey line, S × S is zero-dimensional and regular,
but not normal, thus not paracompact, and thus by the Michael-Nagami
Theorem, not strongly screenable. Thus, ONE has a winning strategy
in the game Gω

d (O,O) on S × S, while TWO has a winning strategy in
G1
d(O,O) on S. In [18] P. Roy constructed a complete (non-separable)

metric space X of cardinality 2ℵ0 which is zero-dimensional, has Lebesgue
covering dimension 1, and is not ultraparacompact. Roy’s example is a
complete zero-dimensional metric space for which TWO does not have a
winning strategy in G1

d(O,O) and thus not in Gω
d (O,O), as we shall see

in Theorem 4.6.
Zerodimensional Lindelöf spaces are ultraparacompact. Thus,

Corollary 4.2. For Lindelöf space X the following are equivalent:

(1) X is zero-dimensional.
(2) TWO has a winning strategy in G1

d(O,O) on X.

Balogh’s space mentioned in Theorem 1.3 and constructed in [7] is a
union of countably many open sets, each ultraparacompact. Thus TWO
has a winning strategy in Gω

c (O,O). As this space is not strongly screen-
able ONE has a winning strategy in Gα

d (O,O) for each countable ordinal
α.

The existence of winning strategies for TWO in the relative version of
the game seems more delicate. The following fact about extending open
sets from a subspace to a containing space can be found in Theorem 3
on p. 227 of [12]. Observe that the metric spaces in Lemma 4.3 are not
assumed to be separable.

Lemma 4.3. Let X be a metric space and let Y be a subset of X. For
each family {Ui : i ∈ I} of subsets of Y open in the relative topology of
Y there exists a family {Vi : i ∈ I} of sets open in X such that

(1) For each i ∈ I we have Ui = Y ∩ Vi and
(2) For every finite set J ⊆ I, if

∩
j∈J Uj = ∅, then

∩
j∈J V j =∩

j∈J U j, where the closures are computed in X.

Lemma 4.4. Let X be a metric space and let Y be a closed, ultrapara-
compact subspace of X. Then TWO has a winning strategy in the game
G1
d(O,OY ).
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Proof. Let an open cover U of X be given. Since Y is an ultraparacompact
space there is in the relative topology of Y a disjoint family {Ui : i ∈ I} of
open sets that refines U and covers Y . Being disjoint subsets of Y these
relatively open sets are in fact closed in Y , and thus in X as Y is closed
in X. By Lemma 4.3 we may choose for each i an open subset Vi of X
such that Vi ∩ Y = Ui = U i, such that when i ̸= j are elements of I, then
V i ∩ V j = Ui ∩ Uj = ∅, and as each Ui is a subset of an element of the
open cover U of X, also each Vi may be taken to be an open subset of
that same element of U . But then the refinement {Vi : i ∈ I} of U is an
element of OY , and is a discrete family. �

Corollary 4.5. Let X be a metric space and let Y be a subset of a σ-
compact zero-dimensional subset of X. Then TWO has a winning strategy
in Gω

d (O,OY ).

Proof. Let Y ⊆ C ⊆ X be given with C zerodimensional and σ-compact.
Write C =

∪
n<ω Cn where each Cn is compact. By Lemma 4.4 fix for

each n a winning strategy σn of TWO in the game G1
d(O,OCn). Then the

strategy of responding to ONE’s move in inning n using the strategy σn

is winning for TWO in Gω
d (O,OY ). �

The example after Theorem 4.7 shows that game-length ω in Corollary
4.5 is optimal.

Theorem 4.6. Let X be a metrizable space and let Y be a subspace of X.
If TWO has a winning strategy in the game Gω

d (O,OY ) on X, then Y is
a subset of a union of countably many closed, strongly zero-dimensional
subsets of X.

Proof. Let F be a winning strategy for TWO in the game Gω
d (O,OY ).

Let d be a compatible metric for the topology of X, and for each positive
integer n let Bn be the set

{U ⊂ X : U open and diamd(U) <
1

2n
}.

Define C∅ :=
∩
{
∪

F (Bn) : 0< n< ω}. And for each sequence (n1, · · · , nk)

of positive integers, define Cn1,··· ,nk
:=

∩
{
∪

F (Bn1 , · · · ,Bnk
,Bm) : 0 <

m < ω}.
We claim:
(a) Each Cn1,··· ,nk

, as well as C∅, is a closed, strongly zerodimensional
set.

(b) Y ⊆
∪
{Cτ : τ ∈<ω ω}.

Towards proving (a): We give an argument for Cn1,··· ,nk
. The argument

for C∅ is similar. Write C for Cn1,··· ,nk
. For each positive integer m the
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discrete (in X) family Um := {C ∩ U : U ∈ F (Bn1 , · · · ,Bnk
,Bm)} is a

cover of C and is a discrete family of sets clopen in C. It follows that∪
{Um : 0 < m < ω} is a σ-discrete base of C, consisting of sets clopen

in the relative topology of C. By Theorem II.9 in [15], C has covering
dimension 0, that is, C is strongly zero-dimensional.

Towards proving (b), suppose that on the contrary x ∈ Y \ (
∪
{Cτ :

τ ∈<ω ω}). As x is not an element of C∅, choose an n1 such that x is not
in

∪
F (Bn1). Then as x is not an element of Cn1 , choose an n2 such that

x is not in
∪
F (Bn1

,Bn2
), and so on. In this way we obtain an F -play

of the game Gω
d (O,OY ) in which TWO lost since TWO did not cover

x ∈ Y . This contradicts the hypothesis that F is a winning strategy for
TWO. �

Note that the argument in the proof of Theorem 4.6 also gives:

Theorem 4.7. Let X be a metric space and let Y be a subspace of X.
If TWO has a winning strategy in G1

d(O,OY ), then Y is a subset of a
closed, strongly zerodimensional subset of X.

Proof. By the argument in the proof of Theorem 4.6, Y ⊆ C∅. �
Thus, for example, TWO has a winning strategy in the game Gω

d (O,OQ),
but does not have a winning strategy in the game G1

d(O,OQ).

Corollary 4.8. If X is a metrizable space, then the following are equiv-
alent:

(1) TWO has a winning strategy in Gω
d (O,O).

(2) X is ultraparacompact.
(3) TWO has a winning strategy in G1

d(O,O).

Proof. (1) ⇒ (2): By Theorem 4.6, X is a union of countably many closed
sets, each strongly zerodimensional. By the countable sum theorem - see
[15] Theorem II.2 A) - X is strongly zerodimensional. As X is metrizable
the Katetov-Morita Theorem - see Theorem II.7 of [15] - implies that
X has covering dimension zero. Thus, by Proposition 3.2.2 of [9], X is
ultraparacompact.

(2) ⇒ (3): This implication is Lemma 4.4 since X is metrizable.

(3) ⇒ (1): This is left to the reader. �

Corollary 4.9. Let Y be a subspace of the real line R. Then the following
are equivalent:

(1) TWO has a winning strategy in Gω
d (O,OY ).

(2) Y is a first category set of real numbers.
(3) TWO has a winning strategy in the game MB(Y,R).
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Proof. (1)⇒(2): Observe that a closed, zerodimensional set of real num-
bers is nowhere dense. Apply Theorem 4.6.

(2)⇒(1): As Y is a first category set of real numbers it is a subset of
a union, say A, of countably many closed, nowhere dense sets. R is
σ-compact, whence A is a union of countably many compact zerodimen-
sional subsets of R. Since A has empty interior it is zero-dimensional.
Thus, Y is a subset of a σ-compact zero-dimensional subset of R. Apply
Corollary 4.5.

(2)⇔(3): This is a direct application of Theorem 1 of [16]. �

In [11] Kulesza constructs a complete, zerodimensional metric space K
that is not ultraparacompact. Indeed, K has covering dimension 1. On
p. 111 of [11] K is represented as K = P1∪

∪
m∈N Pm

2 where the subspace
P1 is homeomorphic to D(ℵ1)

ω and each Pm
2 is, by [11] Lemmas 3.3 and

3.4 and the remarks on [11], p. 113, a strongly zerodimensional closed
(and nowhere dense) subset of the space K.

Corollary 4.10. On the space K TWO does not have a winning strategy
in Gω

d (O,OP1).

Proof. Suppose that, on the contrary, TWO has a winning strategy. By
Theorem 4.6 P1 is contained in a union of countably many closed, strongly
zerodimensional subsets of K. But also each of the subspaces Pm

2 is a
closed, strongly zerodimensional subset of K. Thus, K is the union of
countable many closed, strongly zerodimensional subsets. By Theorem
4.1.9 in [9] K has covering dimension 0, contradicting the fact that K has
covering dimension larger than 0. �

5. Longer games

For any space (X, τ) there is an ordinal α ≤ |X| such that TWO has
a winning strategy in the game Gα

d (O,O) on X. Thus, we may define

tpd(X, τ) = min{α > 0 : TWO has a winning strategy in Gα
d (O,O)}.

Let α be an infinite ordinal with Cantor normal form α = ωβ1 · n1 +
· · · + ωβm · nm + nm+1 where β1 > · · · > βm > 0 and ni < ω for each
i ≤ n+ 1. Define α− as follows:

α− =


α if nm+1 = 0 and βm > 1
ωβ1 · n1 + · · ·+ ωβm · (nm − 1) + 1 if nm+1 = 0 and βm = 1
ωβ1 · n1 + · · ·+ ωβm · nm + 1 otherwise.
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Corollary 5.1. Let X be a metrizable space and let α be an infinite
ordinal. If TWO has a winning strategy in Gα

d (O,O) on X then TWO
has a winning strategy in Gα−

d (O,O) on X.

Proof. For consider a winning strategy σ of TWO. We need only consider
ordinals α for which α > α−.

Case 1: nm+1 = 0. We may assume that βm = 1. After ωβ1 · n1 + · · · +
ωβm · (nm − 1) innings TWO has covered a part, U , of the space X, and
a closed set C = X \ U remains to be covered. Using σ TWO has a
winning strategy in the game Gω

d (O,O) on C. Now Theorem 4.7 implies
that the closed set C is strongly zero-dimensional. Since X is metrizable,
C is ultraparacompact. Thus, TWO has a winning strategy that wins
Gα−

d (O,O) on X.

Case 2: nm+1 > 0. We may assume that nm+1 > 1. After ωβ1 · n1 +

· · · + ωβm · nm innings TWO has covered a part, U , of the space X,
and a closed set C = X \ U remains to be covered. Using σ TWO
has a winning strategy in the game Gnm+1

d (O,O) on C. Now Theorem
4.7 implies that the closed set C is strongly zero-dimensional. As X is
metrizable, C is ultraparacompact. Thus, TWO has a winning strategy
that wins Gα−

d (O,O) on X. �

Since the unit interval is a Peano space, Corollary 3.4 implies that ONE
has a winning strategy in the game Gω

d (O,O). We show that TWO has
a winning strategy in Gω+1

d (O,O) on the unit interval. The key to the
argument is Lebesgue’s covering lemma:

Theorem 5.2 (Lebesgue). If (X, d) is a compact metric space then there
is for each open cover U of X a positive real number δ such that for each
set Y ⊂ X for which the d-diameter is less than δ there is a set U ∈ U
such that Y ⊆ U .

Lemma 5.3. Let [a, b] be a closed interval of positive length L. Let U be
a cover of [a, b] by sets open in [a, b]. Then there is a finite discrete open
refinement V of U such that

∪
V ⊂ [a, b] and [a, b] \

∪
V is a union of

finitely many disjoint closed intervals whose lengths add up to at most L
2 .

Proof. Using the Lebesgue covering lemma and the compactness of [a, b],
choose a positive real number δ as in Theorem 5.2. Then choose ϵ < δ so
that M := L

ϵ is an even integer. Choosing a0 = a and ai+1 = ai + ϵ for
i < M we find that each of the intervals [ai, ai+1], 0 ≤ i < M is a subset
of an element of U . Put V = {(ai, ai+1) : i < M odd}. Then V is as
required. �
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Theorem 5.4. TWO has a winning strategy in Gω+1
d (O,O) on the closed

unit interval.

Proof. Player TWO’s strategy in Gω+1
d (O,O) is as follows: In the first

inning player TWO applies Lemma 5.3 to the open cover O1 of [0, 1]
played by ONE to obtain the open refinement V1 for which [0, 1]\

∪
V1 is

a union of finitely many closed disjoint intervals, I11 , · · · , I1n1
with lengths

adding up to at most 1
2 .

When ONE plays the open cover O2 next, TWO applies Lemma 5.3
to each I1j to find a discrete open refinement V2,j of O2 with all elements
subsets of I1j , and with I1j \

∪
V2,j a union of finitely many disjoint closed

subintervals of I1j of positive length with lengths adding up to at most
length(I1

j )

2 , and then TWO responds with V2 = ∪j≤n1V2,j . It follows that
[0, 1] \ (

∪
V1 ∪

∪
V2) is a union of finitely many closed, disjoint, intervals

of positive length I21 , · · · , I2n2
with length adding up to at most 1

4 .
By applying this strategy to the next open covers chosen by ONE,

we find that after countably many moves the set [0, 1] \
∪

∪∞
j=1Vj is com-

pact and zero dimensional. Then by Lemma 4.4 TWO wins in one more
inning. �

6. Remarks and Questions

Also for relative versions of the selective strong screenability game one
could define the corresponding length ordinals: For a subspace Y of a
topological space (X, τ), define
tpd(X,Y, τ) = min{α ∈ ON : TWO has a winning strategy in the game

Gα
d (O,OY )}.

Thus, tpd(X, τ) = tpd(X,X, τ).

Problem 1. Is there a topological space X and a subspace Y for which
tpd(X,Y, τ) = 2?

Problem 2. Is there a topological space X for which tpd(X, τ) = 2?

There are complete metric spaces that are zero-dimensional but not
ultraparacompact. See for example [11] and [18]. In these spaces TWO
does not have a winning strategy in the game G1

d(O,O). It is not clear
whether more can be proven:

Problem 3. If X is a complete metric space that is not ultraparacompact,
does ONE have a winning strategy in the game Gω

d (O,O) on X?

In connection with Theorem 3.3, it would be interesting to know:

Problem 4. Let Y be a set of real numbers. Are the following statements
equivalent?
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(1) ONE has a winning strategy in the game MB(Y,R).
(2) ONE has a winning strategy in the game Gω

d (O,OY )

Our results on the closed unit interval and heuristic arguments suggest:

Conjecture 1. For each positive integer n ONE has a winning strategy in
Gω·n
d (O,O), and TWO has a winning strategy in Gω·n+1

d (O,O) on [0, 1]n.

Similarly to the ordinal tpd(X, τ) for a space (X, τ) one can define the
ordinal tpc(X, τ) to be the least ordinal α > 0 such that TWO has a
winning strategy in the game Gα

c (O,O). This ordinal was introduced and
studied in [3, 4, 5] as an alternative definition for covering dimension. The
inequality tpc(X, τ) ≤ tpd(X, τ) holds for all topological spaces.

Now let C denote a class of topological spaces. If there is an ordinal
α such that for each (X, τ) ∈ C we have tpc(X, τ) ≤ α, then we define
tpc(C) to be the supremum of the ordinals tpc(X, τ) where (X, τ) ranges
over C. The ordinal tpd(C) is defined similarly, when it exists. We have
that tpc(C) ≤ tpd(C)

Let S be the class of separable metrizable spaces. Since every separable
metric space is a union of at most ℵ1 zerodimensional subsets, for each
separable metrizable space (X, τ), tpc(X, τ) ≤ ω1 and thus, tpc(S) ≤ ω1.
The Hilbert cube H is strongly infinite dimensional, and thus tpc(H) = ω1,
meaning that for separable metrizable spaces the upper bound tpc(S) =
ω1 is sharp, and achieved.

Towards bounds on tpd(S) we recall that cov(M) is the minimal cardi-
nality of a family of first category subsets of the closed unit interval whose
union is equal to the closed unit interval. One can show that cov(M) is
also the least ordinal α such that each separable metrizable space is the
union of at most α closed, zerodimensional subsets.

Theorem 6.1. For the class S of separable metrizable spaces, ω1 ≤
tpd(S) ≤ cov(M).

Proof. We have ω1 = tpc(S) ≤ tpd(S). A zerodimensional subset Y of
separable metrizable space (X, τ) is ultraparacompact; if it is also closed,
then TWO has a winning strategy in the game G1

d(O,OY ). Thus, if
(X, τ) can be written as a union of κ closed, zerodimensional subsets,
then tpd(X, τ) ≤ κ. �

We suspect that the upper bound of cov(M) in Theorem 6.1 can be
significantly improved. Assuming the Continuum Hypothesis, tpd(S) =
ω1. And as we have shown in Theorem 5.4, TWO has a winning strategy
in Gω+1

d (O,O) on the closed unit interval.

Problem 5. Is it true that tpd(X, τ) ≤ ω1 for each separable metrizable
space (X, τ)?
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