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CARDINALITY OF REGULAR SPACES ADMITTING
ONLY CONSTANT CONTINUOUS FUNCTIONS

KRZYSZTOF CHRIS CIESIELSKI AND JERZY WOJCIECHOWSKI

Abstract. We show that an infinite cardinal number κ is the car-
dinality of some connected regular topological space X if and only
if κ ≥ ω1; such X can be separable if and only if ω1 ≤ κ ≤ 2c; X
can be both first countable and separable if and only if ω1 ≤ κ ≤ c;
and X can be first countable if and only if κ ≥ ω1. The main tools
used in our investigation come from the analysis of several popu-
lar constructions of a regular topological space which is not com-
pletely regular. In particular, this work contains a concise and self-
contained presentation of the examples of Mysior [8], Thomas [11],
and those that can be constructed by the, so called, Jones’ coun-
terexample machine [6] (compare [10, pp. 27-28]). Our exposition
is based on extracting a common core of these constructions.

We describe one of the simplest examples of a regular space
which is not completely regular. It is of the first uncountable car-
dinality ω1. We show that this example can be modified, by a
variation of a construction of Herrlich [5], to a regular space Y
of the same cardinality such that any continuous function from Y
into any Hausdorff space Z with a countable pseudo-character is
constant. Since this includes the case of Z = [0, 1], Y is connected
and not completely regular. Such space Y can be separable. More-
over, if we are interested only in Z = R, then Y can be also first
countable.
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1. Introduction

Throughout this paper all considered topological spaces will have more
than one element.

Let Y be a connected topological space. What is the smallest possible
cardinality of Y ? The answer clearly depends on the additional properties
that the space Y is to have. If we assume only that Y is Hausdorff, the
answer is ω: a countable Hausdorff connected space was constructed in
1925 by Urysohn [12] and in 1953 by Bing [1]. (Such a space clearly cannot
be finite, as every finite Hausdorff space is discrete. In Bing’s example the
space is also second countable.) On the other hand, a completely regular
connected space must have cardinality greater than or equal to continuum
c, as it can be mapped onto the closed interval [0, 1]. Niemytzki plane is
an example of such a space which is not normal.

So, what happens if we assume that a connected space Y is regular?
Then Y can no longer be countable, since a countable regular space is
normal, so completely regular. (See e.g. [7, exercise 2, p. 212].) The goal
of this paper is to show that this is the only restriction on the cardinality
of Y , that is, that there exist regular connected spaces of any uncountable
cardinality. In particular, under the negation of the Continuum Hypoth-
esis, Y can have cardinality strictly less than continuum. The spaces Y
that we construct have the property that there are no non-constant con-
tinuous functions from Y to R. In particular, any such Y is connected
and not completely regular. Actually, our primary example of Y has a
stronger property that any continuous function from Y into any Hausdorff
space Z with a countable pseudo-character (i.e., with every singleton be-
ing a Gδ-set) is constant. Such a Y can be separable. If we are interested
only in Z = R, then Y can be also first countable.

Our construction is based on the following theorem, proved in Sec-
tion 3.1, which is a variation of a result of Herrlich [5]. (See also Gartner
[4].) However, Herrlich’s transformation (of Y into Y ∗), unlike ours, pre-
serves neither first countability nor separability.

Theorem 1. For any infinite T1 topological space Y with two fixed dis-
tinct points −∞,∞ ∈ Y there exists a topological space Y ∗ of the same
cardinality such that

(i) if Y is first countable, Hausdorff, or regular, then so is Y ∗;
(ii) if Y \ {∞} is separable, then so is Y ∗;
(iii) if Z is a topological space such that

(HZ) :f(−∞)=f(∞) for every continuous function f from Y into Z,
then the constant functions are the only continuous functions from
Y ∗ into Z.
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Theorem 1 reduces our main task to construction of topological spaces
Y of appropriate cardinalities that satisfy the property (HZ) either for
every Hausdorff space Z with a countable pseudo-character or, for the first
countable spaces Y , just (HR). Notice that any space Y satisfying (HR)
is not completely Hausdorff, as points −∞ and∞ cannot be separated by
a continuous function from Y into [0, 1].

It is worth noticing that for every topological space X the condition
(HR) implies (HRκ) for every cardinal κ, and so, it also implies (HY )
for every completely regular space Y (as any such Y can be embedded
into some Rκ). However, as we will show in Section 2.6, it is possible
that (HR) holds, while (HY ) fails for some Hausdorff space of countable
pseudo-character.

2. Examples of regular not completely regular spaces

2.1. Example based on Mysior’s construction. We start with the
following modification of Mysior’s example from [8]. Notice that our ver-
sion requires no algebraic structure on the space, while such structure is
used in [8].

Let A ⊆ R be such that the intersection Ak = A∩ [k, k+1) is uncount-
able for every integer k ∈ Z. Let ∆ = {〈a, a〉 : a ∈ A} be the diagonal of
X = A2 and define the following sets, displayed in Figure 1:

Uk = {〈a, b〉 ∈ X : a > k} for k ∈ Z,
Γa = {〈a+ ε, a〉 ∈ X : ε ∈ [0, 3]} ∪ {〈a, a− ε〉 ∈ X : ε ∈ [0, 3]} for a ∈ A.

A

A

a

a− 3

a a+ 3

Γa

∆

k

Uk

Figure 1. The sets A2, ∆, Γa (horizontal and vertical
segments), and Uk (shaded).

Consider a topology T on X = A2 generated by a basis consisting of
all singletons {x} with x ∈ X r ∆ and all sets Γa r F , where a ∈ A and
F is finite. Clearly X is Hausdorff and zero-dimensional, so, completely
regular. Let E = {Uk : k ∈ Z}.
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Definition 2. Let XE = X ∪ {−∞,∞} be endowed with a topology
generated by a basis T ∪ BE∞ ∪ BE−∞, where

BE∞ = {{∞} ∪ Uk : k ∈ Z} , BE−∞ =
{
{−∞} ∪ Ũk : k ∈ Z

}
,

and Ũk is defined as
⋃
E r clX (Uk).1

The space XE is the goal of this section: it has the same cardinality as
A and

Theorem 3. XE is a regular space satisfying the following property for
every Hausdorff space Z with a countable pseudo-character:
(HZ) f(−∞) = f(∞) for every continuous function f from XE into Z.

In particular, XE is connected and not completely regular.

The application of Theorem 1 to the space Y = XE from Theorem 3
produces a regular space Y ∗ of cardinality |A| (i.e., of arbitrary cardinality
between ω1 and c) that satisfies (HZ) for every Hausdorff space Z with
a countable pseudo-character. Latter, in Theorem 7, we show, that such
space Y ∗ can actually have an arbitrary uncountable cardinality.

In what follows we will be mainly interested in XE of cardinality ω1,
that is, when |A| = ω1. But it should be noted that for A = R the space
XE constitutes, after some natural identifications, the example of Mysior
from [8]. Thus, the argument for Theorem 3 closely resembles one used
in [8]. It is based on the following result.

Proposition 4. For every Hausdorff space Z with a countable pseudo-
character
(C∗Z) every continuous f : X → Z is constant on ∆rS for some count-

able S ⊂ ∆.

Although it is possible to compress the proof of Proposition 4 to a single
paragraph, in a way similar to that used in [8], we believe it deserves a
bit more scrutiny and we present it in detail in Section 3.2.

Proof of Theorem 3. It is easy to see that the regularity of X implies
the regularity XE . (Compare the property (E) from Section 2.2.) The
argument is completed by noticing that (C∗Z) implies (HZ): if f : XE → Z
is continuous, then application of (C∗Z) to the restriction of f to X gives
f [∆ r S] = {z} for some z ∈ Z and this ensures that f(−∞) = z =
f(∞). �

A slightly different, more general and detailed, argument for Theorem 3
is presented in Section 2.2.

1Of course,
⋃
E = X for X = A2. But in Theorem 5 we consider XE assuming

only
⋃
E ⊆ X.
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2.2. The core properties needed to prove Theorem 3. The goal of
this section is to extract the properties of the example from Section 2.1
that are sufficient to prove Theorem 3. The properties we extract are satis-
fied also by the examples of Thomas [11] and those that can be constructed
by the Jones’ counterexample machine [6]. We will use the flexibility of
the obtained results to construct several other examples, as indicated in
the abstract.

In what follows, for a fixed set X and an uncountable set D ⊆ X, we
use the symbol ID to denote the σ-ideal consisting of all T ⊆ X such that
T ∩∆ is at most countable. If I = I∆, then the family E from Section 2.1
clearly satisfies:

(J) Uk /∈ I and Ũk =
⋃
E r clX(Uk) /∈ I for every k ∈ Z;

(E) E is a ⊂-decreasing family of sets open in X such that:
⋂
E = ∅,⋃

E is closed in X, and for every k ∈ Z there exist k′, k′′ ∈ Z such
that clX(Uk′) ⊆ Uk and clX(Uk) ⊆ Uk′′ .

More specifically, since the segments forming sets Γa have length 3, we
can take k′ = k + 3 and k′′ = k − 3. Moreover, for every Hausdorff space
Z with a countable pseudo-character, E satisfies also:

(CZ) for every continuous f : X → Z, if z ∈ Z is such that f−1(W )
contains some Uk ∈ E for every openW 3 z, thenXrf−1(W ) ∈ I
for every such W .

Indeed, let f and z be as in (CZ). By (C∗Z), which holds by Proposition 4,
there exists a countable S ⊂ ∆ such that f [∆ r S] = {z′} for some
z′ ∈ Z. We must have z = z′, since otherwise the assumption on z fails
for W = Z \ {z′}, as then f−1(W ) ⊂ X r (∆ r S) ∈ I∆ = I so f−1(W )
cannot contain any Uk because, by (E), Uk /∈ I. Thus, for every open
W 3 z, we have X r f−1(W ) ⊂ X r (∆ r S) ∈ I∆ = I, as needed.

In the rest of this section we assume that the space X, the ideal I of
subsets of X, and the family E = {Uk ⊂ X : k ∈ Z} are arbitrary. In such
setting, we say that

• E is a Z-entanglement (for X w.r.t. I) provided (E), (J), and
(CZ) hold;

• E is a strong entanglement (for X w.r.t. I) provided it is a Z-
entanglement (for X w.r.t. I) for every Hausdorff space Z of a
countable pseudo-character.

Notice that the family E from Section 2.1 is a strong entanglement. In
particular, Theorem 3 is a consequence of the next theorem.

Theorem 5. Let X be a topological space with a family E satisfying (E)
and let XE be from Definition 2. If X has any of the following properties:
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Hausdorff property, regularity, first countability, separa-
bility,

then so does XE . Also, for any Hausdorff space Z, if E is a Z-entangle-
ment, then the property (HZ) holds.

Proof. The preservation of separability is obvious, while the preservation
of first countability is insured by the fact that the families BE∞ and BE−∞
are local bases in XE for ∞ and −∞, respectively. The preservation of
Hausdorff property and regularity follows easily from (E). For example,
regularity of XE at∞ follows from the fact that any set {∞}∪Uk contains
clXE ({∞} ∪ Uk′) for some k′ ∈ Z and at −∞ from the fact that any set
{−∞} ∪ Ũk = {∞} ∪

⋃
E r clX (Uk) contains clXE

(
{∞} ∪ Ũk′′

)
for a

k′′ ∈ Z for which cl(Uk) ⊆ Uk′′ .
To see that (HZ) holds, fix a continuous f : XE → Z and, for a contra-

diction, assume that f(−∞) 6= f(∞). Since Z is Hausdorff, there exist
disjoint open sets W+,W− ⊆ Z with f(∞) ∈W+ and f(−∞) ∈W−.

Let z = f(∞). Notice that for every open W containing z the set
f−1(W ) contains an element of BE∞, so (f � X)−1(W ) = X ∩ f−1(W )
contain some Uk ∈ E . In particular, by (CZ) applied to f � X and z,
X r f−1(W+) ∈ I. So, X ∩ f−1(W−) ∈ I, as X ∩ f−1(W−) is a subset of
Xrf−1(W+). However, the set f−1(W−) is open in XE and contains −∞
implying that

⋃
E r clX(Uk) = Ũk ⊆ f−1(W−) for some k ∈ Z. Thus,⋃

E r clX(Uk) belongs to I, contradicting (J). �

The examples of regular spaces with strong entanglements can be
traced to the papers of Mysior [8] and Thomas [11]. More specifically,
Mysior defines a regular zero-dimensional topology on the upper half-
plane X =

{
〈x, y〉 ∈ R2 : y ≥ 0

}
. If

(1) Uk = {〈x, y〉 ∈ X : x > k} for each k ∈ Z,
then E = {Uk : k ∈ Z} is a strong entanglement for X with respect to
IR×{0}. Analogously, Thomas [11] defines a regular zero-dimensional
topology on the subset X = S1∪S2∪S3 of the upper half-plane. For this
topology the family E = {X ∩ Uk : k ∈ Z}, with sets Uk defined by (1), is
a strong entanglement for X with respect to IS1

.

2.3. Strong entanglements of arbitrary cardinalities. The cardinal-
ity of an entanglement can be increased arbitrary by using the following
fact, which is easy to check.

Fact 6. Let X be a topological space with a Z-entanglement E w.r.t.
some ideal I and let X̄ be the direct sum of X and some other topological
space T . Then E is a Z-entanglement for X̄ w.r.t. the ideal I ′ = {S ⊆
X̄ : S ∩X ∈ I}.



REGULAR CONNECTED SPACE OF SIZE ω1 319

The goal of this section is to prove the following theorem.

Theorem 7. The following conditions are equivalent.
(i) κ is an uncountable cardinal.
(ii) There exists a regular space X̄ with a strong entanglement such

that |X̄| = κ.
(iii) There exists a regular space Y ∗ of cardinality κ such that any

continuous function from Y ∗ into any Hausdorff space Z with a
countable pseudo-character is constant.

(iv) There exists a regular not completely regular space Y ∗ of cardi-
nality κ.

(v) There exists a regular connected space Y ∗ of cardinality κ.

Proof. (i)⇒(ii): Fix an uncountable cardinal κ. Let X be a regular space
of cardinality ω1 constructed in Section 2.1. So, X has a strong entangle-
ment. Let X̄ be the direct sum of X and a discrete space of cardinality
κ. Then X̄ is regular, has cardinality κ, and, by Fact 6, has a strong
entanglement, giving us (ii).

(ii)⇒(iii): Let E be a strong entanglement for X̄ from (ii). Then, by
Theorem 5, Y = X̄E satisfies (iii).

The implications (iii)⇒(iv) and (iii)⇒(v) are obvious, since Z = [0, 1]
is a Hausdorff space with a countable pseudo-character.

The implications (iv)⇒(i) and (v)⇒(i) follow from the fact, that any
countable regular space is completely regular and disconnected. �

2.4. Separable spaces with strong entanglements. The goal of this
section is to prove the following theorem.

Theorem 8. The following conditions are equivalent.
(i) κ is an uncountable cardinal with κ ≤ 2c.
(ii) There exists a separable regular space X̄ with a strong entangle-

ment such that |X̄| = κ.
(iii) There exists a separable regular space Y ∗ of cardinality κ such

that any continuous function from Y ∗ into any Hausdorff space
Z with a countable pseudo-character is constant.

(iv) There exists a separable, regular, and not completely regular space
Y ∗ of cardinality κ.

(v) There exists a separable, regular, and connected space Y ∗ of car-
dinality κ.

To prove the theorem we will need the following lemma.

Lemma 9. There exists a separable regular space X̂ with a strong entan-
glement such that |X̂| = ω1.
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Proof. Let X be a zero-dimensional Hausdorff space of cardinality ω1

that contains a strong entanglement E = {Uk : k ∈ Z} w.r.t. I such that
X =

⋃
E . For example, X constructed in Section 2.1 has such property.

Let {Dk : k ∈ Z} be a family of pairwise disjoint countable sets with
each Dk disjoint with X. For each k ∈ Z, let {Dk,x : x ∈ Uk r Uk+1}
be an almost disjoint family of infinite subsets of Dk, that is, such that
any two distinct sets from the family have a finite intersection. Consider
X̂ = X ∪

⋃
k∈ZDk with a topology generated by a basis

⋃
x∈X̂ Bx, where

Bx is a singleton {{x}} for each x ∈
⋃
k∈ZDk, while, for each k ∈ Z and

x ∈ UkrUk+1, the family Bx consists of all sets of the form V ∪Dk,xrF ,
where V is a neighborhood of x in X and F is finite. Clearly, X̂ is
a zero-dimensional Hausdorff space of cardinality ω1. It is separable,
since

⋃
k∈ZDk is dense in X̂. Moreover, it is not difficult to check that

E ′ = {Uk ∪Dk : k ∈ Z} a strong entanglement for X̂ with respect to the
same ideal I. �

Proof of Theorem 8. (i)⇒(ii): Fix an uncountable cardinal κ ≤ 2c and
notice that there exists a regular separable space T of cardinality κ. In-
deed, the Hewitt-Marczewski-Pondiczery Theorem (see Engelking [3]) im-
plies that if Y is separable, then Y c is also separable. In particular, the
Cantor cube 2c has a countable dense subset D. Then a subspace T of 2c

containing D and of cardinality κ is as required.
Now, let X̂ be as in Lemma 9 and let X̄ be the direct sum of X̂ and

T . Then X̄ is a separable regular space with |X̄| = κ, and, by Fact 6, X̄
has a strong entanglement.

(ii)⇒(iii) is ensured by Theorem 5, while (iii)⇒(iv) and (iii)⇒(v) are
obvious.

(iv)⇒(i) and (v)⇒(i): In both cases the uncountability of κ = |Y ∗|
follows from Theorem 7. The inequality κ ≤ 2c follows the fact that
a separable Hausdorff space cannot have cardinality larger than 2c, see
Engelking [3]. �

2.5. R-entanglements from Jones’ machine. In [6] (compare also
Rudin [10, pp. 27-28]) Jones presented a general construction that trans-
forms a regular topological space that is not normal into a regular space
that is not completely regular. We show here that this construction can be
modified slightly to give a space with an R-entanglement. This modified
construction possess all the required properties of the original construc-
tion.

Let Z be a topological space that is not normal and let A and B be
fixed disjoint closed sets in Z that cannot be separated by open sets. Note
that
the family JA of subsets of A that can be separated from B by open sets
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is a proper ideal on A. Indeed, ∅ ∈ JA, A /∈ JA, and JA is closed under
taking subsets. Moreover, if S0, S1 ∈ JA and for each i = 1, 2 the sets
Ui ⊇ Si and Vi ⊇ B are open and disjoint, then U0 ∪ U1 and V0 ∩ V1

constitute a separation of S0 ∪ S1 and B, implying that S0 ∪ S1 ∈ JA.
Similarly, the family JB of subsets of B that can be separated from A by
open sets is a proper ideal on B. It follows that

J = {S ⊆ Z : S ∩A ∈ JA and S ∩B ∈ JB}
is an ideal on Z. Given D,E ⊆ Z, we say that D is J -almost contained
in E provided that D r E ∈ J .

Note that, for every open subset W ⊆ Z, if A rW ∈ JA, then B r
cl (W ) ∈ JB . Indeed, if U, V are disjoint open sets with ArW ⊆ U and
B ⊆ V , then U ∪W and V r cl (W ) are disjoint open sets containing A
and B r cl (W ), respectively. Thus,

(∗) For every open W ⊆ Z, if A is J -almost contained in W , then
B is J -almost contained in cl(W ). Similarly, if B is J -almost
contained in W , then A is J -almost contained in cl(W ).

A−5 = A−4A−3 = A−2 A−1 = A0 A1 = A2 A3 = A4

B−4 = B−3B−2 = B−1 B0 = B1 B2 = B3 B4 = B5

U1

Z−5 Z−3

Z0 Z2 Z4

Figure 2. The space X and the set U1 encompassed by
a dashed line.

Now, following Jones’ construction, let X be the quotient space of Z ×Z
(the topology on Z is discrete), where for every k ∈ Z, a ∈ A, and b ∈ B
we identify 〈a, 2k − 1〉 with 〈a, 2k〉 and 〈b, 2k〉 with 〈b, 2k + 1〉. If k ∈ Z,
then let

Yk = {[〈z, k〉] ∈ X : z ∈ Y }
whenever Y ⊆ Z, and let Uk ⊆ X be defined by

Uk =

 ⋃
i≥2k

Zi

rA2k,

see Figure 2.
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For each k ∈ Z we have the ideal Jk = {Jk : J ∈ J } on Zk. Let I be
the ideal of subsets of X defined by

I = {S ⊆ X : S ∩ Zk ∈ Jk for every k ∈ Z} .

It follows from (∗) that
(∗∗) For every open W ⊆ X and k ∈ Z, if Ak is I-almost contained in

W , then Bk is I-almost contained in cl (W ) and if Bk is I-almost
contained in W , then Ak is I-almost contained in cl (W ).

Theorem 10. If Z is regular, then so is X. Moreover, E =
{
Uk : k ∈ Z

}
is an R-entanglement in X w.r.t. I.

Proof. The regularity of X is easy to see. The property (E) is satisfied,
since

⋂
k∈Z U

k = ∅,
⋃
k∈Z U

k = X, and

cl
(
Uk+1

)
⊆ Uk+1 ∪A2(k+1) ⊆ Uk and cl

(
Uk
)
⊆ Uk ∪A2k ⊆ Uk−1

for every k ∈ Z. Since Z2k+1 ⊆ Uk and Z2k−2 ⊆ X r cl
(
Uk
)
for every

k ∈ Z, the property (J) holds.
It remains to verify that (CR) holds. Let f : X → R be continuous

and let y ∈ R be such that f−1(W ) contains some Uk ∈ E for every open
W 3 y. Let W be any open neighborhood of y. We want to show that
Xrf−1(W ) ∈ I, that is, that both Ak and Bk are I-almost contained in
f−1(W ) for each k ∈ Z. Let W0,W1, . . . be an infinite sequence of open
subsets of W such that

y ∈W0 ⊆ cl(W0) ⊆W1 ⊆ cl (W1) ⊆ · · · .

Thus
H0 ⊆ cl(H0) ⊆ H1 ⊆ cl(H1) ⊆ · · · ,

where Hi = f−1(Wi) for each i ∈ N. So, there exists a t ∈ Z such that
U t ⊆ H0. Then Ak, Bk ⊆ H0 for every k ≥ 2t+ 1. In particular, Ak and
Bk are both I-almost contained in H0 for each k ≥ 2t + 1. Assume now
that s ∈ Z and As and Bs are both I-almost contained in H0. If s is
even, then As−1 = As so it follows from (∗∗) that both As−1 and Bs−1

are I-almost contained in H1. If s is odd, then Bs−1 = Bs and again (∗∗)
implies that both As−1 and Bs−1 are I-almost contained in H1. Using
induction, we conclude that Ak and Bk are I-almost contained in f−1(W )
for all k ∈ Z. �

2.6. Separable and first countable spaces with R-entanglements.
First notice that

Fact 11. If X is Hausdorff and first countable, then X cannot have a
strong entanglement.
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Proof. Indeed, if such space X had a strong entanglement E , then the
associated space XE would have satisfied (HZ) for any Hausdorff space Z
of countable pseudo-character, including Z = XE . However, the identity
function contradicts (HXE ). �

Fact 11 shows that we cannot hope for strong entanglements in first
countable Hausdorff spaces. Thus, we will restrict our attention in this
section to R-entanglements. For the spaces that are both first countable
and separable we have:

Theorem 12. The following conditions are equivalent.
(i) κ is an uncountable cardinal with κ ≤ c.
(ii) There exists a first countable, separable, and regular space X̄ with

an R-entanglement such that |X̄| = κ.
(iii) There exists a first countable, separable, and regular space Y ∗ of

cardinality κ such that any continuous function from Y ∗ into R
is constant.

(iv) There exists a first countable, separable, regular, and not com-
pletely regular space Y ∗ of cardinality κ.

(v) There exists a first countable, separable, regular, and connected
space Y ∗ of cardinality κ.

Proof. (i)⇒(ii): Fix an uncountable cardinal κ ≤ c. First notice that
there exists a first countable, separable, and regular space X with an
R-entanglement such that |X| = ω1. Indeed, there exists a non-normal,
separable, and first countable topological space Z of cardinality ω1, see
for example [9, pp. 466] or [2]. Applying the construction described in
Section 2.5 to such space Z, we obtain the desired space X.

Let T be a separable subspace of the Sorgenfrey plane (see e.g. [7])
of cardinality κ and notice that it is first countable. Let X̄ be the direct
sum of X and T . Then X̄ is first countable, separable, and regular with
|X̄| = κ. In addition, by Fact 6, X̄ has an R-entanglement.

(ii)⇒(iii) is ensured by Theorem 5, while (iii)⇒(iv) and (iii)⇒(v) are
obvious.

(iv)⇒(i) and (v)⇒(i): In both cases the uncountability of κ = |Y ∗|
follows from Theorem 7. The inequality κ ≤ c is justified by Hajnal-
Juhász cardinal inequality |X| ≤ 2c(X)χ(X) satisfied by any Hausdorff
space (see e.g. [3, problem 3.12.10]), since this result implies that any
Hausdorff, separable, and first countable space has cardinality at most
2ω = c (as c(X) ≤ d(X) and, in our case, d(X) = χ(X) = ω). �

For the spaces that are just first countable, the cardinal restrictions
are different:
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Theorem 13. The following conditions are equivalent.
(i) κ is an uncountable cardinal.
(ii) There exists a first countable regular space X̄ with an R-entangle-

ment such that |X̄| = κ.
(iii) There exists a first countable regular space Y ∗ of cardinality κ

such that any continuous function from Y ∗ into R is constant.
(iv) There exists a first countable, regular, and not completely regular

space Y ∗ of cardinality κ.
(v) There exists a first countable, regular, and connected space Y ∗ of

cardinality κ.

Proof. (i)⇒(ii): Fix an uncountable cardinal κ ≤ c. Let X be as in the
proof of Theorem 12, that is, regular, separable, and first countable with
an R-entanglement such that |X| = ω1. Let X̄ be the direct sum of X
and a discrete space of cardinality κ. Then X̄ is a separable regular space
with |X̄| = κ, and, by Fact 6, X̄ has an R-entanglement.

(ii)⇒(iii) is ensured by Theorem 5, while (iii)⇒(iv) and (iii)⇒(v) are
obvious.

(iv)⇒(i) and (v)⇒(i) follow from Theorem 7. �

3. The remaining proofs

3.1. Proof of Theorem 1. Let Y be an infinite T1 topological space
with distinct −∞,∞ ∈ Y . Consider a topology τ on Y ω, coarser than
the box topology, generated by a basis B of sets of the form

∏
i<ω Ui,

where each Ui is open in Y , such that
(a) there exists an n < ω such that −∞ ∈ Un = Ui ⊂ Y \ {∞} for all

i ≥ n,2 and
(b) if ∞ ∈ Um for some m < ω, then Ui = Y for all i < m.3

Notice that B is closed under finite intersections, so it is a basis for the
generated topology.

Let Y ∗ be the family of all p ∈ Y ω eventually equal to −∞ and such
that if p(n) = ∞ for some n < ω, then also p(i) = ∞ for all i < n. This
Y ∗, considered as a subspace of 〈Y ω, τ〉, is the space from Theorem 1.

Indeed, clearly Y ∗ has the same cardinality than Y . The other condi-
tions are justified as follows.

2The requirement that sets Ui are eventually equal is needed only for preservation of
separability and first countability. If we are not interested in these two properties, then
the condition −∞ ∈ Un = Ui ⊂ Y \ {∞} can be replaced with −∞ ∈ Un ⊂ Y \ {∞}.

3This condition means that if p, q ∈ Y ω are such that, for some m < ω, p(m) =

q(m) = ∞ and p(i) = q(i) for all i > m, then p and q are non-distinguishable with
respect to the topology generated by B.
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(i): If Y is first countable, fix a p ∈ Y ∗ and for every j < ω let Bj be
a countable basis of Y at p(j). Then the family of all sets

∏
i<ω Ui ∈ B

with the property that Ui ∈ {Y }∪
⋃
j<ω Bj for every i < ω is a countable

basis of Y ∗ at p. So, Y ∗ is first countable.
Next assume that Y is Hausdorff and choose distinct p0, p1 ∈ Y ∗. Let

k < ω be the largest such that p0(k) 6= p1(k). Note that p0(i) 6=∞ 6= p1(i)
for any i > k. Let V0 3 p0(k) and V1 3 p1(k) be disjoint open set. Fix
an ` ∈ {0, 1}. We can assume that ∞ /∈ V`, unless p`(k) = ∞. Choose
W` =

∏
i<ω U

`
i ∈ B containing p`. We can assume that U `i ⊂ Y \ {∞}

whenever p`(i) 6= ∞. (If we replace each U `i for which p`(i) 6= ∞ with
U `i \ {∞}, then the resulting set

∏
i<ω U

`
i 3 p` still belongs to B.) Let

B` = {p ∈ W` : p(k) ∈ V`}. Then B` ∈ B and B0 and B1 constitute the
required open sets separating p0 and p1.

Finally, assume that Y is regular. To see that Y ∗ is regular, fix a p ∈ Y ∗
and a U =

∏
i<ω Ui ∈ B containing p. We will find a V =

∏
i<ω Vi ∈ B

containing p whose closure is contained in U .
So, for every i < ω choose an open Wi ⊂ Y containing p(i) whose

closure is contained in Ui. Let m < ω be the largest i < ω with p(i) =∞,
if such an index exists and let m = 0 otherwise. Moreover, choose n < ω
satisfying (a) for which p(i) = −∞ for every i ≥ n. Let Vi = Y for any
i < m, Vi = Wi for any m ≤ i ≤ n, and Vi = Wn for all i > n. It is easy
to see that such definition implies that p ∈ W =

∏
i<ω Vi ∈ B and that∏

i<ω cl(Vi) ⊂ U . To complete the argument, it is enough to notice that
Y ∗ ∩

∏
i<ω cl(Vi) is closed in Y ∗.

Indeed, let p ∈ Y ∗ \
∏
i<ω cl(Vi) and k < ω be the largest such that

p(k) /∈ cl(Vk). Note that p(i) 6=∞ for any j > k. Let Z ⊂ Y \cl(Vk) be an
open neighborhood of p(k) which does not contain ∞, unless p(k) = ∞.
If B ∈ B is such that p ∈ B, then W = {q ∈ B : q(k) ∈ Z} belongs to B,
contains p, and is disjoint with

∏
i<ω cl(Vi), completing the proof of (i).

(ii): If Y \ {∞} is separable with a countable dense set D0, let D =
D0 ∪ {−∞,∞} and notice that Dω ∩ Y ∗ is a countable dense subset of
Y ∗. So, Y ∗ is separable.
(iii): Let Z be a space for which (HZ) holds and let g : Y ∗ → Z be con-
tinuous. It is enough to show that

(∗) if n < ω and p, r ∈ Y ∗ are such that p(n) = −∞, r(n) =∞, and
p(i) = r(i) = −∞ for all i > n, then g(p) = g(r).

Indeed, if (∗) holds and p, q ∈ Y ∗, then g(p) = g(q). To see this, let n < ω
be such that p(i) = q(i) = −∞ for all i ≥ n and let r ∈ Y ∗ be such that
r(i) = ∞ for every i ≤ n and r(i) = −∞ for every i > n. Then, by (∗),
g(p) = g(r) = g(q).
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To see (∗), let p, r ∈ Y ∗ be as in its assumption and consider a subspace

Y ′ = {r} ∪ {q ∈ Y ∗ : q(j) = p(j) for all j 6= n}

of Y ∗. Let πn : Y ω → Y be the projection onto the n-th coordinate (i.e.,
given by πn(q) = q(n)) and let h : Y ′ → Y be the restriction of πn to Y ′.
Then h is a bijection, since r is the only element of Y ′ with r(n) = ∞,
while for any y ∈ Y \ {∞} there is a unique q ∈ Y ′ with q(n) = y.

Notice also that h is an open map, that is, h−1 : Y → Y ′ is continuous.
This follows from the fact that

(2) h

Y ′ ∩∏
j<ω

Uj

 ∈ {∅, Un} for every
∏
j<ω Uj ∈ B.

Indeed, this is obvious, when ∞ /∈ Un, since then r /∈
∏
j<ω Uj . On the

other hand, if ∞ ∈ Un, then Ui = Y for all i < n and, once again, (2)
holds.

To finish the proof, of (∗) and the theorem, notice that f = g ◦
h−1 : Y → Z is continuous. So, since h−1(−∞) = p and h−1(∞) = r,
using (HZ) to f = g ◦ h−1 we obtain

g(p) = g(h−1(−∞)) = f(−∞) = f(∞) = g(h−1(∞)) = g(r),

as required.

3.2. Proof of Proposition 4. For disjoint sets B and C, let YB,C be
the topological space on the set

YB,C = (B × C) ∪B ∪ C

with each point in B × C being isolated and the basic neighborhoods of
s ∈ B ∪ C containing s together with a cofinite subset of: {b} × C when
s = b ∈ B, and of B × {c} when s = c ∈ C (see Figure 3).

B

C

B × C

•

•

b

c B × {c}

{b} × C

Figure 3. The space YB,C .
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In particular, the space YB,C is homeomorphic to B∗ × C∗ r {〈∞,∞〉},
where B∗ = B ∪ {∞} denotes the one-point compactification of the dis-
crete space B.

Lemma 14. If B is uncountable and C is countable, then every con-
tinuous function from YB,C into a Hausdorff space Z with a countable
pseudo-character is constant on some co-countable subset of B.

Proof. Let Z be a Hausdorff space of countable pseudo-character and
f : YB,C → Z be continuous. Then, for each c ∈ C, the set

Gc = f−1(f(c)) ∩ (B × {c})

is a closed Gδ-set in YB,C , hence a co-countable subset of B×{c}. Thus,
the set

B′ = {b ∈ B : 〈b, c〉 ∈ Gc for each c ∈ C}

is also co-countable. It suffices to show that f is constant on B′.
Suppose f(a) 6= f(b) for some a, b ∈ B′. Since Y is Hausdorff, there

are disjoint open neighborhoods Va and Vb in Y of a and b, respectively.
Since the sets

f−1(Va) ∩ ({a} × C) and f−1(Vb) ∩ ({b} × C)

are cofinite subsets of {a} × C and {b} × C, respectively, there exists a
c ∈ C with

〈a, c〉 ∈ f−1(Va) and 〈b, c〉 ∈ f−1(Vb).

Since 〈a, c〉, 〈b, c〉 ∈ Gc, we have

f(a, c) = f(b, c) = f(c).

Since Va and Vb are disjoint, that is a contradiction. �

Proof of Proposition 4. Fix a continuous f : X → Z. It is enough to show
that, for every k ∈ Z, the function f is constant on a co-countable subset
of ∆∩ (k, k+ 2)2. To see this, fix k ∈ Z, put B = A∩ (k, k+ 2), let C be
a countable subset of A ∩ (k − 1, k), and consider the subspace

Y = (B × C) ∪B′ ∪ C ′

of X, where B′ = ∆ ∩B2 and C ′ = ∆ ∩ C2, see Figure 4.
Note that Y is homeomorphic to YB,C upon the natural identification

of B with B′ and C with C ′. Therefore, Lemma 14 implies that f is
indeed constant on a co-countable subset of B′ = ∆ ∩ (k, k + 2)2. �
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A

A

B × C
k − 1

k

k k + 2

C ′
C

B′

B

Figure 4. The space Y homeomorphic to YB,C .
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