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ANOTHER CONSTRUCTION OF SEMI-TOPOLOGICAL
GROUPS

AKIO KATO

Abstract. For a nowhere compact, metrizable topological group
G we use Stone-Čech compactifications once or twice to get an ex-
tremally disconnected semi-topological group Ğ admitting a semi-
open isomorphism onto G.

1. Introduction

Recall that for every space X there exists an extremally disconnected
space E(X) called the “absolute”, with a perfect irreducible map onto X.
It has been well known (cf.[7, 9]) that given a topological group G one
can find an extremally disconnected semi-topological group in the abso-
lute E(G) admitting a semi-open isomorphism onto G. In this paper we
will construct such a semi-topological group using Stone-Čech compacti-
fications once or twice rather than the absolute, and this construction has
an advantage in investigating the properties of resultant spaces. The idea
of repeating Stone-Čech compactifications stems from [12, 13].

2. Basic Tools

All spaces are assumed to be completely regular and Hausdorff, and
maps are always continuous, unless otherwise stated. βX denotes the
Stone-Čech compactification of X. A space is nowhere compact (or no-
where locally compact) if it has no compact neighborhood, which is equiv-
alent to say that the remainder cX\X of any or some compactification
cX of X is dense in cX. A collection of nonempty open sets of X is
called a π-base for X if every nonempty open set in X contains some
member of the collection. The minimal cardinality of such a π-base is
called the π-weight of X. Observe that any dense subspace of X has
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the same π-weight as X, and that any space of countable π-weight is
separable. So, for example, let Q be the space of rationals; then all of
Q, βQ, Q∗ = βQ\Q, βQ∗, Q∗∗ = βQ∗\Q∗ are of countable π-weight
and separable.

As a basic tool we use perfect irreducible maps. Let g be a map from
X onto Y . For a subset U ⊆ X define g◦(U) ⊆ Y by

y ∈ g◦(U) if and only if g−1(y) ⊆ U,

i.e., g◦(U) = Y \g(X\U) ⊆ g(U). Note an obvious, but useful, formula

g◦(U ∩ V ) = g◦(U) ∩ g◦(V )

for any sets U, V ⊆ X, which especially implies that g◦(U) ∩ g◦(V ) = ∅
whenever U ∩ V = ∅. An onto map g is called irreducible if g◦(U) ̸= ∅
for every non-empty open set U , and semi-open if g◦(U) has nonempty
interior for every non-empty open set U . So, closed irreducible implies
semi-open, and semi-open implies irreducible. A closed map with compact
fibers are called perfect. We assume a perfect map is always onto.

Fact 2.1. Let g : X → Y be any closed irreducible map. Then
(1) g◦(U) is non-empty and open whenever U is. Moreover,

clY g◦(U) = clY g(U) = g(clXU)

for every open subset U ⊆ X.
(2) g preserves density, i.e., for any dense subset D of Y its inverse g−1(D)
is also dense in X, and its restriction to g−1(D) → D is closed irreducible.
(3) Let E ⊆ X be any subset such that g(E) = Y . Then E is dense in
X, and the restriction map g �E : E → Y has the property that for any
nonempty open subset U of E, there exists a nonempty open subset W of
Y such that (g �E)−1(W ) ⊆ U . In particular, g �E is semi-open, though
need not be closed.
(4) g preserves π-weight, i.e., a π-base B of X induces a π-base {g◦(U) :
U ∈ B} of Y, and a π-base C of Y induces a π-base {g−1(V ) : V ∈ C} of
X.
(5) If g is perfect irreducible, it preserves nowhere compactness.

Proof. (1) Though this is well known (cf. Ch.6, §2 in [14] or 10.49 in [15]),
for completeness we give a proof of the equality clY g◦(U) = clY g(U). It
suffices to show g(U) ⊆ clY g◦(U). Let y ∈ g(U), and take any open
neighborhood W of y. Then U ∩ g−1(W ) ̸= ∅ implies

∅ ≠ g◦(U ∩ g−1(W )) ⊆ g◦(U) ∩W,

hence ∅ ̸= g◦(U) ∩W, proving y ∈ clY g◦(U).
Other assertions (2), (3), (4) and (5) are easy to see. �
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Lemma 2.2. Let ϕ : X → Y be a perfect map and let Φ : bX → cY
be its extension where bX and cY are some compactifications of X and
Y respectively. Then Φ maps the remainder of X onto that of Y , i.e.,
Φ(bX\X) = cY \Y. Moreover,
(1) ϕ is perfect irreducible if and only if Φ is.
(2) If ϕ is perfect irreducible and X (hence Y also) is nowhere compact,
then the restriction of Φ to the remainders

bX\X → cY \Y
is also perfect irreducible.

Proof. The equality Φ(bX\X) = cY \Y follows from the characteristic
property of a perfect map which states that “a perfect map ϕ : X → Y

can not be extended to X̃ → Y for any (Hausdorff) space X̃ containing
X as a dense proper subspace” (see Lemma 3.7.14 in [8]). Then, (1) is
easy, and (2) follows from Fact 2.1 (2), (5). �

Perfect irreducible maps we encounter frequently in this paper are those
induced by some homeomorphisms, e.g., when the above ϕ is an identity
map.

3. Construction

Let (G, · ) be a nowhere compact, dense-in-itself, metrizable topological
group with the identity element e. For example, (G, · ) can be the group
(Q,+) of the rationals, the group (Zω,+) ≈ P of the irrationals, or the
direct sum

⊕
ω Z(2) of the countable copies of Z(2) = {0, 1} = Z/2Z.

For a space X we denote by H(X) the collection of all homeomorphisms
h : X ≈ X. Let us fix some nonempty collection H ⊆ H(G), and choose
a compactification cG of G such that
(⋆) every h ∈ H extends to c(h) ∈ H(cG).

In case we can not find such cG at hand, we can take cG = β G. Let
G(1) = cG\G be the remainder, and define h(1) ∈ H(G(1)) to be the
restriction of c(h) to the remainder G(1). Next consider the Stone-Čech
compactification βG(1) of G(1) and the Stone extension βh(1) ∈ H(βG(1))
of h(1). Let G(2) = βG(1)\G(1) be the remainder, and define h(2) ∈
H(G(2)) to be the restriction of βh(1) to the remainder G(2); so that

h : G ≈ G, h(1) : G(1) ≈ G(1), h(2) : G(2) ≈ G(2).

Note that G(1) is dense in cG, and G(2) is dense in βG(1), since we assume
that G is nowhere compact. Viewing that cG is a compactification of G(1),
we can consider the Stone extension Φ : βG(1) → cG of the identity map
idG(1) : G(1) = G(1). Let ϕ : G(2) → G be the restriction of Φ. Then it
follows from Lemma 2.2 that both Φ and ϕ are perfect irreducible maps.
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We can show that the correspondence H(G) ⊇ H ∋ h 7→ h(2) ∈
H(G(2)) is compatible with the perfect irreducible map ϕ, i.e.,

Lemma 3.1. h ◦ ϕ = ϕ ◦ h(2) : G(2) → G.

Proof. To show this equality, it suffices to prove

c(h) ◦ Φ = Φ ◦ βh(1) : βG(1) → cG,

which follows from the clear equality

h(1) ◦ idG(1) = idG(1) ◦ h(1) : G(1) → G(1)

on the dense subset G(1) of βG(1). �

Corollary 3.2. If h(x) = y for x, y ∈ G, then h(2)(ϕ−1(x)) = ϕ−1(y).

Proof. The inclusion h(2)(ϕ−1(x)) ⊆ ϕ−1(y) follows from Lemma 3.1.
Since h is a homeomorphism, we can replace h by h−1 to get the reverse
inclusion. �

We need to point out here that the map h(2) satisfying the equality
h ◦ ϕ = ϕ ◦ h(2) is uniquely determined by h and ϕ. This follows from the
next fact called the “cancellation law”, peculiar to irreducible maps (see
[10]).

Fact 3.3. Let f, g : X → Y, φ : Y → Z be any maps such that φ ◦ f =
φ◦g, and suppose that f, g are semi-open, and φ◦f = φ◦g is irreducible.
Then we get f = g.
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Proof. For completeness we give a proof of this fact. Note first that the
irreducibility of φ ◦ f = φ ◦ g implies that of φ. Suppose f ̸= g, and
take x ∈ X such that f(x) ̸= g(x) in Y . Then, since Y is Hausdorff
(recall our tacit assumption that all spaces are Tychonoff), we can choose
disjoint open sets U1, U2 in Y such that f(x) ∈ U1 and g(x) ∈ U2. Put
W = f−1(U1) ∩ g−1(U2). Then W is an open neighborhood of x, and
hence nonempty. Therefore f◦(W ), g◦(W ) are nonempty because of the
irreducibility of f, g. On the other hand, since f(W )∩ g(W ) ⊆ U1 ∩U2 =
∅, the condition φ ◦ f(W ) = φ ◦ g(W ) implies φ(Y \g(W )) = Z, and
consequently φ(Y \g◦(W )) = Z. This contradicts the irreducibility of φ,
because the interior of g◦(W ) is nonempty by our assumption that g is
semi-open. �

Now let us choose H ⊆ H(G) such that

H = {Tx : x ∈ G} ∪ {J}
where Tx is a left multiplication Tx(y) = x · y by x and J is the inverse
operation J(x) = x−1, and suppose H satisfies the above condition (⋆).
Then we get T (2)

x , J (2) ∈ H(G(2)) and a perfect irreducible map ϕ : G(2) →
G which satisfy by Lemma 3.1

Tx ◦ ϕ = ϕ ◦ T (2)
x , J ◦ ϕ = ϕ ◦ J (2)

for every x ∈ G. Since T0 = idG and ϕ ◦ T (2)
0 = T0 ◦ ϕ = ϕ = ϕ ◦ idG(2) ,

Fact 3.3 implies T
(2)
0 = idG(2) . In a similar way we can see that the

relations
Tx ◦ Ty = Tx·y, J ◦ J = idQ, J ◦ Tx−1 = Tx ◦ J imply

T (2)
x ◦ T (2)

y = T
(2)
x·y , J (2) ◦ J (2) = idG(2) , J (2) ◦ T (2)

x−1 = T (2)
x ◦ J (2)

respectively. Hence J (2) is an involution, and it follows from T
(2)
x ◦T (2)

−x =

T
(2)
0 = idG(2) that T

(2)
x−1 = (T

(2)
x )−1.

Choose one point ĕ of the fiber ϕ−1(e) of the identity e ∈ G, which we
fix from now on, and put x̆ = T

(2)
x (ĕ) for x ∈ G. Define G(ĕ) by

G(ĕ) = {x̆ : x ∈ G} ⊆ G(2)

which is an orbit of ĕ by {T (2)
x : x ∈ G}. Note that Corollary 3.2 implies

that x̆ ∈ ϕ−1(x) for each x ∈ G, and hence, G(ĕ) is dense in G(2) since ϕ
is perfect irreducible. Define the multiplication ⊗ in G(ĕ) by

x̆⊗ y̆ = (x · y)˘.
Then it is easy to see that (G(ĕ),⊗) is a group with the identity ĕ and
the inverse operation x̆ → (x−1)˘. Denote the restriction ϕ � G(ĕ) by

ϕ̆ : (G(ĕ),⊗) → (G, · ).
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Then ϕ̆ is algebraically an isomorphism, while topologically, a semi-open
map by Fact 2.1 (3). The equality

x̆⊗ y̆ = (x · y)˘= T
(2)
x·y(ĕ) = T (2)

x ◦ T (2)
y (ĕ) = T (2)

x (y̆)

shows that if we fix x ∈ G, the “left action” y̆ → x̆⊗ y̆ is continuous w.r.t.
y̆. Thus, using the terminologies in [1] we can conclude that (G(ĕ),⊗) is a
“left-topological group”. Since J(e) = e, we have J (2)(ϕ−1(e)) = ϕ−1(e),
hence both ĕ and J (2)(ĕ) belong to the same fiber ϕ−1(e). In general, as
we see later in §6, J (2) does not fix ĕ. An obvious exception is the case
J = idG, for example if G is a Boolean

⊕
ω Z(2), we have J (2) = idG(2)

so that J (2)(ĕ) = ĕ.

Lemma 3.4. Suppose xn(n ∈ ω) → x is a convergent sequence in G.
Then the countable discrete set {x̆n : n ∈ ω} is C∗-embedded in G(ĕ).
(Note that it is not necessarily true that x̆ ∈ cl {x̆n : n ∈ ω} in G(ĕ).)

Proof. Put F = {x̆n : n ∈ ω} and W = βG(1)\ϕ−1(x). Then F is a closed
subset of W . Notice that W is a cozero-set in βG(1), i.e., ϕ−1(x) = Φ−1(x)
is a zero-set in G(2), because we assume G is first countable. Hence W is
Lindelöf (σ-compact) so that F is a closed subset of the Lindelöf, hence
normal, space W. Therefore F is C∗-embedded in W . On the other hand,
the condition G(1) ⊆ W ⊆ βG(1) implies that W is C∗-embedded in
βG(1). Thus we can conclude that F is C∗-embedded in βG(1). �
Corollary 3.5. G(ĕ) does not contain any convergent sequence, hence,
G(ĕ) is not first countable. Consequently, (G(ĕ),⊗) is not a topological
group if G is separable.

Proof. Suppose G(ĕ) contains a convergent sequence x̆n(n ∈ ω) → x̆.
Then xn(n ∈ ω) → x in G. Hence Lemma 3.4 implies that {x̆n : n ∈ ω}
is C∗-embedded in G(ĕ), which contradicts with the fact that x̆n(n ∈ ω)
converges to x̆. Now suppose G is separable, i.e., second countable as we
assume G is metrizable. Hence Fact 2.1 (4) implies that G(2) has count-
able π-weight, and so does its dense subset G(ĕ). As is well known, any
topological group of countable π-weight must be first countable. There-
fore we can conclude (G(ĕ),⊗) is not a topological group. �

Since G(ĕ) is automatically determined once we choose the point ĕ ∈
ϕ−1(e), we next investigate what kind of point we can select from the
fiber ϕ−1(e).

4. Remote Points and Extremally Disconnected
Points

Let X be a dense subset of Y. A point p ∈ Y \X is called remote
from X, if p /∈ clY F for every nowhere dense closed subset F of X.
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In case Y = βX we simply call such a point p as a remote point of X.
The following is known about the existence of remote points.

Fact 4.1. (cf. [4, 5, 11]) Every non-pseudocompact dense-in-itself space
X has remote points if X has a σ-locally finite π-base.

In particular, it follows from this Fact that if a non-pseudocompact
dense-in-itself space X is metrizable or of countable π-weight, then the
set of all remote points of X is dense in the remainder βX\X.

A space Y is said to be extremally disconnected at a point p ∈ Y (see
[5]) if p /∈ clY U1 ∩ clY U2 for every pair of disjoint open sets U1, U2 in Y.
We call such a point p an extremally disconnected point of Y , or simply,
an e.d. point of Y . Obviously a space Y is extremally disconnected if
every point of Y is an e.d. point. If S is dense in Y , we always have
clY U = clY (U ∩S) for every open set U of Y . So, an equivalent definition
of an e.d. point is given using only open subsets of any dense subset
S ⊆ Y :
p ∈ Y is an e.d. point if and only if p /∈ clY V1 ∩ clY V2 for every pair of
disjoint open sets V1, V2 in S.

Note that this definition does not depend on the choice of the dense subset
S, while it is clear that the notion of remote points depends on the choice
of the dense subset S. We denote by Ed(Y ) the set of all e.d. points of
Y . The next fact proved by van Douwen [5] tells that “remote” implies
“e.d”.

Fact 4.2. If p ∈ βX\X is remote from X, then p is an e.d. point of βX.

This fact follows from the formula in [5]

BdβXEx(U) = clβXBdX(U)

which holds for any space X, where Ex(U) = βX\clβX(X\U) is the max-
imal open extension of U, and BdY (W ) = clY W\W denotes the boundary
of an open set W of Y .

Lemma 4.3. Suppose A is a closed subset of a normal space X. Then
A ⊆ Ed(X) implies clβXA ⊆ Ed(βX).

Proof. Let A be a closed subset of a normal space X, and that A ⊆ Ed(X).
Suppose p ∈ βX\Ed(βX), then there exist open disjoint sets U, V in X
such that p ∈ BdβXEx(U) ∩ BdβXEx(V ). Using the above formula and
the normality of X, we get

BdβXEx(U) ∩ BdβXEx(V ) = clβXBdX(U) ∩ clβXBdX(V )

= clβX(BdX(U) ∩ BdX(V )).
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Put F = BdX(U) ∩ BdX(V ). Then F ∩ Ed(X) = ∅. Hence F and A are
disjoint closed sets in the normal space X, so that clβXF ∩ clβXA = ∅.
This proves p ∈ βX\clβXA. �

5. Extremally Disconnected Semi-Topological Groups

Now, using the results in §4 we continue the construction in §3 to make
G(ĕ) extremally disconnected. Recall that G is metrizable. Our construc-
tion depends on whether or not G is separable. Put W = βG(1)\ϕ−1(e);
then

G(1) ⊆ W ⊆ βG(1) = βW.

Case 1 : G is separable.
Since G is of countable π-weight, so are βG, βG(1) and their dense sub-
spaces. In particular, W is of countable π-weight. Hence, by Fact 4.1,
ϕ−1(e) = βW\W contains points remote from W. Select ĕ ∈ ϕ−1(e) as
one of such remote points of W . Then

ĕ ∈ Ed(G(2)),

and consequently G(ĕ) ⊆ Ed(G(2)) because each T
(2)
x for x ∈ G is a home-

omorphism of G(2).

Case 2 : G is not separable.
Note that in this case W is not of countable π-weight, so we can not use
the same argument as Case 1. Choose cG = βG as a compactification
of G. Since G is metrizable, Fact 4.1 implies that the set ρ(G) of remote
points of G is dense in G(1), hence dense also in W . Since ϕ−1(e) is a
zero-set of βG(1), we can choose a countable discrete closed subset A of
W such that A ⊆ ρ(G) ⊆ W . Fact 4.2 implies that

A ⊆ ρ(G) ⊆ Ed(G(1)) ⊆ Ed(βG(1)) = Ed(βW ).

Since the cozero-set W of βG(1) is Lindelöf, hence normal, by Lemma 4.3
we get A∗ = clβWA\A ⊆ Ed(βW ). Now select ĕ as

ĕ ∈ A∗ ∩ ϕ−1(e).

Then
ĕ ∈ G(ĕ) ⊆ Ed(G(2)).

Thus, in either case we have succeeded in constructing an extremally
disconnected G(ĕ). Note that ĕ in Case 1 is a remote point of W, but
ĕ in Case 2 is not, being accessible by the discrete closed set A of W .
Nevertheless, we can show

Property 5.1. For every nowhere dense subset F of G\{e} we have

ĕ /∈ cl ϕ̆−1(F ) in G(ĕ).
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Proof. Case 1 is easy. Indeed, since ϕ is perfect irreducible, ϕ−1(F ) is
nowhere dense in G(2)\ϕ−1(e), hence also in βG(1)\ϕ−1(e) = W . Since ĕ
is chosen to be remote from W , we get ĕ /∈ cl ϕ−1(F ) in βW = βG(1),

which obviously implies ĕ /∈ cl ϕ̆−1(F ) in Ğ. Next let us consider Case
2. Since every point of A in Case 2 is remote from G, we have A∩ clF =
∅ in βG, which obviously implies A ∩ clϕ−1(F ) = ∅ in βG(1). Since
A, ϕ−1(F ) ⊆ W ⊆ βG(1), we get

A ∩ clW ϕ−1(F ) = ∅ in W.

This implies A∗∩clϕ−1(F ) = ∅ in βW = βG(1), because of the normality
of W . This completes the proof since ĕ ∈ A∗. �

Summarizing the hitherto results, we get

Theorem 5.2. Let (G, · ) be a nowhere compact, dense-in-itself,
metrizable topological group. Then there exist a left-topological group
(G(ĕ),⊗) with no convergent sequence, and a semi-open isomorphism
ϕ̆ : (G(ĕ),⊗) → (G, · ). We can find this G(ĕ) as a dense subset of
G(2) = βG(1)\G(1) where G(1) = βG\G. Moreover, we can make G(ĕ) to
be an extremally disconnected space with the property that

x̆ /∈ cl ϕ̆−1(F ) in G(ĕ).

for every x ∈ G and every nowhere dense set F of G\{x}, where ϕ̆(x̆) = x.

Recall that a group is called a semitopological group if it has a topology
such that left and right multiplications are separately continuous. When
G is Abelian, our example G(ĕ) in the above theorem, being Abelian, is
a semitopological group.

6. The case G = (Q/Z,+)

Here we examine Theorem 5.2 for the special case that (G, · ) is the
countable dense subgroup Q = (Q/Z,+) of the circle group T = (R/Z,+)
where “+” is the addition modulo 1. As this addition “+” is commutative,
let us express the corresponding (G(ĕ),⊗) by (Q(0̆),⊕). We can take T
as a compactification cQ of Q satisfying the condition (⋆) in §3. Put
P = T\Q. Then Q(1) = P, and (Q(0̆),⊕) is such that

Q(0̆) = {r̆ : r ∈ Q} ⊆ Q(2) = βP\P, r̆ ⊕ s̆ = (r + s)˘.

We express each element of T = R/Z using 0 6 t 6 1 identifying 0=1;
then the inverse operation J of T will be expressed as J(t) = 1 − t. Put
T+ = (0, 1/2), T− = (1/2, 1) and

Q+ = T+ ∩Q, Q− = T− ∩Q, P+ = T+ ∩ P, P− = T− ∩ P.
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Then the clopen partition P = P+ ∪ P− of P induces that of βP

βP = Ex(P+) ∪ Ex(P−)

where Φ−1(T+) ⊆ clβPP+ = Ex(P+) and Φ−1(T−) ⊆ clβPP− = Ex(P−).
Since 0 ∈ [0, 1/2] = clT P+ = Φ(Ex(P+)) and 0 (= 1) ∈ [1/2, 1] = clT P− =
Φ(Ex(P−)), both ϕ−1(0) ∩ Ex(P+) and ϕ−1(0) ∩ Ex(P−) are nonempty.
Putting U+ = Ex(P+) ∩ Q(2), U− = Ex(P−) ∩ Q(2), we can conclude
that Q(2) is partitioned into two clopen sets Q(2) = U+ ∪ U− such that
ϕ−1(Q+) ⊆ U+, ϕ

−1(Q−) ⊆ U−, and

ϕ−1(0) = (ϕ−1(0) ∩ U+) ∪ (ϕ−1(0) ∩ U−)

is a partition into two nonempty clopen sets of ϕ−1(0). The identity
element 0̆ of Q(0̆), chosen from the fiber ϕ−1(0), must belong to either
U+ or U−. Taking account of symmetry, let us assume that 0̆ ∈ U+. Note
that both the translation T1/2 and the inverse operation J exchange Q+

with Q−. Therefore T
(2)
1/2 and J (2) exchange ϕ−1(Q+) with ϕ−1(Q−), and

hence, exchange U+ with U−. So the condition 0̆ ∈ U+ implies that both
(1/2)˘ and J (2)(0̆) belong to U−. Put

Q̆+ = {r̆ : r ∈ Q+} ⊆ ϕ−1(Q+) and Q̆− = {r̆ : r ∈ Q−} ⊆ ϕ−1(Q−).

Then Q̆+, Q̆− are dense in U+, U−, respectively. Since U+, U− are clopen
in Q(2), we can conclude that 0̆ ∈ cl Q̆+, (1/2)˘∈ cl Q̆− in Q(0̆), and that
Q(0̆) is partitioned into two clopen sets

(6−0) Q(0̆) = ({0̆} ∪ Q̆+) ∪ ({(1/2)˘} ∪ Q̆−).

Property 6.1. The inverse operation of (Q(0̆),⊕) is not continuous.

Proof. The inverse operation ζ(r̆) = (1− r)˘of (Q(0̆),⊕) has the property
that ζ(Q̆+) = Q̆− and ζ(0̆) = 0̆, ζ((1/2)˘) = (1/2)˘. If ζ were continuous,
we would have ζ(cl Q̆+) = cl Q̆− in Q(0̆), i.e.,

ζ({0̆} ∪ Q̆+) = {(1/2)˘} ∪ Q̆−, i.e., ζ(0̆) = (1/2)˘,

contradicting with ζ(0̆) = 0̆. �

Put 0∗ = J (2)(0̆). Then, since 0∗ ∈ ϕ−1(0), we can consider Q(0∗) ⊆
Q(2). Define r∗ for r ∈ Q by

0∗ = J (2)(0̆) and r∗ = T (2)
r (0∗).

Then it is easy to see that both r̆ ̸= r∗ belong to the fiber ϕ−1(r). Put

Q∗
+ = {r∗ : r ∈ Q+} ⊆ ϕ−1(Q+) and Q∗

− = {r∗ : r ∈ Q−} ⊆ ϕ−1(Q−).



ANOTHER CONSTRUCTION OF SEMI-TOPOLOGICAL GROUPS 341

Since J (2)(r̆) = J (2) ◦ T (2)
r (0̆) = T

(2)
1−r ◦ J (2)(0̆) = T

(2)
1−r(0

∗) = (1− r)∗, the
homeomorphism J (2) carries the clopen partition (6 - 0) of Q(0̆) to that of
Q(0∗)

(6−1) Q(0∗) = ({0∗} ∪Q∗
−) ∪ ({(1/2)∗} ∪Q∗

+)

where {0∗}∪Q∗
− ⊆ U− = J (2)(U+) and {(1/2)∗}∪Q∗

+ ⊆ U+ = J (2)(U−).
Define the operation ⊕ on Q(0∗) by r∗ ⊕ s∗ = (r + s)∗, then the home-
omorphism J (2) of Q(2) induces an isomorphism (Q(0̆),⊕) ≈ (Q(0∗),⊕).
Let us consider the subspace Q(0̆) ∪ Q(0∗) ⊆ Q(2), and define on it a
semigroup operation ⊎ by

s∗ ⊎ r̆ = s̆ ⊎ r̆ = s̆⊕ r̆ ∈ Q(0̆) and s̆ ⊎ r∗ = s∗ ⊎ r∗ = s∗ ⊕ r∗ ∈ Q(0∗)

for any r, s ∈ Q, which is obviously left-topological. Put

Q(0̆, 0∗) = Q(0̆) ∪ Q(0∗) ⊆ Q(2).

This left-topological semigroup (Q(0̆, 0∗),⊎) has the following properties:
(1) Both Q(0̆) and Q(0∗) are minimal left ideals.
(2) 0̆, 0∗ are idempotents.
(3) J (2) is an involution exchanging Q(0̆) and Q(0∗). Due to the existence
of this involution, Q(0̆, 0∗) is topologically homogeneous.
Note also that both Q(0̆) and Q(0∗) are semitopological groups as we
remarked before at the end of §5.

Next we will show that (Q(0̆, 0∗),⊎) has a close connection with an
example described in [2]. Let A = T0 ∪ T1 be the union of two copies of
the circle group T, and let αi : T → Ti (i = 0, 1) be isomorphisms. We
assume A has the topology of the “Alexandroff double arrow” space, i.e.,
the sets

α0([t, s)) ∪ α1((t, s)) for 0 6 t < s < 1

and
α0((t, s)) ∪ α1((t, s]) for 0 < t < s 6 1

are the neighborhood base of A. The multiplication on A is defined by

αj(s) · αi(t) = αi(s+ t) for 0 6 t, s 6 1 and i, j = 0, 1.

Then it is easy to see that (A, · ) is a compact left-topological semigroup.
Let TA

r , J
A denote translation and involution on A, respectively, i.e.,

TA
r (αi(t)) = αi(t+ r), JA(αi(t)) = α1−i(1− t)

for 0 6 t, r 6 1 and i = 0, 1. Let A(Q) = Q0 ∪Q1 be the subsemigroup of
A such that Qi = αi(Q) for i = 0, 1. Define a correspondence

ξ : (Q(0̆, 0∗),⊎) → (A(Q), · )
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by ξ(r̆) = α0(r), ξ(r∗) = α1(r) for any r ∈ Q. It is clear that this ξ is
an isomorphism, algebraically, and that ξ commutes with TA

r , J
A, i.e.,

ξ ◦ T (2)
r = TA

r ◦ ξ, ξ ◦ J (2) = JA ◦ ξ on Q(0̆, 0∗).

Property 6.2. ξ is continuous.

Proof. Taking account of the above commutativity with TA
r , J

A, it suffices
to show the continuity of ξ at only one point 0̆ of Q(0̆, 0∗). Take any
0 < ε < 1/2, and consider an open neighborhood α0([0, ε)) ∪ α1((0, ε)) of
ξ(0̆) = α0(0) ∈ A(Q). Note that

0̆ ∈ Q(0̆, 0∗) ∩ U+ = Q̆+ ∪Q∗
+ ∪ {0̆, (1/2)∗},

hence
0̆ ∈ Q(0̆, 0∗) ∩ U+ ∩ ϕ−1((−ε,+ε)) = [0, ε)˘∪ (0, ε)∗,

where [0, ε)˘ is the set of all points r̆ for r ∈ [0, ε) ∩ Q, and (0, ε)∗ is the
set of all points r∗ for r ∈ (0, ε) ∩ Q. Of course, (−ε,+ε) is identified
with [0, ε) ∪ (1 − ε, 1) modulo 1. Therefore the neighborhood Q(0̆, 0∗) ∩
U+ ∩ ϕ−1((−ε,+ε)) of 0̆ is carried by ξ onto α0([0, ε)) ∪ α1((0, ε)), and
this proves the continuity of ξ. �

Let π : (A(Q), · )→ (Q,+) be the natural 2-1 projection, i.e., π(αi(r))=

r (i = 0, 1). Then we have π ◦ ξ = ϕ � Q(0̆, 0∗).

Property 6.3. ξ is semi-open.

Proof. Let U be any nonempty open set in Q(0̆, 0∗). Since ϕ is perfect
irreducible, by Property 2.1 (3) we can find a nonempty open set in W in
Q such that (π◦ξ)−1(W ) = ξ−1(π−1(W )) ⊆ U . Hence we get a nonempty
open subset π−1(W ) of A(Q) contained in ξ(U). �

Thus we can summarize that the map ϕ � Q(0̆, 0∗) is factorized into a
semi-open map ξ and a perfect irreducible map π

Q(0̆, 0∗)
ξ→ (A(Q), · ) π→ (Q,+)

where ξ is an isomorphism and π is a 2-1 homomorphism w.r.t. semi-group
structure. Of course, the space Q(0̆, 0∗) can be extremally disconnected
if the point 0̆ ∈ Q(2) = βP\P is chosen to be remote from P .

7. The case G =
⊕

ω Z(2)

Let us consider the case G is a topological group (
⊕

ω Z(2),+) with
the Boolean operation x+ x = 0. Then, since

x̆⊕ x̆ = (x+ x)˘= 0̆,

(G(0̆),⊕) is also a Boolean group. Since the inverse operation of a Boolean
group is the identity map, the inverse operation is obviously continuous.
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But (G(0̆),⊕) fails to be a topological group as pointed out in Corollary
3.5. Using the notation in §3 we get J = idG, J

(2) = idG(2) , J (2)(0̆) = 0̆.

So, the present situation is quite different from §6. Since (G(0̆),⊕) is
Abelian, we can conclude that (G(0̆),⊕) is a semitopological group with
continuous inverse, which can be extremally disconnected by choosing an
appropriate 0̆, by Theorem 5.2.

8. Modified Construction

Let us consider the case G = (Q,+) ⊆ (R,+) is the group of rationals.
Applying the method of §3, taking cQ = βQ, we can construct (Q(0̆),⊕)
as a dense subset of Q(2) = βQ(1)\Q(1) where Q(1) = βQ\Q. Here we
will modify the construction in §3 to find such (Q(0̆),⊕) inside the Stone-
Čech remainder βS\S, where S can be the space of irrationals P or even
be a homeomorphic copy of Q.

Take any irrational ε and fix it. Define

Q+ ε = {r + ε : r ∈ Q} ⊆ R

and let S be either this Q+ ε or R\Q = P. Consider Q ∪ S (⊆ R). Then
its Stone-Čech extension β (Q ∪ S) can be seen as a compactification of
S, so that we can consider the Stone extension Φ : βS → β (Q ∪ S) of
the identity map idS of S. Let ϕ : Φ−1(Q) → Q denote the restriction
of Φ. Consider H = {Tr : r ∈ Q} ⊆ H(Q), the collection of translations
Tr(s) = r + s. Then it is clear that every h ∈ H naturally extends to
h ∈ H(Q ∪ S) in such a way that h(S) = S. Let h(1) = h � S ∈ H(S) so
that h = h∪h(1). Then the equality (βh ◦Φ) � S = h(1) = (Φ ◦ βh(1)) � S
implies

βh ◦ Φ = Φ ◦ βh(1) : βS → β (Q ∪ S)

from which we see that βh(1)(Φ−1(Q)) ⊆ Φ−1(Q). Since we can consider
also h−1 instead of h, we get

βh(1)(Φ−1(Q)) = Φ−1(Q).

Define h(2) ∈ H(Φ−1(Q)) to be this restriction βh(1) � Φ−1(Q). Then we
get the equality

h ◦ ϕ = ϕ ◦ h(2) : Φ−1(Q) → Q

similar to that of Lemma 3.1. Therefore, hereafter, we can carry out the
same construction as in §3 or §6, i.e., (Q(0̆),⊕) is such that

Q(0̆) = {r̆ : r ∈ Q} ⊆ βS\S

where 0̆ ∈ ϕ−1(0) and r̆ = T
(2)
r (0̆) ∈ ϕ−1(r). So our conclusion is:
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Theorem 8.1. We can construct (Q(0̆),⊕) inside βS\S, where S is the
subspace of the real line such that S = P (irrationals) or S = Q+ ε ≈ Q
for any fixed irrational ε, and a perfect irreducible map ϕ from a dense
subset D of βS\S onto Q such that

Q(0̆) = {r̆ : r ∈ Q} where r̆ = T (2)
r (0̆) ∈ ϕ−1(r), and r̆ ⊕ s̆ = (r + s)˘

is an orbit of an element 0̆ ∈ ϕ−1(0) by T
(2)
r (r ∈ Q), where T

(2)
r is

a homeomorphism of D induced naturally by the Stone extension of the
translation Tr(t) = r + t of the space S.

Of course, by choosing an appropriate 0̆, we can make the above Q(0̆) to
be an extremally disconnected space with the property stated in Theorem
5.2. If we want to construct further the space Q(0̆, 0∗) similar to Q(0̆, 0∗)
in §6, that will be done by enlarging H and S to

H = {Tr : r ∈ Q} ∪ {J} ⊆ H(Q) and S = (Q+ ε) ∪ (Q− ε) ⊆ R,
respectively, where J is the inverse operation J(r) = −r. In any way, S
can be the space of irrationals P or a homeomorphic copy of Q.

9. Concluding Remarks

We don’t know if we can apply our construction in this paper when
the topological group G is not metrizable, i.e., not first countable. For
example, let G2 =

⊕
ω Q be the direct sum of countably many copies of

Q endowed with the box topology. This countable topological group is
known to be stratifiable (see [6, 3]), though not metrizable. Is it possible
to find an extremally disconnected semi-topological group, admitting a
semi-open map onto G2, by using Stone-Čech compactifications once or
twice ?
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