TOPOLOGY PROCEEDINGS Volume 48, 2016 Pages 1–14

http://topology.nipissingu.ca/tp/

A WEAKENING OF SUBMETRIZABILITY AND PROPERTIES OF SPACES

by

A. V. Arhangel'skii and M. M. Choban

Electronically published on April 3, 2015

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

E-Published on April 3, 2015

A WEAKENING OF SUBMETRIZABILITY AND PROPERTIES OF SPACES

A. V. ARHANGEL'SKII AND M. M. CHOBAN

ABSTRACT. The notions of weakly jointly compact-metrizable space and of σ -stratifiable mapping are introduced. Corollary 2.5 affirms that a weakly jointly compact-metrizable feebly compact sequential space is metrizable. By Theorem 4.3, X is a strong Σ -space if and only if X is a σ -stratifiable image of some paracompact p-space. This fact leads to general conditions under which a Σ -space is a σ -space (Theorem 5.1 and Corollary 5.2). Some concrete corollaries of these facts are mentioned.

1. Introduction

Let X be a topological space and let \mathcal{F} be a family of subspaces of X. Following [5] and [6], we say that X is *jointly metrizable on* \mathcal{F} , or that X is \mathcal{F} -metrizable, if there is a metric d on X which metrizes all members \mathcal{F} (that is, the restriction of d to A generates the subspace topology on A, for any $A \in \mathcal{F}$).

In particular, we say that X is *compactly metrizable*, or that X is *jointly metrizable on compacta*, or is a JCM-space, if X is jointly metrizable on the family of all compact subspaces of X (see [5]).

A space is *countably metrizable* if it is jointly metrizable on all countable subspaces [5].

It is natural to give the following definition [5]: A space X will be called *jointly partially metrizable*, or X is a JPM-space, if there is a metric d on X which metrizes all metrizable subspaces of X.

1

²⁰¹⁰ Mathematics Subject Classification. Primary 54A25; Secondary 54B05. Key words and phrases. jointly compact-metrizable, paracompact p-space, perfect mapping, Σ -space, σ -space, σ -stratifiable mapping, weakly jointly compact-metrizable. ©2015 Topology Proceedings.

2. A GENERALIZATION OF SUBMETRIZABILITY OF SPACES

A space X will be called weakly jointly compact-metrizable if there is a metric d on X which metrizes all compact metrizable subspaces of X. In this case we say that d is a wJCM-metric on the space X.

Any JPM-space is a weakly jointly compact-metrizable space. Every submetrizable space is a JCM-space. Obviously, each JCM-space is a wJCM-space.

Example 2.1. Let X be an infinite space without non-trivial convergent sequences. Then any compact metrizable subspace of X is finite and any metrizable subspace of X is discrete. Thus, the discrete metric d, given by d(x,x)=0 and d(x,y)=1 for any distinct points $x,y\in X$, metrizes all metrizable subspaces of the space X. Therefore, X is a JPM-space. If the space X is compact or X contains an infinite compact subspace, then X is not jointly metrizable on compacta.

A space X is called *sequential* if a subset P of X is closed in X if and only if the intersection of P with any metrizable compact subspace F of X is closed in the subspace F.

Following the idea in the definition of a k-leader of a space, one comes to the definition of a k_m -leader of a space. In the class of Hausdorff spaces, the object $k_m X$ is the well-known sequential co-reflection of the space X.

Suppose that (X, \mathcal{T}) is an arbitrary topological space. Define a topology \mathcal{T}_m on X as follows: A subset V of X belongs to \mathcal{T}_m if and only if, for every compact metrizable subspace F of (X, \mathcal{T}) , the set $V \cap F$ is open in the subspace F. Endowing the set X with the topology \mathcal{T}_m so defined, we obtain a topological space $k_m X$ called the k_m -leader of the space (X, \mathcal{T}) . Clearly, $\mathcal{T} \subset \mathcal{T}_m$ and $k_m X$ is a sequential space.

Obviously, we have the following characterization of weakly jointly compact-metrizable spaces.

Theorem 2.2. A space X is weakly jointly compact-metrizable if and only if the space $k_m X$ is submetrizable.

Corollary 2.3. A sequential space X is weakly jointly compact-metrizable if and only if it is submetrizable.

A subset L of a space X is called bounded (in X) if, for every locally finite family γ of open subsets in X, the set $\{U \in \gamma : U \cap L \neq \emptyset\}$ is finite. A space X is called $feebly\ compact$ if every locally finite family of open subsets in X is finite, i.e., X is bounded in X. For Tychonoff spaces, feeble compactness is equivalent to pseudocompactness. Every countably compact space is feebly compact.

Theorem 2.4. Let X be a weakly jointly compact-metrizable regular sequential space. Then any closed bounded G_{δ} -subspace F of X is compact and metrizable. In particular, X is jointly metrizable on compacta.

Proof. Fix a wJCM-metric d on X. Let $\{U_n : n \in \omega\}$ be a sequence of open subsets of X such that $U_{n+1} \subset U_n$ and $F = \cap \{U_n : n \in \omega\}$.

Denote by Y the set X with the topology \mathcal{T}_d generated by d. The identity mapping $f: X \to Y$ is continuous.

Claim 1. The set H = f(F) is closed in Y. Therefore, H is a compact metrizable subspace of Y.

Assume that the set H is not closed in Y. Then there exist a point $x \in X \setminus F$ and a sequence $\{x_n : n \in \omega\}$ such that $x_n \in F$ and $d(x, x_{n+1}) < 2^{-1}d(x, x_n)$ for each $n \in \omega$. There exist an open subset V and a disjoint family $\{V_n : n \in \omega\}$ of open subsets of X such that $x \in V$ and $x_n \in V_n \subset U_n \cap \{y \in X : d(x_n, y) < 2^{-n} \cap (X \setminus V)\}$ for any $n \in \omega$. Then the family $\{V_n : n \in \omega\}$ is locally finite in X and $V_n \cap F \neq \emptyset$ for each $n \in \omega$, a contradiction.

Claim 2. The mapping $g = f|F: F \longrightarrow H$ is a homeomorphism.

Assume that g is not a homeomorphism. Then there exist a point $x \in F$ and a sequence $L = \{x_n : n \in \omega\}$ such that $x_n \in F$ and $d(x, x_{n+1}) < 2^{-1}d(x, x_n)$ for each $n \in \omega$, and the set L is closed in X. As in Claim 1, we can construct an open subset V and a disjoint family $\{V_n : n \in \omega\}$ of open subsets of X such that $x \in V$ and $x_n \in V_n \subset U_n \cap \{y \in X : d(x_n, y) < 2^{-n} \cap (X \setminus V)\}$ for any $n \in \omega$. Then the family $\{V_n : n \in \omega\}$ is locally finite in X and $V_n \cap F \neq \emptyset$ for each $n \in \omega$, a contradiction. \square

Corollary 2.5. Every weakly jointly compact-metrizable feebly compact sequential space is metrizable.

3. WEAKLY JOINTLY COMPACT-METRIZABLE SPACES AND PERFECT MAPPINGS

Theorem 3.1. Let $f: X \to Y$ be a perfect mapping of a weakly jointly compact-metrizable space X onto a JPM-space Y. If all the fibers $f^{-1}(y)$, where $y \in Y$, are metrizable, then X is a JPM-space.

Proof. Fix a wJCM-metric d_1 on X and a JPM-metric d_2 on a space Y. We put $d(x,y)=d_1(x,y)+d_2(f(x),f(y))$ for all $x,y\in X$. Obviously, d is a wJCM-metric on X. Let \mathcal{T} be the original topology on X and \mathcal{T}_d be the topology on X generated by the metric d. Denote by Z the metric space (X,d) and by $g:Z\to k_mX$ the identity mapping. The spaces Z and k_mX are sequential. It is sufficient to prove that $\mathcal{T}\subset \mathcal{T}_d$.

If F is a metrizable subspace of $k_m X$, then F is a metrizable subset of the space Z too. Thus, the mapping $g^{-1}: k_m X \to Z$ is continuous.

Let \mathcal{T}_1 be the topology of the space Y and \mathcal{T}_2 be the topology on Y generated by the metric d_2 . Then $\mathcal{T}_1 \subset \mathcal{T}_2$ (see [4]). The mapping f of Z onto (Y, \mathcal{T}_2) is continuous.

If H is a compact subspace of (Y, \mathcal{T}_2) , then H is a metrizable compact subspace of the space Y, and $F = f^{-1}(H)$ is a first-countable compact subspace of the space X. By Theorem 2.5, F is a metrizable compact subspace of X. Therefore, F, as the subspace of Z, is compact and the mapping f of Z onto (Y, \mathcal{T}_2) is perfect. In particular, if L is a compact subset of Z, then f(L) is a metrizable compact subset of Y; $F = f^{-1}(f(L))$ is a compact metrizable subspace of the spaces X, $k_m X$, and Z; $L \subset F$; and $g|F:F \to k_m X$ is an embedding. Hence, the mapping $g:Z \longrightarrow k_m X$ is a homeomorphism. Then $\mathcal{T} \subset \mathcal{T}_d$.

Corollary 3.2. Let $f: X \to Y$ be a perfect mapping of a weakly jointly compact-metrizable space X onto a metric space Y. If the fibers $f^{-1}(y)$, $y \in Y$, are metrizable, then X is metrizable.

Example 3.3. Let X be the Stone-Čech compactification of the discrete space D_1 of the uncountable cardinality, let Y be the one-point compactification of D_1 , and let $f: X \to Y$ be the continuous mapping for which f(x) = x for any $x \in D$. Let $Y \setminus D_1 = \{b\}$. Then X is a JPM-space, Y is sequential, Y is not weakly jointly compact-metrizable, f is a perfect mapping, and only one fiber $f^{-1}(b)$ is not metrizable.

Example 3.4. Let X be the Stone-Čech compactification of the discrete space ω , let Y be the one-point compactification of ω , and let $f: X \to Y$ be the continuous mapping for which f(x) = x for each $x \in \omega$. Let $Y \setminus \omega = \{b\}$. Then X is a JPM-space, X is not metrizable, Y is metrizable space, f is a perfect mapping, and only one fiber $f^{-1}(b)$ of f is not metrizable.

4. Σ -Spaces and σ -Stratifiable Mappings

A space X is called a Σ -space if there exist a family $\{F(x): x \in X\}$ of countably compact subsets of X and a σ -locally finite family $\mathcal L$ of subsets of the space X such that, for each $x \in X$ and each open subset U which contains F(x), there exists $L \in \mathcal L$ such that $x \in L \cap F(x) \subset L \subset U$. The family $\mathcal L$ is called a Σ -net. If each F(x) is compact, then X is called a strong Σ -space and Σ is called a strong Σ -net [17]. If every Σ -space and Σ -net.

A space with a σ -locally finite net is called a σ -space (see [24]). Any σ -space is a strong Σ -space and a Σ_m -space. Any non-metrizable compact space is an example of a strong Σ -space which is not a σ -space.

A family $\mu = \{H_{n\alpha} : \alpha \in A, n \in \omega\}$ of subsets of a space X is called a σ -stratification of a family $\gamma = \{H_{\alpha} : \alpha \in A\}$ if $H_{\alpha} = \cup \{H_{n\alpha} : n \in \omega\}$ and $\mu_n = \{H_{n\alpha} : \alpha \in A\}$ is a locally finite family of subsets of the space X for all $\alpha \in A$ and $n \in \omega$.

A family $\mu = \{M_{\beta} : \beta \in B\}$ of subsets of X is called a weak σ -stratification of the family $\gamma = \{H_{\alpha} : \alpha \in A\}$ if $H_{\alpha} = \bigcup \{M_{\beta} : \beta \in B, M_{\beta} \subseteq H_{\alpha}\}$ for each $\alpha \in A$ and μ is a σ -locally finite family of subsets of the space X.

Any σ -stratifiable family of subsets is point-countable. In a σ -discrete perfect space any family is weakly σ -stratifiable. Thus, there exists a weakly σ -stratifiable not σ -stratifiable family of subsets.

A mapping $g: X \to Y$ is called (weakly) σ -stratifiable if g is continuous and, for any locally finite family $\gamma = \{H_\alpha : \alpha \in A\}$ of subsets of X, the family $g(\gamma) = \{g(H_\alpha) : \alpha \in A\}$ admits a (weak) σ -stratification.

Any perfect mapping is σ -stratifiable. Any continuous mapping into a perfect σ -discrete space is weakly σ -stratifiable.

Proposition 4.1. Let $g: X \to Y$ be a σ -stratifiable mapping of a space X onto a space Y. Then

- (1) If X is a σ -space, then Y is a σ -space too.
- (2) If X is a Σ -space, then Y is a Σ -space too.
- (3) If X is a strong Σ -space, then Y is a strong Σ -space too.

Proof. The proofs of these assertions are obvious.

A space X is called a paracompact p-space if there exist a metrizable space Y and a perfect mapping $g: X \longrightarrow Y$ [1]. If all the fibers $f^{-1}(y)$, $y \in Y$, are metrizable, then we say that X is a paracompact p_m -space.

Any paracompact p-space is a strong Σ -space and any paracompact p_m -space is a Σ_m -space. Each paracompact p_m -space is first-countable.

Lemma 4.2. Let γ be a σ -locally finite family of subsets of a space X, let \mathcal{L} be a family of subsets of X, and suppose for each $x \in X$ there exists $H \in \gamma$ such that $x \in H$ and the set $s(H) = \{L \in \mathcal{L} : L \cap H \neq \emptyset\}$ is finite. Then the family \mathcal{L} admits a σ -stratification.

Proof. There exists a sequence $\{\gamma_n = \{P_\beta : \beta \in B_n\}$ of locally finite families of subsets of X such that

- $\gamma_n \subset \gamma$ for each $n \in \omega$;
- $X = \cup \{P_{\beta} : \beta \in B_n, n \in \omega\};$
- the set s(H) is finite for all $\beta \in B_n$ and $n \in \omega$.

Assume that $\mathcal{L} = \{L_{\alpha} : \alpha \in A\}$. Let $C_n = \{(\alpha, \beta) \in A \times B_n : L_{\alpha} \cap H_{\beta} \neq \emptyset\}$. Clearly, the family $\{L_{(\alpha,\beta)} = L_{\alpha} \cap H_{\beta} : (\alpha,\beta) \in C_n\}$ is locally finite. Fix $\alpha \in A$ and $n \in \omega$. If $(\alpha,\beta) \notin C_n$ for each $\beta \in B_n$,

then we put $L_{n\alpha} = \emptyset$. If $(\alpha, \beta) \in C_n$ for some $\beta \in B_n$, then we put $L_{n\alpha} = \bigcup \{L_{(\alpha,\beta)} : \beta \in B_n\}$. Then $\mathcal{L}_n = \{L_{n\alpha} : \alpha \in A\}$ is a locally finite family of sets and $L_{\alpha} = \bigcup \{L_{n\alpha} : n \in \omega\}$.

Theorem 4.3. For a regular space X, the following assertions are equivalent.

- (1) X is a strong Σ -space.
- (2) X is an image under a σ -stratifiable mapping of a strong Σ -space.
- (3) X is an image under a σ -stratifiable mapping of a paracompact p-space.
- (4) There exist a metrizable space Y, a paracompact p-subspace S of the space $X \times Y$, and a σ -stratifiable mapping $g: S \to X$ onto X, such that g(x,y) = x for each $(x,y) \in S$.

Proof. Implications $4 \to 3 \to 2$ are obvious. Implication $2 \to 1$ follows from Proposition 4.1.

Let X be a strong Σ -space. Then there exist a family $\{F(x): x \in X\}$ of compact subsets of X and a sequence $\{\gamma_n = \{H_\alpha : \alpha \in A_n\} : n \in \omega\}$ of locally finite families Ł of closed subsets of X such that

- for all $n, m \in \omega$, $m \le n$, $\alpha \in A_m$, and $\beta \in A_n$ there exists $\mu \in A_n$ such that $H_{\mu} = H_{\alpha} \cap H_{\beta}$;
- for any $x \in X$ there exists a sequence $\alpha(x) = (\alpha_n \in A_n : n \in \omega)$ such that $x \in \cap \{H_{\alpha_n(x)} : n \in \omega\} \subseteq F(x), H_{\alpha_{n+1}} \subset H_{\alpha_n}$ for each $n \in \omega$, and, for each open subset U which contains F(x), there exists $m \in \omega$ such that $x \in H_{\alpha_m} \subseteq U$;
 - $H_{\alpha} = \bigcup \{ H_{\beta} : \beta \in A_{n+1}, H_{\beta} \subseteq H_{(\alpha)} \}$ for all $n \in \omega$ and $\alpha \in A_n$.

A sequence $\alpha = (\alpha_n : n \in \omega)$ is called an m-sequence if $H(\alpha) = \cap \{H_n : n \in \omega\}$ is a non-empty compact subset of X, $\alpha_n \in A_n$, $H_{\alpha_{n+1}} \subset H_{\alpha_n}$ for each $n \in \omega$, and for each open subset U which contains $H(\alpha)$ there exists $m \in \omega$ such that $H_{\alpha_m} \subset U$.

Obviously, any sequence $\alpha(x)$ is an m-sequence. Moreover, for all $n \in \omega$, $\beta_1 \in A_0, ..., \beta_n \in A_n$, with $H_{\beta_i} \subset H_{\beta j}$ for $0 \le j < i \le n$, and a point $x \in H_{\beta_n}$, there exists an m-sequence $\alpha = (\alpha_n : n \in \omega)$ such that $\beta_1 = \alpha_1, ..., \beta_n = \alpha_n$ and $x \in H(\alpha)$.

Denote by Y the set of all m-sequences with the Baire metric $d((\alpha_n : n \in \omega), (\beta_n : n \in \omega)) = \Sigma\{2^{-n} : \alpha_n \neq \beta_n\}$ (see [10]). Consider the subspace $S = \bigcup \{H(\alpha) \times \{\alpha\} : \alpha \in Y\}$ of the space $X \times Y$ and the natural projections $g: S \longrightarrow X$ and $f: S \longrightarrow Y$.

CLAIM 1. f is a perfect mapping.

Obviously, the mapping f is compact and $f^{-1}(\alpha) = H(\alpha) \times \{\alpha\}$. Fix an open subset W of the space $X \times Y$ and assume that $f^{-1}(\alpha) = H(\alpha) \times \{\alpha\} \subseteq W$ for a given $\alpha = (\alpha_n : n \in \omega) \in Y$. For each $m \in \omega$, we put $\delta_m(\alpha) = \{\beta = (\beta_n : n \in \omega) \in Y : \beta_i = \alpha_i \text{ for all } i \leq m\}$. The sequence

 $\{\delta_m(\alpha): m \in \omega\}$ is a base of the space Y at the point α . Since the set $H(\alpha)$ is compact, there exist an open subset U of X and an open subset V of Y such that $H(\alpha) \times \{\alpha\} \subseteq U \times V \subseteq W$. Since α is an m-sequence, there exists $m \in \omega$ such that $H_{\alpha_m} \subseteq U$ and $\delta_m(\alpha) \subset V$. Then $f^{-1}(\delta_m(\alpha)) \subset U \times V \subset W$. Thus, f is perfect.

Claim 2. S is a paracompact p-space.

This claim follows from Claim 1.

Claim 3. The mapping g is σ -stratifiable.

Let $\xi = \{G_{\mu} : \mu \in M\}$ be a locally finite family of subsets of S. Fix $x \in X$. For some $\alpha \in Y$ we have $x \in H(\alpha)$. There exists an open subset W of $X \times V$ such that $f^{-1}(\alpha) \subset W$ and the set $\{\mu \in M : W \cap G_{\mu} \neq \emptyset\}$ is finite. As it was established in the proof of Claim 1, there exists $m \in \omega$ such that $H_{\alpha_n} \times \delta_m(\alpha) \subset W$. Then the set $\{\mu \in M : H_{\alpha_m} \cap g(G_{\mu}) \neq \emptyset\}$ is finite. A reference to Lemma 4.2 completes the proof.

A space X is called an M-space if there exist a metrizable space Y and a quasi-perfect mapping $g: X \to Y$, i.e., a continuous closed mapping with non-empty countably compact fibers $g^{-1}(y)$, $y \in Y$ [16]. Any M-space is a Σ -space. The proofs of the following three theorems are similar.

Theorem 4.4. For any normal space X, the following assertions are equivalent.

- (1) X is a Σ -space.
- (2) X is an image under a σ -stratifiable mapping of a Σ -space.
- (3) X is an image under a σ -stratifiable mapping of an M-space.
- (4) There exist a metrizable space Y, an M-subspace S of the space $X \times Y$, and a σ -stratifiable mapping $g: S \longrightarrow X$ onto X.

Theorem 4.5. For a normal space X, the following assertions are equivalent.

- (1) X is a Σ_m -space.
- (2) X is an image under a σ -stratifiable mapping of a Σ_m -space.
- (3) X is an image under a σ -stratifiable mapping of a p_m -space.
- (4) There exist a metrizable space Y, a paracompact p_m -subspace S of the space $X \times Y$, and a σ -stratifiable mapping $g: S \longrightarrow X$ onto X.

Theorem 4.6. For any space X, the following assertions are equivalent.

- (1) X is a σ -space.
- (2) X is an image under a σ -stratifiable mapping of a σ -space.
- (3) X is an image under a σ -stratifiable mapping of a metrizable space.

(4) There exist a metrizable space S and a one-to-one σ -stratifiable mapping $g: S \longrightarrow X$ onto X.

5. Conditions under Which a Σ -Space Is a σ -Space

Theorem 5.1. Let \mathcal{P} be a topological property satisfying the following conditions:

- (ch) Any subspace of a space with the property \mathcal{P} has the property \mathcal{P} ;
- (cm) if X is a space with \mathcal{P} and Y is a metrizable space, then $X \times Y$ has the property \mathcal{P} .

Then the next assertions are equivalent.

- (1) Any paracompact p-space with the property \mathcal{P} is metrizable.
- (2) Any regular strong Σ -space with \mathcal{P} is a σ -space.

Proof. A paracompact p-space with a σ -discrete network is metrizable (see [2, Theorem 5.3]). This fact proves the implication $2 \to 1$.

Assume that every paracompact p-space with the property \mathcal{P} is metrizable. Let X be a regular strong Σ -space with the property \mathcal{P} . By Theorem 4.3, there exist a metrizable space Y, a paracompact p-subspace S of $X \times Y$, and a σ -stratifiable mapping $g: S \to X$ onto X such that g(x,y)-x for each $(x,y)\in S$. Clearly, S is a paracompact p-space with the property \mathcal{P} . Hence, S is metrizable. Now it follows from Proposition 4.1 that X is a σ -space. Implication $1\to 2$ and the theorem are proved. \square

Corollary 5.2. Let \mathcal{P} be a topological property satisfying the following conditions:

- (ch) Any subspace of a space with \mathcal{P} has the property \mathcal{P} :
- (cr) any regular countably compact space with the property \mathcal{P} is compact;
- (cm) if X is a space with \mathcal{P} and Y is a metric space, then $X \times Y$ has the property \mathcal{P} .

Then the next assertions are equivalent.

- (1) Any paracompact p-space with the property \mathcal{P} is metrizable.
- (2) Any regular Σ -space with the property \mathcal{P} is a σ -space.

Corollary 5.2 implies a variety of new and old results on the existence of σ -discrete networks in Σ -spaces. Here are some of them.

Corollary 5.3 ([3, Corollary 2.8]). Let X be a regular jointly metrizable on compacta strong Σ -space. Then X is a σ -space.

Proof. Consider the paracompact p-space S and the σ -stratifiable mapping $g: S \to X$ constructed in the proof of Theorem 4.3 (see the proof of Claim 3). In this case, $X \times Y$ is jointly metrizable on compacta as the

topological product of two jointly metrizable on compacta spaces (see [4]). Therefore, the space S is jointly metrizable on compacta. However, every jointly metrizable on compacta paracompact p-space S is metrizable [6]. A reference to Proposition 4.1 completes the proof.

Conditions under which a regular jointly metrizable on compact space has a network of the cardinality $\leq \tau$ were established in [3].

Corollary 5.4. Let X be a regular weakly jointly compact-metrizable Σ_m -space. Then X is a σ -space.

A space X is symmetrizable if there exists a distance function (symmetric) d(x, y) on X with the following properties:

- (i) $d(x,y) \ge 0$ and d(x,y) = 0 if and only if x = y;
- (ii) d(y, x) = d(x, y);
- (iii) a non-empty subset L is closed in X if and only if $d(x, L) = \inf\{d(x, y) : y \in L\} > 0$ for each $x \in X \setminus L$ [2].

Corollary 5.5. Let X be a regular Σ -space. If X is a symmetrizable space, then X is a σ -space.

Proof. In a symmetrizable space any countably compact subspace is metrizable [19] [20]. Thus, X is a strong Σ -space. By Theorem 4.3, there exist a metrizable space Y, a paracompact p-subspace S of the space $X \times Y$, and a σ -stratifiable mapping $g: S \longrightarrow X$ onto X, such that g(x,y)-x for each $(x,y) \in S$. Any p-space is a k-space. A k-subspace of the Cartesian product of a countable family of symmetrizable spaces is symmetrizable. Thus, S is a symmetrizable space. By [2, Theorem 2.5], a symmetrizable paracompact p-space is metrizable. Hence, S is metrizable. Now it follows from Proposition 4.1 that X is a σ -space.

Corollary 5.6. Let X be a regular (strong) Σ -space. If d is a symmetric on X which symmetrizes every countably compact (compact) subspace of X, then X is a σ -space. Moreover, if X is an M-space (a paracompact p-space), then X is metrizable.

Proof. Under these assumptions about X, any countably compact subspace of X is metrizable and compact [19] [20]. Thus, X is a strong Σ -space. Assume that X is a paracompact p-space and $\varphi: X \longmapsto Y$ is a perfect mapping onto a metric space Y with a metric ρ_1 . Then $\rho(x,y) = d(x,y) + \rho_1(\varphi(x),\varphi(y))$ is a symmetric on X which symmetrizes X. From Corollary 5.5 it follows that X is a σ -space.

Corollary 5.7 (see [12, Corollary 7.11]). If X is a regular Σ -space with a point-countable base, then X has a development. Moreover, if X is also collectionwise normal, then X is metrizable.

Proof. In a space with a point-countable base any countably compact subspace is metrizable [15] [10]. Thus, X is a strong Σ -space. By Theorem 4.3, X is a σ -space. By virtue of [2, Theorem 2.8], X is symmetrizable. In [13] R. W. Heath has proved that a symmetrizable space with a pointcountable base has a development.

Corollary 5.8 (see [12, Corollary 7.10]). Let X be a regular strong Σ space. If X is a space with a point-countable T_1 -separating open cover, then X is a σ -space.

Proof. By Jun-iti Nagata's theorem [18], a paracompact p-space with a point-countable T_1 -separating open cover is metrizable.

A space X has a W_{δ} -diagonal if there exist a sequence $\gamma = \{\gamma_n = 1\}$ $\{U_{\alpha}: \alpha \in A_n\}: n \in \omega\}$ of open covers of X and a sequence $\pi =$ $\{\pi_n: A_{n+1} \to A_n: n \in \omega\}$ of mappings such that

- (1) $\cup \{U_{\beta} : \beta \in A_n\} = X \text{ for each } n \in \omega;$ (2) $\cup \{U_{\beta} : \beta \in \pi_n^{-1}(\alpha)\} = U_{\alpha} \text{ for all } \alpha \in A_n \text{ and } n \in \omega;$
- (3) if $\alpha = \{\alpha_n \in A_n : n \in \omega\}$ and $\pi_n(\alpha_{n+1}) = \alpha_n$ for every n, then $H(\alpha) = \cap \{U_{\alpha_n}; n \in \omega\}$ contains at most one point of X.

Any space with a G_{δ} -diagonal has a W_{δ} -diagonal. A paracompact space with a W_{δ} -diagonal has a G_{δ} -diagonal. A paracompact p-space with a G_{δ} -diagonal is metrizable [23]. Moreover, a paracompact p-space with a W_{δ} -diagonal is metrizable (see [9] and [8]).

Hence, the next statement follows from Corollary 5.2.

Corollary 5.9 (see [12, Theorem 6.6]). Let X be a regular strong Σ -space. Then the following assertions are equivalent.

- (1) X is a σ -space.
- (2) X has a G_{δ} -diagonal.
- (3) X has a W_{δ} -diagonal.

Remark 5.10. In connection with Corollary 5.9, we mention the following facts.

- 1. Implication $2 \to 1$ for paracompact Σ -spaces was proved by Keiô Nagami [17]. In [7] J. Chaber has proved that a regular countably compact space with a G_{δ} -diagonal is metrizable. Thus, a regular Σ -space with a G_{δ} -diagonal is a strong Σ -space, and implication $2 \to 1$ holds for all Σ -spaces.
- 2. A space with a locally W_{δ} -diagonal has a W_{δ} -diagonal. In particular, a space with a locally G_{δ} -diagonal is a space with a W_{δ} -diagonal.
- 3. Implication $3 \to 1$ is not true in general for Σ -spaces. Let W be the space of all countable ordinal numbers with the topology induced by the

linear order. The space W is collectionwise normal, countably compact, locally metrizable, has a W_{δ} -diagonal, is a Σ -space, and is not a σ -space.

A space X is *quasi-metrizable* if there exists a distance function (quasi-metric) d(x, y) on X with the following properties:

- (i) $d(x,y) \ge 0$ and d(x,y) = 0 if and only if x = y;
- (ii) $d(x,z) \le d(x,y) + d(y,z)$;
- (iii) a non-empty subset L is closed in X if and only if $d(x,L) = \inf\{d(x,y): y \in L\} > 0$ for each $x \in X \setminus L$ [2] [12].

We now mention the following statement, a particular case of R. E. Hodel's more general theorem that a T_1 -space that both is a β -space and a γ -space must be developable [14] (see also [12, Theorem 10.7 and Corollary 10.8]).

Corollary 5.11 ([14]). Let X be a regular quasi-metrizable Σ -space. Then X has a development.

Proof. By [21, Corollary 4], any quasi-metrizable M-space is metrizable. In particular, a regular quasi-metrizable Σ -space is a strong Σ -space. Hence, X is a σ -space. Since X is first-countable as a quasi-metrizable space, by [2, Theorem 2.8], X is symmetrizable. [22, Theorem 2] affirms that any symmetrizable quasi-metrizable space has a development.

Corollary 5.12. Let X be a regular (strong) Σ -space. If d is a quasi-metric on X which quasi-metrizes every countably compact (compact) subspace, then X is a σ -space. Moreover, if X is an M-space (a paracompact p-space), then X is metrizable.

Proof. Under these assumptions about X, any countably compact subspace of X is metrizable [21]. Thus, X is a strong Σ -space. Assume that X is a paracompact p-space and $\varphi: X \longmapsto Y$ is a perfect mapping onto a metric space Y with a metric ρ_1 . Then $\rho(x,y) = d(x,y) + \rho_1(\varphi(x),\varphi(y))$ is a quasi-metric on X which quasi-metrizes X. From Corollary 5.11 it follows that X is a σ -space.

The next two examples are a part of the folklore.

Example 5.13. By the construction of J. Novak and Z. Frolik (see [10, Example 3.10.19]), there exists a countably compact subspace X of the compactification $\beta\omega$ of the discrete countable space ω such that $\omega\subset X$ and $|X|\leq exp(\aleph_0)$. Then any compact subset of X is finite and any metrizable subspace of X is discrete. Thus, the discrete metric d given by d(x,x)=0 and d(x,y)=1 for any distinct points $x,y\in X$ metrizes all compact and all metrizable subspaces of X. Therefore, the space X has the following properties:

- X is a JPM-space;
- X is a space jointly metrizable on compacta;
- X is an M-space and a Σ -space;
- X is not a σ -space.

Example 5.14. Let $X = C_0 \cup C_1$, where $C_0 = \{(t,0) : 0 < t \le 1\}$ and $C_1 = \{(t,0) : 0 \le t < 1\}$, be the *double arrows space* of P. Alexandroff and P. Urysohn (see [10, Exercise 3.10.C]). The space X is compact, perfectly normal, hereditarily separable, hereditarily Lindelöf, and non-metrizable. Let I = [0,1] be the unit interval. Consider the mapping $g: X \to I$, where g(t,i) = t for each $(t,i) \in X$. Clearly, X is a compact p_m -space. Since X is a first-countable non-metrizable compact space, X is not a JCM-space. Note that any continuous image of the space X is a compact p_m -space.

Example 5.15. Consider the Alexandroff double circle (see [10, Example 3.1.26],) $X = C_1 \cup C_2$, where $C_1 = \{(x,y): x^2 + y^2 = 1\}$ and $C_2 = \{(x,y): x^2 + y^2 = 2\}$ are two concentric circles and p is the radial projection of C_1 onto C_2 from (0,0). The space X is compact and hereditarily paracompact; it is also a paracompact p_m -space and is neither metrizable nor a JCM-space. The space X is a compactification of the discrete subspace C_2 . Let $Y = C_2 \cup \{b\}$ be the Alexandroff compactification, by the one point b, of the discrete space C_2 . Take the continuous mapping $g: X \to Y$, where $g^{-1}(b) = C_1$ and g(z) = z for each $z \in C_2$. The space Y is compact and is not a paracompact p_m -space. Thus, an image under a perfect mapping with metrizable fibers of a compact p_m -space need not be a compact p_m -space.

Acknowledgments. The authors are grateful to Professor Gary Gruenhage and to the referee for the valuable suggestions which have helped to improve the manuscript.

References

- A. V. Arhangel'skiĭ, A class of spaces which contains all metric and all locally compact spaces. (Russian) Mat. Sb. (N.S.) 67 (109) 1965 55–88. (trans. Amer. Math. Soc. Transl. 92 (1970), 1–39.)
- [2] _____, Mappings and spaces (Russian), Uspehi Mat. Nauk 21 (130), no. 4, 133–184. (trans. Russian Math. Surveys 21 (1966), no. 4, 115–162.)
- [3] A. V. Arhangel'skii and M. M. Choban, Compactly metrizable spaces and a theorem on generalized strong Σ-spaces, Topology Appl. 160 (2013), no. 11, 1168– 1172.
- [4] A. V. Arhangel'skii, M. M. Choban, and M. A. Al Shumrani, Joint metrizability of subspaces and perfect mappings, Topology Appl. 169 (2014), 2–15.

- [5] Alexander V. Arhangel'skii and Mohammed A. Al Shumrani, *Jointly partially metrizable spaces*, C. R. Acad. Bulgare Sci. 65 (2012), no. 6, 727–732.
- [6] ______, Joint metrizability of spaces on families of subspaces, and a metrization theorem for compacta in Proceedings of International Conference on Topology and Its Applications (ICTA 2011). Ed. Alexander V. Arhangel'skii, Moiz ud Din Khan, and Ljubisa D. R. Kocinac. Cambridge: Cambridge Scientific Publishers, 2012, 1–9.
- J. Chaber, Conditions which imply compactness in countably compact spaces,
 Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), no. 11, 993–998
- [8] J. Chaber, M. M. Čoban, and K. Nagami, On monotonic generalizations of Moore spaces, Čech complete spaces and p-spaces, Fund. Math. 84 (1974), no. 2, 107–119.
- [9] Mitrofan M. Čoban, The open mappings and spaces, Suppl. Rend. Circ. Mat. Palermo (2), 29 (1992), 51–104.
- [10] Ryszard Engelking, General Topology. Warszawa: PWN, 1977.
- [11] V. V. Filippov, Feathery paracompacta (Russian), Dokl. Akad. Nauk SSSR 178 (1968), 555–558. (trans. Soviet Math. Dokl. 9 (1968), 161–164.)
- [12] Gary Gruenhage, Generalized metric spaces in Handbook of Set-Theoretic Topology. Ed. Kenneth Kunen and Jerry E. Vaughan. Amsterdam: North-Holland, 1984, 423–501.
- [13] R. W. Heath, On spaces with point-countable bases, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 393–395.
- [14] R. E. Hodel, Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points, Duke Math. J. 39 (1972), 253–263.
- [15] A. Miščenko, Spaces with a pointwise denumerable basis (Russian) Dokl. Akad. Nauk SSSR 144 (1962), 985–988. (trans. Soviet Math. Dokl. 3 (1962), 855–858.)
- [16] Kiiti Morita, A survey of the theory of M-spaces, General Topology and Appl. 1 (1971), no. 1, 49–55.
- [17] Keiô Nagami, Σ -spaces, Fund. Math. **65** (1969), 169–192.
- [18] Jun-iti Nagata, A note on Filipov's theorem, Proc. Japan Acad. 45 (1969), no. 1, 30–33.
- [19] S. Nedev, Symmetrizable spaces and final compactness (Russian), Dokl. Akad. Nauk SSSR 175 (1967), 532–534. (trans. Soviet Math. Dokl. 8 (1967), 890–892.)
- [20] _____, o-metrizable spaces (Russian), Trudy Moskov. Mat. Obšč. 24 (1971), 201–236. (trans. Trans. Moscow Math. Soc. 24 (1971), 213–247 (1974).)
- [21] S. Ĭ. Nedev and M. M. Čoban, Δ-metrizable p-spaces (Russian), Vestnik Moskov. Univ. Ser. I Mat. Meh. 25 (1970), no. 6, 3–9. (trans. Trans. Moscow University Math. Bulletin 25 (1972), no. 5-6, 67–70.)
- [22] ______, On the theory of o-metrizable spaces. I (Russian), Vestnik Moskov. Univ. Ser. I Mat. Meh. 27 (1972), no. 1, 8–15. (trans. Trans. Moscow University Math. Bulletin 27 (1973), no. 1-2, 67–70.)
- [23] Akihiro Okuyama, On metrizability of M-spaces, Proc. Japan Acad. 40 (1964), 176–179.
- [24] ______, A survey of the theory of σ-spaces, General Topology and Appl. 1 (1971), no. 1, 57–63.

(Arhangel'skii) Moscow State Pedagogical University; Moscow, Russia $E\text{-}mail\ address\colon \texttt{arhangel.alex@gmail.com}$

(Choban) Department of Mathematics; Tiraspol State University; Tiraspol, Republic of Moldova

 $E ext{-}mail~address: mmchoban@gmail.com}$